JP2017023896A - Waste treatment facility and method for controlling power transmission amount from the facility - Google Patents

Waste treatment facility and method for controlling power transmission amount from the facility Download PDF

Info

Publication number
JP2017023896A
JP2017023896A JP2015142159A JP2015142159A JP2017023896A JP 2017023896 A JP2017023896 A JP 2017023896A JP 2015142159 A JP2015142159 A JP 2015142159A JP 2015142159 A JP2015142159 A JP 2015142159A JP 2017023896 A JP2017023896 A JP 2017023896A
Authority
JP
Japan
Prior art keywords
amount
power generation
steam
power
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015142159A
Other languages
Japanese (ja)
Other versions
JP6574351B2 (en
Inventor
福間 義人
Yoshito Fukuma
義人 福間
藤川 博之
Hiroyuki Fujikawa
博之 藤川
一宏 大橋
Kazuhiro Ohashi
一宏 大橋
和宏 古賀
Kazuhiro Koga
和宏 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2015142159A priority Critical patent/JP6574351B2/en
Publication of JP2017023896A publication Critical patent/JP2017023896A/en
Application granted granted Critical
Publication of JP6574351B2 publication Critical patent/JP6574351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste treatment facility and a control method of a power transmission amount from the facility which control the power transmission amount from the waste treatment facility at a constant level even if the composition and the like of waste to be treated fluctuates, and hardly generate energy loss.SOLUTION: A waste treatment facility includes: a waste incineration device 10 to which waste W is supplied; a power generator 20 which generates electricity based on steam St generated by incineration treatment in the waste incineration device 10 and supplied to the power generator 20; a measuring apparatus 31 of a power generation amount P generated and delivered by the power generator 20; an electrolysis device 40 to which a part of the power generation amount P is supplied; and a fuel cell 50 to which hydrogen (H) delivered from the electrolysis device 40 is supplied. The power generation amount P delivered from the power generator 20 is measured. A preset power transmission amount Po from the waste treatment facility 10 is transmitted, and an excessive power generation amount Pa obtained by subtracting the power transmission amount Po from the power generation amount P is supplied as operating power Pb of the waste treatment facility 10 and an energy source Pc of the electrolysis device 40.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物処理施設および該施設からの送電量の制御方法に関し、特に、多種多様な廃棄物に対して適用可能な廃棄物処理施設および該施設からの送電量の制御方法に関する。   The present invention relates to a waste treatment facility and a method for controlling the amount of power transmitted from the facility, and more particularly to a waste treatment facility applicable to a wide variety of waste and a method for controlling the amount of power transmitted from the facility.

従来都市ゴミや下水汚泥などの廃棄物のうち可燃性の廃棄物は、事業所や家庭等から回収され、各地域に設けられた廃棄物処理場や廃棄物処理施設等に搬送され、燃焼処理されて清浄化された排ガスや焼却灰として処分される。同時に、燃焼処理おいて発生する蒸気あるいは熱量を利用して電気エネルギーに変換され、廃棄物処理施設の電力あるいは施設が設置された地域のエネルギーとして利用される。近年、こうした廃棄物の焼却による発電が見直されており、高効率化の必要性が指摘されている。一方、電力システム改革により廃棄物処理施設からの送電量の安定性を求められている。つまり、廃棄物焼却施設においては、焼却処理される廃棄物の質が大きく変動し、また燃焼速度が遅いためにボイラで発生する蒸気の量が安定しないことから、発電量も変動する傾向がある。また、廃棄物焼却施設内で消費する電力量も廃棄物の質の変動に大きく左右される。従って、廃棄物処理施設からの送電量の安定性は大きな課題となっている。   Conventionally, combustible waste, such as municipal waste and sewage sludge, has been collected from business establishments and households, transported to waste treatment facilities and waste treatment facilities in each region, and burned And then disposed of as purified exhaust gas or incinerated ash. At the same time, steam or heat generated in the combustion process is used to convert it into electrical energy, which is used as power for the waste treatment facility or as energy for the area where the facility is installed. In recent years, power generation by incineration of such waste has been reviewed, and the need for higher efficiency has been pointed out. On the other hand, power system reform is required to stabilize the amount of power transmitted from waste treatment facilities. In other words, in the waste incineration facility, the quality of the waste to be incinerated greatly fluctuates, and the amount of steam generated in the boiler is unstable because the combustion speed is slow, so the power generation amount also tends to fluctuate. . In addition, the amount of power consumed in the waste incineration facility is also greatly affected by changes in the quality of the waste. Therefore, the stability of the amount of power transmitted from the waste treatment facility is a major issue.

例えば、廃棄物の燃焼処理または溶融処理を安定して行いつつも、廃棄物の処理コストを低減させ、しかも環境への悪影響が少ない廃棄物の処理方法および処理装置を提供することを一の課題として、廃棄物を燃焼又は溶融する熱処理炉と、水を水素と酸素に電気分解する水電解手段とを備え、水電解手段にて発生させた水素が熱処理炉に供給されるような構成を有する廃棄物の処理装置が提案されている(例えば特許文献1参照)。
具体的には、図8に例示するように、廃棄物の処理装置100は、廃棄物110をガス化するガス化炉102と、該ガス化炉102の後段に配され前記ガス化炉102において発生させた可燃ガスやチャーを燃焼させることにより得た熱によって灰を溶融する灰溶融炉103と、該灰溶融炉103の後段に配され灰溶融炉103の排ガス111により蒸気112を生成する廃熱ボイラ104と、該廃熱ボイラ104で生成された蒸気112により発電を行なう発電機105と、水を電気分解して水素116と酸素115を発生させる水素酸素発生装置106と、水素116を燃料ガスとして用いる燃料電池108とを備えて構成されている。なお、図中、107は水素貯蔵タンク、113および117は電力を示す。
For example, it is an object of the present invention to provide a waste processing method and a processing apparatus that can reduce the cost of processing waste and have less adverse effects on the environment while stably performing the combustion processing or melting processing of the waste. As a heat treatment furnace for burning or melting waste and water electrolysis means for electrolyzing water into hydrogen and oxygen, the hydrogen generated by the water electrolysis means is supplied to the heat treatment furnace. A waste processing apparatus has been proposed (see, for example, Patent Document 1).
Specifically, as illustrated in FIG. 8, the waste treatment apparatus 100 includes a gasification furnace 102 that gasifies the waste 110 and a downstream stage of the gasification furnace 102. An ash melting furnace 103 that melts ash by the heat obtained by burning the generated combustible gas or char, and waste that generates steam 112 from the exhaust gas 111 of the ash melting furnace 103 that is disposed downstream of the ash melting furnace 103 A heat boiler 104; a power generator 105 that generates power using steam 112 generated in the waste heat boiler 104; a hydrogen oxygen generator 106 that electrolyzes water to generate hydrogen 116 and oxygen 115; And a fuel cell 108 used as a gas. In the figure, 107 indicates a hydrogen storage tank, and 113 and 117 indicate electric power.

特開2006−275328号公報JP 2006-275328 A

しかしながら、従前のこうした廃棄物処理施設では、いくつかの課題や要請があった。
(i)廃棄物処理施設からの送電量の安定性について、近年、非常に厳しい規格が要求され、例えば30分間における累積送電量が±3%以内の変動幅であること等、従前の施設では対応しきれない場合があった。
(ii)これまでは、廃棄物焼却施設から送電される電力量は成り行きであり、その変動率は上下50%近く変動する施設も存在する。これらを施設について、従前、送電量の安定性を上げるように制御あるいは改造を図ることは、非常に困難であった。
(iii)従前は、廃棄物の焼却により発電される電力のうち、施設内で消費される電力を差し引いた分を送電しており、発電量、施設内消費電力量が変動するために送電量を一定に制御する方法は実施されておらず、また、こうした制御方法に切り替えることは、非常に困難であった。
(iv)従前、送電量を一定に制御する場合には、ボイラで発生する蒸気のうち蒸気タービン発電機に送気する蒸気量を制御し、余剰蒸気は蒸気復水器で復水することが一般的であった。また、この場合発生する余剰の蒸気は、自然界(水や大気)に捨てられ、その熱エネルギーは活かされることなく、エネルギーロスの発生となっていた。
However, there were some problems and requests in the conventional waste treatment facility.
(I) With regard to the stability of the amount of power transmitted from waste treatment facilities, in recent years, very strict standards have been demanded. For example, the cumulative amount of power transmitted over 30 minutes has a fluctuation range within ± 3%, There was a case that could not be supported.
(Ii) Until now, the amount of electric power transmitted from waste incineration facilities has been steady, and there are also facilities whose fluctuation rate fluctuates nearly 50%. In the past, it was very difficult to control or modify these facilities to improve the power transmission stability.
(Iii) Previously, the amount of power generated by incineration of waste was transmitted by subtracting the amount of power consumed in the facility, and the amount of power transmitted due to fluctuations in the amount of power generated and the amount of power consumed in the facility. A method for controlling the temperature at a constant level has not been implemented, and it has been very difficult to switch to such a control method.
(Iv) Conventionally, when the amount of power transmission is controlled to be constant, the amount of steam sent to the steam turbine generator among the steam generated in the boiler is controlled, and the surplus steam may be condensed by the steam condenser. It was general. In addition, surplus steam generated in this case is thrown away into the natural world (water and air), and the heat energy is not utilized and energy loss occurs.

そこで、本発明は、上記状況に鑑みてなされたものであって、こうした課題を解決し、処理される廃棄物の組成等の変動があっても、廃棄物処理施設からの送電量を一定に制御し、かつエネルギーロスの発生が殆どない廃棄物処理施設および該施設からの送電量の制御方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above situation, and solves such problems, and even if there is a variation in the composition of the waste to be treated, the amount of power transmitted from the waste treatment facility is kept constant. An object of the present invention is to provide a waste treatment facility that controls and generates little energy loss, and a method for controlling the amount of power transmitted from the facility.

本発明に係る廃棄物処理施設は、廃棄物焼却装置,該廃棄物焼却装置から供出される蒸気を基に発電する発電装置,該発電装置から供出される発電量の測定装置,および該発電量の一部が供給される電気分解装置または該電気分解装置並びに該電気分解装置から供出される水素が供給される燃料電池を有し、前記発電装置から供出される発電量Pが測定され、予め設定された廃棄物処理施設からの送電量Poが送電されるとともに、前記発電量Pから前記送電量Poを除した余剰の発電量Paが、廃棄物処理施設の作動電力および前記電気分解装置のエネルギー源として供給されることを特徴とする。
また、本発明に係る廃棄物処理施設からの送電量の制御方法は、廃棄物焼却装置から供出される蒸気を発電装置に供給して発電し、発電された発電量の一部を予め設定された送電量Poとして制御して供出するとともに、前記発電装置から供出される発電量Pを測定し、該発電量Pから前記送電量Poを除した余剰の発電量Paを、前記発電量Pを指標として廃棄物処理施設の作動電力および前記電気分解装置のエネルギー源として制御して供給することを特徴とする。
A waste treatment facility according to the present invention includes a waste incineration apparatus, a power generation apparatus that generates power based on steam supplied from the waste incineration apparatus, a power generation amount measuring apparatus supplied from the power generation apparatus, and the power generation amount. A part of the electrolyzer supplied or a fuel cell to which hydrogen supplied from the electrolyzer is supplied, and a power generation amount P supplied from the power generator is measured in advance. The power transmission amount Po from the set waste processing facility is transmitted, and the surplus power generation amount Pa obtained by dividing the power transmission amount Po from the power generation amount P is determined by the operating power of the waste processing facility and the electrolysis apparatus. It is supplied as an energy source.
In addition, the method for controlling the amount of power transmitted from the waste treatment facility according to the present invention generates power by supplying steam supplied from the waste incinerator to the power generation device, and a part of the generated power generation is preset. In addition, the power generation amount P supplied from the power generation device is measured, and the surplus power generation amount Pa obtained by dividing the power transmission amount Po from the power generation amount P is determined as the power generation amount P. The indicator is controlled and supplied as an operating power of a waste treatment facility and an energy source of the electrolyzer.

上記構成によれば、発電設備を有し一定の送電量を供送する廃棄物処理施設(以下、単に「本処理施設」ということがある)において発生する蒸気量や発電量等および消費する送電量や作動電力等のエネルギーを、基本的に発電量を指標として一元的に管理・制御することによって、導入される廃棄物の量や質あるいは焼却処理での燃焼速度等の大きな変動に伴う発生蒸気量や発電量の変動の影響を受けずに、送電量を一定に制御することができるとともに、本処理施設の作動電力を賄い、かつエネルギーロスの発生が殆どない本処理施設を構成することが可能となった。つまり、一定の送電量が除かれた(1次制御といえる)余剰の発電量の一部を、施設の作動電力とする(2次制御といえる)ことによって、廃棄物の変動要素の変動に対応した余剰の発電量の変動を緩和することができ、さらに余剰の発電量を電気分解装置のエネルギー源とする(3次制御といえる)ことが可能となった。例えば廃棄物の量の減少は、発電装置における発電量の減少を伴うと同時に、施設の搬送機あるいは燃料や燃焼空気等の供送手段等の作動電力の減少を伴うことから、余剰の発電量の大幅な減少をきたすことなく、電気分解装置のエネルギー源として供給され、供出された水素あるいは酸素を有価物として保存あるいは外部に供給することができる。特に水素や酸素は、所定期間高圧条件での貯留が可能であることから、廃棄物の急激な変動に対してもエネルギーロスの発生が殆どなく安定した送電量あるいは本処理施設の作動電力等を確保することが可能となる。   According to the above configuration, the amount of steam generated, the amount of power generation, etc. and the power transmission consumed in a waste treatment facility that has power generation equipment and delivers a certain amount of power transmission (hereinafter sometimes simply referred to as “the present processing facility”). The amount of generated energy and operating power are basically managed and controlled by using the power generation amount as an index, resulting in large fluctuations in the amount and quality of the waste introduced or the combustion rate during the incineration process. This treatment facility should be configured so that the amount of power transmission can be controlled at a constant level without being affected by fluctuations in the amount of steam and power generation, and the operating power of this treatment facility can be covered and there is almost no energy loss. Became possible. In other words, a part of the surplus power generation amount (which can be said to be primary control) from which a certain amount of power transmission has been removed is used as facility operating power (which can be said to be secondary control). Corresponding surplus power generation fluctuations can be mitigated, and surplus power generation can be used as an energy source for the electrolyzer (which can be referred to as tertiary control). For example, a decrease in the amount of waste is accompanied by a decrease in the amount of power generated by the power generation device, and at the same time, a decrease in the operating power of the transportation device of the facility or a delivery means such as fuel or combustion air. Therefore, hydrogen or oxygen supplied as an energy source of the electrolysis apparatus can be stored or supplied to the outside as a valuable material. In particular, hydrogen and oxygen can be stored under high pressure conditions for a predetermined period of time, so there is almost no energy loss even with sudden changes in waste. It can be secured.

本発明に係る廃棄物処理施設は、廃棄物焼却装置,該廃棄物焼却装置から供出される蒸気量の測定装置,該廃棄物焼却装置から供出される蒸気を基に発電される発電装置,該発電装置から供出される発電量の測定装置,および前記蒸気の一部が供給される電気分解装置または該電気分解装置並びに該電気分解装置から供出される水素が供給される燃料電池を有し、前記廃棄物焼却装置から供出される蒸気量Sが測定され、予め設定された廃棄物処理施設からの送電量Poに対応する蒸気量Soが前記発電装置に供給され、前記蒸気量Sから前記蒸気量Soを除した余剰の蒸気量Saが、廃棄物処理施設の作動エネルギーおよび前記電気分解装置の原料として供給されるとともに、前記発電装置から供出される発電量Pが測定され、前記送電量Poが制御されることを特徴とする。
また、本発明に係る廃棄物処理施設からの送電量の制御方法は、廃棄物焼却装置から供出される蒸気の一部を発電装置に供給して発電し、発電された発電量の一部を予め設定された送電量Poとして制御して供出するとともに、前記廃棄物焼却装置から供出される蒸気量Sを測定し、予め設定された蒸気量Soを前記発電装置に供給し、前記蒸気量Sから前記蒸気量Soを除した余剰の蒸気量Saを、該蒸気量Sを指標として廃棄物処理施設の作動エネルギーおよび前記電気分解装置の原料として制御して供給し、前記発電装置から供出される発電量Pを測定し、前記送電量Poを制御することを特徴とする。
A waste treatment facility according to the present invention includes a waste incinerator, a measuring device for the amount of steam delivered from the waste incinerator, a power generator that generates electricity based on the steam delivered from the waste incinerator, A device for measuring the amount of power generated from the power generation device, and an electrolysis device to which a part of the steam is supplied or the electrolysis device and a fuel cell to which hydrogen supplied from the electrolysis device is supplied, The amount of steam S delivered from the waste incinerator is measured, and the amount of steam So corresponding to a preset power transmission amount Po from the waste treatment facility is supplied to the power generation device. The surplus steam amount Sa excluding the amount So is supplied as the operating energy of the waste treatment facility and the raw material of the electrolysis device, and the power generation amount P delivered from the power generation device is measured, and the power transmission amount Characterized in that o is controlled.
In addition, the method for controlling the amount of power transmitted from the waste treatment facility according to the present invention supplies a part of the steam supplied from the waste incinerator to the power generator to generate power, and a part of the generated power is generated. While being controlled and delivered as a preset power transmission amount Po, the steam amount S delivered from the waste incinerator is measured, the preset steam amount So is supplied to the power generator, and the steam amount S The surplus steam amount Sa obtained by dividing the steam amount So from is controlled and supplied as the operating energy of the waste treatment facility and the raw material of the electrolysis apparatus using the steam amount S as an index, and is supplied from the power generation device The power generation amount P is measured, and the power transmission amount Po is controlled.

発電設備を有し一定の送電量を供送する廃棄物処理施設においては、発生あるいは操作可能なエネルギーの形態として、発電設備から供出される電力だけではなく、廃棄物焼却装置からの高温高圧の蒸気を直接利用することが可能である。本発明は、本処理施設において発生する蒸気量や発電量等および消費する送電量や作動電力等のエネルギーを、基本的に蒸気量を指標として一元的に管理・制御することを特徴とする。つまり、一定の送電量に要する蒸気量を1次制御し、本処理施設の作動エネルギーとして余剰の蒸気量を2次制御し、さらに余剰の蒸気量を電気分解装置の原料として3次制御することによって、導入される廃棄物の量等の大きな変動に伴う発生蒸気量の変動の影響を受けずに、送電量を一定に制御することができるとともに、本処理施設の作動エネルギーを賄い、かつエネルギーロスの発生が殆どない本処理施設とすることが可能となった。また、本処理施設あるいは電気分解装置の作動電力が必要な場合には、それぞれの電力に対応する蒸気量を発電装置に供給し各作動電力を確保することによって、エネルギーロスの発生のない効率のよい廃棄物処理施設を構成することが可能となる。   In a waste treatment facility that has a power generation facility and delivers a certain amount of power transmission, not only the power supplied from the power generation facility but also the high-temperature and high-pressure from the waste incinerator can be generated and operated. It is possible to use steam directly. The present invention is characterized in that energy, such as the amount of steam generated or generated at this processing facility, and the amount of power transmitted or consumed, is basically managed and controlled using the amount of steam as an index. That is, primary control of the amount of steam required for a certain amount of power transmission, secondary control of the surplus steam amount as the operating energy of this treatment facility, and tertiary control of the surplus steam amount as a raw material for the electrolyzer The power transmission amount can be controlled to be constant without being affected by fluctuations in the amount of steam generated due to large fluctuations in the amount of waste introduced, etc. This processing facility has almost no loss. In addition, when operating power for the treatment facility or electrolyzer is required, the amount of steam corresponding to each power is supplied to the power generator to secure each operating power, so that there is no energy loss. A good waste disposal facility can be constructed.

本発明に係る廃棄物処理施設は、廃棄物焼却装置,該廃棄物焼却装置から供出される蒸気量の測定装置,該廃棄物焼却装置から供出される蒸気を基に発電される発電装置,該発電装置から供出される発電量の測定装置,および前記蒸気の一部が供給される電気分解装置または該電気分解装置並びに該電気分解装置から供出される水素が供給される燃料電池を有し、前記廃棄物焼却装置から供出される蒸気量Sおよび前記発電装置から供出される発電量Pが測定され、
(1)予め設定された廃棄物処理施設からの送電量Poが送電され、前記発電量Pから前記送電量Poを除した余剰の発電量Paが、廃棄物処理施設の作動電力または/および前記電気分解装置のエネルギー源として供給されるとともに、前記送電量Poと前記発電量Paの加算発電量に対応する蒸気量S1が前記発電装置に供給され、前記蒸気量Sから前記蒸気量S1を除した余剰の蒸気量Saが、廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として供給される、または、
(2)予め設定された廃棄物処理施設からの送電量Poと余剰の発電量Paの加算発電量に対応する蒸気量S1が前記発電装置に供給され、前記蒸気量Sから前記蒸気量S1を除した余剰の蒸気量Saが、廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として供給されるとともに、前記発電量Pから前記送電量Poを除した余剰の発電量Paが、廃棄物処理施設の作動電力または/および前記電気分解装置のエネルギー源として供給される、
ことを特徴とする。
また、本発明に係る廃棄物処理施設からの送電量の制御方法は、廃棄物焼却装置から供出される蒸気の一部を発電装置に供給して発電し、発電された発電量の一部を予め設定された送電量Poとして制御して供出するとともに、前記廃棄物焼却装置から供出される蒸気量Sおよび前記発電装置から供出される発電量Pを測定し、
(1)前記発電量Pから前記送電量Poを除した余剰の発電量Paを、前記発電量Pを指標として廃棄物処理施設の作動電力または/および前記電気分解装置のエネルギー源として制御して供給するとともに、前記送電量Poと前記発電量Paの加算発電量に対応する蒸気量S1を前記発電装置に供給し、前記蒸気量Sから前記蒸気量S1を除した余剰の蒸気量Scを、前記蒸気量Sを指標として廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として制御して供給する、または、
(2)前記送電量Poと余剰の発電量Paの加算発電量に対応する蒸気量S1を前記発電装置に供給し、前記蒸気量Sから蒸気量S1を除した余剰の蒸気量Saを、前記蒸気量Sを指標として廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として制御して供給するとともに、前記発電量Pから前記送電量Poを除した余剰の発電量Paを、前記発電量Pを指標として廃棄物処理施設の作動電力または/および前記電気分解装置として制御して供給する、
ことを特徴とする。
A waste treatment facility according to the present invention includes a waste incinerator, a measuring device for the amount of steam delivered from the waste incinerator, a power generator that generates electricity based on the steam delivered from the waste incinerator, A device for measuring the amount of power generated from the power generation device, and an electrolysis device to which a part of the steam is supplied or the electrolysis device and a fuel cell to which hydrogen supplied from the electrolysis device is supplied, The amount of steam S delivered from the waste incinerator and the amount of electricity generated P delivered from the power generator are measured,
(1) The power transmission amount Po from the waste disposal facility set in advance is transmitted, and the surplus power generation amount Pa obtained by dividing the power transmission amount Po from the power generation amount P is the operating power of the waste processing facility or / and the A steam amount S1 that is supplied as an energy source of the electrolyzer and that corresponds to the added power generation amount of the power transmission amount Po and the power generation amount Pa is supplied to the power generation device, and the steam amount S1 is subtracted from the steam amount S. The surplus steam amount Sa is supplied as operating energy of a waste treatment facility or / and as a raw material of the electrolysis apparatus, or
(2) A steam amount S1 corresponding to a preset power generation amount of the power transmission amount Po and the surplus power generation amount Pa from the waste disposal facility is supplied to the power generation device, and the steam amount S1 is calculated from the steam amount S. The surplus steam amount Sa divided is supplied as the operating energy of the waste treatment facility or / and the raw material of the electrolyzer, and the surplus power generation amount Pa obtained by dividing the power transmission amount Po from the power generation amount P is Supplied as operating power for a waste treatment facility or / and as an energy source for the electrolyzer,
It is characterized by that.
In addition, the method for controlling the amount of power transmitted from the waste treatment facility according to the present invention supplies a part of the steam supplied from the waste incinerator to the power generator to generate power, and a part of the generated power is generated. While controlling and delivering as a preset power transmission amount Po, measuring the steam amount S delivered from the waste incinerator and the power generation amount P delivered from the power generation device,
(1) The surplus power generation amount Pa obtained by dividing the power generation amount P from the power generation amount P is controlled as the operating power of the waste treatment facility and / or the energy source of the electrolyzer using the power generation amount P as an index. While supplying the steam amount S1 corresponding to the added power generation amount of the power transmission amount Po and the power generation amount Pa to the power generation device, the surplus steam amount Sc obtained by dividing the steam amount S1 from the steam amount S, Controlled and supplied as the operating energy of the waste treatment facility or / and the raw material of the electrolysis apparatus with the steam amount S as an index, or
(2) The steam amount S1 corresponding to the added power generation amount of the power transmission amount Po and the surplus power generation amount Pa is supplied to the power generation device, and the surplus steam amount Sa obtained by dividing the steam amount S1 from the steam amount S Controlling and supplying the operation energy of the waste treatment facility or / and the raw material of the electrolysis apparatus using the steam amount S as an index, and the surplus power generation amount Pa obtained by dividing the power transmission amount Po from the power generation amount P, The power generation amount P is used as an index to supply the operation power of the waste treatment facility or / and the electrolyzer as controlled.
It is characterized by that.

上記のように、発電設備を有し一定の送電量を供送する廃棄物処理施設においては、電力および蒸気という形態の全く異なるエネルギーを同時に供出することが可能である。このとき、発電装置においては発電機の駆動源として蒸気が使用され、本処理施設内の作動エネルギーとしても各種ポンプや制御計装等には電力が有用であり、廃棄物焼却装置に供給される燃焼空気や廃棄物の予備加熱処理等においては蒸気が有用である。本発明は、これらを組み合わせて使用し、それぞれを基準(または指標)として、これらのエネルギーを調整(管理・制御)することによって、非常にエネルギー効率の高いハイブリッド式の本処理施設を構成することを可能にした。また余剰のエネルギーを使用する電気分解装置においても、原料としての蒸気および分解電源として発電された電力を組み合わせて使用し、そのハイブリッド式構成の一部を担うことによって、非常にエネルギー効率の高い本処理施設を構成することができる。   As described above, in a waste treatment facility that has a power generation facility and delivers a certain amount of power transmission, it is possible to simultaneously deliver completely different energy in the form of electric power and steam. At this time, steam is used as a drive source of the generator in the power generation device, and power is useful for various pumps and control instrumentation as operating energy in the treatment facility, and is supplied to the waste incinerator. Steam is useful in preheating treatment of combustion air and waste. The present invention uses a combination of these and adjusts (controls / controls) these energies using each as a reference (or index) to constitute a very energy efficient hybrid treatment facility. Made possible. Also, in electrolysis equipment that uses surplus energy, a combination of steam as a raw material and power generated as a cracking power source is used in combination, and a part of its hybrid configuration is used. A processing facility can be configured.

本発明に係る廃棄物処理施設の基本構成例を示す概略図Schematic showing a basic configuration example of a waste treatment facility according to the present invention 本発明に係る基本構成例における送電量の制御方法を例示する説明図Explanatory drawing which illustrates the control method of the amount of electric power transmission in the example of basic composition concerning the present invention 本発明に係る廃棄物処理施設の第2構成例を示す概略図Schematic showing a second configuration example of the waste treatment facility according to the present invention 本発明に係る第2構成例における送電量の制御方法を例示する説明図Explanatory drawing which illustrates the control method of the amount of power transmission in the 2nd example of composition concerning the present invention. 本発明に係る廃棄物処理施設の第3構成例を示す概略図Schematic showing a third configuration example of the waste treatment facility according to the present invention 本発明に係る第3構成例における送電量の制御方法の1の態様を例示する説明図Explanatory drawing which illustrates the 1 aspect of the power transmission amount control method in the 3rd structural example which concerns on this invention. 本発明に係る第3構成例における送電量の制御方法の他の態様を例示する説明図Explanatory drawing which illustrates the other aspect of the control method of the power transmission amount in the 3rd structural example which concerns on this invention. 従前の廃棄物の処理装置を例示する概略図Schematic illustrating a conventional waste treatment apparatus

<本発明に係る廃棄物処理施設の基本構成例>
図1は、本処理施設の構成例を示す。本処理施設は、廃棄物Wが供給される廃棄物焼却装置10,廃棄物焼却装置10における焼却処理により発生して発電装置20に供出される蒸気Stを基に発電する発電装置20,発電装置20において発電され供出される発電量Pの測定装置31,発電量Pの一部が供給される電気分解装置40および電気分解装置40から供出される水素(H)が供給される燃料電池50を有する。また、発電量Pの一部が、予め設定された送電量Poとして供出される送電装置60および本処理施設の各部の作動電力Pbとして供出される施設制御部70を有する。基本的に作製された蒸気量の全量が発電装置20に供給され、発電装置20から供出される発電量Pを基準として、一元的に送電量Poや施設制御部70に供給される作動電力Pb等を調整することによって、送電量Poの安定性を確保することができる。ただし、電気分解装置40から供出される水素H(および酸素O)を有価物として供出する場合には、燃料電池50を有しないことがある。
<Example of basic configuration of waste treatment facility according to the present invention>
FIG. 1 shows a configuration example of this processing facility. This treatment facility includes a waste incinerator 10 to which waste W is supplied, a power generator 20 that generates power based on steam St generated by the incineration process in the waste incinerator 10 and delivered to the power generator 20, and a power generator The power generation amount P measuring device 31 that is generated and delivered at 20, the electrolysis device 40 to which a part of the power generation amount P is supplied, and the fuel cell 50 to which hydrogen (H 2 ) supplied from the electrolysis device 40 is supplied. Have In addition, a part of the power generation amount P includes a power transmission device 60 that is supplied as a preset power transmission amount Po and a facility control unit 70 that is supplied as operating power Pb of each part of the processing facility. Basically, the total amount of steam produced is supplied to the power generation device 20, and the power transmission amount Po supplied from the power generation device 20 as a reference and the operating power Pb supplied to the facility control unit 70 in a unified manner. By adjusting the above, it is possible to ensure the stability of the power transmission amount Po. However, when hydrogen H 2 (and oxygen O 2 ) supplied from the electrolyzer 40 is supplied as a valuable material, the fuel cell 50 may not be provided.

廃棄物焼却装置10に供給された廃棄物Wが、廃棄物焼却装置10を構成する燃焼室11において焼却処理される。焼却処理によって発生した排熱および排ガスの温熱は、廃棄物焼却装置10を構成するボイラ12における蒸気発生用の熱源として利用される。焼却処理によって発生した排ガスGは、清浄化処理されて(図示せず)煙突13から排出される。焼却処理によって発生した塵灰は、廃棄物焼却装置10の下部から排出されるとともに、一部排ガスGに混入した微細成分は集塵処理等(図示せず)収集されて排出される。実働の廃棄物焼却装置10において、導入される廃棄物Wの量や質あるいは焼却処理での燃焼速度等を一定にすることは難しく、発生する排熱および排ガスの温熱は、大きな変動を伴う。   The waste W supplied to the waste incinerator 10 is incinerated in the combustion chamber 11 constituting the waste incinerator 10. The exhaust heat generated by the incineration process and the heat of the exhaust gas are used as a heat source for generating steam in the boiler 12 constituting the waste incinerator 10. The exhaust gas G generated by the incineration process is cleaned (not shown) and discharged from the chimney 13. The dust ash generated by the incineration process is discharged from the lower part of the waste incinerator 10, and the fine components partially mixed in the exhaust gas G are collected and discharged, such as dust collection process (not shown). In the actual waste incinerator 10, it is difficult to make the amount and quality of the waste W introduced or the combustion speed in the incineration process constant, and the generated exhaust heat and the exhaust gas temperature are greatly fluctuated.

ボイラ12において発生した高温高圧の蒸気Stが、発電装置20に供給され、タービン等発電機(図示せず)を作動させることによって所定の発電量Pを得るとともに、温熱を放出した蒸気Stは一部液化して供出される。ボイラ12から供出される蒸気量は大きな変動を伴うことから、供出される蒸気量の変動に対応して(比例変動ではなく一部平均化された変動の場合を含む)発電量Pも大きな変動を伴う。また、余剰の蒸気は、その一部を本処理施設の各部の作動エネルギーあるいは電気分解装置40の原料として供給することも可能である。   The high-temperature and high-pressure steam St generated in the boiler 12 is supplied to the power generation device 20, and a predetermined power generation amount P is obtained by operating a power generator (not shown) such as a turbine. Partially liquefied and served. Since the amount of steam delivered from the boiler 12 is subject to large fluctuations, the power generation amount P also varies greatly corresponding to fluctuations in the amount of steam delivered (including the case of fluctuations that are partially averaged instead of proportional fluctuations). Accompanied by. Further, a part of the surplus steam can be supplied as operating energy of each part of the treatment facility or as a raw material of the electrolysis apparatus 40.

発電量Pは、測定装置31(例えば積算電力計等)によって測定され、そのうち予め設定された本処理施設からの送電量Poが、送電装置60に供給され、一定に制御されて電力会社等送電先に送電される。余剰の発電量Pa(=P−Po)は、その一部を本処理施設の各部の作動電力Pbとして施設制御部70に供給されるとともに、さらに残余の発電量Pcが、電気分解装置40に供給される。また、燃料電池50が設けられた場合には、残余の発電量Pcの一部が燃料電池50の加熱あるいは制御用電源として利用されることがある。   The power generation amount P is measured by a measuring device 31 (for example, an integrated wattmeter or the like), and a power transmission amount Po from the processing facility set in advance is supplied to the power transmission device 60 and is controlled to be constant and transmitted by a power company or the like. Power is transmitted first. A part of the surplus power generation amount Pa (= P−Po) is supplied to the facility control unit 70 as operating power Pb of each part of the processing facility, and the remaining power generation amount Pc is further supplied to the electrolyzer 40. Supplied. When the fuel cell 50 is provided, a part of the remaining power generation amount Pc may be used as a heating or control power source for the fuel cell 50.

具体的に、作動電力Pbが供給される本処理施設の各部として、例えば、廃棄物焼却装置10において、廃棄物Wを供給・移送する搬送機や焼却処理に用いる燃焼用空気の圧送ポンプあるいは排ガス処理装置や焼却灰処理装置の薬剤導入部等、発電装置20や送電装置60における分電部や切替部等、電気分解装置40における高圧印加部等、あるいは上記各部の情報を管理し各部の制御を担う計装装置等を挙げることができる。後述するように、本処理施設の各部の作動電力Pbは、廃棄物Wの変動要素の変動を緩衝するように変動することから、余剰の発電量Paの一部を本処理施設の作動電力Pbとして使用することによって、発電量Pの大きな変動分を、作動電力Pbの変動つまり余剰の発電量Paの変動として吸収し、送電量Poの変動を緩和することができ、一定制御を容易に行うことができる。   Specifically, as each part of the treatment facility to which the operating power Pb is supplied, for example, in the waste incinerator 10, a transporter for supplying and transferring the waste W, a pressure pump for combustion air used for incineration processing, or exhaust gas Control information of each part by managing information on the chemical introduction part of the treatment device and the incineration ash treatment device, the power distribution unit and switching unit in the power generation device 20 and the power transmission device 60, the high voltage application unit in the electrolysis device 40, etc. An instrumentation device that bears As will be described later, since the operating power Pb of each part of the processing facility fluctuates so as to buffer the fluctuation of the fluctuation factors of the waste W, a part of the surplus power generation amount Pa is used as the operating power Pb of the processing facility. As a result, it is possible to absorb a large fluctuation amount of the power generation amount P as a fluctuation of the operating power Pb, that is, a fluctuation of the surplus power generation amount Pa, to reduce the fluctuation of the power transmission amount Po, and to easily perform constant control. be able to.

電気分解装置40には、発電装置20からの発電量Pcが供給されるとともに水が供給される。供給された電気を電気分解装置40の電極部の両極(図示せず)に印加させることによって、電解質(例えば水酸化ナトリウム等)の存在の下、電気分解反応を起こすことができる。供給された水は、電気分解反応によって水素(H)および酸素(O)に分解される。また、電気分解は吸熱反応であり、供給水として廃棄物焼却装置10から供出された高温の水(例えば約80〜90℃)あるいは蒸気を用いることによって、高い反応効率を確保することができる。発生した水素は、燃料電池50に供給され、一方発生した酸素は、有価物として貯留あるいは製品として供給される。ただし、電気分解装置40から供出された水素を有価物と利用する場合には、燃料電池50に供給されずに、貯留あるいは製品として供給される。水素を低温高圧下で貯留することによって、電力とは異なる形態で多量に吸収することが可能となり、発電量Pの大きな変動分を緩和することができ、送電量Poの一定制御を容易に行うことができる。 The electrolysis apparatus 40 is supplied with the power generation amount Pc from the power generation apparatus 20 and water. By applying the supplied electricity to both electrodes (not shown) of the electrode section of the electrolysis device 40, an electrolysis reaction can be caused in the presence of an electrolyte (for example, sodium hydroxide). The supplied water is decomposed into hydrogen (H 2 ) and oxygen (O 2 ) by an electrolysis reaction. Electrolysis is an endothermic reaction, and high reaction efficiency can be secured by using high-temperature water (for example, about 80 to 90 ° C.) or steam supplied from the waste incinerator 10 as supply water. The generated hydrogen is supplied to the fuel cell 50, while the generated oxygen is stored as a valuable material or supplied as a product. However, when hydrogen supplied from the electrolyzer 40 is used as a valuable resource, it is not supplied to the fuel cell 50 but supplied as a storage or a product. By storing hydrogen at a low temperature and high pressure, it is possible to absorb a large amount in a form different from electric power, a large fluctuation amount of the power generation amount P can be reduced, and constant control of the power transmission amount Po is easily performed. be able to.

燃料電池50に水素が供給された場合は、清浄化された空気または酸素との電気化学反応によって、新たな電力を作製することができる。このときの電気化学反応は、上記電気分解反応の逆反応であり、反応によって供出される反応生成物が水または蒸気であることから、非常にクリーンで安全性の高いエネルギーとして作製することができる。また、電気化学反応は発熱反応であり、生成された高温の水または蒸気をボイラ水等に用いることによって、高いエネルギー効率を確保することができる。   When hydrogen is supplied to the fuel cell 50, new electric power can be produced by an electrochemical reaction with purified air or oxygen. The electrochemical reaction at this time is the reverse reaction of the above electrolysis reaction, and the reaction product provided by the reaction is water or steam, so that it can be produced as very clean and highly safe energy. . Further, the electrochemical reaction is an exothermic reaction, and high energy efficiency can be ensured by using the generated high-temperature water or steam as boiler water or the like.

〔基本構成例における本処理施設からの送電量の制御方法〕
本処理施設において、廃棄物焼却装置10から供出された蒸気を発電装置20に供給して発電し、発電された発電量Pの一部を予め設定された送電量Poとして制御して供出される。基本的に作製された蒸気量の全量が発電装置20に供給され、発電装置20から供出される発電量Pを指標として、一元的に送電量Poや余剰の発電量Paを制御することによって、送電量Poの安定性を確保することができる。以下、本処理施設からの送電量の制御方法を、図2(A)〜(D)に基づき説明する。
[Method of controlling the amount of power transmitted from this treatment facility in the basic configuration example]
In this treatment facility, the steam supplied from the waste incinerator 10 is supplied to the power generation device 20 to generate power, and a part of the generated power generation P is controlled as a preset power transmission amount Po. . By basically controlling the power transmission amount Po and the surplus power generation amount Pa using the power generation amount P supplied from the power generation device 20 as an index, the entire amount of steam produced is supplied to the power generation device 20. The stability of the power transmission amount Po can be ensured. Hereinafter, a method for controlling the amount of power transmitted from the processing facility will be described with reference to FIGS.

(a)廃棄物の焼却処理
廃棄物焼却装置10に供給された廃棄物Wが焼却処理され、焼却処理によって発生した排熱および排ガスの温熱を利用して高温の蒸気が作製される。作製された蒸気量は、導入される廃棄物Wの量や質あるいは焼却処理での燃焼速度等によって経時的に変動することから、随時測定することが好ましい(図示せず)。基本構成例においては、廃棄物焼却装置10から供出される蒸気量の測定を構成要素としていないが、測定された蒸気量の経時的変動値に対して所定の時間遅れおよび立上り特性を補正することによって所定の精度の発電量Pの推定することによって、後述する発電量Pの制御精度を上げることができる。
(A) Waste incineration process The waste W supplied to the waste incineration apparatus 10 is incinerated, and high-temperature steam is produced using the exhaust heat generated by the incineration process and the heat of exhaust gas. The amount of steam produced varies with time depending on the amount and quality of the waste W introduced, the combustion rate in the incineration process, and the like, so it is preferable to measure as needed (not shown). In the basic configuration example, the measurement of the amount of steam delivered from the waste incinerator 10 is not a component, but the predetermined time delay and rise characteristics are corrected with respect to the temporal variation value of the measured amount of steam. Thus, by estimating the power generation amount P with a predetermined accuracy, the control accuracy of the power generation amount P described later can be increased.

(b)発電装置における発電
廃棄物焼却装置10において作製された蒸気が、発電装置20に供給され、所定の発電量Pが得られる。発電装置20から供出される発電量Pは、測定装置31によって測定される。図2(A)に例示するように、発電量Pの一部が、安定的に制御された所定の送電量Poとして供出され、送電量Poの安定性を確保するためには、廃棄物Wの量や質あるいは焼却処理での燃焼速度等によって経時的に変動する発電量Pを正確に把握することが不可欠である。基本構成例においては、作製された蒸気量の全量が発電装置20に供給され、発電装置20から供出される発電量Pを指標として、一元的に送電量Poや施設制御部70に供給される作動電力Pb等を制御することによって、送電量Poの安定性を確保した。
(B) Power generation in the power generation apparatus Steam produced in the waste incineration apparatus 10 is supplied to the power generation apparatus 20, and a predetermined power generation amount P is obtained. The power generation amount P delivered from the power generation device 20 is measured by the measurement device 31. As illustrated in FIG. 2A, a part of the power generation amount P is provided as a predetermined power transmission amount Po that is stably controlled, and in order to ensure the stability of the power transmission amount Po, the waste W It is indispensable to accurately grasp the power generation amount P that varies with time depending on the amount and quality of the gas or the combustion speed in the incineration process. In the basic configuration example, the entire amount of the produced steam is supplied to the power generation device 20, and the power generation amount P supplied from the power generation device 20 is used as an index to be supplied to the power transmission amount Po and the facility control unit 70 in a unified manner. By controlling the operating power Pb and the like, the stability of the power transmission amount Po was ensured.

(c)送電量の制御
発電装置20から供出される発電量Pは、図2(A),(B)に例示するように、一定の送電量Poが制御される(1次制御)。また、発電量Pから送電量Poを除した余剰の発電量Paは、発電量Pを指標として制御されて本処理施設の作動電力Pbおよび電気分解装置40のエネルギー源(発電量Pc)として供給される。つまり、本処理施設においては、発電量Pが、送電量Poと本処理施設の作動電力Pbの最大値を超える余剰の発電量Paが確保できるように制御されるとともに、送電量Poが所望の設定値(例えば5万W/h)に対して所定の変動幅(例えば±3%)以内となるように制御される。
(C) Control of power transmission amount As shown in FIGS. 2A and 2B, the power generation amount P supplied from the power generation device 20 is controlled to a constant power transmission amount Po (primary control). Further, the surplus power generation amount Pa obtained by dividing the power generation amount P from the power generation amount P is controlled using the power generation amount P as an index and supplied as the operating power Pb of the processing facility and the energy source (power generation amount Pc) of the electrolyzer 40. Is done. In other words, in the present processing facility, the power generation amount P is controlled so as to ensure a surplus power generation amount Pa exceeding the maximum value of the power transmission amount Po and the operating power Pb of the processing facility, and the power transmission amount Po is desired. Control is performed so as to be within a predetermined fluctuation range (for example, ± 3%) with respect to a set value (for example, 50,000 W / h).

(d)余剰の発電量の制御
発電量Pから送電量Poを除した余剰の発電量Paは、図2(A),(C)に例示するように、発電量Pを指標として制御されて本処理施設の作動電力Pbとして供給される(2次制御)。このとき、本処理施設の各部の作動電力Pbは、廃棄物Wの増量に伴い増加し、減量に伴い減少する。つまり発電量Pが、廃棄物Wの変動に伴う変動要素となるとともに、既述のように、その変動に連動して作動電力Pbを構成する廃棄物Wの搬送機や圧送ポンプ等の稼働率が変動する。従って、発電量Pを指標として作動電力Pbを制御することによって、導入される廃棄物Wの変動要素に相当する実働状態に合った作動電力Pbの調整ができる。一方、余剰の発電量Paの一部を作動電力Pbとして使用することによって、発電量Pの大きな変動分を作動電力Pbの変動として吸収することができ、発電量Pの変動に伴う送電量Poの制御への影響を緩和し、送電量Poの一定制御を容易に行うことができる。
(D) Control of surplus power generation amount Surplus power generation amount Pa obtained by dividing power generation amount P from power generation amount P is controlled using power generation amount P as an index, as illustrated in FIGS. It is supplied as the operating power Pb of this processing facility (secondary control). At this time, the operating power Pb of each part of the treatment facility increases with the increase in the waste W, and decreases with the decrease. In other words, the power generation amount P becomes a variable factor associated with the fluctuation of the waste W, and, as described above, the operating rate of the transporter, the pressure pump, etc. of the waste W constituting the operating power Pb in conjunction with the fluctuation. Fluctuates. Therefore, by controlling the operating power Pb using the power generation amount P as an index, it is possible to adjust the operating power Pb in accordance with the actual working state corresponding to the variation factor of the introduced waste W. On the other hand, by using a part of the surplus power generation amount Pa as the operating power Pb, a large fluctuation amount of the power generation amount P can be absorbed as the fluctuation of the operating power Pb, and the power transmission amount Po accompanying the fluctuation of the power generation amount P. The influence on the control of the power transmission can be reduced, and the constant control of the power transmission amount Po can be easily performed.

また、作動電力Pbを除した余剰の発電量Paの残量(Pc)は、図2(A),(D)に例示するように、電気分解装置40に供給され、電気分解反応に利用される(3次制御)。また、燃料電池50が設けられた場合には、残余の発電量Pcの一部が燃料電池50の加熱あるいは制御用電源として利用するように制御されることがある。さらに、残余の発電量Pcの一部を、厳格な安定制御をせずに他の送電先に変換されて供給することも可能である。   Further, the remaining amount (Pc) of the surplus power generation amount Pa excluding the operating power Pb is supplied to the electrolyzer 40 and used for the electrolysis reaction as illustrated in FIGS. 2 (A) and (D). (Tertiary control). When the fuel cell 50 is provided, the remaining power generation amount Pc may be controlled to be used as a heating or control power source for the fuel cell 50 in some cases. Furthermore, a part of the remaining power generation amount Pc can be converted and supplied to another power transmission destination without strict stability control.

<本処理施設の他の構成例>
図3は、本処理施設の他の構成例(第2構成例)を示す。本処理施設は、上記基本構成例を構成する廃棄物焼却装置10,発電装置20,発電量Pの測定装置31,電気分解装置40、燃料電池50,送電装置60および施設制御部70に加え、廃棄物焼却装置10から供出される蒸気量Sの測定装置32を有し、廃棄物焼却装置10から供出される蒸気量Sが測定され、送電量Poに対応する蒸気量Soが発電装置20に供給され、蒸気量Sから蒸気量Soを除した余剰の蒸気量Saが、本処理施設の作動エネルギーSbおよび電気分解装置40の原料(蒸気量Sc)として供給されるとともに、発電装置20から供出される発電量Pが測定され、送電量Poが制御されて送電装置60を介して外部に送電される。作製された蒸気量Sを指標として、一元的に送電量Poに対応する蒸気量Soおよび余剰の蒸気量Saを制御することによって、送電量Poの安定性を確保することができる。なお、基本構成例同様、電気分解装置40から供出される水素H(および酸素O)を有価物として供出する場合には、燃料電池50を有しないことがある。以下、基本構成例と同じ構成要素は、同様の構成と機能を有し、重複する詳細な説明は省略する。
<Other configuration examples of this treatment facility>
FIG. 3 shows another configuration example (second configuration example) of the processing facility. In addition to the waste incinerator 10, the power generation device 20, the power generation amount P measurement device 31, the electrolysis device 40, the fuel cell 50, the power transmission device 60, and the facility control unit 70, this treatment facility includes: It has a measuring device 32 for the amount of steam S delivered from the waste incinerator 10, the amount of steam S delivered from the waste incinerator 10 is measured, and the amount of steam So corresponding to the power transmission amount Po is generated in the power generator 20. The surplus steam amount Sa obtained by dividing the steam amount S from the steam amount S is supplied as the operation energy Sb of the present processing facility and the raw material (steam amount Sc) of the electrolyzer 40, and is supplied from the power generator 20. The generated power amount P is measured, and the power transmission amount Po is controlled and transmitted to the outside via the power transmission device 60. By controlling the steam amount So corresponding to the power transmission amount Po and the surplus steam amount Sa using the produced steam amount S as an index, the stability of the power transmission amount Po can be ensured. As in the basic configuration example, when hydrogen H 2 (and oxygen O 2 ) supplied from the electrolyzer 40 is supplied as a valuable material, the fuel cell 50 may not be provided. Hereinafter, the same components as those in the basic configuration example have the same configuration and function, and a detailed description thereof is omitted.

ボイラ12において発生した高温高圧の蒸気(蒸気量S)の一部(蒸気量So)が発電装置20に供給され、余剰の蒸気量Saが本処理施設の作動エネルギーSbおよび電気分解装置40の原料Scとして供給される。蒸気量Sは、測定装置32(例えば蒸気流量計等)によって測定され、そのうち予め設定された送電量Poに対応する蒸気量Soが設定され、発電装置20に供給される。余剰の蒸気量Sa(=S−So)は、その一部を本処理施設の各部の作動エネルギーSbとして施設制御部70に供給されるとともに、さらに残余の蒸気量Scが、電気分解装置40に高温の原料水として供給されることによって、高い反応効率を確保することができる。さらに、余剰の蒸気があれば、ボイラ12に還流されることによって、ボイラ12の熱効率向上を図ることができる。   A part of the high-temperature and high-pressure steam (steam amount S) generated in the boiler 12 is supplied to the power generation device 20, and the surplus steam amount Sa is used as the operating energy Sb of this processing facility and the raw material of the electrolyzer 40. Supplied as Sc. The steam amount S is measured by a measuring device 32 (for example, a steam flow meter), and a steam amount So corresponding to a preset power transmission amount Po is set and supplied to the power generation device 20. A part of the surplus steam amount Sa (= S-So) is supplied to the facility control unit 70 as operating energy Sb of each part of the processing facility, and the remaining steam amount Sc is further supplied to the electrolyzer 40. By supplying the raw material water at a high temperature, high reaction efficiency can be ensured. Furthermore, if there is surplus steam, the heat efficiency of the boiler 12 can be improved by being refluxed to the boiler 12.

具体的に、作動エネルギーSbが供給される本処理施設の各部として、例えば、廃棄物焼却装置10において、廃棄物W中のガス化成分の抽出装置へのガス化剤導入部あるいは排ガス処理装置や焼却灰処理装置における洗浄用蒸気導入部等、発電装置20や電気分解装置40における加熱用蒸気導入部等、各部を接続する流路の加温・保温用部材等を挙げることができる。後述するように、本処理施設の各部のエネルギーSbは、廃棄物Wの変動要素の変動を緩衝するように変動することから、余剰の発電量Paの一部を本処理施設の作動電力Pbとして使用することによって、発電量Pの大きな変動分を、作動電力Pbの変動つまり余剰の発電量Paの変動として吸収し、送電量Poの変動を緩和することができ、一定制御を容易に行うことができる。   Specifically, as each part of the main treatment facility to which the operating energy Sb is supplied, for example, in the waste incinerator 10, a gasification agent introduction part or an exhaust gas treatment apparatus to an extraction device for a gasification component in the waste W Examples include a heating steam introduction part for a flow path connecting the respective parts, such as a cleaning steam introduction part in the incineration ash treatment apparatus, a heating steam introduction part in the power generation apparatus 20 and the electrolysis apparatus 40, and the like. As will be described later, since the energy Sb of each part of the treatment facility fluctuates so as to buffer the fluctuation of the fluctuation factor of the waste W, a part of the surplus power generation amount Pa is used as the operating power Pb of the treatment facility. By using it, a large fluctuation amount of the power generation amount P can be absorbed as a fluctuation of the operating power Pb, that is, a fluctuation of the surplus power generation amount Pa, and the fluctuation of the power transmission amount Po can be reduced, and constant control can be easily performed. Can do.

発電装置20に供給された高温高圧の蒸気(蒸気量So)は、タービン等発電機(図示せず)を作動させることによって所定の発電量Pを得るとともに、温熱を放出した蒸気Stは一部液化して供出される。大きな変動を伴うボイラ12から供出される蒸気量Sが予め測定され、一定の送電量Poに対応した蒸気量Soが供給されることから、安定した発電量Pを作製することができる。   The high-temperature and high-pressure steam (steam amount So) supplied to the power generation apparatus 20 obtains a predetermined power generation amount P by operating a power generator (not shown) such as a turbine, and part of the steam St that has released the heat is partially Liquefied and served. Since the amount of steam S delivered from the boiler 12 with large fluctuations is measured in advance and the amount of steam So corresponding to a certain amount of power transmission Po is supplied, a stable power generation amount P can be produced.

発電量Pは、測定装置31によって測定され、そのうち予め設定された本処理施設からの送電量Poが、送電装置60に供給され、一定に制御されて電力会社等送電先に送電される。発電量Pは、図3の破線部に例示するように、余剰の発電量Pa(=P−Po)として、その一部を本処理施設の各部の作動電力Pbとして施設制御部70に供給することができ、さらに残余の発電量Pcを、電気分解装置40に供給することができることが好ましい。本処理施設を構成する供送ポンプ等の電力や電気分解装置40における印加電源等を、本処理施設内において供給可能にすることによって、非常にエネルギー効率の高い施設とすることができる。また、燃料電池50が設けられた場合には、残余の発電量Pcの一部が燃料電池50の加熱あるいは制御用電源として利用されることがある。いずれも、変動が少ない電気を必要とする各部の電源として優先して利用されることが好ましい。   The power generation amount P is measured by the measuring device 31, and the power transmission amount Po from the processing facility set in advance is supplied to the power transmission device 60, and is controlled to be transmitted to a power transmission destination such as an electric power company. The power generation amount P is supplied to the facility control unit 70 as a surplus power generation amount Pa (= P-Po), as illustrated in the broken line portion of FIG. In addition, it is preferable that the remaining power generation amount Pc can be supplied to the electrolyzer 40. By making it possible to supply electric power such as a delivery pump constituting the present processing facility or an applied power source in the electrolyzer 40 in the present processing facility, it is possible to make the facility highly energy efficient. When the fuel cell 50 is provided, a part of the remaining power generation amount Pc may be used as a heating or control power source for the fuel cell 50. In any case, it is preferable that the power source be used preferentially as a power source for each part that requires electricity with little fluctuation.

電気分解装置40には、残余の蒸気量Scが高温の原料水として供給されるとともに発電装置20からの発電量Pcが供給される。供給された電気を電気分解装置40の電極部の両極(図示せず)に印加させることによって、電解質(例えば水酸化ナトリウム等)の存在の下、電気分解反応を起こすことができる。供給された水は、電気分解反応によって水素(H)および酸素(O)に分解される。 The electrolyzer 40 is supplied with the remaining steam amount Sc as high-temperature raw material water and the power generation amount Pc from the power generation device 20. By applying the supplied electricity to both electrodes (not shown) of the electrode section of the electrolysis device 40, an electrolysis reaction can be caused in the presence of an electrolyte (for example, sodium hydroxide). The supplied water is decomposed into hydrogen (H 2 ) and oxygen (O 2 ) by an electrolysis reaction.

〔第2構成例における送電量の制御方法〕
第2構成例においては、廃棄物焼却装置10から供出される蒸気量Sが測定され、送電量Poに対応する蒸気量Soが発電装置20に供給されて発電し、発電された発電量Pの一部が予め設定された送電量Poとして制御して供出される。廃棄物焼却装置10から供出される蒸気量Sを指標として、一元的に送電量Poに対応した蒸気量Soや余剰の蒸気量Saを制御することによって、送電量Poの安定性を確保することができる。以下、本処理施設からの送電量の制御方法を、図4(A)〜(D)に基づき説明する。なお、基本構成例における送電量の制御方法と同じ制御要素は、同様の機能と作用を有し、重複する詳細な説明は省略する。
[Method of controlling power transmission amount in second configuration example]
In the second configuration example, the amount of steam S delivered from the waste incinerator 10 is measured, and the amount of steam So corresponding to the amount of power transmission Po is supplied to the power generation device 20 to generate electric power. A part is controlled and delivered as a preset power transmission amount Po. Using the amount of steam S delivered from the waste incinerator 10 as an index, the stability of the power transmission amount Po is ensured by controlling the steam amount So corresponding to the power transmission amount Po and the surplus steam amount Sa. Can do. Hereinafter, a method for controlling the amount of power transmitted from the processing facility will be described with reference to FIGS. Note that the same control elements as the method for controlling the amount of power transmission in the basic configuration example have the same functions and operations, and a detailed description thereof is omitted.

(a1)廃棄物の焼却処理
廃棄物焼却装置10に供給された廃棄物Wが焼却処理され、高温の蒸気が作製される。均質化された廃棄物Wがほぼ一定量供給された場合には、作製される蒸気量Pはほぼ一定になると推定されるが、一般の廃棄物Wを均質化することは難しいことから、結果物としての蒸気量Pにより供給された廃棄物Wを評価することが好ましい。つまり、作製された蒸気量Sを測定装置32によって測定することによって、導入される廃棄物Wの量や質あるいは焼却処理での燃焼速度等によって経時的に変動する最も初段階の情報として、蒸気量Sを把握することができる。また、後述するように、測定された蒸気量Sの経時的変動値に対して所定の時間遅れおよび立上り特性を補正することによって所定の精度の発電量Pの推定することができ、送電量Poの制御精度を上げることができる。
(A1) Waste incineration The waste W supplied to the waste incinerator 10 is incinerated to produce high-temperature steam. When the homogenized waste W is supplied in a substantially constant amount, it is estimated that the amount of steam P produced is almost constant. However, it is difficult to homogenize the general waste W. It is preferable to evaluate the waste W supplied by the amount of steam P as a product. That is, by measuring the produced steam amount S with the measuring device 32, steam is used as the first stage information that varies with time depending on the amount and quality of the waste W introduced or the combustion speed in the incineration process. The amount S can be grasped. Further, as will be described later, the power generation amount P can be estimated with a predetermined accuracy by correcting the predetermined time delay and the rise characteristic with respect to the time-dependent variation value of the measured steam amount S, and the power transmission amount Po. The control accuracy can be increased.

(a2)蒸気量の制御
廃棄物焼却装置10から供出される蒸気量Sは、図4(A),(B)に例示するように、送電量Poに対応する一定の蒸気量Soが制御される(1次制御)。また、蒸気量Sから蒸気量Soを除した余剰の蒸気量Saは、図4(A),(C)に例示するように、蒸気量Sを指標として制御されて本処理施設の作動エネルギーSb(2次制御)として供給され、さらに残余の蒸気量Scは、図4(A),(D)に例示するように、電気分解装置40の高温の原料水として供給される(3次制御)。つまり、本処理施設においては、蒸気量Sが、蒸気量Soを超える余剰の蒸気量Saが確保できるように制御されるとともに、本処理施設の作動エネルギーSbおよび電気分解装置40の高温の原料水(蒸気量Sc)が確保されるように一元的に制御されることが好ましい。
(A2) Control of steam amount The steam amount S delivered from the waste incinerator 10 is controlled by a constant steam amount So corresponding to the power transmission amount Po as illustrated in FIGS. 4 (A) and 4 (B). (Primary control). Further, the surplus steam amount Sa obtained by dividing the steam amount S from the steam amount S is controlled using the steam amount S as an index as illustrated in FIGS. 4A and 4C, and the operating energy Sb of the present processing facility. (Secondary control) and the remaining steam amount Sc is supplied as high-temperature raw water of the electrolyzer 40 as shown in FIGS. 4 (A) and 4 (D) (thirdary control). . That is, in this processing facility, the steam amount S is controlled so as to ensure an excess steam amount Sa exceeding the steam amount So, and the operating energy Sb of the processing facility and the high-temperature raw material water of the electrolysis apparatus 40 are controlled. It is preferable to control in an integrated manner so that (the amount of steam Sc) is ensured.

(b)発電装置における発電
廃棄物焼却装置10において作製された蒸気のうち、送電量Poに対応する蒸気量Soが発電装置20に供給され、所定の発電量Pが得られる。発電装置20から供出される発電量Pは、測定装置31によって測定される。蒸気量Sの一部が、安定的に制御された所定の蒸気量Soとして発電装置20に供給され、安定した発電量Pが供出される。
(B) Power generation in the power generation device Among the steam produced in the waste incinerator 10, the steam amount So corresponding to the power transmission amount Po is supplied to the power generation device 20, and a predetermined power generation amount P is obtained. The power generation amount P delivered from the power generation device 20 is measured by the measurement device 31. A part of the steam amount S is supplied to the power generation apparatus 20 as a predetermined steam amount So that is stably controlled, and a stable power generation amount P is supplied.

(c)送電量の制御
発電装置20から供出される発電量Pから一定の送電量Poが制御され、送電装置60から送電される。上記のように安定性の高い発電量Pを基に作製される送電量Poは、一層高い安定性を確保することができる。また、発電量Pから送電量Poを除した余剰の発電量Paは、発電量Pを指標として制御されて本処理施設の作動電力Pbおよび電気分解装置40のエネルギー源(発電量Pc)として供給される。
(C) Control of power transmission amount A constant power transmission amount Po is controlled from the power generation amount P supplied from the power generation device 20 and is transmitted from the power transmission device 60. As described above, the power transmission amount Po produced based on the power generation amount P having high stability can ensure even higher stability. Further, the surplus power generation amount Pa obtained by dividing the power generation amount P from the power generation amount P is controlled using the power generation amount P as an index and supplied as the operating power Pb of the processing facility and the energy source (power generation amount Pc) of the electrolyzer 40. Is done.

<本処理施設の第3構成例>
図5は、本処理施設の第3構成例を示す。本処理施設は、上記第2構成例同様、廃棄物焼却装置10,蒸気量Sの測定装置32,発電装置20,発電量Pの測定装置31,電気分解装置40、燃料電池50,送電装置60および施設制御部70を有し、廃棄物焼却装置10から供出される蒸気量Sが測定装置32によって測定され、発電装置20から供出される発電量Pが測定装置31によって測定される。廃棄物焼却装置10から供出された蒸気量Sの一部が、送電量Poと余剰の発電量Paの加算発電量に対応する蒸気量S1として発電装置20に供給され、蒸気量Sから蒸気量S1を除した余剰の蒸気量Saの一部が、本処理施設の作動エネルギーSbとして施設制御部70に供給されるとともに、電気分解装置40の原料(蒸気量Sc)として供給される。同時に、発電装置20から供出される発電量Pの一部は、一定の安定した送電量Poとして送電装置60に供給され、発電量Pから送電量Poを除した余剰の発電量Paの一部が、本処理施設の作動電力Pbとして施設制御部70に供給されるとともに、残余の発電量Pcが電気分解装置40に供給される。
<Third configuration example of this treatment facility>
FIG. 5 shows a third configuration example of the processing facility. As in the second configuration example, the present processing facility includes a waste incinerator 10, a steam amount measuring device 32, a power generation device 20, a power generation amount P measuring device 31, an electrolysis device 40, a fuel cell 50, and a power transmission device 60. And the facility control unit 70, the steam amount S delivered from the waste incinerator 10 is measured by the measuring device 32, and the power generation amount P delivered from the power generating device 20 is measured by the measuring device 31. A part of the steam amount S delivered from the waste incinerator 10 is supplied to the power generation device 20 as a steam amount S1 corresponding to the added power generation amount of the power transmission amount Po and the surplus power generation amount Pa. A part of the surplus steam amount Sa excluding S1 is supplied to the facility control unit 70 as the operation energy Sb of the processing facility and also supplied as a raw material (steam amount Sc) of the electrolyzer 40. At the same time, a part of the power generation amount P supplied from the power generation device 20 is supplied to the power transmission device 60 as a constant stable power transmission amount Po, and a part of the surplus power generation amount Pa obtained by dividing the power generation amount P by the power transmission amount Po. Is supplied to the facility control unit 70 as the operating power Pb of the processing facility, and the remaining power generation amount Pc is supplied to the electrolyzer 40.

本処理施設は、同時に供出される電力と蒸気という形態の全く異なるエネルギーが組み合わせて使用され、これらのエネルギーが、それぞれ発電量Pおよび蒸気量Sを基準として調整されることを特徴とする。具体的には、以下の(1)または(2)の構成によって、非常にエネルギー効率の高いハイブリッド式の本処理施設を構成することができる。なお、基本構成例あるいは第2構成例同様、電気分解装置40から供出される水素H(および酸素O)を有価物として供出する場合には、燃料電池50を有しないことがある。また、基本構成例あるいは第2構成例と同じ構成要素は、同様の構成と機能を有し、重複する詳細な説明は省略する。 This processing facility is characterized in that completely different energy forms in the form of electric power and steam delivered at the same time are used in combination, and these energies are adjusted based on the power generation amount P and the steam amount S, respectively. Specifically, a hybrid-type main treatment facility with very high energy efficiency can be configured by the following configuration (1) or (2). As in the basic configuration example or the second configuration example, when hydrogen H 2 (and oxygen O 2 ) supplied from the electrolyzer 40 is supplied as a valuable material, the fuel cell 50 may not be provided. In addition, the same components as those in the basic configuration example or the second configuration example have the same configuration and function, and a detailed description thereof is omitted.

(1)発電量を1次的、蒸気量を2次的、基準とする場合
1次的に、発電量Pを基準として、送電量Poが送電装置60を介して送電され、発電量Pから送電量Poを除した余剰の発電量Paが、本処理施設の作動電力Pbまたは/および電気分解装置40のエネルギー源Pcとして供給される。また、2次的に、蒸気量Sを基準として、送電量Poと発電量Paの加算発電量に対応する蒸気量S1が発電装置20に供給され、蒸気量Sから蒸気量S1を除した余剰の蒸気量Saが、本処理施設の作動エネルギーSbまたは/および電気分解装置の原料(蒸気量Sc)として供給される。
(1) When the amount of power generation is primary and the amount of steam is secondary, the power transmission amount Po is transmitted primarily via the power transmission device 60 with the power generation amount P as a reference. The surplus power generation amount Pa excluding the power transmission amount Po is supplied as the operating power Pb of the processing facility and / or the energy source Pc of the electrolyzer 40. Further, secondarily, the steam amount S1 corresponding to the added power generation amount of the power transmission amount Po and the power generation amount Pa is supplied to the power generation device 20 with the steam amount S as a reference, and the surplus obtained by dividing the steam amount S by the steam amount S1 Is supplied as the operating energy Sb of the processing facility and / or the raw material (steam amount Sc) of the electrolysis apparatus.

安定性が要求される送電量Poの源となる発電量Pを1次的に基準とし、発電量Pの源となる蒸気量Sを2次的に基準とすることによって、送電量Poの安定度をより高めることができる。また、導入される廃棄物Wの変動要素に対して迅速な応答が要求される各種ポンプや制御計装等電力制動が要求される余剰の発電量Paを1次的に調整し、迅速性がさほど必要とされずむしろ大容量のエネルギーが要求される燃焼空気や廃棄物の予備加熱処理等余剰の蒸気量Saを2次的に調整することによって、変動要素の特性にあったロスのない調整ができる。発電量と蒸気量という異なるエネルギーを組み合わせて使用し、それぞれの発生時点の発電量Pと蒸気量Sを基準として調整することによって、非常にエネルギー効率の高いハイブリッド式の本処理施設を構成することができる。   The power generation amount P, which is the source of the power transmission amount Po for which stability is required, is used as the primary reference, and the steam amount S, which is the source of the power generation amount P, is used as the secondary reference, thereby stabilizing the power transmission amount Po. The degree can be increased. In addition, various pumps that require a quick response to the fluctuation factors of the waste W to be introduced and the surplus power generation amount Pa that is required for power braking such as control instrumentation are primarily adjusted to improve the speed. By adjusting secondary surplus steam amount Sa such as preheating treatment of combustion air and waste that require a rather large amount of energy, which is not required so much, there is no loss that matches the characteristics of the variable factors. Can do. Using a combination of different energy generation amounts and steam amounts, and adjusting the power generation amount P and steam amount S at the time of each generation as a reference to configure a highly energy-efficient hybrid treatment facility Can do.

(2)蒸気量を1次的、発電量を2次的、基準とする場合
1次的に、蒸気量Sを基準として、送電量Poと余剰の発電量Paの加算発電量に対応する蒸気量S1が発電装置20に供給され、蒸気量Sから蒸気量S1を除した余剰の蒸気量Saが、本処理施設の作動エネルギーSbまたは/および電気分解装置40の原料(蒸気量Sc)として供給される。また、2次的に、発電量Pを基準として、発電量Pから送電量Poを除した余剰の発電量Paが、本処理施設の作動電力Pbまたは/および電気分解装置40のエネルギー源Pcとして供給される。
(2) When the steam amount is primary, the power generation amount is secondary, and the steam is primary, the steam corresponding to the added power generation amount of the power transmission amount Po and the surplus power generation amount Pa with the steam amount S as a reference The amount S1 is supplied to the power generation apparatus 20, and the surplus steam amount Sa obtained by dividing the steam amount S1 from the steam amount S is supplied as the operating energy Sb of the processing facility and / or the raw material (steam amount Sc) of the electrolyzer 40. Is done. Secondary, the surplus power generation amount Pa obtained by dividing the power generation amount P from the power generation amount P on the basis of the power generation amount P is used as the operating power Pb of the processing facility and / or the energy source Pc of the electrolyzer 40. Supplied.

本処理施設のエネルギーの源となる蒸気量Sを1次的に基準とし、蒸気量Sから取り出された安定な蒸気量S1を源とし、かつ安定性が要求される送電量Poの源とする発電量Pを2次的に基準とすることによって、送電量Poの安定度をより高めることができる。また、迅速性がさほど必要とされずむしろ短時間での安定性が要求される燃焼空気や廃棄物の予備加熱処理等余剰の蒸気量Saを1次的に調整することによって、蒸気量Soの安定性を高め送電量Poの安定度をより高めることができる。さらに、導入される廃棄物Wの変動要素に対して迅速な応答が必要とされ、電力制動が要求される各種ポンプや制御計装等に対して余剰の発電量Paを2次的に調整することによって、変動要素の特性にあったロスのない調整ができる。蒸気量と発電量という異なるエネルギーを組み合わせて使用し、それぞれの発生時点の蒸気量Sと発電量Pを基準として調整することによって、非常にエネルギー効率の高いハイブリッド式の本処理施設を構成することができる。   The steam amount S that is the energy source of this treatment facility is used as a primary reference, the stable steam amount S1 extracted from the steam amount S is used as a source, and the source of the transmission amount Po that requires stability. By using the power generation amount P as a secondary reference, the stability of the power transmission amount Po can be further increased. In addition, by adjusting primarily the excess steam amount Sa such as combustion air or waste preheating treatment that does not require much quickness but rather needs stability in a short time, the amount of steam So The stability can be increased and the stability of the power transmission amount Po can be further increased. Furthermore, a quick response is required for the fluctuation factors of the waste W to be introduced, and the surplus power generation amount Pa is secondarily adjusted for various pumps and control instrumentation that require power braking. Therefore, it is possible to adjust without loss according to the characteristics of the variable factors. Using a combination of different amounts of energy, steam and power generation, and adjusting the amount of steam S and power generation P at the time of each generation as a reference, this hybrid processing facility with extremely high energy efficiency is constructed. Can do.

〔第3構成例における送電量の制御方法〕
第3構成例においては、廃棄物焼却装置10から供出された蒸気の一部を発電装置20に供給して発電し、発電された発電量Pの一部を予め設定された送電量Poとして制御して供出されるとともに、廃棄物焼却装置10から供出される蒸気量Sの測定値および発電装置20から供出される発電量Pの測定値を用いて、(1)発電量を1次指標とし、蒸気量を2次指標とし、または(2)蒸気量を1次指標とし、発電量を2次指標とし、本処理施設における発電量(送電量)と蒸気量の制御を行うことを特徴とする。なお、以下、基本構成例あるいは第2構成例と同じ制御要素は、同様の機能と作用を有し、重複する詳細な説明は省略する。
[Method of controlling power transmission in the third configuration example]
In the third configuration example, a part of the steam delivered from the waste incinerator 10 is supplied to the power generation device 20 to generate power, and a part of the generated power generation amount P is controlled as a preset power transmission amount Po. And using the measured value of the amount of steam S delivered from the waste incinerator 10 and the measured value of the generated power P delivered from the power generator 20, The amount of steam is used as a secondary index, or (2) the amount of steam is used as a primary index, the amount of power generation is used as a secondary index, and the power generation amount (power transmission amount) and the amount of steam are controlled in this processing facility. To do. In the following description, the same control elements as those in the basic configuration example or the second configuration example have the same functions and operations, and a detailed description thereof is omitted.

(1)発電量を1次指標とし、蒸気量を2次指標とする場合
図6(A)〜(D)に例示するように、発電量Pを1次指標として、送電量Poを所定の範囲に制御して送電装置60を介して送電するとともに(図6(B))、発電量Pから送電量Poを除した余剰の発電量Paを、本処理施設の作動電力Pb(図6(C))または/および電気分解装置40のエネルギー源Pc(図6(D))として制御して供給する。また、図6(E)に例示するように、蒸気量Sを2次指標として、送電量Poと発電量Paの加算発電量に対応する蒸気量S1を制御して発電装置20に供給し、蒸気量Sから蒸気量S1を除した余剰の蒸気量Saを、本処理施設の作動エネルギーSbまたは/および電気分解装置40の原料(蒸気量Sc)として制御して供給する。
(1) When the power generation amount is a primary index and the steam amount is a secondary index As illustrated in FIGS. 6A to 6D, the power generation amount P is a primary index, and the power transmission amount Po is a predetermined index. The power is transmitted through the power transmission device 60 under the control of the range (FIG. 6B), and the surplus power generation amount Pa obtained by dividing the power generation amount P by the power transmission amount Po is used as the operating power Pb (FIG. 6 (FIG. 6)). C)) or / and supplied as an energy source Pc of the electrolyzer 40 (FIG. 6D). Further, as illustrated in FIG. 6E, the steam amount S1 is controlled as a secondary index, and the steam amount S1 corresponding to the added power generation amount of the power transmission amount Po and the power generation amount Pa is controlled and supplied to the power generation device 20. The surplus steam amount Sa obtained by dividing the steam amount S1 from the steam amount S is controlled and supplied as the operation energy Sb of the processing facility and / or the raw material (steam amount Sc) of the electrolyzer 40.

安定性が要求される送電量Poの源となる発電量Pを1次指標とし、発電量Pの源となる蒸気量Sを2次指標として制御することによって、送電量Poの安定度をより高めることができる。また、導入される廃棄物Wの変動要素に対して迅速な応答が要求される各種ポンプや制御計装等電力制動が要求される余剰の発電量Paを、発電量Pを1次指標として制御し、迅速性がさほど必要とされずむしろ大容量のエネルギーが要求される燃焼空気や廃棄物の予備加熱処理等余剰の蒸気量Saを、蒸気量Sを2次指標として制御することによって、変動要素の特性にあったロスのない調整ができる。発電量と蒸気量という異なるエネルギーを組み合わせて使用し、それぞれの発生時点の発電量Pと蒸気量Sを指標として、電力および蒸気(エネルギー)の供給量を制御・調整することによって、非常にエネルギー効率の高いハイブリッド式の送電量の制御方法を形成することができる。   By controlling the power generation amount P that is the source of the power transmission amount Po for which stability is required as a primary index and the steam amount S that is the source of the power generation amount P as a secondary index, the stability of the power transmission amount Po is further increased. Can be increased. In addition, the power generation amount Pa is controlled as a primary index for the surplus power generation amount Pa for which power braking is required, such as various pumps and control instrumentation that require quick response to the fluctuation factors of the waste W introduced. However, by controlling the amount of surplus steam Sa such as preheating treatment of combustion air or waste that requires a large amount of energy rather than requiring rapidity, the amount of steam S is controlled as a secondary index. It can be adjusted without loss according to the characteristics of the element. By using different energy generation and steam amounts in combination, and using the power generation amount P and the steam amount S at the time of each generation as an index, the power and steam (energy) supply amount is controlled and adjusted. A highly efficient hybrid power transmission amount control method can be formed.

(2)蒸気量を1次指標とし、発電量を2次指標とする場合
図7(A)〜(D)に例示するように、蒸気量Sを1次指標として、送電量Poと余剰の発電量Paの加算発電量に対応する蒸気量S1に制御して発電装置20に供給するとともに(図7(B))、蒸気量Sから蒸気量S1を除した余剰の蒸気量Saを、本処理施設の作動エネルギーPb(図7(C))または/および電気分解装置40の原料(蒸気量Sc:図7(D))として制御して供給する。また、図7(E)に例示するように、発電量Pを2次指標として、送電量Poを所定の範囲に制御して送電装置60を介して送電するとともに、発電量Pから送電量Poを除した余剰の発電量Paを、本処理施設の作動電力Pbまたは/および電気分解装置40として制御して供給する。
(2) When the steam amount is a primary index and the power generation amount is a secondary index As illustrated in FIGS. 7A to 7D, the steam amount S is a primary index, and the power transmission amount Po and the surplus The steam amount S1 corresponding to the added power generation amount of the power generation amount Pa is controlled and supplied to the power generator 20 (FIG. 7B), and the surplus steam amount Sa obtained by dividing the steam amount S1 from the steam amount S Operational energy Pb (FIG. 7C) of the treatment facility and / or raw material (vapor amount Sc: FIG. 7D) of the electrolyzer 40 is controlled and supplied. Further, as illustrated in FIG. 7E, the power generation amount P is set as a secondary index, and the power transmission amount Po is controlled within a predetermined range to transmit power via the power transmission device 60, and the power generation amount P is transmitted from the power transmission amount Po. The surplus power generation amount Pa excluding the power is controlled and supplied as the operating power Pb or / and the electrolyzer 40 of the processing facility.

本処理施設のエネルギーの源となる蒸気量Sを1次指標とし、蒸気量Sから取り出された安定な蒸気量S1を源とし、かつ安定性が要求される送電量Poの源とする発電量Pを2次指標とすることによって、送電量Poの安定度をより高めることができる。また、迅速性がさほど必要とされずむしろ短時間での安定性が要求される燃焼空気や廃棄物の予備加熱処理等余剰の蒸気量Saを、蒸気量Sを1次指標として制御することによって、蒸気量Soの安定性を高め送電量Poの安定度をより高めることができる。さらに、導入される廃棄物Wの変動要素に対して迅速な応答が必要とされ、電力制動が要求される各種ポンプや制御計装等に対して余剰の発電量Paを、発電量Pを2次指標として制御することによって、変動要素の特性にあったロスのない調整ができる。蒸気量と発電量という異なるエネルギーを組み合わせて使用し、それぞれの発生時点の蒸気量Sと発電量Pを指標として制御・調整することによって、非常にエネルギー効率の高いハイブリッド式の送電量の制御方法を形成することができる。   The amount of power generation that uses the amount of steam S, which is the energy source of this processing facility, as a primary index, uses the stable amount of steam S1 extracted from the amount of steam S as a source, and uses the amount of power transmission Po that requires stability as the source. By using P as a secondary index, the stability of the power transmission amount Po can be further increased. Further, by controlling the surplus steam amount Sa, such as preheating treatment of combustion air and waste that does not require much quickness but rather stability in a short time, by using the steam amount S as a primary index The stability of the steam amount So can be increased and the stability of the power transmission amount Po can be further increased. Furthermore, a quick response is required for the fluctuation factors of the waste W to be introduced, and the surplus power generation amount Pa and the power generation amount P are set to 2 for various pumps and control instrumentation that require power braking. By controlling as the next index, adjustment without loss according to the characteristics of the variable element can be performed. A highly energy-efficient hybrid power transmission amount control method using a combination of different energy amounts of steam and power generation, and controlling and adjusting the steam amount S and power generation amount P at the time of each generation as an index Can be formed.

10 廃棄物焼却装置
11 燃焼室
12 ボイラ
13 煙突
20 発電装置
31 測定装置
40 電気分解装置
50 燃料電池
60 送電装置
70 施設制御部
G 排ガス
水素
酸素
P 発電量
Po 送電量
Pa 余剰の発電量
Pb 作動電力
Pc 残余の発電量
St 蒸気
W 廃棄物
DESCRIPTION OF SYMBOLS 10 Waste incinerator 11 Combustion chamber 12 Boiler 13 Chimney 20 Electric power generation device 31 Measuring device 40 Electrolysis device 50 Fuel cell 60 Power transmission device 70 Facility control part G Exhaust gas H 2 Hydrogen O 2 Oxygen P Power generation amount Po Power transmission amount Pa Excess power generation Amount Pb Operating power Pc Remaining power generation amount St Steam W Waste

Claims (6)

廃棄物焼却装置,該廃棄物焼却装置から供出される蒸気を基に発電する発電装置,該発電装置から供出される発電量の測定装置,および該発電量の一部が供給される電気分解装置または該電気分解装置並びに該電気分解装置から供出される水素が供給される燃料電池を有し、
前記発電装置から供出される発電量Pが測定され、予め設定された廃棄物処理施設からの送電量Poが送電されるとともに、前記発電量Pから前記送電量Poを除した余剰の発電量Paが、廃棄物処理施設の作動電力および前記電気分解装置のエネルギー源として供給されることを特徴とする廃棄物処理施設。
Waste incineration apparatus, power generation apparatus that generates power based on steam supplied from the waste incineration apparatus, measurement apparatus for power generation amount supplied from the power generation apparatus, and electrolysis apparatus to which a part of the power generation amount is supplied Or the fuel cell to which hydrogen supplied from the electrolyzer and the electrolyzer is supplied,
The power generation amount P delivered from the power generation device is measured, and a power transmission amount Po from a preset waste disposal facility is transmitted, and an excess power generation amount Pa obtained by dividing the power transmission amount Po from the power generation amount P Is supplied as an operating power of the waste treatment facility and an energy source of the electrolyzer.
廃棄物焼却装置,該廃棄物焼却装置から供出される蒸気量の測定装置,該廃棄物焼却装置から供出される蒸気を基に発電される発電装置,該発電装置から供出される発電量の測定装置,および前記蒸気の一部が供給される電気分解装置または該電気分解装置並びに該電気分解装置から供出される水素が供給される燃料電池を有し、
前記廃棄物焼却装置から供出される蒸気量Sが測定され、予め設定された廃棄物処理施設からの送電量Poに対応する蒸気量Soが前記発電装置に供給され、前記蒸気量Sから前記蒸気量Soを除した余剰の蒸気量Saが、廃棄物処理施設の作動エネルギーおよび前記電気分解装置の原料として供給されるとともに、
前記発電装置から供出される発電量Pが測定され、前記送電量Poが制御されることを特徴とする廃棄物処理施設。
Waste incinerator, apparatus for measuring the amount of steam delivered from the waste incinerator, power generation apparatus that generates electricity based on the steam delivered from the waste incinerator, measurement of power generation delivered from the power generator And an electrolysis device to which a part of the steam is supplied or the electrolysis device and a fuel cell to which hydrogen supplied from the electrolysis device is supplied,
The amount of steam S delivered from the waste incinerator is measured, and the amount of steam So corresponding to a preset power transmission amount Po from the waste treatment facility is supplied to the power generation device. The surplus steam amount Sa excluding the amount So is supplied as the operating energy of the waste treatment facility and the raw material of the electrolyzer,
A waste treatment facility, wherein the power generation amount P delivered from the power generation device is measured and the power transmission amount Po is controlled.
廃棄物焼却装置,該廃棄物焼却装置から供出される蒸気量の測定装置,該廃棄物焼却装置から供出される蒸気を基に発電される発電装置,該発電装置から供出される発電量の測定装置,および前記蒸気の一部が供給される電気分解装置または該電気分解装置並びに該電気分解装置から供出される水素が供給される燃料電池を有し、
前記廃棄物焼却装置から供出される蒸気量Sおよび前記発電装置から供出される発電量Pが測定され、
(1)予め設定された廃棄物処理施設からの送電量Poが送電され、前記発電量Pから前記送電量Poを除した余剰の発電量Paが、廃棄物処理施設の作動電力または/および前記電気分解装置のエネルギー源として供給されるとともに、
前記送電量Poと前記発電量Paの加算発電量に対応する蒸気量S1が前記発電装置に供給され、前記蒸気量Sから前記蒸気量S1を除した余剰の蒸気量Saが、廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として供給される、
または、
(2)予め設定された廃棄物処理施設からの送電量Poと余剰の発電量Paの加算発電量に対応する蒸気量S1が前記発電装置に供給され、前記蒸気量Sから前記蒸気量S1を除した余剰の蒸気量Saが、廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として供給されるとともに、
前記発電量Pから前記送電量Poを除した余剰の発電量Paが、廃棄物処理施設の作動電力または/および前記電気分解装置のエネルギー源として供給される、
ことを特徴とする廃棄物処理施設。
Waste incinerator, apparatus for measuring the amount of steam delivered from the waste incinerator, power generation apparatus that generates electricity based on the steam delivered from the waste incinerator, measurement of power generation delivered from the power generator And an electrolysis device to which a part of the steam is supplied or the electrolysis device and a fuel cell to which hydrogen supplied from the electrolysis device is supplied,
The amount of steam S delivered from the waste incinerator and the amount of electricity generated P delivered from the power generator are measured,
(1) The power transmission amount Po from the waste disposal facility set in advance is transmitted, and the surplus power generation amount Pa obtained by dividing the power transmission amount Po from the power generation amount P is the operating power of the waste processing facility or / and the Supplied as an energy source for the electrolyzer,
A steam amount S1 corresponding to the added power generation amount of the power transmission amount Po and the power generation amount Pa is supplied to the power generation device, and an excess steam amount Sa obtained by dividing the steam amount S1 from the steam amount S is a waste treatment facility. Supplied as an operating energy or / and as a raw material for the electrolysis device,
Or
(2) A steam amount S1 corresponding to a preset power generation amount of the power transmission amount Po and the surplus power generation amount Pa from the waste disposal facility is supplied to the power generation device, and the steam amount S1 is calculated from the steam amount S. The surplus steam amount Sa removed is supplied as operating energy of the waste treatment facility or / and as a raw material of the electrolysis apparatus,
The surplus power generation amount Pa obtained by dividing the power generation amount P from the power transmission amount Po is supplied as operating power of a waste treatment facility or / and as an energy source of the electrolyzer.
Waste treatment facility characterized by that.
廃棄物焼却装置から供出される蒸気を発電装置に供給して発電し、発電された発電量の一部を予め設定された送電量Poとして制御して供出するとともに、
前記発電装置から供出される発電量Pを測定し、該発電量Pから前記送電量Poを除した余剰の発電量Paを、前記発電量Pを指標として廃棄物処理施設の作動電力および前記電気分解装置のエネルギー源として制御して供給することを特徴とする廃棄物処理施設からの送電量の制御方法。
While supplying steam generated from the waste incinerator to the power generator to generate power, controlling a part of the generated power as a preset power transmission amount Po,
The power generation amount P supplied from the power generation device is measured, and the surplus power generation amount Pa obtained by dividing the power generation amount P from the power transmission amount Po is used as an index. A method for controlling the amount of power transmitted from a waste treatment facility, wherein the power is controlled and supplied as an energy source for a decomposition apparatus.
廃棄物焼却装置から供出される蒸気の一部を発電装置に供給して発電し、発電された発電量の一部を予め設定された送電量Poとして制御して供出するとともに、
前記廃棄物焼却装置から供出される蒸気量Sを測定し、予め設定された蒸気量Soを前記発電装置に供給し、前記蒸気量Sから前記蒸気量Soを除した余剰の蒸気量Saを、該蒸気量Sを指標として廃棄物処理施設の作動エネルギーおよび前記電気分解装置の原料として制御して供給し、前記発電装置から供出される発電量Pを測定し、前記送電量Poを制御することを特徴とする廃棄物処理施設からの送電量の制御方法。
A part of the steam delivered from the waste incinerator is supplied to the power generator to generate power, and a part of the generated power is controlled and delivered as a preset power transmission amount Po.
The amount of steam S delivered from the waste incinerator is measured, a preset amount of steam So is supplied to the power generation device, and an excess amount of steam Sa obtained by dividing the amount of steam So from the amount of steam S is Using the steam amount S as an index, controlling and supplying the operating energy of the waste treatment facility and the raw material of the electrolysis device, measuring the power generation amount P delivered from the power generation device, and controlling the power transmission amount Po A method for controlling the amount of power transmitted from a waste treatment facility.
廃棄物焼却装置から供出される蒸気の一部を発電装置に供給して発電し、発電された発電量の一部を予め設定された送電量Poとして制御して供出するとともに、
前記廃棄物焼却装置から供出される蒸気量Sおよび前記発電装置から供出される発電量Pを測定し、
(1)前記発電量Pから前記送電量Poを除した余剰の発電量Paを、前記発電量Pを指標として廃棄物処理施設の作動電力または/および前記電気分解装置のエネルギー源として制御して供給するとともに、
前記送電量Poと前記発電量Paの加算発電量に対応する蒸気量S1を前記発電装置に供給し、前記蒸気量Sから前記蒸気量S1を除した余剰の蒸気量Scを、前記蒸気量Sを指標として廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として制御して供給する、
または、
(2)前記送電量Poと余剰の発電量Paの加算発電量に対応する蒸気量S1を前記発電装置に供給し、前記蒸気量Sから蒸気量S1を除した余剰の蒸気量Saを、前記蒸気量Sを指標として廃棄物処理施設の作動エネルギーまたは/および前記電気分解装置の原料として制御して供給するとともに、
前記発電量Pから前記送電量Poを除した余剰の発電量Paを、前記発電量Pを指標として廃棄物処理施設の作動電力または/および前記電気分解装置として制御して供給する、
ことを特徴とする廃棄物処理施設からの送電量の制御方法。
A part of the steam delivered from the waste incinerator is supplied to the power generator to generate power, and a part of the generated power is controlled and delivered as a preset power transmission amount Po.
Measure the amount of steam S delivered from the waste incinerator and the amount of electricity generated P delivered from the power generator,
(1) The surplus power generation amount Pa obtained by dividing the power generation amount P from the power generation amount P is controlled as the operating power of the waste treatment facility and / or the energy source of the electrolyzer using the power generation amount P as an index. While supplying
A steam amount S1 corresponding to an added power generation amount of the power transmission amount Po and the power generation amount Pa is supplied to the power generation device, and an excess steam amount Sc obtained by dividing the steam amount S1 from the steam amount S is determined as the steam amount S. , Using as an index to control and supply as waste processing facility operating energy or / and raw material of the electrolysis device,
Or
(2) The steam amount S1 corresponding to the added power generation amount of the power transmission amount Po and the surplus power generation amount Pa is supplied to the power generation device, and the surplus steam amount Sa obtained by dividing the steam amount S1 from the steam amount S Controlled and supplied as an energy of waste treatment facility and / or as a raw material of the electrolysis apparatus with the amount of steam S as an index,
The surplus power generation amount Pa obtained by dividing the power generation amount P from the power generation amount P is controlled and supplied as the operating power of the waste treatment facility or / and the electrolyzer using the power generation amount P as an index.
A method for controlling the amount of power transmitted from a waste treatment facility.
JP2015142159A 2015-07-16 2015-07-16 Waste treatment facility and method for controlling the amount of power transmitted from the facility Active JP6574351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142159A JP6574351B2 (en) 2015-07-16 2015-07-16 Waste treatment facility and method for controlling the amount of power transmitted from the facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142159A JP6574351B2 (en) 2015-07-16 2015-07-16 Waste treatment facility and method for controlling the amount of power transmitted from the facility

Publications (2)

Publication Number Publication Date
JP2017023896A true JP2017023896A (en) 2017-02-02
JP6574351B2 JP6574351B2 (en) 2019-09-11

Family

ID=57944723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142159A Active JP6574351B2 (en) 2015-07-16 2015-07-16 Waste treatment facility and method for controlling the amount of power transmitted from the facility

Country Status (1)

Country Link
JP (1) JP6574351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216501A (en) * 2018-06-11 2019-12-19 Jfeエンジニアリング株式会社 Device for storing and supplying energy obtained by waste incineration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103443A (en) * 1993-09-30 1995-04-18 Maeda Corp Garbage incinerator
JP2003216697A (en) * 2002-01-25 2003-07-31 Ebara Corp Energy control network system
JP2005213631A (en) * 2004-02-02 2005-08-11 Takuma Co Ltd Production method and production apparatus for hydrogen and oxygen from biomass resource
JP2006275328A (en) * 2005-03-28 2006-10-12 Kobelco Eco-Solutions Co Ltd Waste treatment device and method
US20130214542A1 (en) * 2010-09-03 2013-08-22 Carbon-Clean Technologies Ag Carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103443A (en) * 1993-09-30 1995-04-18 Maeda Corp Garbage incinerator
JP2003216697A (en) * 2002-01-25 2003-07-31 Ebara Corp Energy control network system
JP2005213631A (en) * 2004-02-02 2005-08-11 Takuma Co Ltd Production method and production apparatus for hydrogen and oxygen from biomass resource
JP2006275328A (en) * 2005-03-28 2006-10-12 Kobelco Eco-Solutions Co Ltd Waste treatment device and method
US20130214542A1 (en) * 2010-09-03 2013-08-22 Carbon-Clean Technologies Ag Carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019216501A (en) * 2018-06-11 2019-12-19 Jfeエンジニアリング株式会社 Device for storing and supplying energy obtained by waste incineration

Also Published As

Publication number Publication date
JP6574351B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP2017157442A (en) By-product hydrogen utilization system
KR101728263B1 (en) Boiler operation method and boiler
JP6574351B2 (en) Waste treatment facility and method for controlling the amount of power transmitted from the facility
JP2017106705A (en) Energy saving system for integrated combustion device
JP5457818B2 (en) Cogeneration system
JP6251892B2 (en) Combustion system
JP6595073B1 (en) Waste treatment method and system
JP5906424B2 (en) Hydrogen generator and fuel cell system
JP2015007522A (en) Combustion system
Mastro et al. Cogeneration from thermal treatment of selected municipal solid wastes. A stoichiometric model building for the case study on Palermo
DK2682450T3 (en) Process for catalytic methanisation and methanisation plants
WO2013132847A1 (en) Hydrogen generating device and operation method therefor, and fuel-cell system
JP6577407B2 (en) Boiler operation method and boiler equipment
US20110041404A1 (en) Plasma-based apparatus for gasifying bio-waste into synthetic gas
JP2019037121A (en) Power-generation system having combined heat and power plant and method for power generation
JP2013157189A (en) Energy management device
JP2002158019A (en) Fuel cell electricity generating device
JP2017139182A (en) Fuel battery system
JP6991647B1 (en) Thermochemical conversion method and thermochemical conversion device
KR20130015808A (en) System and method for controlling synthetic gas composition
EP4354022A1 (en) Control device for co2 recovery device, control method for co2 recovery device, and program
JP2006331761A (en) Fuel cell power generation system
TW201541028A (en) Method and facility for recovering energy from waste
WO2016204797A1 (en) System for gasification of solid waste and method of operation
JP2006206334A (en) Hydrogen producing apparatus and hydrogen producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190816

R150 Certificate of patent or registration of utility model

Ref document number: 6574351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250