JP2017157442A - By-product hydrogen utilization system - Google Patents

By-product hydrogen utilization system Download PDF

Info

Publication number
JP2017157442A
JP2017157442A JP2016040252A JP2016040252A JP2017157442A JP 2017157442 A JP2017157442 A JP 2017157442A JP 2016040252 A JP2016040252 A JP 2016040252A JP 2016040252 A JP2016040252 A JP 2016040252A JP 2017157442 A JP2017157442 A JP 2017157442A
Authority
JP
Japan
Prior art keywords
hydrogen
temp
supplied
fuel cell
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016040252A
Other languages
Japanese (ja)
Other versions
JP6707368B2 (en
Inventor
貴英 羽田
Takahide Haneda
貴英 羽田
小笠原 慶
Kei Ogasawara
慶 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2016040252A priority Critical patent/JP6707368B2/en
Publication of JP2017157442A publication Critical patent/JP2017157442A/en
Application granted granted Critical
Publication of JP6707368B2 publication Critical patent/JP6707368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a by-product hydrogen utilization system improved in energy utilization efficiency by using by-product hydrogen.SOLUTION: One embodiment of the present invention is a by-product hydrogen utilization system including: a production facility where hydrogen gas is generated as a by-product; a polymer electrolyte fuel cell generating power by being supplied with the hydrogen gas generated in the production facility; and a combustion facility to which hot water generated by power generation in the polymer electrolyte fuel cell, fuel other than the hydrogen gas, and the hydrogen gas generated in the production facility are supplied and in which the fuel and the hydrogen gas are combusted to heat the hot water.SELECTED DRAWING: Figure 1

Description

本発明は、副生水素利用システムに関する。   The present invention relates to a by-product hydrogen utilization system.

稼働している工業プラントには、副次的に水素ガスが生成されるプロセスを経るプラントが数多くある。具体的な例として、ポリエチレンやポリプロピレン等の原料であるエチレン、プロピレン等の化学製品を生産する石油化学プラントでは、一連のプロセスの中で水素が副生し、副生した水素を回収して一部を下流プラントで使用している。また、製鉄所では、石炭を乾留してコークスを得るプロセスで水素が副生し、苛性ソーダを電解生成するソーダ電解プラントでは、苛性ソーダと塩素を得るプロセスで水素が副生する(例えば、非特許文献1〜2参照)。   There are many industrial plants in operation that undergo a process in which hydrogen gas is produced as a secondary matter. As a specific example, in a petrochemical plant that produces chemical products such as ethylene and propylene, which are raw materials such as polyethylene and polypropylene, hydrogen is produced as a by-product in a series of processes. Is used in downstream plants. In addition, in steelworks, hydrogen is produced as a by-product in the process of carbonizing coal to obtain coke, and in a soda electrolysis plant that electrolyzes caustic soda, hydrogen is produced as a by-product in the process of obtaining caustic soda and chlorine (for example, non-patent literature) 1-2).

このように副生した水素(副生水素)は、化学合成用の原料として利用されるほか、工業プラント内に設置されたボイラ等の熱源に必要とされる熱用燃料として利用される割合が高い。また、外販用に製造されるボンベへの充填用途にも利用されている。そのため、必ずしも余剰の副生水素が無駄に排出ないし消費されている状況ともいえないのが現状である。   The by-produced hydrogen (by-product hydrogen) is used as a raw material for chemical synthesis, and is also used as a heat fuel required for a heat source such as a boiler installed in an industrial plant. high. It is also used to fill cylinders manufactured for external sales. For this reason, the current situation is that it cannot always be said that surplus by-product hydrogen is discharged or consumed in vain.

一方、近年は、燃料電池を搭載した車両等をはじめ、水素を利用したエネルギー環境が重要視され、整備されつつある状況にあり、水素を効率的にエネルギーに変換することができ、より大きなエネルギーとして利用できれば、水素利用環境におけるエネルギー利用効率が飛躍的に改善されることになる。   On the other hand, in recent years, the energy environment using hydrogen, such as a vehicle equipped with a fuel cell, has been emphasized and is being developed, and it is possible to efficiently convert hydrogen into energy. If it can be used, the energy utilization efficiency in the hydrogen utilization environment will be dramatically improved.

「食塩電解工業における副生水素利用の現状」、福岡正雄著、水素エネルギーシステムVol.28,No.1,p.16〜22(2003)“Current status of by-product hydrogen use in the salt electrolysis industry”, Masao Fukuoka, Hydrogen Energy System Vol. 28, no. 1, p. 16-22 (2003) 「石油・化学業界の既存設備を活用した高純度水素の供給可能性と石油業界の位置付け」、早内義隆、石倉雅裕共著、水素エネルギーシステムVol.28,No.1,p.23〜28(2003)“Possibility of supplying high-purity hydrogen using existing facilities in the petroleum and chemical industries and the positioning of the petroleum industry”, Yoshitaka Hayauchi and Masahiro Ishikura, Hydrogen Energy System Vol. 28, no. 1, p. 23-28 (2003)

しかしながら、数ある工業プラントで副生される副生水素の多くは、副生母体であるプラントに併設されている熱源用の燃料として利用されているのが実情である。つまり、副生水素を燃焼用燃料として利用し、熱交換装置を備えた例えばボイラ等において、燃焼熱を水と熱交換し、水蒸気又は温水もしくは熱水の形態で熱エネルギーとして利用している。そのため、水素のエネルギーとしての利用効率は必ずしも高くない。   However, most of the by-product hydrogen produced as a by-product in a number of industrial plants is used as a fuel for a heat source that is attached to the plant that is a by-product matrix. That is, by-product hydrogen is used as combustion fuel, and in a boiler or the like equipped with a heat exchange device, the combustion heat is exchanged with water and used as thermal energy in the form of steam, hot water or hot water. Therefore, utilization efficiency of hydrogen as energy is not necessarily high.

本発明は、上記に鑑みなされたものであり、副生水素を用いてエネルギーの利用効率が改善された副生水素利用システムを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a by-product hydrogen utilization system in which energy utilization efficiency is improved by using by-product hydrogen.

上記課題は、例えば以下の手段により解決される。
<1> 水素ガスが副次的に生成される生産設備と、前記生産設備で生成された前記水素ガスが供給されて発電する固体高分子型燃料電池と、前記固体高分子型燃料電池での発電により発生した温水、前記水素ガス以外の燃料及び前記生産設備で生成された前記水素ガスが供給され、前記燃料及び前記水素ガスを燃焼させて前記温水を加熱する燃焼設備と、を備える副生水素利用システム。
The above problem is solved by, for example, the following means.
<1> Production facilities in which hydrogen gas is generated secondaryly, a polymer electrolyte fuel cell that generates power by supplying the hydrogen gas generated in the production facility, and the polymer electrolyte fuel cell A by-product comprising: hot water generated by power generation, a fuel other than the hydrogen gas, and the hydrogen gas generated by the production facility, and a combustion facility for heating the warm water by burning the fuel and the hydrogen gas Hydrogen utilization system.

従来、生産設備で副次的に生成された水素(副生水素)は、化学合成用の原料又は外販用ボンベの充填用ガスとして用いられるほか、多くは、図3に示されるように、工業生産システム400内に副生水素発生プラント410に併設された蒸気ボイラ420等の燃焼設備に供給され、熱用燃料として利用されてきた。そのため、余剰水素として廃棄される副生水素こそ少ないものの、エネルギーとしての利用効率の点では必ずしも高いとは言い難い状況にあった。   Conventionally, hydrogen produced as a secondary product in production facilities (by-product hydrogen) is used as a raw material for chemical synthesis or as a filling gas for cylinders for external sales. In addition, as shown in FIG. The production system 400 has been supplied to a combustion facility such as a steam boiler 420 provided in the by-product hydrogen generation plant 410 and used as a fuel for heat. For this reason, although only a small amount of by-product hydrogen is discarded as surplus hydrogen, it is difficult to say that it is necessarily high in terms of utilization efficiency as energy.

一方、固体高分子型燃料電池(PEFC)では、純度の比較的高い水素の供給が求められることから、水素ガスに対する代替燃料は考え難いところ、ボイラ等の燃焼設備で使用される燃料は、水素から水素以外の燃料に代替が可能である。   On the other hand, in the polymer electrolyte fuel cell (PEFC), since it is required to supply hydrogen with a relatively high purity, it is difficult to think of an alternative fuel for hydrogen gas. However, the fuel used in combustion facilities such as boilers is hydrogen. Therefore, it is possible to substitute fuel other than hydrogen.

上記の状況に鑑みて、本形態の副生水素利用システムでは、副次的に生成された副生水素を利用するためのPEFCを新たに配設し、副生水素をボイラ等の燃焼設備とともにPEFCに供給する。さらに、燃焼設備に使用する燃料として、副生水素である水素ガスとともに水素ガス以外の燃料(例えば、都市ガス、天然ガス、重油、灯油、軽油等の燃料)を燃焼設備に供給する。   In view of the above situation, in the by-product hydrogen utilization system of this embodiment, a PEFC for newly using by-product hydrogen generated as a by-product is newly arranged, and the by-product hydrogen is combined with combustion equipment such as a boiler. Supply to PEFC. Further, as fuel used in the combustion facility, fuel other than hydrogen gas (for example, fuel such as city gas, natural gas, heavy oil, kerosene, and light oil) is supplied to the combustion facility together with hydrogen gas that is by-product hydrogen.

これにより、比較的純度の高い副生水素は、PEFCに供給されて発電用途として消費されることで、熱エネルギーとしてではなく、電気エネルギーに変換される。PEFCでの水素の発電効率は、ボイラ等での水素の蒸気変換効率に比べると高いとは言い難いものの、二次エネルギーである電力から換算される一次エネルギーは2.5倍を超える。そのため、副生水素の一部をPEFCに供給し、残りを燃焼設備に供給した場合、全ての副生水素を燃焼設備に供給した場合と比較して、二次エネルギーから換算される一次エネルギーに対し、プラント全体のエネルギー効率は大幅に改善され、一定量の副生水素に基づいて得られるエネルギー量を高めることができる。   As a result, by-product hydrogen having a relatively high purity is supplied to the PEFC and consumed for power generation, so that it is converted into electrical energy rather than as thermal energy. Although it is difficult to say that the power generation efficiency of hydrogen in PEFC is higher than the steam conversion efficiency of hydrogen in a boiler or the like, the primary energy converted from electric power as secondary energy exceeds 2.5 times. Therefore, when a part of the by-product hydrogen is supplied to the PEFC and the rest is supplied to the combustion facility, the primary energy converted from the secondary energy is compared to the case where all the by-product hydrogen is supplied to the combustion facility. In contrast, the energy efficiency of the entire plant is greatly improved, and the amount of energy obtained based on a certain amount of by-product hydrogen can be increased.

PEFCは、常温で起動し、作動温度も低く、かつ、発電効率に優れている観点から、副生水素利用システムのエネルギー効率を効果的に向上させるのに適している。   PEFC is suitable for effectively improving the energy efficiency of a by-product hydrogen utilization system from the viewpoint of starting at room temperature, having a low operating temperature, and being excellent in power generation efficiency.

さらに、本形態の副生水素利用システムでは、副生水素がPEFCに供給されて反応することで、電気エネルギーとともに熱エネルギーが得られる。この熱エネルギーを水と熱交換することで、加熱された水(温水)として取り出すことができる。温水として取り出した熱エネルギーが燃焼設備に供給されることで全体でのエネルギー効率をさらに高めることができる。   Furthermore, in the by-product hydrogen utilization system of this embodiment, by-product hydrogen is supplied to the PEFC and reacts, thereby obtaining thermal energy as well as electric energy. By exchanging this thermal energy with water, it can be taken out as heated water (hot water). The thermal energy taken out as warm water is supplied to the combustion facility, so that the overall energy efficiency can be further increased.

以上により、本形態の副生水素利用システムでは、副生水素を発電用燃料及び燃焼用燃料として用いることによって、水素のエネルギー価値を高めることが可能となり、エネルギー利用効率が改善される。   As described above, in the by-product hydrogen utilization system of the present embodiment, by using the by-product hydrogen as a power generation fuel and a combustion fuel, it is possible to increase the energy value of hydrogen and improve energy utilization efficiency.

<2> 前記固体高分子型燃料電池及び前記燃焼設備が、以下の式(1)又は式(1)’及び式(2)〜式(4)を満たす<1>に記載の副生水素利用システム。
{PEout×TPE/[(PEWtemp−Wtemp)×4.18]}×[(100−PEWtemp)×4.18+2258]≦BOout×TBO・・・(1)
{PEout×TPE/[(PEWtemp−Wtemp)×4.18]}×[(BOWtemp−PEWtemp)×4.18]≦BOout×TBO・・・(1)’
PEout=H2PE×PEη・・・(2)
BOout=(H2BO+TGBO)×Bη・・・(3)
H2total=H2PE+H2BO・・・(4)
(式(1)〜式(4)中、PEoutは固体高分子型燃料電池の温水出力(W)、TPEは固体高分子型燃料電池の運転時間(秒)、PEWtempは固体高分子型燃料電池にて得られる温水の温度(℃)、Wtempは固体高分子型燃料電池に供給される水の温度(℃)、BOoutは燃焼設備の出力(W)、TBOは燃焼設備の運転時間(秒)、BOWtempは燃焼設備にて得られる加熱された温水の温度(℃)、H2PEは固体高分子型燃料電池への水素供給熱量(J)、PEηは固体高分子型燃料電池の温水回収効率(%)、H2BOは燃焼設備への水素供給熱量(J)、TGBOは燃焼設備への燃料供給熱量、Bηは燃焼設備のエネルギー変換効率(%)、及びH2totalは総水素供給熱量(J)を表す。)
<2> By-product hydrogen use according to <1>, wherein the polymer electrolyte fuel cell and the combustion facility satisfy the following formula (1) or formula (1) ′ and formulas (2) to (4): system.
{PE out × T PE / [(PEW temp −W temp ) × 4.18]} × [(100−PEW temp ) × 4.18 + 2258] ≦ BO out × T BO (1)
{PE out × T PE / [(PEW temp −W temp ) × 4.18]} × [(BOW temp −PEW temp ) × 4.18] ≦ BO out × T BO (1) ′
PE out = H2 PE × PE η (2)
BO out = (H2 BO + TG BO ) × B η (3)
H2 total = H2 PE + H2 BO (4)
(In Formula (1) to Formula (4), PE out is the warm water output (W) of the polymer electrolyte fuel cell, T PE is the operation time (second) of the polymer electrolyte fuel cell, and PEW temp is the polymer electrolyte. Temperature (° C) of hot water obtained in the type fuel cell, W temp is the temperature (° C) of water supplied to the polymer electrolyte fuel cell, BO out is the output (W) of the combustion facility, and T BO is the combustion facility Operating time (seconds), BOW temp is the temperature of heated hot water (° C) obtained in the combustion facility, H2 PE is the amount of heat supplied to the polymer electrolyte fuel cell (J), and PE η is the solid polymer Type fuel cell hot water recovery efficiency (%), H2 BO is the amount of heat supplied to the combustion facility (J), TG BO is the amount of heat supplied to the combustion facility, B η is the energy conversion efficiency of the combustion facility (%), and H2 total represents the total hydrogen supply heat (J).)

本形態の副生水素利用システムでは、上記式(1)及び式(2)〜式(4)を満たすように固体高分子型燃料電池及び燃焼設備の各条件を調整することにより、PEFCで発生する温水を無駄なく蒸気として得ることが可能である。また、上記式(1)’ 及び式(2)〜式(4)を満たすように固体高分子型燃料電池及び燃焼設備の各条件を調整することにより、PEFCで発生する温水を無駄なくBOWtemp℃の熱水として得ることが可能である。 In the by-product hydrogen utilization system of this embodiment, it is generated in PEFC by adjusting the conditions of the polymer electrolyte fuel cell and the combustion facility so as to satisfy the above formulas (1) and (2) to (4) It is possible to obtain warm water to be used as steam without waste. Further, the above equation (1) 'and (2) by adjusting the polymer electrolyte fuel each condition of the battery and combustion equipment to meet to Formula (4), without waste BOW temp hot water generated in the PEFC It can be obtained as hot water at 0C.

<3> 前記固体高分子型燃料電池及び前記燃焼設備が、以下の式(1)’’及び前記式(2)〜前記式(4)を満たす<2>に記載の副生水素利用システム。
PEout×TPE/[(PEWtemp−Wtemp)×4.18]=BOout×TBO/[(100−PEWtemp)×4.18+2258]・・・(1)’’
<3> The by-product hydrogen utilization system according to <2>, in which the polymer electrolyte fuel cell and the combustion facility satisfy the following formula (1) ″ and the formula (2) to the formula (4).
PE out × T PE / [( PEW temp -W temp) × 4.18] = BO out × T BO / [(100-PEW temp) × 4.18 + 2258] ··· (1) ''

本形態の副生水素利用システムでは、上記式(1)’’及び式(2)〜式(4)を満たすように固体高分子型燃料電池及び燃焼設備の各条件を調整することにより、PEFCで発生する温水を無駄なく蒸気として得ることが可能であり、PEFCにて発生する温水を無駄なく使用できる。   In the by-product hydrogen utilization system of this embodiment, PEFC is adjusted by adjusting each condition of the polymer electrolyte fuel cell and the combustion facility so as to satisfy the above formula (1) ″ and formula (2) to formula (4). It is possible to obtain the warm water generated in the process as steam without waste, and the warm water generated in PEFC can be used without waste.

<4> 前記固体高分子型燃料電池での発電により生じた電力及び前記燃焼設備にて前記温水が加熱されて生じた熱、は前記生産設備に供給される<1>〜<3>のいずれか1つに記載の副生水素利用システム。   <4> The power generated by the power generation in the polymer electrolyte fuel cell and the heat generated by heating the hot water in the combustion facility are supplied to the production facility, any of <1> to <3> The by-product hydrogen utilization system as described in any one.

本形態の副生水素利用システムでは、PEFCでの発電により得られた電力を生産設備に供給することで、外部の電力系統から生産設備に供給される電力量を削減することができる。また、PEFCにて温水として取り出した熱エネルギーが燃焼設備に供給されて生じた熱を生産設備に供給することで、PEFCを配置せずに副生水素を燃焼用燃料として用いて生じた熱を生産設備に供給する場合と比較して全体でのエネルギー効率をより高めることができる。   In the by-product hydrogen utilization system of this embodiment, the amount of power supplied from the external power system to the production facility can be reduced by supplying the power obtained by the power generation in the PEFC to the production facility. In addition, the heat generated by the PEFC as hot water is supplied to the combustion facility, and the heat generated by supplying the by-product hydrogen as the fuel for combustion without the PEFC is supplied to the production facility. The overall energy efficiency can be further increased as compared with the case of supplying to production equipment.

<5> 前記生産設備から供給された前記水素ガスを予め精製する精製装置をさらに備え、前記固体高分子型燃料電池は、前記精製装置で精製された水素ガスを反応させて発電する<1>〜<4>のいずれか1つに記載の副生水素利用システム。   <5> The apparatus further includes a purifier that purifies the hydrogen gas supplied from the production facility in advance, and the polymer electrolyte fuel cell generates power by reacting the hydrogen gas purified by the purifier <1>. The by-product hydrogen utilization system according to any one of to <4>.

生産設備で副生される副生水素の純度は様々である一方、PEFCに供給する水素には高い純度が要求される。本形態の副生水素利用システムでは、PEFCに供給される前の副生水素をあらかじめ精製することにより、発電効率を高く維持し、燃料電池の耐久性を維持、改善することができる。   While the purity of by-product hydrogen produced as a by-product in production facilities varies, the hydrogen supplied to PEFC is required to have high purity. In the by-product hydrogen utilization system of this embodiment, by-purifying by-product hydrogen before being supplied to the PEFC in advance, the power generation efficiency can be maintained high, and the durability of the fuel cell can be maintained and improved.

本発明によれば、副生水素を用いてエネルギーの利用効率が改善された副生水素利用システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the by-product hydrogen utilization system by which the utilization efficiency of energy was improved using by-product hydrogen can be provided.

本発明の実施形態に係る副生水素利用システムの概略構成を示すシステム構成図である。1 is a system configuration diagram showing a schematic configuration of a by-product hydrogen utilization system according to an embodiment of the present invention. 本発明の実施形態に係る副生水素利用システムの変形例の構成を示すシステム構成図である。It is a system block diagram which shows the structure of the modification of the byproduct hydrogen utilization system which concerns on embodiment of this invention. 従来システムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the conventional system.

以下、図面を参照して、本発明の副生水素利用システムの実施形態について具体的に説明する。但し、本発明は、以下に示す実施形態に制限されるものではない。   Hereinafter, an embodiment of a by-product hydrogen utilization system of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the embodiments shown below.

本発明に係る副生水素利用システムの一実施形態を、図1を参照して説明する。本実施形態に係る副生水素利用システム100は、水素ガスが副次的に生成される副生水素発生プラント3(生産設備)と、水素ガスが供給されて発電するPEFC1と、供給された燃料及び水素ガスを燃焼させて温水を加熱する蒸気ボイラ2(燃焼設備)と、を備えている。   An embodiment of a by-product hydrogen utilization system according to the present invention will be described with reference to FIG. The by-product hydrogen utilization system 100 according to the present embodiment includes a by-product hydrogen generation plant 3 (production equipment) in which hydrogen gas is produced as a secondary, PEFC 1 that generates power by supplying hydrogen gas, and supplied fuel. And a steam boiler 2 (combustion facility) that heats hot water by burning hydrogen gas.

本実施形態では、副生水素発生プラント3にて生成された副生水素が、PEFC1及び蒸気ボイラ2に供給され、PEFC1での発電にて得られた発電電力が副生水素発生プラント3に供給される。また、PEFC1での発電にて得られた温水は、蒸気ボイラ2へ供給され、供給された温水は燃料及び水素ガスの燃焼により加熱されて水蒸気となる。蒸気ボイラ2にて得られた水蒸気は、副生水素発生プラント3に供給されて熱エネルギーとして利用される。   In the present embodiment, the byproduct hydrogen generated in the byproduct hydrogen generation plant 3 is supplied to the PEFC 1 and the steam boiler 2, and the generated power obtained by the power generation in the PEFC 1 is supplied to the byproduct hydrogen generation plant 3. Is done. Moreover, the hot water obtained by the power generation in PEFC 1 is supplied to the steam boiler 2, and the supplied hot water is heated by the combustion of fuel and hydrogen gas to become steam. The steam obtained by the steam boiler 2 is supplied to the byproduct hydrogen generation plant 3 and used as thermal energy.

これにより、比較的純度の高い副生水素は、PEFCに供給されて発電用途として消費されることで、熱エネルギーとしてではなく、電気エネルギーに変換される。PEFCでの水素の発電効率は、ボイラ等での水素の蒸気変換効率に比べると高いとは言い難いものの、二次エネルギーである電力から換算される一次エネルギーは2.5倍を超える。そのため、副生水素の一部をPEFC1に供給し、残りを蒸気ボイラ2に供給した場合、全ての副生水素を蒸気ボイラ2に供給した場合と比較して、二次エネルギーから換算される一次エネルギーに対し、プラント全体のエネルギー効率は大幅に改善され、一定量の副生水素に基づいて得られるエネルギー量を高めることができる。   As a result, by-product hydrogen having a relatively high purity is supplied to the PEFC and consumed for power generation, so that it is converted into electrical energy rather than as thermal energy. Although it is difficult to say that the power generation efficiency of hydrogen in PEFC is higher than the steam conversion efficiency of hydrogen in a boiler or the like, the primary energy converted from electric power as secondary energy exceeds 2.5 times. Therefore, when a part of the by-product hydrogen is supplied to the PEFC 1 and the rest is supplied to the steam boiler 2, the primary energy converted from the secondary energy is compared with the case where all the by-product hydrogen is supplied to the steam boiler 2. Compared to energy, the energy efficiency of the entire plant is greatly improved, and the amount of energy obtained based on a certain amount of by-product hydrogen can be increased.

さらに、本実施形態の副生水素利用システム100では、副生水素がPEFC1に供給されて反応することで、電気エネルギーとともに熱エネルギーが得られる。この熱エネルギーを水と熱交換することで、加熱された水(温水)として取り出すことができる。温水として取り出した熱エネルギーが蒸気ボイラ2に供給されることで全体でのエネルギー効率をさらに高めることができる。   Furthermore, in the by-product hydrogen utilization system 100 of the present embodiment, by-product hydrogen is supplied to the PEFC 1 and reacted, thereby obtaining thermal energy together with electric energy. By exchanging this thermal energy with water, it can be taken out as heated water (hot water). The thermal energy taken out as hot water is supplied to the steam boiler 2, whereby the overall energy efficiency can be further increased.

以上により、本実施形態の副生水素利用システム100では、副生水素を発電用燃料及び燃焼用燃料として用いることによって、水素のエネルギー価値を高めることが可能となり、エネルギー利用効率が改善される。
以下、副生水素利用システム100の各構成について説明する。
As described above, in the by-product hydrogen utilization system 100 of the present embodiment, by using the by-product hydrogen as a power generation fuel and a combustion fuel, it is possible to increase the energy value of hydrogen and improve energy utilization efficiency.
Hereinafter, each structure of the byproduct hydrogen utilization system 100 will be described.

副生水素発生プラント3は、一部の生産プロセスで水素が副次的に生成されてくる設備であれば、特に制限されない。副生水素発生プラント3は、エネルギーの改善効率が高まる点から、水素生成量の多いプラントが好ましい。   The by-product hydrogen generation plant 3 is not particularly limited as long as it is a facility in which hydrogen is secondarily generated in some production processes. The by-product hydrogen generation plant 3 is preferably a plant with a large amount of hydrogen production from the viewpoint of improving energy improvement efficiency.

副生水素発生プラントの例としては、エチレン、プロピレン等の化学製品を生産する石油化学プラント、製鉄所、苛性ソーダを電解生成するソーダ電解プラントなどが挙げられる。   Examples of the by-product hydrogen generation plant include a petrochemical plant that produces chemical products such as ethylene and propylene, an iron mill, and a soda electrolysis plant that electrolyzes caustic soda.

蒸気ボイラ2は、副生水素発生プラント3内の被加熱部を加熱する際に必要な熱を賄うための燃焼装置である。蒸気ボイラ2には、副生水素発生プラント3にて生成された副生水素を供給するための副生水素供給経路11、PEFC1での発電により得られた温水を供給するための温水供給経路12及び燃焼用燃料として都市ガスを供給するためのガス供給経路13が接続されている。なお、都市ガスは、外部施設(図示せず)よりガス供給経路13を通じて蒸気ボイラ2に供給される。   The steam boiler 2 is a combustion device for supplying heat necessary for heating a heated part in the byproduct hydrogen generation plant 3. The steam boiler 2 has a by-product hydrogen supply path 11 for supplying by-product hydrogen generated in the by-product hydrogen generation plant 3, and a hot water supply path 12 for supplying hot water obtained by power generation in the PEFC 1. And the gas supply path 13 for supplying city gas as a fuel for combustion is connected. The city gas is supplied to the steam boiler 2 from an external facility (not shown) through the gas supply path 13.

本実施形態では、副生水素発生プラント3にて生成された副生水素の一部が副生水素供給経路11を通じてPEFC1に供給され、残りの副生水素が燃料として副生水素供給経路11を通じて蒸気ボイラ2に供給される。   In the present embodiment, a part of the by-product hydrogen generated in the by-product hydrogen generation plant 3 is supplied to the PEFC 1 through the by-product hydrogen supply path 11, and the remaining by-product hydrogen is supplied as fuel through the by-product hydrogen supply path 11. Supplied to the steam boiler 2.

副生水素発生プラント3より供給された副生水素及び外部施設より供給された都市ガスが燃焼されることで熱が生成し、生成熱はPEFC1より供給された温水との熱交換により水蒸気として取り出される。取り出された水蒸気は、蒸気ボイラ2と副生水素発生プラント3との間を繋ぐ水蒸気供給経路14を通じて副生水素発生プラント3へ供給される。これにより、PEFCを配置せずに副生水素を燃焼用燃料として用いて生じた熱をボイラ等の生産設備に供給する場合と比較して全体でのエネルギー効率をより高めることができる。   By-product hydrogen supplied from the by-product hydrogen generation plant 3 and city gas supplied from an external facility are combusted to generate heat, and the generated heat is extracted as steam by heat exchange with hot water supplied from the PEFC 1. It is. The extracted steam is supplied to the byproduct hydrogen generation plant 3 through a steam supply path 14 that connects the steam boiler 2 and the byproduct hydrogen generation plant 3. Thereby, compared with the case where the heat generated by using by-product hydrogen as a fuel for combustion without supplying a PEFC is supplied to a production facility such as a boiler, the overall energy efficiency can be further increased.

水素ガス以外の燃焼用燃料としては、前述の都市ガスに限定されず、他にもLPガス、天然ガス、消化ガス、重油、灯油、軽油等の燃料が挙げられる。   Combustion fuels other than hydrogen gas are not limited to the above-mentioned city gas, and other fuels such as LP gas, natural gas, digestion gas, heavy oil, kerosene, and light oil can be used.

なお、水蒸気とは、気体の状態になっている水、及びこれが空気中で凝結して細かい水滴となったものを包含する意味である。   In addition, water vapor | steam is the meaning including the water which is in the gaseous state, and the thing which this condensed in the air and became a fine water droplet.

本実施形態では、燃焼設備として蒸気ボイラを備えた態様を示したが、蒸気ボイラのほか、ガスタービン等を用いてもよい。なお、蒸気ボイラなどの燃焼設備としては、燃焼により得られた熱を温水と熱交換して水蒸気とするもののほか、燃焼により得られた熱を温水と熱交換して温水をより温度の高い熱水とするものであってもよい。   In this embodiment, although the aspect provided with the steam boiler as combustion equipment was shown, you may use a gas turbine other than a steam boiler. In addition, the combustion equipment such as steam boilers exchanges heat obtained by combustion with warm water to form steam, and heat obtained by combustion is exchanged with warm water to heat hot water at a higher temperature. It may be water.

固体高分子型燃料電池であるPEFC1は、副生水素供給経路11によって副生水素発生プラント3と連通されている。副生水素発生プラント3で生成された副生水素は、副生水素供給経路11を通じて、PEFC1のアノード側に供給される。   The PEFC 1, which is a polymer electrolyte fuel cell, communicates with the by-product hydrogen generation plant 3 through the by-product hydrogen supply path 11. By-product hydrogen generated in the by-product hydrogen generation plant 3 is supplied to the anode side of the PEFC 1 through the by-product hydrogen supply path 11.

PEFC1は、一般に、高分子電解質膜をアノード極(燃料極)及びカソード極(酸素極)で挟んだセルを更にセパレータで挟んだ構造を有する。PEFC1のアノード側に水素が供給されたとき、以下の反応(a)に示すように、水素イオンが生成される。
→2H+2e・・・(a)
The PEFC 1 generally has a structure in which a cell in which a polymer electrolyte membrane is sandwiched between an anode electrode (fuel electrode) and a cathode electrode (oxygen electrode) is further sandwiched between separators. When hydrogen is supplied to the anode side of the PEFC 1, hydrogen ions are generated as shown in the following reaction (a).
H 2 → 2H + + 2e (a)

PEFC1にて、生成された水素イオンは高分子電解質膜を通じてカソード側へ移動し、以下の反応(b)に示すように、カソード側で水素イオンが酸素と反応して水を生成する反応が生じ、発電する。
1/2O+2H+e→HO・・・(b)
In PEFC1, the generated hydrogen ions move to the cathode side through the polymer electrolyte membrane, and as shown in the following reaction (b), a reaction occurs in which the hydrogen ions react with oxygen to generate water as shown in the following reaction (b). ,Generate electricity.
1 / 2O 2 + 2H + + e → H 2 O (b)

発電により得られた電力は、電力系統21を介して副生水素発生プラント3へ供給される。これにより、副生水素発生プラント3を作動する際に必要な外部電力の一部を、PEFC1にて得られた発電電力でまかなうことができ、外部の電力系統から供給される電力量を削減することができる。   The electric power obtained by the power generation is supplied to the byproduct hydrogen generation plant 3 through the electric power system 21. Thereby, a part of external electric power required when operating the byproduct hydrogen generation plant 3 can be covered by the generated electric power obtained by the PEFC 1, and the amount of electric power supplied from the external electric power system is reduced. be able to.

また、PEFC1では、発電に加えて熱エネルギーが発生する。通常、発生した熱エネルギーを、生成された水と熱交換することで得られる温水の温度は60℃程度であり、工業用に使用するには温水の温度が低く、有効活用が難しい。一方、本実施形態に係る副生水素利用システム100では、得られた温水が温水供給経路12を通じて蒸気ボイラ2に送られ、蒸気ボイラ2にて利用される。これにより、PEFC1から発生した温水を有効利用できる。   Further, in PEFC1, thermal energy is generated in addition to power generation. Usually, the temperature of the hot water obtained by exchanging the generated thermal energy with the generated water is about 60 ° C., and the temperature of the hot water is low for industrial use and is difficult to use effectively. On the other hand, in the by-product hydrogen utilization system 100 according to the present embodiment, the obtained hot water is sent to the steam boiler 2 through the hot water supply path 12 and used in the steam boiler 2. Thereby, the hot water generated from PEFC1 can be used effectively.

PEFC1は、上記のように、セパレータ/燃料極/高分子電解質膜/酸素極/セパレータの積層構造を有する単セルを備える燃料電池を指し、必要に応じて、更に、水素を改質生成する改質器を備えた燃料電池であってもよい。   PEFC1 refers to a fuel cell including a single cell having a laminated structure of separator / fuel electrode / polymer electrolyte membrane / oxygen electrode / separator as described above, and further reforms and generates hydrogen as necessary. It may be a fuel cell equipped with a quality device.

さらに、本実施形態に係る副生水素利用システム100では、PEFC1及び蒸気ボイラ2が、以下の式(1)又は式(1)’及び式(2)〜式(4)を満たすことが好ましい。なお、式(1)中、4.18は水の比熱(J/(g・K))であり、2258は水の蒸発潜熱(J/g)を表す。
{PEout×TPE/[(PEWtemp−Wtemp)×4.18]}×[(100−PEWtemp)×4.18+2258]≦BOout×TBO・・・(1)
{PEout×TPE/[(PEWtemp−Wtemp)×4.18]}×[(BOWtemp−PEWtemp)×4.18]≦BOout×TBO・・・(1)’
PEout=H2PE×PEη・・・(2)
BOout=(H2BO+TGBO)×Bη・・・(3)
H2total=H2PE+H2BO・・・(4)
(式(1)〜式(4)中、PEoutはPEFC1の温水出力(W)、TPEはPEFC1の運転時間(秒)、PEWtempはPEFC1にて得られる温水の温度(℃)、WtempはPEFC1に供給される水の温度(℃)、BOoutは蒸気ボイラ2の出力(W)、TBOは蒸気ボイラ2の運転時間(秒)、BOWtempは蒸気ボイラ2にて得られる加熱された温水の温度(℃)、H2PEはPEFC1への水素供給熱量(J)、PEηはPEFC1の温水回収効率(%)、H2BOは蒸気ボイラ2への水素供給熱量(J)、TGBOは蒸気ボイラ2への燃料供給熱量、Bηは蒸気ボイラ2の蒸気回収効率(エネルギー変換効率)(%)、及びH2totalは総水素供給熱量(J)を表す。)
Furthermore, in the byproduct hydrogen utilization system 100 according to the present embodiment, it is preferable that the PEFC 1 and the steam boiler 2 satisfy the following formula (1) or formula (1) ′ and formulas (2) to (4). In formula (1), 4.18 is the specific heat of water (J / (g · K)), and 2258 is the latent heat of vaporization of water (J / g).
{PE out × T PE / [(PEW temp −W temp ) × 4.18]} × [(100−PEW temp ) × 4.18 + 2258] ≦ BO out × T BO (1)
{PE out × T PE / [(PEW temp −W temp ) × 4.18]} × [(BOW temp −PEW temp ) × 4.18] ≦ BO out × T BO (1) ′
PE out = H2 PE × PE η (2)
BO out = (H2 BO + TG BO ) × B η (3)
H2 total = H2 PE + H2 BO (4)
(In Formula (1)-Formula (4), PE out is the warm water output (W) of PEFC1, T PE is the operating time (seconds) of PEFC 1, PEW temp is the temperature (° C.) of warm water obtained in PEFC 1, W temp is the temperature of water supplied to PEFC 1 (° C.), BO out is the output (W) of the steam boiler 2, T BO is the operation time (seconds) of the steam boiler 2, and BOW temp is the heating obtained in the steam boiler 2 The temperature of the heated water (° C.), H2 PE is the amount of heat supplied to PEFC1 (J), PE η is the recovery efficiency (%) of PEFC1, and H2 BO is the amount of heat supplied to the steam boiler 2 (J), TG BO represents the amount of heat supplied to the steam boiler 2, B η represents the steam recovery efficiency (energy conversion efficiency) (%) of the steam boiler 2, and H2 total represents the total hydrogen supply heat (J).

本実施形態の副生水素利用システム100では、上記式(1)及び式(2)〜式(4)を満たすようにPEFC1及び蒸気ボイラ2の各条件を調整することにより、PEFC1で発生する温水を無駄なく蒸気として得ることが可能である。また、上記式(1)’ 及び式(2)〜式(4)を満たすようにPEFC1及び蒸気ボイラ2の各条件を調整することにより、PEFC1で発生する温水を無駄なくBOWtemp℃の熱水として得ることが可能である。 In the by-product hydrogen utilization system 100 of the present embodiment, the hot water generated in the PEFC 1 is adjusted by adjusting the conditions of the PEFC 1 and the steam boiler 2 so as to satisfy the above formulas (1) and (2) to (4). Can be obtained as steam without waste. Moreover, by adjusting each condition of the PEFC 1 and the steam boiler 2 so as to satisfy the above formula (1) ′ and the formulas (2) to (4), the hot water generated in the PEFC 1 is heated to BOW temp ° C. without waste. Can be obtained as

より詳細には、上記式(1)中の左辺は、PEFC1で発生する温水を100℃の蒸気とするために必要な熱量を指しており、上記式(1)中の右辺は、蒸気ボイラ2にて温水が受け取る熱量を指している。ここで、式(1)を満たすことで、PEFC1で発生する温水が無駄なく100℃以上の蒸気となる。   More specifically, the left side in the above formula (1) indicates the amount of heat necessary to convert the hot water generated in the PEFC 1 into steam at 100 ° C., and the right side in the above formula (1) indicates the steam boiler 2 Refers to the amount of heat that hot water receives. Here, by satisfy | filling Formula (1), the warm water which generate | occur | produces in PEFC1 becomes a vapor | steam of 100 degreeC or more without waste.

次に、上記式(1)’中の左辺は、PEFC1で発生する温水をBOWtemp℃の熱水まで昇温するために必要な熱量を指しており、上記式(1)中の右辺は、蒸気ボイラ2にて温水が受け取る熱量を指している。ここで、式(1)’を満たすことで、PEFC1で発生する温水がBOWtemp以上の温度の熱水となるまで蒸気ボイラ2にて加熱される。 Next, the left side in the above formula (1) ′ indicates the amount of heat necessary for raising the temperature of the hot water generated in PEFC1 to hot water of BOW temp ° C. The right side in the above formula (1) is The amount of heat received by the hot water in the steam boiler 2 is indicated. Here, by satisfy | filling Formula (1) ', it heats with the steam boiler 2 until the warm water which generate | occur | produces in PEFC1 turns into hot water of the temperature more than BOW temp .

また、本実施形態に係る副生水素利用システム100では、PEFC1及び蒸気ボイラ2が、以下の式(1)’’及び式(2)〜式(4)を満たすことがより好ましい。
PEout×TPE/[(PEWtemp−Wtemp)×4.18]=BOout×TBO/[(100−PEWtemp)×4.18+2258]・・・(1)’’
In the by-product hydrogen utilization system 100 according to the present embodiment, it is more preferable that the PEFC 1 and the steam boiler 2 satisfy the following expressions (1) '' and (2) to (4).
PE out × T PE / [( PEW temp -W temp) × 4.18] = BO out × T BO / [(100-PEW temp) × 4.18 + 2258] ··· (1) ''

本実施形態の副生水素利用システム100では、上記式(1)’’及び式(2)〜式(4)を満たすようにPEFC1及び蒸気ボイラ2の各条件を調整することにより、PEFC1で発生する温水を無駄なく蒸気(100℃の蒸気)として得ることが可能であり、PEFC1にて発生する温水を無駄なく使用できる。   In the by-product hydrogen utilization system 100 of the present embodiment, it is generated in the PEFC 1 by adjusting the conditions of the PEFC 1 and the steam boiler 2 so as to satisfy the above formula (1) ″ and the formulas (2) to (4). It is possible to obtain warm water to be used as steam (100 ° C. steam) without waste, and warm water generated at PEFC 1 can be used without waste.

より詳細には、上記式(1)’’中の左辺は、PEFC1にて発生する温水量を表し、上記式(1)’’中の右辺は、蒸気ボイラ2に供給される給水量を表す。使用するPEFC1及び蒸気ボイラ2における出力、回収効率及び運転時間に応じて、PEFC1にて発生する温水量と蒸気ボイラ2に供給される給水量とがバランスするように、PEFC1及び蒸気ボイラ2への水素供給熱量並びに蒸気ボイラ2への水素以外の燃料供給熱量を設定すればよい。   More specifically, the left side in the above formula (1) ″ represents the amount of hot water generated in the PEFC 1, and the right side in the above formula (1) ″ represents the amount of water supplied to the steam boiler 2. . Depending on the output, recovery efficiency, and operation time in the PEFC 1 and steam boiler 2 to be used, the amount of hot water generated in the PEFC 1 and the amount of water supplied to the steam boiler 2 are balanced so that the PEFC 1 and steam boiler 2 The hydrogen supply heat amount and the fuel supply heat amount other than hydrogen to the steam boiler 2 may be set.

次に、本実施形態に係る副生水素利用システム100において、水素のエネルギー価値を見積もったシミュレーション結果を従来システムと対比して以下に示す。従来システムは、燃焼設備として蒸気ボイラを用いた場合を例に挙げて示す。   Next, in the by-product hydrogen utilization system 100 according to the present embodiment, simulation results for estimating the energy value of hydrogen are shown below in comparison with a conventional system. The conventional system shows an example in which a steam boiler is used as combustion equipment.

水素のエネルギー価値とは、エネルギーとしての利用価値のことであり、水素ガスをエネルギー源として利用する際に実際に得られるエネルギーの大きさのことを指す。例えば、システムに導入する水素ガス(一次エネルギー)の量aを使用して得られる二次エネルギーが、a(等倍)のままの使用法と、2aとなる使用法とでは、実質的なエネルギー量が異なり、同量の水素(一次エネルギー)でも、後者はエネルギーとしての利用価値が2倍高いといえる。   The energy value of hydrogen refers to the utility value as energy, and refers to the magnitude of energy actually obtained when hydrogen gas is used as an energy source. For example, in the usage in which the secondary energy obtained by using the amount a of hydrogen gas (primary energy) introduced into the system is a (equal magnification) and the usage in which the secondary energy is 2a, substantial energy is obtained. Even with the same amount of hydrogen (primary energy), the latter can be said to be twice as valuable as energy.

まず、PEFCと蒸気ボイラとに副生水素を供給した場合(本実施形態に係る副生水素利用システム100)における水素の一次エネルギーとしての価値と、蒸気ボイラのみに副生水素を供給した場合における水素の一次エネルギーとしての価値と、を対比する。   First, when the by-product hydrogen is supplied to the PEFC and the steam boiler (the by-product hydrogen utilization system 100 according to this embodiment), the value as the primary energy of hydrogen and the case where the by-product hydrogen is supplied only to the steam boiler Contrast with the value of hydrogen as primary energy.

PEFCの発電効率、蒸気ボイラの蒸気回収効率をそれぞれ55%、95%と仮定し、蒸気及び電力の一次エネルギー換算値(単位:ギガジュール[GJ])をそれぞれ以下の表1に示す値と仮定する。一次エネルギー換算値は、いずれも日本ガス協会の公開値(「電気の使用に係るCO排出係数を考える CO削減対策の評価に用いる電気のCO排出係数について <2010年施行温対法対応版> 」一般社団法人日本ガス協会)である。なお、電力の一次エネルギー換算値(9.63GJ/MWh)は、昼間の9.97GJ/MWhと夜間の9.28GJ/MWhの平均値である。 The power generation efficiency of PEFC and steam recovery efficiency of steam boiler are assumed to be 55% and 95%, respectively, and the primary energy conversion values (unit: gigajoule [GJ]) of steam and power are assumed to be the values shown in Table 1 below. To do. The primary energy conversion values are all published by the Japan Gas Association (“Conside CO 2 emission factors related to the use of electricity. Regarding CO 2 emission factors of electricity used for the evaluation of CO 2 reduction measures” Version> “Japan Gas Association”. The primary energy conversion value (9.63GJ / MWh) of electricity is the average of 9.97GJ / MWh during the day and 9.28GJ / MWh during the night.

上記表1の条件下、供給する水素ガスの量をエネルギー換算で100ギガジュール(GJ)と仮定する。また、PEFCと蒸気ボイラとに副生水素を供給する際、PEFCに供給する副生水素と、蒸気ボイラに供給する副生水素のモル比を1:1、すなわち、同量の副生水素をPEFC及び蒸気ボイラに供給すると仮定する。   It is assumed that the amount of hydrogen gas supplied is 100 gigajoules (GJ) in terms of energy under the conditions in Table 1 above. In addition, when supplying by-product hydrogen to the PEFC and steam boiler, the molar ratio of by-product hydrogen supplied to the PEFC and by-product hydrogen supplied to the steam boiler is 1: 1, that is, the same amount of by-product hydrogen is supplied. Assume that PEFC and steam boiler are fed.

このとき、PEFCと蒸気ボイラとに副生水素を供給した場合及び蒸気ボイラのみに副生水素を供給した場合において、二次エネルギー、及び二次エネルギーから換算した一次エネルギーの値はそれぞれ以下のようになる。
PEFC+蒸気ボイラでの二次エネルギーの値・・・100GJ×0.5×0.55+100GJ×0.5×0.40+100GJ×0.5×0.95=95GJ
PEFC+蒸気ボイラでの一次エネルギーの換算値・・・(100GJ×0.5×0.55)×2.67GJ/GJ+(100GJ×0.5×0.40)/(95/100)+(100GJ×0.5×0.95)×1.02GJ/GJ=143GJ
蒸気ボイラのみでの二次エネルギーの値・・・100GJ×0.95=95GJ
蒸気ボイラのみでの一次エネルギーの換算値・・・100GJ×0.95×1.02GJ/GJ=96.9GJ
At this time, when by-product hydrogen is supplied to the PEFC and the steam boiler and when by-product hydrogen is supplied only to the steam boiler, the values of the secondary energy and the primary energy converted from the secondary energy are as follows: become.
Value of secondary energy in PEFC + steam boiler ... 100GJ × 0.5 × 0.55 + 100GJ × 0.5 × 0.40 + 100GJ × 0.5 × 0.95 = 95GJ
Conversion value of primary energy in PEFC + steam boiler (100GJ x 0.5 x 0.55) x 2.67GJ / GJ + (100GJ x 0.5 x 0.40) / (95/100) + (100GJ × 0.5 × 0.95) × 1.02GJ / GJ = 143GJ
Secondary energy value only with steam boiler ... 100GJ × 0.95 = 95GJ
Conversion value of primary energy only with steam boiler: 100GJ × 0.95 × 1.02GJ / GJ = 96.9GJ

単体での水素ガスの利用効率は、PEFC及びボイラを利用する場合と蒸気ボイラのみを利用する場合とで同じであるが、表2に示されるように、同量の水素から得られる二次エネルギーより換算される一次エネルギーを対比すると、PEFC及びボイラを利用した場合の一次エネルギーは、蒸気ボイラのみを利用した場合の一次エネルギーに比べて約1.5倍高いことがわかる。したがって、プラント全体でのエネルギー効率が飛躍的に改善されることが推測される。   The efficiency of using hydrogen gas alone is the same when using a PEFC and a boiler, and when using only a steam boiler, but as shown in Table 2, secondary energy obtained from the same amount of hydrogen. Comparing the primary energy converted more, it can be seen that the primary energy when using the PEFC and the boiler is about 1.5 times higher than the primary energy when using only the steam boiler. Therefore, it is estimated that the energy efficiency in the whole plant is drastically improved.

(変形例)
次に、上記実施形態の変形例を示す。変形例を図2に示す。なお、図2に示す変形例では、上記実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。
(Modification)
Next, the modification of the said embodiment is shown. A modification is shown in FIG. In the modification shown in FIG. 2, the same reference numerals are given to the same components as those in the above embodiment, and the detailed description thereof is omitted.

変形例は、図2に示す副生水素利用システム200のように、副生水素発生プラント3とPEFC1とを連通する副生水素供給経路11に、副生水素を精製するための精製装置4が取り付けられている。   In the modification, a by-product hydrogen supply path 11 that connects the by-product hydrogen generation plant 3 and the PEFC 1 as in the by-product hydrogen utilization system 200 shown in FIG. It is attached.

供給された副生水素の純度が低い場合、精製装置4で不純物が取り除かれ、高純度の副生水素がPEFC1に供給される。これにより、PEFC1の発電効率及び耐用年数を維持、向上させることができる。   When the purity of the supplied by-product hydrogen is low, impurities are removed by the purifier 4 and high-purity by-product hydrogen is supplied to the PEFC 1. Thereby, the power generation efficiency and the service life of PEFC1 can be maintained and improved.

副生水素中の不純物としては、メタンガス等の炭化水素ガス、一酸化炭素、二酸化炭素、硫化水素、二酸化硫黄等が挙げられる。   Examples of impurities in the by-product hydrogen include hydrocarbon gas such as methane gas, carbon monoxide, carbon dioxide, hydrogen sulfide, sulfur dioxide and the like.

精製装置4は、水素ガス中に混入している不純物を除去することができる装置を適宜選択すればよい。精製装置4の具体例としては、圧力変動吸着法(PSA法)を利用して加圧、減圧を繰り返す際のガス成分の着脱によりガス分離を行うPSA(Pressure Swing Adsorption)装置、二酸化炭素を選択的に分離する二酸化炭素分離膜、硫黄を吸着する活性炭もしくは合金粒子等の脱硫剤などが挙げられる。   As the purification apparatus 4, an apparatus capable of removing impurities mixed in the hydrogen gas may be appropriately selected. As a specific example of the purification apparatus 4, a pressure swing adsorption (PSA) apparatus that performs gas separation by attaching and detaching gas components when pressure application and pressure reduction are repeated using a pressure fluctuation adsorption method (PSA method), carbon dioxide is selected. And carbon dioxide separation membranes for separation, and desulfurization agents such as activated carbon or alloy particles that adsorb sulfur.

精製装置4は、図2に示されるように副生水素供給経路11の分岐点よりも下流のPEFC1側に配置されていてもよく、副生水素供給経路11の分岐点よりも上流に配置されていてもよい。   As shown in FIG. 2, the purifier 4 may be disposed on the PEFC 1 side downstream of the branch point of the byproduct hydrogen supply path 11, and is disposed upstream of the branch point of the byproduct hydrogen supply path 11. It may be.

本開示の水素利用システムは、エチレン、プロピレン等の化学製品を生産する石油化学プラント、製鉄所、ソーダ電解プラント等の、副次的に水素ガスが生成されるプロセスを有する工業プラントにおいて好適である。   The hydrogen utilization system of the present disclosure is suitable for an industrial plant having a process for generating hydrogen gas as a secondary product, such as a petrochemical plant, a steel mill, or a soda electrolysis plant that produces chemical products such as ethylene and propylene. .

1 PEFC(固体高分子型燃料電池)
2 蒸気ボイラ(燃焼設備)
3 副生水素発生プラント(生産設備)
4 精製装置
11 副生水素供給経路
12 温水供給経路
13 都市ガス供給経路
14 水蒸気供給経路
21 電力系統
100、200 副生水素利用システム
1 PEFC (solid polymer fuel cell)
2 Steam boiler (combustion equipment)
3 By-product hydrogen generation plant (production facility)
4 Purifier 11 By-product hydrogen supply path 12 Hot water supply path 13 City gas supply path 14 Water vapor supply path 21 Power system 100, 200 By-product hydrogen utilization system

Claims (5)

水素ガスが副次的に生成される生産設備と、
前記生産設備で生成された前記水素ガスが供給されて発電する固体高分子型燃料電池と、
前記固体高分子型燃料電池での発電により発生した温水、前記水素ガス以外の燃料及び前記生産設備で生成された前記水素ガスが供給され、前記燃料及び前記水素ガスを燃焼させて前記温水を加熱する燃焼設備と、
を備える副生水素利用システム。
Production facilities where hydrogen gas is produced as a secondary,
A polymer electrolyte fuel cell that generates electricity by being supplied with the hydrogen gas generated in the production facility;
Hot water generated by power generation in the polymer electrolyte fuel cell, fuel other than the hydrogen gas, and the hydrogen gas generated in the production facility are supplied, and the fuel and the hydrogen gas are burned to heat the hot water Combustion equipment to
By-product hydrogen utilization system.
前記固体高分子型燃料電池及び前記燃焼設備が、以下の式(1)又は式(1)’及び式(2)〜式(4)を満たす請求項1に記載の副生水素利用システム。
{PEout×TPE/[(PEWtemp−Wtemp)×4.18]}×[(100−PEWtemp)×4.18+2258]≦BOout×TBO・・・(1)
{PEout×TPE/[(PEWtemp−Wtemp)×4.18]}×[(BOWtemp−PEWtemp)×4.18]≦BOout×TBO・・・(1)’
PEout=H2PE×PEη・・・(2)
BOout=(H2BO+TGBO)×Bη・・・(3)
H2total=H2PE+H2BO・・・(4)
(式(1)〜式(4)中、PEoutは固体高分子型燃料電池の温水出力(W)、TPEは固体高分子型燃料電池の運転時間(秒)、PEWtempは固体高分子型燃料電池にて得られる温水の温度(℃)、Wtempは固体高分子型燃料電池に供給される水の温度(℃)、BOoutは燃焼設備の出力(W)、TBOは燃焼設備の運転時間(秒)、BOWtempは燃焼設備にて得られる加熱された温水の温度(℃)、H2PEは固体高分子型燃料電池への水素供給熱量(J)、PEηは固体高分子型燃料電池の温水回収効率(%)、H2BOは燃焼設備への水素供給熱量(J)、TGBOは燃焼設備への燃料供給熱量、Bηは燃焼設備のエネルギー変換効率(%)、及びH2totalは総水素供給熱量(J)を表す。)
The by-product hydrogen utilization system according to claim 1, wherein the solid polymer fuel cell and the combustion facility satisfy the following formula (1) or formula (1) 'and formulas (2) to (4).
{PE out × T PE / [(PEW temp −W temp ) × 4.18]} × [(100−PEW temp ) × 4.18 + 2258] ≦ BO out × T BO (1)
{PE out × T PE / [(PEW temp −W temp ) × 4.18]} × [(BOW temp −PEW temp ) × 4.18] ≦ BO out × T BO (1) ′
PE out = H2 PE × PE η (2)
BO out = (H2 BO + TG BO ) × B η (3)
H2 total = H2 PE + H2 BO (4)
(In Formula (1) to Formula (4), PE out is the warm water output (W) of the polymer electrolyte fuel cell, T PE is the operation time (second) of the polymer electrolyte fuel cell, and PEW temp is the polymer electrolyte. Temperature (° C) of hot water obtained in the type fuel cell, W temp is the temperature (° C) of water supplied to the polymer electrolyte fuel cell, BO out is the output (W) of the combustion facility, and T BO is the combustion facility Operating time (seconds), BOW temp is the temperature of heated hot water (° C) obtained in the combustion facility, H2 PE is the amount of heat supplied to the polymer electrolyte fuel cell (J), and PE η is the solid polymer Type fuel cell hot water recovery efficiency (%), H2 BO is the amount of heat supplied to the combustion facility (J), TG BO is the amount of heat supplied to the combustion facility, B η is the energy conversion efficiency of the combustion facility (%), and H2 total represents the total hydrogen supply heat (J).)
前記固体高分子型燃料電池及び前記燃焼設備が、以下の式(1)’’及び前記式(2)〜前記式(4)を満たす請求項2に記載の副生水素利用システム。
PEout×TPE/[(PEWtemp−Wtemp)×4.18]=BOout×TBO/[(100−PEWtemp)×4.18+2258]・・・(1)’’
The by-product hydrogen utilization system according to claim 2, wherein the polymer electrolyte fuel cell and the combustion facility satisfy the following formula (1) '' and the formula (2) to the formula (4).
PE out × T PE / [( PEW temp -W temp) × 4.18] = BO out × T BO / [(100-PEW temp) × 4.18 + 2258] ··· (1) ''
前記固体高分子型燃料電池での発電により生じた電力及び前記燃焼設備にて前記温水が加熱されて生じた熱、は前記生産設備に供給される請求項1〜請求項3のいずれか1項に記載の副生水素利用システム。   The electric power generated by the power generation in the polymer electrolyte fuel cell and the heat generated by heating the hot water in the combustion facility are supplied to the production facility. The by-product hydrogen utilization system described in 1. 前記生産設備から供給された前記水素ガスを予め精製する精製装置をさらに備え、
前記固体高分子型燃料電池は、前記精製装置で精製された水素ガスを反応させて発電する請求項1〜請求項4のいずれか1項に記載の副生水素利用システム。
Further comprising a purifier for purifying the hydrogen gas supplied from the production facility in advance;
The by-product hydrogen utilization system according to any one of claims 1 to 4, wherein the polymer electrolyte fuel cell generates power by reacting hydrogen gas purified by the purification device.
JP2016040252A 2016-03-02 2016-03-02 By-product hydrogen utilization system Active JP6707368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040252A JP6707368B2 (en) 2016-03-02 2016-03-02 By-product hydrogen utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040252A JP6707368B2 (en) 2016-03-02 2016-03-02 By-product hydrogen utilization system

Publications (2)

Publication Number Publication Date
JP2017157442A true JP2017157442A (en) 2017-09-07
JP6707368B2 JP6707368B2 (en) 2020-06-10

Family

ID=59810779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040252A Active JP6707368B2 (en) 2016-03-02 2016-03-02 By-product hydrogen utilization system

Country Status (1)

Country Link
JP (1) JP6707368B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020545A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020548A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020543A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020546A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020544A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020547A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
KR102151513B1 (en) 2019-07-18 2020-09-03 재단법인한국조선해양기자재연구원 By-product hydrogen carrier with purification facilities
WO2021079489A1 (en) * 2019-10-25 2021-04-29 三浦工業株式会社 Boiler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169993A (en) * 1984-09-14 1986-04-10 Toshiba Corp Electrolytic manufacturing equipment of caustic soda utilizing by-product hydrogen
JPS6310472A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
JPH08308587A (en) * 1995-03-13 1996-11-26 Osaka Gas Co Ltd Hydrogen supply system and cogeneration system
JP2002208420A (en) * 2001-01-05 2002-07-26 Fuji Electric Co Ltd Operation method of fuel cell power generation system
JP2003288935A (en) * 2002-01-24 2003-10-10 Ebara Corp Fuel cell power generating system receiving supply of hydrogen gas from hypochlorite producing device
JP2004027975A (en) * 2002-06-26 2004-01-29 Jfe Steel Kk Power generating method and equipment using by-product gas
JP2005006427A (en) * 2003-06-12 2005-01-06 Nippon Telegr & Teleph Corp <Ntt> Power control/management system, server, handling method and handling program of server, and recording medium recorded with the program
JP2006073417A (en) * 2004-09-03 2006-03-16 Kansai Electric Power Co Inc:The Fuel cell system
JP2012038474A (en) * 2010-08-04 2012-02-23 Eneos Celltech Co Ltd Fuel cell system
JP2013014509A (en) * 2008-11-20 2013-01-24 Panasonic Corp Hydrogen generation apparatus and fuel cell system having the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169993A (en) * 1984-09-14 1986-04-10 Toshiba Corp Electrolytic manufacturing equipment of caustic soda utilizing by-product hydrogen
JPS6310472A (en) * 1986-07-01 1988-01-18 Mitsubishi Electric Corp Fuel cell power generating system
JPH08308587A (en) * 1995-03-13 1996-11-26 Osaka Gas Co Ltd Hydrogen supply system and cogeneration system
JP2002208420A (en) * 2001-01-05 2002-07-26 Fuji Electric Co Ltd Operation method of fuel cell power generation system
JP2003288935A (en) * 2002-01-24 2003-10-10 Ebara Corp Fuel cell power generating system receiving supply of hydrogen gas from hypochlorite producing device
JP2004027975A (en) * 2002-06-26 2004-01-29 Jfe Steel Kk Power generating method and equipment using by-product gas
JP2005006427A (en) * 2003-06-12 2005-01-06 Nippon Telegr & Teleph Corp <Ntt> Power control/management system, server, handling method and handling program of server, and recording medium recorded with the program
JP2006073417A (en) * 2004-09-03 2006-03-16 Kansai Electric Power Co Inc:The Fuel cell system
JP2013014509A (en) * 2008-11-20 2013-01-24 Panasonic Corp Hydrogen generation apparatus and fuel cell system having the same
JP2012038474A (en) * 2010-08-04 2012-02-23 Eneos Celltech Co Ltd Fuel cell system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110804B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system
JP2020020548A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020543A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020546A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020544A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020547A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP7067349B2 (en) 2018-08-02 2022-05-16 三浦工業株式会社 By-product gas utilization system
JP2020020545A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP7110807B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system
JP7110803B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system
JP7110806B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system
KR102151513B1 (en) 2019-07-18 2020-09-03 재단법인한국조선해양기자재연구원 By-product hydrogen carrier with purification facilities
WO2021079489A1 (en) * 2019-10-25 2021-04-29 三浦工業株式会社 Boiler

Also Published As

Publication number Publication date
JP6707368B2 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6707368B2 (en) By-product hydrogen utilization system
JP6397502B2 (en) Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method
KR102243776B1 (en) Methanation method and power plant comprising co₂ methanation of power plant flue gas
JP5738989B2 (en) How to convert biogas to methane-rich gas
JP6931354B2 (en) Carbon monoxide production method optimized by SOCE
JP2015527283A (en) Hydrogen production from integrated electrolyzer and hydrocarbon gasification reactor
MX2014007345A (en) Process and system for conversion of carbon dioxide to carbon monoxide.
JP6639578B2 (en) Hydrogen and carbon monoxide production using REP with partial oxidation
JP6603607B2 (en) Methanol synthesis system
NO176339B (en) Procedure for converting fuel to electricity
TW202241835A (en) Conversion of carbon dioxide and water to synthesis gas for producing methanol and hydrocarbon products
KR101441491B1 (en) Intergrated gasification combined cycle coupled fuel cells system and gas supplying method thereto
JP2021524544A (en) Expander for SOECD applications
US20240059562A1 (en) Method and plant for producing syngas
US20230227316A1 (en) Circular carbon process
WO2017086082A1 (en) Byproduct hydrogen utilization system
KR102600084B1 (en) System and process for reforming natural gas
Shimizu et al. Development of compact hydrogen generator for on-site hydrogen station
KR20180119007A (en) A Hydrogen Generator Using by-product gas and Preparation Method of Hydrogen Using the Same
JP2016184549A (en) Gas production device
Becker et al. Design and Performance Analysis of a 1 MW Solid Oxide Fuel Cell System for Combined Production of Heat, Hydrogen, and Power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200520

R150 Certificate of patent or registration of utility model

Ref document number: 6707368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250