WO2017086082A1 - Byproduct hydrogen utilization system - Google Patents

Byproduct hydrogen utilization system Download PDF

Info

Publication number
WO2017086082A1
WO2017086082A1 PCT/JP2016/081019 JP2016081019W WO2017086082A1 WO 2017086082 A1 WO2017086082 A1 WO 2017086082A1 JP 2016081019 W JP2016081019 W JP 2016081019W WO 2017086082 A1 WO2017086082 A1 WO 2017086082A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
energy
pefc
product
supplied
Prior art date
Application number
PCT/JP2016/081019
Other languages
French (fr)
Japanese (ja)
Inventor
貴英 羽田
藤田 顕二郎
小笠原 慶
Original Assignee
東京瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京瓦斯株式会社 filed Critical 東京瓦斯株式会社
Publication of WO2017086082A1 publication Critical patent/WO2017086082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a by-product hydrogen utilization system.
  • the by-produced hydrogen (by-product hydrogen) is used as a raw material for chemical synthesis, and is also used as a heat fuel required for a heat source such as a boiler installed in an industrial plant. high.
  • the by-produced hydrogen is also used for filling cylinders manufactured for external sales. For this reason, the current situation is that it cannot always be said that surplus by-product hydrogen is discharged or consumed in vain.
  • Non-Patent Document 1 “Current Status of By-product Hydrogen Utilization in Salt Electrolysis Industry”, Masao Fukuoka, Hydrogen Energy System Vol. 28, no. 1, p. 16-22 (2003)
  • Non-patent document 2 “Possibility of supplying high-purity hydrogen using existing facilities in the petroleum and chemical industries and positioning of the petroleum industry”, Yoshitaka Hayai and Masahiro Ishikura, Hydrogen Energy System Vol. 28, no. 1, p. 23-28 (2003)
  • the present disclosure has been made in view of the above, and an object of the present invention is to provide a by-product hydrogen utilization system in which energy utilization efficiency is improved by using by-product hydrogen, and to achieve this object. .
  • by-product hydrogen has been used as a fuel for heat of a heat source and extracted and used as thermal energy. For example, even if the steam recovery efficiency of a boiler is about 95%, a new amount of by-product hydrogen is used.
  • PEFC polymer electrolyte fuel cell
  • the primary conversion converted from the amount of steam obtained by a conventional boiler Compared to energy, the primary energy converted from the amount of electric power obtained from the fuel cell is larger, and the knowledge that the utilization efficiency of hydrogen as energy has been drastically improved has been achieved based on this knowledge. Is.
  • a by-product hydrogen utilization system includes: ⁇ 1> Production equipment in which hydrogen gas is produced as a secondary, a heat supply source that supplies fuel other than hydrogen gas and supplies heat to the production equipment, and the hydrogen gas produced in the production equipment includes A polymer electrolyte fuel cell (hereinafter sometimes abbreviated as PEFC) that is supplied and generates electric power and supplies electric power to the production facility.
  • PEFC polymer electrolyte fuel cell
  • by-product hydrogen secondary hydrogen produced in production facilities
  • the industrial production system 400 has been supplied to a heat supply source such as a steam boiler 420 provided in the by-product hydrogen generation plant 410 and used as a fuel for heat.
  • a heat supply source such as a steam boiler 420 provided in the by-product hydrogen generation plant 410
  • PEFCs require a supply of hydrogen with a relatively high purity, so it is difficult to think of an alternative fuel for hydrogen gas.
  • the fuel used in a heat supply source such as a boiler is replaced by a fuel other than hydrogen.
  • the fuel used for the heat supply source is a fuel other than hydrogen gas, such as city gas, natural gas, heavy oil, kerosene, and light oil.
  • a PEFC for newly using the by-product hydrogen generated as a by-product is newly provided. That is, the supply source of by-product hydrogen is changed from a conventional boiler or the like (heat supply source) to PEFC, and electric power generated by PEFC is supplied to the production facility, and fuel other than hydrogen gas is used as fuel for the boiler or the like.
  • PEFC is suitable for effectively improving the energy efficiency of the by-product hydrogen utilization system from the viewpoint of starting at room temperature, low operating temperature, and excellent power generation efficiency.
  • the by-product hydrogen utilization system according to the present disclosure described in ⁇ 1> is preferably an embodiment in which heated water generated by power generation by PEFC is supplied to the heat supply source.
  • the supplied by-product hydrogen reacts to generate electric power to obtain electric energy, and at the same time, heat energy is generated.
  • heat energy is generated.
  • water that is, warm water or hot water.
  • the thermal energy taken out as hot water or hot water is supplied to a heat supply source to assist combustion, thereby improving the overall energy efficiency.
  • the by-product hydrogen utilization system according to the present disclosure according to any one of ⁇ 1> to ⁇ 3> further includes a purifier that purifies the hydrogen gas supplied from the production facility in advance. It is preferable that PEFC is an aspect which generates electric power by reacting the hydrogen gas purified by the purification apparatus.
  • the by-product hydrogen utilization system according to the present disclosure described in any one of ⁇ 1> to ⁇ 4> is further provided in the PEFC (particularly the anode) further downstream of the PEFC in the flow direction of the hydrogen gas.
  • emitted from the side) is also preferable.
  • a part of the by-product hydrogen is utilized in the PEFC, and a by-product hydrogen not utilized in the PEFC is disposed downstream of the PEFC. That is, it is preferably constructed so that it can be used in a combined plant that performs chemical substance synthesis, magnetic material production, synthetic quartz production, and the like.
  • Exhaust gas discharged from the fuel cell after a PEFC is installed between the production facility and a hydrogen utilization device that is different from the production facility, and uses as much by-product hydrogen as is necessary or possible in the PEFC (In particular, the hydrogen gas remaining in the anode off-gas discharged on the anode side) is supplied to the downstream hydrogen utilization device and used, thereby enhancing the energy efficiency improvement effect.
  • a by-product hydrogen utilization system in which energy utilization efficiency is improved by using by-product hydrogen is provided.
  • FIG. 1 is a system configuration diagram showing a schematic configuration of a PEFC system according to an embodiment of the present invention. It is a graph which shows the energy value of hydrogen in the case where PEFC is used and the case where a conventional boiler is used. It is a system block diagram which shows the structure of the modification of the PEFC system of this invention. It is a system block diagram which shows the structure of the other modification of the PEFC system of this invention. It is a schematic block diagram which shows the structure of the conventional system.
  • a PEFC system production system
  • PEFC by-product hydrogen utilization system
  • steam boiler as a heat supply source that covers the heat of production facilities
  • city gas city gas as fuel to be supplied to the steam boiler.
  • the production facility of this embodiment is a by-product hydrogen generation plant in which by-product hydrogen is by-produced.
  • the system 100 includes a by-product hydrogen generation plant 10 that is a production facility for generating by-product hydrogen, a steam boiler 20 that is a heat supply source of the by-product hydrogen generation plant, And a polymer electrolyte fuel cell (PEFC) 30, which is an example of a fuel cell that generates power by-product hydrogen.
  • a by-product hydrogen generation plant 10 that is a production facility for generating by-product hydrogen
  • a steam boiler 20 that is a heat supply source of the by-product hydrogen generation plant
  • PEFC polymer electrolyte fuel cell
  • the by-product hydrogen generation plant 10 is not limited as long as hydrogen is generated by a part of the production process. A plant with a large amount of hydrogen generation increases energy improvement efficiency. Is preferable.
  • Examples of by-product hydrogen generation plants include petrochemical plants that produce chemical products such as ethylene and propylene, steel mills, and soda electrolysis plants that electrolyze caustic soda.
  • the steam boiler 20 is a combustion device (heat supply source) for supplying heat necessary for heating the heated part in the by-product hydrogen generation plant 10, and the steam boiler 20 includes city gas as combustion fuel. Is connected to a gas supply pipe 22 connected to external equipment.
  • by-product hydrogen discharged from the by-product hydrogen generation plant 10 is not supplied to the steam boiler 20 as fuel, but city gas is supplied from the external equipment through the gas supply pipe 22. ing.
  • the city gas supplied from the external equipment is combusted to generate heat, the generated heat is taken out as steam by heat exchange with water, and the steam distribution pipe 24 connecting the by-product hydrogen generation plant 10 and the steam boiler 20 is used.
  • the taken out water vapor is sent to the byproduct hydrogen generation plant 10.
  • Fuel can be appropriately selected from combustible fuels other than hydrogen gas, and examples thereof include city gas, LP gas, natural gas, digestion gas, heavy oil, kerosene, and light oil.
  • steam is the meaning including the water which is in the gaseous state, and the thing which this condensed in the air and became a fine water droplet.
  • a mode in which a steam boiler is provided as a heat supply source is shown, but a gas turbine or the like may be used in addition to the steam boiler.
  • the polymer electrolyte fuel cell (PEFC) 30 is communicated with the byproduct hydrogen generation plant 10 by a byproduct hydrogen distribution pipe 12.
  • By-product hydrogen produced as a by-product in the by-product hydrogen generation plant 10 is supplied to the anode side of the PEFC 30 through the by-product hydrogen circulation pipe 12.
  • the PEFC 30 generally has a structure in which a cell in which a polymer electrolyte membrane is sandwiched between an anode electrode (fuel electrode) and a cathode electrode (oxygen electrode) is further sandwiched between separators.
  • Hydrogen ions are generated on the anode side using the supplied by-product hydrogen as fuel (H 2 ⁇ 2H + + 2e ⁇ ), and the generated hydrogen ions move to the cathode side through the polymer electrolyte membrane, and hydrogen ions are generated on the cathode side. Reacts with oxygen to produce water (1 / 2O 2 + 2H + + + e ⁇ ⁇ H 2 O), which generates electricity. H 2 + 1 / 2O 2 ⁇ H 2 O (all reactions) The generated power is supplied to the by-product hydrogen generation plant 10 via the power system 34. As a result, the conventional by-product hydrogen generation plant that was operated by supplying power from the external power system reduces the amount of power that must be supplied from the external power system by supplying power from the PEFC 30. Can do.
  • PEFC30 generates thermal energy in addition to power generation.
  • the generated thermal energy is sent to the steam boiler 20 through the pipe 32 as hot water or hot water generated by heat exchange with water (not shown), and is used in the steam boiler.
  • it is possible to expect a reduction in fuel for the heat energy from the PEFC.
  • the PEFC 30 refers to a fuel cell including a single cell having a laminated structure of separator / fuel electrode / polymer electrolyte membrane / oxygen electrode / separator as described above, and further reforms and generates hydrogen as necessary. It may be a fuel cell equipped with a quality device.
  • the energy value of hydrogen refers to the utility value of energy, and refers to the amount of energy actually obtained when using hydrogen gas as an energy source.
  • the secondary energy obtained by using the amount a of hydrogen gas (primary energy) introduced into the system is a (equal magnification) and the usage in which the secondary energy is 2a, substantial energy is obtained. Even with the same amount of hydrogen (primary energy), the latter can be said to be twice as valuable as energy.
  • PEFC simple substance First, the value as the primary energy of hydrogen in the case of using a steam boiler and the case of using PEFC are compared.
  • the power generation efficiency of the PEFC and the steam recovery efficiency of the steam boiler are assumed to be 55% and 95%, respectively, and the primary energy conversion values (unit: gigajoule [GJ]) of the steam and power are assumed to be the following values, respectively.
  • the primary energy conversion values are all published by the Japan Gas Association (“Conside CO 2 emission factors related to the use of electricity. Regarding CO 2 emission factors of electricity used for the evaluation of CO 2 reduction measures” Version> “Japan Gas Association”.
  • the primary energy conversion value (9.63GJ / MWh) of electricity is the average of 9.97GJ / MWh during the day and 9.28GJ / MWh during the night.
  • the values of secondary energy and primary energy converted from secondary energy are as follows.
  • the obtained primary energy conversion value is shown in FIG. 2 as the energy value of hydrogen.
  • the use efficiency of hydrogen gas alone is higher when using a steam boiler than when using PEFC, but as shown in Table 2 and FIG. 2, the secondary hydrogen obtained from the same amount of hydrogen is used. Comparing the primary energy converted from energy, it can be seen that the primary energy when using PEFC is about 1.5 times higher than the primary energy when using a steam boiler.
  • PEFC system the value as the primary energy of hydrogen in a conventional system equipped with a steam boiler and a by-product hydrogen utilization system (PEFC system) equipped with a PEFC will be compared.
  • the power generation efficiency of the PEFC and the steam recovery efficiency of the steam boiler are 55% and 95%, respectively, and the primary energy conversion values of steam and electric power are the values shown in Table 1.
  • the amount of hydrogen gas and city gas to be supplied is 100 gigajoules (GJ) in terms of energy under the conditions of Table 1, the primary energy conversion values in the conventional system and the PEFC system are as follows: Become.
  • the PEFC system when a total of 200 GJ is used for the supply of hydrogen gas and city gas, the amount of energy required for operation of the entire system will be 53 GJ in terms of primary energy, if 55 GJ of power generated by PEFC is subtracted.
  • the conventional system requires 100 GJ of energy for operation. Therefore, as shown in Table 5 below, in the PEFC system, the energy utilization efficiency is about twice that of the conventional system, and it is possible to achieve a fuel reduction of 47%.
  • the PEFC system can achieve a reduction of 47 GJ in terms of primary energy conversion with respect to the conventional system.
  • the PEFC As described above, compared with the conventional industrial production system in which by-product hydrogen is supplied to the steam boiler 20 to generate steam to obtain thermal energy, the PEFC is provided, and the by-product hydrogen is supplied to the PEFC to generate electricity.
  • the hydrogen gas has an energy value that is about twice as high. As a result, it leads to a significant reduction in fuel consumption.
  • the total system power is obtained by subtracting the generated power “2.67 ⁇ X ⁇ B / 100” GJ obtained from PEFC.
  • the required amount of energy is 2X ⁇ (2.67 ⁇ X ⁇ B / 100) GJ in terms of primary energy.
  • X [GJ] energy is required.
  • by-product hydrogen produced as a by-product in the by-product hydrogen generation plant is supplied to the fuel cell, and city gas is supplied to the steam boiler, which is a heat supply source, so that the entire plant is It is clear that the energy efficiency of the system is dramatically improved.
  • a purification device 40 for purifying by-product hydrogen is attached to the by-product hydrogen distribution pipe 12 that connects the by-product hydrogen generation plant 10 and the PEFC 30. Yes.
  • the purifier 40 When the purity of the supplied by-product hydrogen is low, impurities are removed by the purifier 40, and the by-product hydrogen after the purity is increased is supplied to the PEFC 30. Thereby, while the power generation efficiency in PEFC30 is maintained and improved, the useful life of PEFC30 itself can be maintained and improved.
  • impurities in the by-product hydrogen include hydrocarbon gases such as methane gas, carbon monoxide, carbon dioxide, hydrogen sulfide, and sulfur dioxide.
  • the purification apparatus 40 may be appropriately selected from an apparatus that can remove impurities mixed in hydrogen gas.
  • a PSA Pressure Swing Adsorption
  • CO dioxide is selected Carbon dioxide separation membranes that can be separated automatically; desulfurization agents such as activated carbon or alloy particles that adsorb sulfur; and the like.
  • a specific example is a soda electrolysis plant that generates caustic soda by electrolysis.
  • a soda electrolysis plant chlorine and hydrogen are generated from the electrolytic cell in accordance with the production of caustic soda.
  • a plant that generates hydrogen chloride from the generated hydrogen and chlorine, and the generated hydrogen are used.
  • Plants that synthesize chemical substances such as diaminotoluene and aniline, plants that produce magnetic materials using produced hydrogen, synthetic quartz, etc., iron chloride, hydrochloric acid, chlorosulfonic acid, etc. that use produced hydrogen chloride
  • a plant that synthesizes chemical substances is installed.
  • the fuel cell in order to effectively use the surplus hydrogen remaining at the end, it is considered to install a fuel cell at the final stage of the hydrogen gas distribution path and effectively use the surplus hydrogen gas. It has been.
  • the fuel cell is installed so that hydrogen is supplied to the fuel cell in an initial process in which chlorine and hydrogen are generated in the electrolytic cell.
  • the fuel cell is preferably disposed between the by-product hydrogen generation plant 10 and the hydrogen utilization plant 50 that is another hydrogen utilization facility. That is, a hydrogen utilization plant 50, which is another hydrogen utilization plant, is arranged downstream of the PEFC 30 to which the byproduct hydrogen discharged from the byproduct hydrogen generation plant 10 is supplied in the flow direction of the byproduct hydrogen. It is preferable that the system is constructed such that hydrogen consumed at the PEFC 30 and not consumed at the PEFC 30 is consumed at another downstream production plant.
  • the hydrogen utilization rate of the fuel cell is generally less than 100%, much of the by-product hydrogen can be used in the fuel cell as in the above embodiment to increase the energy efficiency of the entire system, and the consumption Hydrogen that is not used can also be used in downstream systems. As a result, the utilization efficiency of by-product hydrogen, and consequently the utilization efficiency of the energy of the entire system, is dramatically improved.
  • the by-product hydrogen utilization system of the present disclosure is suitable for industrial plants having a process in which hydrogen gas is generated secondarily, such as petrochemical plants that produce chemical products such as ethylene and propylene, steelworks, and soda electrolysis plants. It is.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

One embodiment of the present invention pertains to a byproduct hydrogen utilization system that is provided with: production equipment in which hydrogen gas is generated secondarily; a heat supply source to which a fuel other than hydrogen gas is supplied, and which in turn supplies heat to the production equipment; and a solid polymer fuel cell which generates electricity when the hydrogen gas generated by the production equipment is supplied, and which in turn supplies generated electric power to the production equipment.

Description

副生水素利用システムBy-product hydrogen utilization system
 本発明は、副生水素利用システムに関する。 The present invention relates to a by-product hydrogen utilization system.
 稼働している工業プラントには、副次的に水素ガスが生成されるプロセスを経るプラントが数多くある。具体的な例として、ポリエチレン、ポリプロピレン等の原料であるエチレン、プロピレン等の化学製品を生産する石油化学プラントでは、一連のプロセスの中で水素が副生し、副生した水素を回収して一部を下流プラントで使用している。また、製鉄所では、石炭を乾留してコークスを得るプロセスで水素が副生し、苛性ソーダを電解生成するソーダ電解プラントでは、苛性ソーダと塩素を得るプロセスで水素が副生する(例えば、非特許文献1~2参照)。 There are many industrial plants in operation that undergo a process of generating hydrogen gas as a secondary. As a specific example, in a petrochemical plant that produces chemical products such as polyethylene and polypropylene, which are raw materials such as polyethylene and polypropylene, hydrogen is produced as a by-product in a series of processes. Is used in downstream plants. In addition, in steelworks, hydrogen is produced as a by-product in the process of carbonizing coal to obtain coke, and in a soda electrolysis plant that produces caustic soda by electrolysis, hydrogen is produced as a by-product in the process of obtaining caustic soda and chlorine (for example, non-patent literature). (See 1-2).
 このように副生した水素(副生水素)は、化学合成用の原料として利用されるほか、工業プラント内に設置されたボイラ等の熱源に必要とされる熱用燃料として利用される割合が高い。また、副生した水素は、外販用に製造されるボンベへの充填用途にも利用されている。そのため、必ずしも余剰の副生水素が無駄に排出ないし消費されている状況ともいえないのが現状である。 The by-produced hydrogen (by-product hydrogen) is used as a raw material for chemical synthesis, and is also used as a heat fuel required for a heat source such as a boiler installed in an industrial plant. high. The by-produced hydrogen is also used for filling cylinders manufactured for external sales. For this reason, the current situation is that it cannot always be said that surplus by-product hydrogen is discharged or consumed in vain.
 一方、近年は、燃料電池を搭載した車両等をはじめ、水素を利用したエネルギー環境が重要視され、整備されつつある状況にある。水素を効率的にエネルギーに変換することができ、より大きなエネルギーとして利用できれば、水素利用環境におけるエネルギー利用効率が飛躍的に改善されることになる。
 [非特許文献1]「食塩電解工業における副生水素利用の現状」、福岡正雄著、水素エネルギーシステムVol.28,No.1,p.16~22(2003)
 [非特許文献2]「石油・化学業界の既存設備を活用した高純度水素の供給可能性と石油業界の位置付け」、早内義隆、石倉雅裕共著、水素エネルギーシステムVol.28,No.1,p.23~28(2003)
On the other hand, in recent years, an energy environment using hydrogen, such as a vehicle equipped with a fuel cell, is regarded as important and is being developed. If hydrogen can be efficiently converted into energy and used as a larger energy, the energy utilization efficiency in the hydrogen utilization environment will be dramatically improved.
[Non-Patent Document 1] “Current Status of By-product Hydrogen Utilization in Salt Electrolysis Industry”, Masao Fukuoka, Hydrogen Energy System Vol. 28, no. 1, p. 16-22 (2003)
[Non-patent document 2] “Possibility of supplying high-purity hydrogen using existing facilities in the petroleum and chemical industries and positioning of the petroleum industry”, Yoshitaka Hayai and Masahiro Ishikura, Hydrogen Energy System Vol. 28, no. 1, p. 23-28 (2003)
 しかしながら、数ある工業プラントで副生される副生水素の多くは、副生母体であるプラントに併設されている熱源用の燃料として利用されているのが実情である。つまり、水素を燃焼用燃料として利用し、熱交換装置を備えた例えばボイラ等において、燃焼熱を水と熱交換し、水蒸気又は温水もしくは熱水の形態で熱エネルギーとして利用している。そのため、水素のエネルギーとしての利用効率は必ずしも高くない。 However, most of the by-product hydrogen produced as a by-product in a number of industrial plants is actually used as a fuel for the heat source that is attached to the plant that is a by-product matrix. In other words, hydrogen is used as a fuel for combustion, and for example, in a boiler or the like equipped with a heat exchange device, the heat of combustion is exchanged with water and used as heat energy in the form of steam, hot water or hot water. Therefore, utilization efficiency of hydrogen as energy is not necessarily high.
 本開示は、上記に鑑みなされたものであり、副生水素を用いてエネルギーの利用効率が改善された副生水素利用システムを提供することを目的とし、この目的を達成することを課題とする。 The present disclosure has been made in view of the above, and an object of the present invention is to provide a by-product hydrogen utilization system in which energy utilization efficiency is improved by using by-product hydrogen, and to achieve this object. .
 本開示は、以下の知見に基づいて達成されたものである。
 従来、副生水素は、熱源の熱用燃料として利用され、熱エネルギーとして取り出されて利用されてきたが、例えばボイラの蒸気回収効率が約95%であるとしても、副生水素の新たなを利用形態として、固体高分子型燃料電池(PEFC,Polymer Electrolyte Fuel Cell)を工業生産システムに配設して水素を電池用燃料として利用する場合、従来のボイラで得られる蒸気量から換算される一次エネルギーに比べ、燃料電池で得られる電力量から換算される一次エネルギーの方が大きく、水素のエネルギーとしての利用効率が飛躍的に改善されるとの知見を得、かかる知見に基づいて達成されたものである。
The present disclosure has been achieved based on the following findings.
Conventionally, by-product hydrogen has been used as a fuel for heat of a heat source and extracted and used as thermal energy. For example, even if the steam recovery efficiency of a boiler is about 95%, a new amount of by-product hydrogen is used. When using a polymer electrolyte fuel cell (PEFC) in an industrial production system and using hydrogen as a fuel for the battery, the primary conversion converted from the amount of steam obtained by a conventional boiler Compared to energy, the primary energy converted from the amount of electric power obtained from the fuel cell is larger, and the knowledge that the utilization efficiency of hydrogen as energy has been drastically improved has been achieved based on this knowledge. Is.
 上記の目的を達成するために、本開示に係る副生水素利用システムは、
 <1> 水素ガスが副次的に生成される生産設備と、水素ガス以外の燃料が供給され、前記生産設備に熱を供給する熱供給源と、前記生産設備で生成された前記水素ガスが供給されて発電し、前記生産設備に電力を供給する固体高分子型燃料電池(以下、PEFCと略記することがある。)と、を備えている。
In order to achieve the above object, a by-product hydrogen utilization system according to the present disclosure includes:
<1> Production equipment in which hydrogen gas is produced as a secondary, a heat supply source that supplies fuel other than hydrogen gas and supplies heat to the production equipment, and the hydrogen gas produced in the production equipment includes A polymer electrolyte fuel cell (hereinafter sometimes abbreviated as PEFC) that is supplied and generates electric power and supplies electric power to the production facility.
 従来、生産設備で副次的に生成された水素(以下、副生水素)は、化学合成用の原料又は外販用ボンベの充填用ガスとして用いられるほか、多くは、図5に示されるように、工業生産システム400内に副生水素発生プラント410に併設された蒸気ボイラ420等の熱供給源に供給され、熱用燃料として利用されてきた。そのため、余剰水素として廃棄される副生水素こそ少ないものの、エネルギーとしての利用効率の点では必ずしも高いとは言い難い状況にあった。
 一方、PEFCでは、純度の比較的高い水素の供給が求められることから、水素ガスに対する代替燃料は考え難いところ、ボイラ等の熱供給源で使用される燃料は、水素から水素以外の燃料に代替が可能である。
 上記の状況に鑑みて、本開示の副生水素利用システムでは、熱供給源に使用する燃料を水素ガスから水素ガス以外の燃料(例えば、都市ガス、天然ガス、重油、灯油、軽油等の燃料)に代え、かつ、副次的に生成された副生水素を利用するためのPEFCを新たに配設する。すなわち、副生水素の供給先を、従来のボイラ等(熱供給源)からPEFCに代え、PEFCで発電された電力を生産設備に供給し、かつ、ボイラ等の燃料には水素ガス以外の燃料を用いる供給系統とする。
 これにより、比較的純度の高い副生水素は、PEFCに供給されて発電用途として消費されることで、熱エネルギーとしてではなく、電気エネルギーとして生産設備に必要とされるエネルギーの一部を賄う。PEFCでの水素の発電効率は、ボイラ等での水素の蒸気変換効率に比べると高いとは言い難いものの、二次エネルギーである電力から換算される一次エネルギーは2.5倍を超えるため、同様に二次エネルギーである蒸気から換算される一次エネルギーに対し、プラント全体のエネルギー効率は大幅に改善され、一定量の副生水素に基づいて得られるエネルギー量を高めることができる。
 副生水素を発電用燃料として用いることによって、水素のエネルギー価値を高めることが可能になるのである。
Conventionally, secondary hydrogen produced in production facilities (hereinafter referred to as by-product hydrogen) is used as a raw material for chemical synthesis or as a filling gas for a cylinder for external sales, and in many cases, as shown in FIG. The industrial production system 400 has been supplied to a heat supply source such as a steam boiler 420 provided in the by-product hydrogen generation plant 410 and used as a fuel for heat. For this reason, although only a small amount of by-product hydrogen is discarded as surplus hydrogen, it is difficult to say that it is necessarily high in terms of utilization efficiency as energy.
On the other hand, PEFCs require a supply of hydrogen with a relatively high purity, so it is difficult to think of an alternative fuel for hydrogen gas. However, the fuel used in a heat supply source such as a boiler is replaced by a fuel other than hydrogen. Is possible.
In view of the above situation, in the by-product hydrogen utilization system of the present disclosure, the fuel used for the heat supply source is a fuel other than hydrogen gas, such as city gas, natural gas, heavy oil, kerosene, and light oil. In addition, a PEFC for newly using the by-product hydrogen generated as a by-product is newly provided. That is, the supply source of by-product hydrogen is changed from a conventional boiler or the like (heat supply source) to PEFC, and electric power generated by PEFC is supplied to the production facility, and fuel other than hydrogen gas is used as fuel for the boiler or the like. Supply system using
As a result, by-product hydrogen having a relatively high purity is supplied to PEFC and consumed as a power generation application, thereby providing a part of energy required for production equipment as electrical energy, not as thermal energy. Although it is difficult to say that the power generation efficiency of hydrogen at PEFC is higher than the steam conversion efficiency of hydrogen at boilers, etc., the primary energy converted from the secondary energy is more than 2.5 times the same. In contrast to the primary energy converted from the secondary energy steam, the energy efficiency of the entire plant is greatly improved, and the amount of energy obtained based on a certain amount of by-product hydrogen can be increased.
By using by-product hydrogen as a fuel for power generation, the energy value of hydrogen can be increased.
 PEFCは、常温で起動し、作動温度も低く、かつ、発電効率に優れている観点から、副生水素利用システムのエネルギー効率を効果的に向上させるのに適している。 PEFC is suitable for effectively improving the energy efficiency of the by-product hydrogen utilization system from the viewpoint of starting at room temperature, low operating temperature, and excellent power generation efficiency.
 <2> 前記<1>に記載の本開示に係る副生水素利用システムは、PEFCが発電により発生した、加熱された水が、前記熱供給源に供給される態様が好ましい。 <2> The by-product hydrogen utilization system according to the present disclosure described in <1> is preferably an embodiment in which heated water generated by power generation by PEFC is supplied to the heat supply source.
 PEFCでは、供給された副生水素が反応して発電し、電気エネルギーが得られると同時に、熱エネルギーも発生する。この熱エネルギーを水と熱交換することで、加熱された水(すなわち温水もしくは熱水)として取り出すことができる。温水もしくは熱水として取り出した熱エネルギーを熱供給源に供給し、燃焼の一助となることで全体でのエネルギー効率を高めることができる。 In PEFC, the supplied by-product hydrogen reacts to generate electric power to obtain electric energy, and at the same time, heat energy is generated. By exchanging this thermal energy with water, it can be taken out as heated water (that is, warm water or hot water). The thermal energy taken out as hot water or hot water is supplied to a heat supply source to assist combustion, thereby improving the overall energy efficiency.
 <3> 前記<1>又は前記<2>に記載の本開示に係る副生水素利用システムは、熱供給源が、供給された前記燃料を燃焼し、前記生産設備に加熱された水を供給する態様が好ましい。 <3> The by-product hydrogen utilization system according to the present disclosure according to <1> or <2>, wherein a heat supply source burns the supplied fuel and supplies heated water to the production facility This embodiment is preferable.
 従来、ボイラ等の熱供給源では、生産設備(プラント)で副生した副生水素を燃料として燃焼することで、熱を生産設備へ供給してきたが、本開示に係る副生水素利用システムでは、システム全体のエネルギー効率を高め得る副生水素を熱用燃料とせず、燃料として水素以外の燃料を燃焼させることで、熱供給源による熱の供給を継続しつつ、システム全体のエネルギー効率を改善できる。 Conventionally, in a heat supply source such as a boiler, heat is supplied to the production facility by burning by-product hydrogen produced as a by-product in the production facility (plant) as a fuel. In the by-product hydrogen utilization system according to the present disclosure, By improving the energy efficiency of the entire system by continuing to supply heat from the heat supply source by burning fuel other than hydrogen as fuel, instead of using by-product hydrogen as a fuel for heat, which can improve the energy efficiency of the entire system it can.
 <4> 前記<1>~前記<3>のいずれか1つに記載の本開示に係る副生水素利用システムは、前記生産設備から供給された水素ガスを予め精製する精製装置を更に備え、PEFCが、前記精製装置で精製された水素ガスを反応させて発電する態様であることが好ましい。 <4> The by-product hydrogen utilization system according to the present disclosure according to any one of <1> to <3> further includes a purifier that purifies the hydrogen gas supplied from the production facility in advance. It is preferable that PEFC is an aspect which generates electric power by reacting the hydrogen gas purified by the purification apparatus.
 生産設備で副生される副生水素の純度は様々である一方、PEFCに供給する水素には高い純度が要求されることから、必要に応じて、PEFCに供給される前の副生水素をあらかじめ精製することにより、発電効率を高く維持し、燃料電池の耐久性を維持、改善することができる。 While the purity of by-product hydrogen produced as a by-product at production facilities varies, high purity is required for the hydrogen supplied to PEFC. Therefore, by-product hydrogen before being supplied to PEFC can be used as needed. By purifying in advance, the power generation efficiency can be maintained high, and the durability of the fuel cell can be maintained and improved.
 <5> 前記<1>~前記<4>のいずれか1つに記載の本開示に係る副生水素利用システムは、前記PEFCの前記水素ガスの流通方向下流に、更に、前記PEFC(特にアノード側)から排出された排出ガス(特にアノードオフガス)中の水素ガスを利用する水素利用設備を備えている態様も好ましい。 <5> The by-product hydrogen utilization system according to the present disclosure described in any one of <1> to <4> is further provided in the PEFC (particularly the anode) further downstream of the PEFC in the flow direction of the hydrogen gas. The aspect provided with the hydrogen utilization facility which utilizes the hydrogen gas in the exhaust gas (especially anode off gas) discharged | emitted from the side) is also preferable.
 PEFCを配設して副生水素利用システムを構築する場合、副生水素の一部をPEFCで利用し、PEFCで利用されなかった副生水素を、PEFCの下流に配設された水素利用装置(即ち、化学物質の合成、磁性材料の製造、合成石英の製造などを行う併設プラント)で利用できるように構築されていることが好ましい。生産設備と、生産設備とは別の水素利用装置と、の間にPEFCを配設し、PEFCで必要なもしくは可能な限りの副生水素を利用した後、燃料電池から排出される排出ガス(特にアノード側で排出されるアノードオフガス)中に残存する水素ガスを、下流の水素利用装置に供給して利用することで、エネルギー効率の向上効果を高めることができる。 When constructing a by-product hydrogen utilization system with a PEFC installed, a part of the by-product hydrogen is utilized in the PEFC, and a by-product hydrogen not utilized in the PEFC is disposed downstream of the PEFC. That is, it is preferably constructed so that it can be used in a combined plant that performs chemical substance synthesis, magnetic material production, synthetic quartz production, and the like. Exhaust gas discharged from the fuel cell after a PEFC is installed between the production facility and a hydrogen utilization device that is different from the production facility, and uses as much by-product hydrogen as is necessary or possible in the PEFC ( In particular, the hydrogen gas remaining in the anode off-gas discharged on the anode side) is supplied to the downstream hydrogen utilization device and used, thereby enhancing the energy efficiency improvement effect.
 本開示によれば、副生水素を用いてエネルギーの利用効率が改善された副生水素利用システムが提供される。 According to the present disclosure, a by-product hydrogen utilization system in which energy utilization efficiency is improved by using by-product hydrogen is provided.
本発明の実施形態に係るPEFCシステムの概略構成を示すシステム構成図である。1 is a system configuration diagram showing a schematic configuration of a PEFC system according to an embodiment of the present invention. PEFCを利用した場合と従来のボイラを利用した場合とにおける水素のエネルギー価値を示すグラフである。It is a graph which shows the energy value of hydrogen in the case where PEFC is used and the case where a conventional boiler is used. 本発明のPEFCシステムの変形例の構成を示すシステム構成図である。It is a system block diagram which shows the structure of the modification of the PEFC system of this invention. 本発明のPEFCシステムの他の変形例の構成を示すシステム構成図である。It is a system block diagram which shows the structure of the other modification of the PEFC system of this invention. 従来システムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the conventional system.
 以下、図面を参照して、本開示の副生水素利用システムの実施形態について具体的に説明する。但し、本開示は、以下に示す実施形態に制限されるものではない。 Hereinafter, embodiments of the by-product hydrogen utilization system of the present disclosure will be specifically described with reference to the drawings. However, the present disclosure is not limited to the embodiments described below.
 本発明の副生水素利用システムの一実施形態を図1を参照して説明する。本実施形態では、副生水素利用システムとして、PEFCを備え、生産設備の熱を賄う熱供給源として蒸気ボイラを備え、かつ、蒸気ボイラに供給する燃料として都市ガスを用いたPEFCシステム(生産システム)を一例に詳細に説明する。なお、本実施形態の生産設備は、副生水素が副生される副生水素発生プラントである An embodiment of the by-product hydrogen utilization system of the present invention will be described with reference to FIG. In the present embodiment, a PEFC system (production system) that uses PEFC as a by-product hydrogen utilization system, a steam boiler as a heat supply source that covers the heat of production facilities, and uses city gas as fuel to be supplied to the steam boiler. ) As an example. The production facility of this embodiment is a by-product hydrogen generation plant in which by-product hydrogen is by-produced.
 本実施形態のシステム100は、図1に示すように、副生水素が生成される生産設備である副生水素発生プラント10と、副生水素発生プラントの熱供給源である蒸気ボイラ20と、副生水素で発電する燃料電池の一例である固体高分子型燃料電池(PEFC)30と、を備えている。 As shown in FIG. 1, the system 100 according to the present embodiment includes a by-product hydrogen generation plant 10 that is a production facility for generating by-product hydrogen, a steam boiler 20 that is a heat supply source of the by-product hydrogen generation plant, And a polymer electrolyte fuel cell (PEFC) 30, which is an example of a fuel cell that generates power by-product hydrogen.
 副生水素発生プラント10は、一部の生産プロセスで水素が副次的に生成されてくる設備であれば、制限されるものではなく、水素生成量の多いプラントがエネルギーの改善効率が高まる点で好ましい。 The by-product hydrogen generation plant 10 is not limited as long as hydrogen is generated by a part of the production process. A plant with a large amount of hydrogen generation increases energy improvement efficiency. Is preferable.
 副生水素発生プラントの例としては、エチレン、プロピレン等の化学製品を生産する石油化学プラント、製鉄所、苛性ソーダを電解生成するソーダ電解プラント、等が挙げられる。 Examples of by-product hydrogen generation plants include petrochemical plants that produce chemical products such as ethylene and propylene, steel mills, and soda electrolysis plants that electrolyze caustic soda.
 蒸気ボイラ20は、副生水素発生プラント10内の被加熱部を加熱するのに必要な熱を賄うための燃焼装置(熱供給源)であり、蒸気ボイラ20には、燃焼用燃料として都市ガスを供給するために外部設備と繋がるガス供給管22が接続されている。
 本実施形態では、燃料として、副生水素発生プラント10から排出された副生水素が蒸気ボイラ20に供給されるのではなく、外部設備よりガス供給管22を通じて都市ガスが供給されるようになっている。外部設備より供給された都市ガスが燃焼されることで熱を生成し、生成熱を水との熱交換により水蒸気として取り出し、副生水素発生プラント10及び蒸気ボイラ20間を繋ぐ水蒸気流通管24によって、取り出した水蒸気が副生水素発生プラント10へ送られるようになっている。
The steam boiler 20 is a combustion device (heat supply source) for supplying heat necessary for heating the heated part in the by-product hydrogen generation plant 10, and the steam boiler 20 includes city gas as combustion fuel. Is connected to a gas supply pipe 22 connected to external equipment.
In this embodiment, by-product hydrogen discharged from the by-product hydrogen generation plant 10 is not supplied to the steam boiler 20 as fuel, but city gas is supplied from the external equipment through the gas supply pipe 22. ing. The city gas supplied from the external equipment is combusted to generate heat, the generated heat is taken out as steam by heat exchange with water, and the steam distribution pipe 24 connecting the by-product hydrogen generation plant 10 and the steam boiler 20 is used. The taken out water vapor is sent to the byproduct hydrogen generation plant 10.
 燃料としては、水素ガス以外の、燃焼させ得る燃料から適宜選択することができ、例えば、都市ガス、LPガス、天然ガス、消化ガス、重油、灯油、軽油等の燃料が挙げられる。 Fuel can be appropriately selected from combustible fuels other than hydrogen gas, and examples thereof include city gas, LP gas, natural gas, digestion gas, heavy oil, kerosene, and light oil.
 なお、水蒸気とは、気体の状態になっている水、及びこれが空気中で凝結して細かい水滴となったものを包含する意味である。 In addition, water vapor | steam is the meaning including the water which is in the gaseous state, and the thing which this condensed in the air and became a fine water droplet.
 本実施形態では、熱供給源として蒸気ボイラを備えた態様を示したが、蒸気ボイラのほか、ガスタービン等を用いてもよい。 In the present embodiment, a mode in which a steam boiler is provided as a heat supply source is shown, but a gas turbine or the like may be used in addition to the steam boiler.
 固体高分子型燃料電池(PEFC)30は、副生水素流通管12によって副生水素発生プラント10と連通されている。副生水素発生プラント10で副生した副生水素は、副生水素流通管12を通じて、PEFC30のアノード側に供給される。
 PEFC30は、一般に、高分子電解質膜をアノード極(燃料極)及びカソード極(酸素極)で挟んだセルを更にセパレータで挟んだ構造を有する。供給された副生水素を燃料としてアノード側で水素イオンが生成され(H→2H+2e)、生成された水素イオンは高分子電解質膜中をカソード側へ移動し、カソード側で水素イオンが酸素と反応して水を生成する反応(1/2O+2H+e→HO)が生じ、発電する。
    H+1/2O → HO (全反応)
 発電された電力は、電力系統34を介して副生水素発生プラント10へ供給される。これにより、外部の電力系統からの電力を供給して作動させていた従来の副生水素発生プラントは、PEFC30からの電力供給により、外部の電力系統から供給しなければならない電力量を削減することができる。
The polymer electrolyte fuel cell (PEFC) 30 is communicated with the byproduct hydrogen generation plant 10 by a byproduct hydrogen distribution pipe 12. By-product hydrogen produced as a by-product in the by-product hydrogen generation plant 10 is supplied to the anode side of the PEFC 30 through the by-product hydrogen circulation pipe 12.
The PEFC 30 generally has a structure in which a cell in which a polymer electrolyte membrane is sandwiched between an anode electrode (fuel electrode) and a cathode electrode (oxygen electrode) is further sandwiched between separators. Hydrogen ions are generated on the anode side using the supplied by-product hydrogen as fuel (H 2 → 2H + + 2e ), and the generated hydrogen ions move to the cathode side through the polymer electrolyte membrane, and hydrogen ions are generated on the cathode side. Reacts with oxygen to produce water (1 / 2O 2 + 2H + + e → H 2 O), which generates electricity.
H 2 + 1 / 2O 2 → H 2 O (all reactions)
The generated power is supplied to the by-product hydrogen generation plant 10 via the power system 34. As a result, the conventional by-product hydrogen generation plant that was operated by supplying power from the external power system reduces the amount of power that must be supplied from the external power system by supplying power from the PEFC 30. Can do.
 また、PEFC30では、発電に加えて熱エネルギーが発生する。発生した熱エネルギーは、図示しないが水と熱交換することで生成された温水もしくは熱水として、配管32を通じて蒸気ボイラ20に送られ、蒸気ボイラにて利用されるようになっている。これにより、PEFCからの熱エネルギー分の燃料の削減が期待できる。 Also, PEFC30 generates thermal energy in addition to power generation. The generated thermal energy is sent to the steam boiler 20 through the pipe 32 as hot water or hot water generated by heat exchange with water (not shown), and is used in the steam boiler. As a result, it is possible to expect a reduction in fuel for the heat energy from the PEFC.
 PEFC30は、上記のように、セパレータ/燃料極/高分子電解質膜/酸素極/セパレータの積層構造を有する単セルを備える燃料電池を指し、必要に応じて、更に、水素を改質生成する改質器を備えた燃料電池であってもよい。 The PEFC 30 refers to a fuel cell including a single cell having a laminated structure of separator / fuel electrode / polymer electrolyte membrane / oxygen electrode / separator as described above, and further reforms and generates hydrogen as necessary. It may be a fuel cell equipped with a quality device.
 次に、PEFCを備えた副生水素利用システムの本実施形態(PEFCシステム)において、水素のエネルギー価値を見積もったシミュレーション結果を従来システムと対比して以下に示す。従来システムは、熱供給源として蒸気ボイラを用いた場合を例に挙げて示す。 Next, the simulation results for estimating the energy value of hydrogen in this embodiment (PEFC system) of the by-product hydrogen utilization system equipped with PEFC are shown below in comparison with the conventional system. The conventional system will be described by taking as an example a case where a steam boiler is used as a heat supply source.
 水素のエネルギー価値とは、エネルギーとしての利用価値のことであり、水素ガスをエネルギー源として利用する際に実際に得られるエネルギーの大きさのことを指す。例えば、システムに導入する水素ガス(一次エネルギー)の量aを使用して得られる二次エネルギーが、a(等倍)のままの使用法と、2aとなる使用法とでは、実質的なエネルギー量が異なり、同量の水素(一次エネルギー)でも、後者はエネルギーとしての利用価値が2倍高いといえる。 The energy value of hydrogen refers to the utility value of energy, and refers to the amount of energy actually obtained when using hydrogen gas as an energy source. For example, in the usage in which the secondary energy obtained by using the amount a of hydrogen gas (primary energy) introduced into the system is a (equal magnification) and the usage in which the secondary energy is 2a, substantial energy is obtained. Even with the same amount of hydrogen (primary energy), the latter can be said to be twice as valuable as energy.
(1)PEFC単体
 まず、蒸気ボイラを利用した場合と、PEFCを利用した場合と、における水素の一次エネルギーとしての価値を対比する。
 PEFCの発電効率、及び蒸気ボイラの蒸気回収効率をそれぞれ55%、及び95%と仮定し、蒸気及び電力の一次エネルギー換算値(単位:ギガジュール[GJ])をそれぞれ以下の値と仮定する。一次エネルギー換算値は、いずれも日本ガス協会の公開値(「電気の使用に係るCO排出係数を考える CO削減対策の評価に用いる電気のCO排出係数について <2010年施行温対法対応版> 」一般社団法人日本ガス協会)である。なお、電力の一次エネルギー換算値(9.63GJ/MWh)は、昼間の9.97GJ/MWhと夜間の9.28GJ/MWhの平均値である。
(1) PEFC simple substance First, the value as the primary energy of hydrogen in the case of using a steam boiler and the case of using PEFC are compared.
The power generation efficiency of the PEFC and the steam recovery efficiency of the steam boiler are assumed to be 55% and 95%, respectively, and the primary energy conversion values (unit: gigajoule [GJ]) of the steam and power are assumed to be the following values, respectively. The primary energy conversion values are all published by the Japan Gas Association (“Conside CO 2 emission factors related to the use of electricity. Regarding CO 2 emission factors of electricity used for the evaluation of CO 2 reduction measures” Version> “Japan Gas Association”. The primary energy conversion value (9.63GJ / MWh) of electricity is the average of 9.97GJ / MWh during the day and 9.28GJ / MWh during the night.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 上記表1の条件下、供給する水素ガスの量をエネルギー換算で100ギガジュール(GJ)と仮定した場合、二次エネルギー、及び二次エネルギーから換算した一次エネルギーの値は以下のようになる。
 例えばPEFCを利用した場合、単位当たりの二次エネルギーである電力を得るのに必要な一次エネルギーは2.67GJ/GJのため、下記式から、一次エネルギー換算値は147.0GJとなる。ボイラを利用する場合も同様に算出できる。
   (100GJ×0.55)×2.67GJ/GJ)=147.0GJ
Assuming that the amount of hydrogen gas to be supplied is 100 gigajoules (GJ) in terms of energy under the conditions in Table 1 above, the values of secondary energy and primary energy converted from secondary energy are as follows.
For example, when PEFC is used, the primary energy necessary to obtain electric power that is secondary energy per unit is 2.67 GJ / GJ, and therefore, the primary energy conversion value is 147.0 GJ from the following formula. The same can be calculated when using a boiler.
(100 GJ × 0.55) × 2.67 GJ / GJ) = 147.0 GJ
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた一次エネルギー換算値を、水素のエネルギー価値として図2に示す。
 単体での水素ガスの利用効率は、PEFCを利用する場合に比べて蒸気ボイラを利用する場合の方が高いが、表2及び図2に示されるように、同量の水素から得られる二次エネルギーより換算される一次エネルギーを対比すると、PEFCを利用した場合の一次エネルギーは、蒸気ボイラを利用した場合の一次エネルギーに比べて約1.5倍高いことがわかる。
The obtained primary energy conversion value is shown in FIG. 2 as the energy value of hydrogen.
The use efficiency of hydrogen gas alone is higher when using a steam boiler than when using PEFC, but as shown in Table 2 and FIG. 2, the secondary hydrogen obtained from the same amount of hydrogen is used. Comparing the primary energy converted from energy, it can be seen that the primary energy when using PEFC is about 1.5 times higher than the primary energy when using a steam boiler.
 上記を一般化するため、蒸気ボイラの蒸気回収効率をA%とし、PEFCの発電効率をB%とし、かつ、供給する水素ガスの量をエネルギー換算でX(GJ)とすると、以下のように示すことができる。
 供給燃料として水素ガスのエネルギー量を任意に変化させた場合、下記表3に示す式からエネルギー(一次エネルギー換算値)を算出することができる。この場合の蒸気ボイラによるエネルギーも表3に示す式の通りである。
In order to generalize the above, when the steam recovery efficiency of the steam boiler is A%, the power generation efficiency of the PEFC is B%, and the amount of hydrogen gas to be supplied is X (GJ) in terms of energy, as follows: Can show.
When the energy amount of hydrogen gas as the supplied fuel is arbitrarily changed, energy (primary energy conversion value) can be calculated from the equation shown in Table 3 below. The energy by the steam boiler in this case is also as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2)PEFCシステム
 次に、蒸気ボイラを備えた従来システムと、PEFCを備えた副生水素利用システム(PEFCシステム)と、における水素の一次エネルギーとしての価値を対比する。
(2) PEFC system Next, the value as the primary energy of hydrogen in a conventional system equipped with a steam boiler and a by-product hydrogen utilization system (PEFC system) equipped with a PEFC will be compared.
 上記と同様に、PEFCの発電効率、蒸気ボイラの蒸気回収効率をそれぞれ55%、95%と仮定し、蒸気及び電力の一次エネルギー換算値を表1に示す値と仮定する。そして、表1の条件下、供給する水素ガス及び都市ガスの量をエネルギー換算で100ギガジュール(GJ)と仮定した場合、従来システム、PEFCシステムの各々における一次エネルギー換算値は、以下のようになる。 Similarly to the above, it is assumed that the power generation efficiency of the PEFC and the steam recovery efficiency of the steam boiler are 55% and 95%, respectively, and the primary energy conversion values of steam and electric power are the values shown in Table 1. Then, assuming that the amount of hydrogen gas and city gas to be supplied is 100 gigajoules (GJ) in terms of energy under the conditions of Table 1, the primary energy conversion values in the conventional system and the PEFC system are as follows: Become.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 PEFCシステムでは、水素ガス及び都市ガスの供給で合計200GJを使用した場合、PEFCによる発電電力55GJ分を差し引くと、システム全体として運転に必要なエネルギー量は、一次エネルギー換算値で53GJとなるのに対し、従来システムでは運転に100GJのエネルギーが必要とされる。
 したがって、下記表5に示すように、PEFCシステムでは、従来システムに対して、エネルギー利用効率が約2倍になっており、47%の燃料削減を達成することが可能である。
 また、水素ガス100GJと都市ガス100GJを消費するケースを想定した場合、PEFCシステムは、従来システムに対して一次エネルギー換算量で47GJの削減が図れることになる。
In the PEFC system, when a total of 200 GJ is used for the supply of hydrogen gas and city gas, the amount of energy required for operation of the entire system will be 53 GJ in terms of primary energy, if 55 GJ of power generated by PEFC is subtracted. On the other hand, the conventional system requires 100 GJ of energy for operation.
Therefore, as shown in Table 5 below, in the PEFC system, the energy utilization efficiency is about twice that of the conventional system, and it is possible to achieve a fuel reduction of 47%.
In addition, assuming a case of consuming 100 GJ of hydrogen gas and 100 GJ of city gas, the PEFC system can achieve a reduction of 47 GJ in terms of primary energy conversion with respect to the conventional system.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上のように、副生水素を蒸気ボイラ20に供給して水蒸気を生成して熱エネルギーを得る従来の工業生産システムに比べて、PEFCを備え、副生水素をPEFCに供給して発電し、かつ、蒸気ボイラには水素ガス以外の燃料を用いて電気エネルギーを得る本実施形態の副生水素利用システムでは、水素ガスは約2倍のエネルギー価値を有することになる。結果、消費する燃料の大幅な削減に繋がる。 As described above, compared with the conventional industrial production system in which by-product hydrogen is supplied to the steam boiler 20 to generate steam to obtain thermal energy, the PEFC is provided, and the by-product hydrogen is supplied to the PEFC to generate electricity. In addition, in the by-product hydrogen utilization system of the present embodiment in which electric energy is obtained by using a fuel other than hydrogen gas for the steam boiler, the hydrogen gas has an energy value that is about twice as high. As a result, it leads to a significant reduction in fuel consumption.
 上記を一般化するため、蒸気ボイラの蒸気回収効率をA%とし、PEFCの発電効率をB%とし、かつ、供給する水素ガスの量をエネルギー換算でX(GJ)とすると、以下のように示すことができる。 In order to generalize the above, when the steam recovery efficiency of the steam boiler is A%, the power generation efficiency of the PEFC is B%, and the amount of hydrogen gas to be supplied is X (GJ) in terms of energy, as follows: Can show.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記した通り、PEFCシステムでは、水素ガス及び都市ガスが合計で2X[GJ]供給された場合、PEFCより得られる発電電力「2.67×X×B/100」GJ分を差し引くと、システム全体として必要なエネルギー量は、一次エネルギー換算値で2X-(2.67×X×B/100)GJとなる。従来システムでは、X[GJ]のエネルギーが必要となる。
 導入される燃料として水素ガス、都市ガスのエネルギー量を任意に変化させた場合、上記表6に示す式に基づいてシステム全体のエネルギー(一次エネルギー換算値)を算出することができる。この場合の従来システムと対比したエネルギー効率は、下記表7に示す式から求められる。
As described above, in the PEFC system, when hydrogen gas and city gas are supplied in total 2X [GJ], the total system power is obtained by subtracting the generated power “2.67 × X × B / 100” GJ obtained from PEFC. The required amount of energy is 2X− (2.67 × X × B / 100) GJ in terms of primary energy. In the conventional system, X [GJ] energy is required.
When the energy amounts of hydrogen gas and city gas are arbitrarily changed as the fuel to be introduced, the energy of the entire system (primary energy conversion value) can be calculated based on the equation shown in Table 6 above. The energy efficiency compared with the conventional system in this case can be obtained from the equation shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上のように、本実施形態では、副生水素発生プラントで副生された副生水素を燃料電池に供給し、熱供給源である蒸気ボイラには都市ガスを供給することで、プラント全体でのエネルギー効率が飛躍的に改善されることが明らかである。 As described above, in this embodiment, by-product hydrogen produced as a by-product in the by-product hydrogen generation plant is supplied to the fuel cell, and city gas is supplied to the steam boiler, which is a heat supply source, so that the entire plant is It is clear that the energy efficiency of the system is dramatically improved.
(変形例)
 次に、上記した実施形態の変形例を示す。変形例を図3に示す。なお、図3に示す変形例では、上記の実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。
(Modification)
Next, a modification of the above-described embodiment will be shown. A modification is shown in FIG. In the modification shown in FIG. 3, the same reference numerals are given to the same components as those in the above embodiment, and the detailed description thereof will be omitted.
 変形例は、図3に示すPEFCシステム200のように、副生水素発生プラント10とPEFC30とを連通する副生水素流通管12に、副生水素を精製するための精製装置40が取り付けられている。供給された副生水素の純度が低い場合、精製装置40で不純物が取り除かれ、純度を高めた後の副生水素がPEFC30に供給される。
 これにより、PEFC30での発電効率が維持、向上するとともに、PEFC30自体の耐用年数を維持、向上させることができる。
In the modified example, as in the PEFC system 200 shown in FIG. 3, a purification device 40 for purifying by-product hydrogen is attached to the by-product hydrogen distribution pipe 12 that connects the by-product hydrogen generation plant 10 and the PEFC 30. Yes. When the purity of the supplied by-product hydrogen is low, impurities are removed by the purifier 40, and the by-product hydrogen after the purity is increased is supplied to the PEFC 30.
Thereby, while the power generation efficiency in PEFC30 is maintained and improved, the useful life of PEFC30 itself can be maintained and improved.
 副生水素中の不純物としては、メタンガス等の炭化水素ガス、一酸化炭素、二酸化炭素、硫化水素、二酸化硫黄等が挙げられる。 Examples of impurities in the by-product hydrogen include hydrocarbon gases such as methane gas, carbon monoxide, carbon dioxide, hydrogen sulfide, and sulfur dioxide.
 精製装置40は、水素ガス中に混入している不純物を除去することができる装置を適宜選択すればよい。精製装置40の具体例としては、圧力変動吸着法(PSA法)を利用して加圧、減圧を繰り返す際のガス成分の着脱によりガス分離を行うPSA(Pressure Swing Adsorption)装置;二酸化炭素を選択的に分離する二酸化炭素分離膜;硫黄を吸着する活性炭又は合金粒子等の脱硫剤;などを挙げることができる。 The purification apparatus 40 may be appropriately selected from an apparatus that can remove impurities mixed in hydrogen gas. As a specific example of the refining device 40, a PSA (Pressure Swing Adsorption) device that performs gas separation by attaching and detaching gas components during repeated pressurization and depressurization using the pressure fluctuation adsorption method (PSA method); carbon dioxide is selected Carbon dioxide separation membranes that can be separated automatically; desulfurization agents such as activated carbon or alloy particles that adsorb sulfur; and the like.
 また、主要プラントで副生した水素ガスを回収し、その一部を他の生産プラントで流用する複合プラントに、燃料電池を併設してシステムを構築する場合、燃料電池の配設位置は、エネルギーの利用効率に影響を与えやすい。具体的な例として、苛性ソーダを電解生成するソーダ電解プラントが挙げられる。ソーダ電解プラントでは、苛性ソーダの生産に合わせて電解槽より塩素及び水素が生成されるため、一般に他の生産プラントとして、生成された水素と塩素とから塩化水素を生成するプラント、生成した水素を用いてジアミノトルエン、アニリン等の化学物質を合成するプラント、生成した水素を用いて磁性材料の製造、合成石英の製造等を行うプラント、生成した塩化水素を用いて塩化鉄、塩酸、クロロスルホン酸等の化学物質を合成するプラントなどが配置されている。
 このような複合プラントでは、通常、最後に残った余剰の水素を有効利用するために、水素ガスの流通経路の最終段階に燃料電池を設置し、余剰の水素ガスを有効に利用することが考えられている。ところが、水素ガスの有効利用を図るには、電解槽で塩素及び水素が生成される初期プロセスで水素が燃料電池へ供給されるように、燃料電池を設置されていることが好ましい。
In addition, when a system is built by combining a fuel cell with a combined plant that collects by-product hydrogen gas as a by-product at a main plant and diverts a part of it to another production plant, the location of the fuel cell is It is easy to affect the use efficiency of. A specific example is a soda electrolysis plant that generates caustic soda by electrolysis. In a soda electrolysis plant, chlorine and hydrogen are generated from the electrolytic cell in accordance with the production of caustic soda. Generally, as other production plants, a plant that generates hydrogen chloride from the generated hydrogen and chlorine, and the generated hydrogen are used. Plants that synthesize chemical substances such as diaminotoluene and aniline, plants that produce magnetic materials using produced hydrogen, synthetic quartz, etc., iron chloride, hydrochloric acid, chlorosulfonic acid, etc. that use produced hydrogen chloride A plant that synthesizes chemical substances is installed.
In such a complex plant, in order to effectively use the surplus hydrogen remaining at the end, it is considered to install a fuel cell at the final stage of the hydrogen gas distribution path and effectively use the surplus hydrogen gas. It has been. However, in order to effectively use hydrogen gas, it is preferable that the fuel cell is installed so that hydrogen is supplied to the fuel cell in an initial process in which chlorine and hydrogen are generated in the electrolytic cell.
 かかる観点より、以下に説明する変形例に構成されてもよい。
 例えば図4に示すPEFCシステム300のように、燃料電池の配設位置は、副生水素発生プラント10と、他の水素利用設備である水素利用プラント50と、の間であることが望ましい。つまり、副生水素発生プラント10から排出された副生水素が供給されるPEFC30の、副生水素の流通方向下流に、他の水素利用プラントである水素利用プラント50が配置され、副生水素をまずPEFC30で消費し、PEFC30で消費されなかった水素が下流の他の生産プラントで消費されるシステムに構築されていることが好ましい。燃料電池の水素利用率は、一般的に100%を下回るため、副生水素の多くを上記の実施形態のように燃料電池で使用してシステム全体のエネルギー効率を高めることができ、かつ、消費されない水素で下流システムでの水素利用も可能になる。
 これにより、副生水素の利用効率、ひいてはシステム全体のエネルギーの利用効率が飛躍的に改善される。
From this point of view, it may be configured as a modification described below.
For example, like the PEFC system 300 shown in FIG. 4, the fuel cell is preferably disposed between the by-product hydrogen generation plant 10 and the hydrogen utilization plant 50 that is another hydrogen utilization facility. That is, a hydrogen utilization plant 50, which is another hydrogen utilization plant, is arranged downstream of the PEFC 30 to which the byproduct hydrogen discharged from the byproduct hydrogen generation plant 10 is supplied in the flow direction of the byproduct hydrogen. It is preferable that the system is constructed such that hydrogen consumed at the PEFC 30 and not consumed at the PEFC 30 is consumed at another downstream production plant. Since the hydrogen utilization rate of the fuel cell is generally less than 100%, much of the by-product hydrogen can be used in the fuel cell as in the above embodiment to increase the energy efficiency of the entire system, and the consumption Hydrogen that is not used can also be used in downstream systems.
As a result, the utilization efficiency of by-product hydrogen, and consequently the utilization efficiency of the energy of the entire system, is dramatically improved.
 2015年11月20日に出願された日本国特許出願2015-227993の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2015-227993 filed on Nov. 20, 2015 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
 本開示の副生水素利用システムは、エチレン、プロピレン等の化学製品を生産する石油化学プラント、製鉄所、ソーダ電解プラント等の、副次的に水素ガスが生成されるプロセスを有する工業プラントにおいて好適である。 The by-product hydrogen utilization system of the present disclosure is suitable for industrial plants having a process in which hydrogen gas is generated secondarily, such as petrochemical plants that produce chemical products such as ethylene and propylene, steelworks, and soda electrolysis plants. It is.

Claims (5)

  1.  水素ガスが副次的に生成される生産設備と、
     水素ガス以外の燃料が供給され、前記生産設備に熱を供給する熱供給源と、
     前記生産設備で生成された前記水素ガスが供給されて発電し、前記生産設備に電力を供給する固体高分子型燃料電池と、
     を備えた副生水素利用システム。
    Production facilities where hydrogen gas is produced as a secondary,
    A heat supply source for supplying fuel other than hydrogen gas and supplying heat to the production facility;
    A solid polymer fuel cell that is supplied with the hydrogen gas generated in the production facility to generate power, and that supplies power to the production facility;
    By-product hydrogen utilization system equipped with.
  2.  前記固体高分子型燃料電池は、前記発電により発生した、加熱された水を、前記熱供給源に供給する請求項1に記載の副生水素利用システム。 The by-product hydrogen utilization system according to claim 1, wherein the polymer electrolyte fuel cell supplies heated water generated by the power generation to the heat supply source.
  3.  前記熱供給源は、供給された前記燃料を燃焼し、前記生産設備に水蒸気又は加熱された水を供給する請求項1又は請求項2に記載の副生水素利用システム。 The by-product hydrogen utilization system according to claim 1 or 2, wherein the heat supply source burns the supplied fuel and supplies steam or heated water to the production facility.
  4.  前記生産設備から供給された水素ガスを予め精製する精製装置を更に備え、
     前記固体高分子型燃料電池は、前記精製装置で精製された水素ガスを反応させて発電する請求項1~請求項3のいずれか1項に記載の副生水素利用システム。
    Further comprising a purifier for purifying the hydrogen gas supplied from the production facility in advance;
    The by-product hydrogen utilization system according to any one of claims 1 to 3, wherein the polymer electrolyte fuel cell generates power by reacting hydrogen gas purified by the purification device.
  5.  前記水素ガスの流通方向における前記固体高分子型燃料電池の下流に、更に、前記固体高分子型燃料電池から排出された排出ガス中の水素ガスを利用する水素利用設備を備えた請求項1~請求項4のいずれか1項に記載の副生水素利用システム。 The hydrogen utilization facility for utilizing the hydrogen gas in the exhaust gas discharged from the polymer electrolyte fuel cell is further provided downstream of the polymer electrolyte fuel cell in the flow direction of the hydrogen gas. The by-product hydrogen utilization system of any one of Claim 4.
PCT/JP2016/081019 2015-11-20 2016-10-19 Byproduct hydrogen utilization system WO2017086082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227993 2015-11-20
JP2015227993A JP2017098039A (en) 2015-11-20 2015-11-20 By-product hydrogen utilization system

Publications (1)

Publication Number Publication Date
WO2017086082A1 true WO2017086082A1 (en) 2017-05-26

Family

ID=58718736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081019 WO2017086082A1 (en) 2015-11-20 2016-10-19 Byproduct hydrogen utilization system

Country Status (2)

Country Link
JP (1) JP2017098039A (en)
WO (1) WO2017086082A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307111A (en) * 1998-04-15 1999-11-05 Ishikawajima Harima Heavy Ind Co Ltd Air feeding device for fuel cell
JP2003272646A (en) * 2002-03-13 2003-09-26 Hitachi Ltd Energy-saving system of sodium hypochlorite manufacturing equipment
JP2003288935A (en) * 2002-01-24 2003-10-10 Ebara Corp Fuel cell power generating system receiving supply of hydrogen gas from hypochlorite producing device
JP2007335623A (en) * 2006-06-15 2007-12-27 Dainippon Screen Mfg Co Ltd Substrate processing system
US20130288143A1 (en) * 2012-04-27 2013-10-31 Xfc Inc Fuel cell using seawater electrolyzer, methods for producing caustic soda, ammonia, urea and pvc using the seawater electrolyzer and integrated system thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511151A (en) * 1978-07-11 1980-01-25 Tokuyama Soda Co Ltd Production of caustic soda
JPS6169993A (en) * 1984-09-14 1986-04-10 Toshiba Corp Electrolytic manufacturing equipment of caustic soda utilizing by-product hydrogen
JPH0613093A (en) * 1992-06-29 1994-01-21 Hitachi Ltd Heat and electric power combined supply system and building provided with this supplying system
JPH08308587A (en) * 1995-03-13 1996-11-26 Osaka Gas Co Ltd Hydrogen supply system and cogeneration system
JP4215539B2 (en) * 2003-03-04 2009-01-28 出光興産株式会社 Desulfurizer and desulfurization method
JP2010216705A (en) * 2009-03-16 2010-09-30 Mitsubishi Plastics Inc Method of cooling product in electrolysis plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307111A (en) * 1998-04-15 1999-11-05 Ishikawajima Harima Heavy Ind Co Ltd Air feeding device for fuel cell
JP2003288935A (en) * 2002-01-24 2003-10-10 Ebara Corp Fuel cell power generating system receiving supply of hydrogen gas from hypochlorite producing device
JP2003272646A (en) * 2002-03-13 2003-09-26 Hitachi Ltd Energy-saving system of sodium hypochlorite manufacturing equipment
JP2007335623A (en) * 2006-06-15 2007-12-27 Dainippon Screen Mfg Co Ltd Substrate processing system
US20130288143A1 (en) * 2012-04-27 2013-10-31 Xfc Inc Fuel cell using seawater electrolyzer, methods for producing caustic soda, ammonia, urea and pvc using the seawater electrolyzer and integrated system thereof

Also Published As

Publication number Publication date
JP2017098039A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6707368B2 (en) By-product hydrogen utilization system
KR102243776B1 (en) Methanation method and power plant comprising co₂ methanation of power plant flue gas
JP6397502B2 (en) Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method
Brecher et al. The Westinghouse sulfur cycle for the thermochemical decomposition of water
CA2902934C (en) Integrated power generation and carbon capture using fuel cells
US20060127718A1 (en) Fuel cell, operating method thereof, sintering furnace, and power generator
US20080314741A1 (en) Electrolysis apparatus
WO2005078159A1 (en) Method and apparatus for producing hydrogen
EP3419929B1 (en) Carbon monoxide production process optimized by soec
JP6603607B2 (en) Methanol synthesis system
JPH03184270A (en) Method for converting fuel into current and device thereof
Wu et al. Design and energy evaluation of a stand‐alone copper‐chlorine (Cu‐Cl) thermochemical cycle system for trigeneration of electricity, hydrogen, and oxygen
Saadabadi et al. A solid oxide fuel cell fuelled by methane recovered from groundwater
JP2005232524A (en) Hydrogen production system using solid oxide electrolyte
KR20140057103A (en) Intergrated gasification combined cycle coupled fuel cells system and gas supplying method thereto
WO2017086082A1 (en) Byproduct hydrogen utilization system
JP2005232521A (en) Method and device for producing hydrogen
AU2019300085A1 (en) Expander for SOEC applications
US20230227316A1 (en) Circular carbon process
JP2016184550A (en) Gas manufacturing apparatus
KR102600084B1 (en) System and process for reforming natural gas
CN111029628B (en) Methane reforming power generation and purification system based on reversible fuel cell
US20240091736A1 (en) Sequestration system
Shimizu et al. Development of compact hydrogen generator for on-site hydrogen station
JP2016184549A (en) Gas production device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866084

Country of ref document: EP

Kind code of ref document: A1