JPS58211511A - Composite power generating plant using gasifyed coal - Google Patents

Composite power generating plant using gasifyed coal

Info

Publication number
JPS58211511A
JPS58211511A JP9320382A JP9320382A JPS58211511A JP S58211511 A JPS58211511 A JP S58211511A JP 9320382 A JP9320382 A JP 9320382A JP 9320382 A JP9320382 A JP 9320382A JP S58211511 A JPS58211511 A JP S58211511A
Authority
JP
Japan
Prior art keywords
coal
oxygen
gasification furnace
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9320382A
Other languages
Japanese (ja)
Inventor
Narihisa Sugita
杉田 成久
Satoshi Tsukahara
聰 塚原
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9320382A priority Critical patent/JPS58211511A/en
Publication of JPS58211511A publication Critical patent/JPS58211511A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PURPOSE:To improve a load responsing characteristic by a method wherein an electrolytic device for water is arranged in a plant for driving a gas turbine with fuel gas produced by a coal gasification furnace etc. and the oxygen and hydrogen generated in the electrolytic device are fed to the gasification furnace and the gas turbine. CONSTITUTION:In a composite power generating plant, a feeding coal 17 produced by grinding or breaking coal by a coal pre-processing device 1 and oxygen 19 produced from air 18 by an oxygen producing device are fed to a coal gasification furnace 3, coal gas produced at the coal gasification furnace is made to a purified gas 21 through a gasification furnace heat recovery device 4 and a fuel gas purification device 5 and then the gas 21 is fed to the combustion unit of the gas turbine 6. In this case, a water electrolytic device 23 is newly added, the water pressurized by a water feeding pump 26 is electrolyzed to produce a high pressure oxygen and hydrogen. The oxygen and hydrogen are stored in each of storage tanks 24 and 25 and properly supplied in response to the requirement of the gasification furnace 3 and the combustion unit of the gas turbine.

Description

【発明の詳細な説明】 本発明は酸素管用いてガス化を行なう石炭ガス化複合発
電プラントに係り、特に、シカ負荷の要求釦対して好適
な負荷応答を行なうプラント関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal gasification combined cycle power plant that performs gasification using oxygen pipes, and particularly to a plant that provides a suitable load response to a deer load request button.

酸素−化の石炭ガス化炉による石炭ガス化煩合発電プラ
ントの代表的な従来の溝成例を第1図に示すうこの例け
EPRI AP−1429、” ’l’exaco −
Based QasificatioW −Combi
ned−Cyde8ystem performanc
e  5tudies” (June 。
A typical conventional example of a coal gasification power generation plant using an oxygenated coal gasification furnace is shown in Fig. 1.
Based QasificatioW-Combi
ned-Cyde8system performance
e 5tudies” (June.

1980)より引用したもので、酸素酸化の噴流床炉に
より、現状のガスタービンを用いて石炭ガス化 。
1980), coal gasification using a current gas turbine in an oxygen oxidation entrained bed furnace.

複合発電を行なうもので、石炭前処理装置t1、酸素製
造装置2、石炭ガス化炉3、ガス化炉熱回収ボイラ4、
燃料ガス精製装置f5、ガスタービン6、排熱回収ボイ
ラ7、蒸気タービン13、復水器14、給水ポンプ15
より構成される。、マた、ガスタービン排熱回収ボイラ
7は、エコノマイザ8、エバポレータ9、ドラム10、
スーパーヒータ11、リヒータ12より構成される。
It performs combined power generation, and includes a coal pretreatment device t1, an oxygen production device 2, a coal gasifier 3, a gasifier heat recovery boiler 4,
Fuel gas purification device f5, gas turbine 6, exhaust heat recovery boiler 7, steam turbine 13, condenser 14, water supply pump 15
It consists of , the gas turbine exhaust heat recovery boiler 7 includes an economizer 8, an evaporator 9, a drum 10,
It is composed of a super heater 11 and a reheater 12.

石炭前処理装置ffで石炭は粉砕等の前処理を施こされ
、石炭ガス化炉3への供給炭17となる。
The coal is subjected to pretreatment such as pulverization in the coal pretreatment device ff, and becomes feed coal 17 to the coal gasifier 3.

醸素製造装a2では空気18を低温分離し、酸素19を
1UiiL、酸化剤として石炭ガス化炉13へ供給する
。石炭ガス化炉で発生した粗製ガス20け高温であるた
め、ガス化炉熱回収ボイラ4で蒸気プラントの給水と熱
交換を行ない低温となり燃料ガス精製装置5に入る。燃
料ガス精製装置で脱硫処理が行なわれた精製ガス21は
、ガスタービン燃料としてガスタービン6に供給される
。ガスタービン6で#5mを行なった後の排ガスは排熱
回収ボイラ7に入り、蒸気を発生させ蒸気タービン13
を駆動する。蒸気タービンの復水器14を出た給水は給
水ポンプ15により加圧され、ガス精製装置5で加熱さ
れた後に2つに分かれ、一方はガス化炉熱回収ボイラ4
に入り加熱蒸発され他方は排熱回収ボイラ7へ導かれる
。排熱回収ボイラt7へ入った給水はエコノマイザ8で
加熱され、ドラムIOK入妙、エバポレータ9で蒸発が
行なわ11れる。ガス化炉熱回収ボイラ4からの蒸気と
排熱回収ボイラドラム10からの蒸気は混合し、スーパ
ーヒータ11で過熱され、高圧蒸気タービンに入る。高
圧タービンよ妙のコールドリヒートはリヒータ12で再
熱され中位圧熱気タービンを駆動するう 従来のこのような構成でけ、プラント全体の負荷応答性
は、ガスタービン、電気タービンと比較し、部分負荷特
性、負荷応答性の悪い、石炭前処理装置、酸素製造装置
、石炭ガス化炉、燃料ガス精製装置系に支配されてしま
う欠点があり、特に、酸素製造装置は部分負荷特性が悪
く、起動時間も長い欠点があった。
In the brewer production equipment a2, air 18 is separated at a low temperature, and 1 UiiL of oxygen 19 is supplied to the coal gasifier 13 as an oxidizing agent. Since the crude gas generated in the coal gasification furnace has a high temperature of 20 degrees, it exchanges heat with the steam plant water supply in the gasification furnace heat recovery boiler 4 to become low temperature and enters the fuel gas purification device 5. Purified gas 21 that has been desulfurized in the fuel gas purification device is supplied to the gas turbine 6 as gas turbine fuel. The exhaust gas after being subjected to #5m in the gas turbine 6 enters the exhaust heat recovery boiler 7, generates steam, and is sent to the steam turbine 13.
to drive. The feed water leaving the condenser 14 of the steam turbine is pressurized by the feed water pump 15, heated by the gas purifier 5, and then divided into two parts, one of which is sent to the gasifier heat recovery boiler 4.
The other part is led to the exhaust heat recovery boiler 7. The water supplied to the exhaust heat recovery boiler t7 is heated by an economizer 8, heated by a drum, and evaporated by an evaporator 9. The steam from the gasifier heat recovery boiler 4 and the steam from the exhaust heat recovery boiler drum 10 are mixed, superheated by the super heater 11, and enter the high pressure steam turbine. Cold reheating of the high pressure turbine is reheated by the reheater 12 to drive the medium pressure hot air turbine. It has the disadvantage of poor load characteristics and load response, and is dominated by coal pretreatment equipment, oxygen production equipment, coal gasifier, and fuel gas purification equipment systems. In particular, oxygen production equipment has poor partial load characteristics and is difficult to start up. The downside was that it took a long time.

本発明の目的は、電力負荷の要求に対して良好な運用を
可能とする酸素酸化石炭ガス化a合発鑞フラントを提供
するにある。
An object of the present invention is to provide an oxygen-oxidized coal gasification a-combined brazing flant that can be operated satisfactorily in response to power load demands.

水の亀気分解けつぎのような過4iで行なわれる。It is carried out in a similar way to the decomposition of water.

2H”キ2e=)(。2H”ki2e=)(.

20H−=H,04−−0.+2e 全体として、2フアラデイの電気微で、Hl O” H
t↓−〇。
20H-=H, 04--0. +2e Overall, 2 hours of electricity, Hl O” H
t↓−〇.

となる。すなわち、理論的にけ、1000A−hr″F
″水素448 t、酸素224t(latm、20°C
)が得られるっ水のfIl論分解電王け1.226V(
25°C)でこれを用いて、l kwhに対する理論収
着を計算すると水素365t、酸素tg3z(tatm
  20°C)となる。実際には、 理論分w414L圧 エネルギ効率二区流効率×□ 浴電圧 で、浴電圧1.9〜2.6vでエネルギ効率57〜78
チで、約700 atatで分解電圧は変化しないとさ
れている。(石野、田村、水口“電解工業“日刊工業、
835.2) ここでエネルギ幼木を70係と仮定し、水素および酸量
のlkw当りの発生型を率を計算すると、水素 5.9
5X10−6  kg/s/kw酸素 4.737X1
0=  kg/s/kwとなる。
becomes. That is, theoretically, 1000A-hr″F
``448 tons of hydrogen, 224 tons of oxygen (latm, 20°C
) is obtained, the water-retaining fIl theoretical decomposition voltage is 1.226V (
Using this at 25°C), the theoretical sorption for l kwh is calculated, hydrogen 365t, oxygen tg3z (tatm
20°C). In reality, the theoretical component w414L pressure energy efficiency two-section flow efficiency x □ Bath voltage, the energy efficiency is 57-78 at a bath voltage of 1.9-2.6V.
It is said that the decomposition voltage does not change at about 700 atat. (Ishino, Tamura, Mizuguchi “Electrolysis Industry” Nikkan Kogyo,
835.2) Here, assuming that the energy seedling is 70% and calculating the generation rate per lkw of hydrogen and acid amount, hydrogen 5.9
5X10-6 kg/s/kw oxygen 4.737X1
0=kg/s/kw.

一方、第1図で1吏用されている酸素製造装置でけ、ガ
ス化炉に必要な酸素89.46kg/SK対し電力13
3.12MWを要し、6.72X10−’kg/s/k
wとなろう単に酸素製造の観点より判断すると酸素製造
装置により酸素を製造した方が効率が良い。
On the other hand, in the oxygen production equipment used in Figure 1, the electricity required for the gasifier is 89.46 kg/SK, and the electric power is 13.
Requires 3.12MW and 6.72X10-'kg/s/k
Judging solely from the viewpoint of oxygen production, it is more efficient to produce oxygen using an oxygen production device.

しかし、水の圧力により分解電圧が変化しない事に着目
すれば、高圧水の電解により高圧の水素および酸素を得
る事が可能で、貯蔵に有利であるうまた、水素は低位発
熱t1309.58kcat/kgをもった燃料として
使用する事が可能であり、この点も注目に1直する。
However, if we focus on the fact that the decomposition voltage does not change depending on the pressure of water, it is possible to obtain high-pressure hydrogen and oxygen by electrolyzing high-pressure water, which is advantageous for storage. It is possible to use it as fuel with a kilogram of fuel, and this point should also be noted.

石炭ガス化複合発電プラントで、夜間等の眼力負荷要求
のない場合も、石炭ガス化腹合発醒ブランi可能最低負
荷KPMち、余剰電力によって水の電解を行ない、高圧
の水素、酸素を頓遺し、貯蔵しておけば、眼力の負荷要
求に対し、従来の石炭ガス化膿合@畦プラントが対応不
可能な場合でも 石炭ガス化複合発電プラントは対応可
能となろう 以下、本発明の一実施例を第2図により説明するうsg
2図の実施例では第1図の代表的な従来の構成例に、給
水加圧ポンプ26、水電解装置423、酸素貯蔵タンク
24、水素貯蔵タンク25、酸素供給制御弁27.28
、水素供給制御弁29゜30、発熱量測定装置31を加
えである。
In a coal gasification combined cycle power generation plant, even when there is no visual load requirement such as at night, the minimum possible load KPM is used to electrolyze water using surplus electricity and generate high-pressure hydrogen and oxygen. If the coal gasification combined cycle plant is left behind and stored, even if the conventional coal gasification plant is unable to meet the demand for visual power, the coal gasification combined cycle power plant will be able to meet the demand. An example is explained in Fig. 2.
In the embodiment shown in FIG. 2, the typical conventional configuration example shown in FIG.
, a hydrogen supply control valve 29°30, and a calorific value measuring device 31 are also added.

水は給水加圧ポンプ26によって昇圧されて、水電解装
置23に供給されプラントは停止を行なわず夜間等の余
剰電力によって加圧水を電気分解する。電解により発生
した高圧の酸素は酸素供給制御弁27を経由して酸素貯
蔵タンク24に貯えられろうまた、高圧の水素は水素供
給制御弁29を経由して水素貯蔵タンク25に貯えられ
るう電力負荷要求が生じると、水電解装置23への給電
を停止し、制御弁27.28.29.30を閉じる。電
力の変動要求が生じ、酸素鯛造プラントが負荷応答に応
じられない場合には、酸素供給+)t制御弁を制御し、
酸素貯蔵タンク24よりガス化炉3へ酸素を供給する。
Water is pressurized by the water supply pressurizing pump 26 and supplied to the water electrolyzer 23, and the pressurized water is electrolyzed using surplus power at night without stopping the plant. High pressure oxygen generated by electrolysis will be stored in the oxygen storage tank 24 via the oxygen supply control valve 27, and high pressure hydrogen will be stored in the hydrogen storage tank 25 via the hydrogen supply control valve 29. When a request occurs, the power supply to the water electrolysis device 23 is stopped and the control valves 27, 28, 29, 30 are closed. When a fluctuating demand for power occurs and the oxygen taizou plant cannot meet the load response, the oxygen supply +)t control valve is controlled;
Oxygen is supplied from the oxygen storage tank 24 to the gasifier 3.

また、負荷応答時、部分負荷時等でガスタービン燃料ガ
スの発熱量が大巾に低下する。’+I合には、発熱量測
定装置131の1B号により水素供給制御弁30を14
1IJ # L水素を供給し、ガスタービン燃料ガスの
発熱量を一定とする。
Furthermore, the calorific value of the gas turbine fuel gas decreases significantly during load response, partial load, and the like. '+I, the hydrogen supply control valve 30 is set to 14 by No. 1B of the calorific value measuring device 131.
1IJ #L hydrogen is supplied to keep the calorific value of the gas turbine fuel gas constant.

本発明によればガスタービン燃料ガスの発熱量の低下を
抑える事が可能でガスタービン燃焼器における燃焼を安
定圧する効果がある、 本発明の他の実施例を第3図により説明する。
According to the present invention, it is possible to suppress a decrease in the calorific value of the gas turbine fuel gas, and another embodiment of the present invention, which has the effect of stabilizing the combustion pressure in the gas turbine combustor, will be described with reference to FIG.

第3図の実施例では第1図の代表的な従来の構成例に給
水加圧ポンプ26、水電解装置1t23、酸素貯蔵タン
ク24、水素貯蔵タンク25、酸素供給制御弁27.2
B、水素供給制御弁29,30、酸素、蒸気混合器32
、水冷壁燃焼器33.燃焼器蒸発ドラム34、高温蒸気
タービン35を加えたものである。
In the embodiment shown in FIG. 3, the typical conventional configuration example shown in FIG.
B, hydrogen supply control valves 29, 30, oxygen, steam mixer 32
, water-cooled wall combustor 33. This includes a combustor evaporator drum 34 and a high temperature steam turbine 35.

夜間等で余剰隠力が生じた際には、余剰電力圧よって給
水加圧ポンプ26で水成解装@23VC加圧供給された
水を電気分解する。、嵯解によユ艷生した高圧の酸素は
酸素供給制御弁27を経由して酸素貯蔵タンク24に貯
えられる。また、高圧の水素は水素供給制御弁29を経
由して水素貯蔵タンク25に貯えられる。
When surplus hidden power occurs at night, etc., water supplied under pressure to the water decomposition unit @23VC is electrolyzed by the water supply pressure pump 26 using surplus power pressure. The high-pressure oxygen produced by the pump is stored in the oxygen storage tank 24 via the oxygen supply control valve 27. Further, high-pressure hydrogen is stored in the hydrogen storage tank 25 via the hydrogen supply control valve 29.

電力負荷要求が生じると水酸解装h123への給電を停
止し、制御弁27.28,29.30を閉じる。
When a power load request occurs, the power supply to the hydroxyl decomposition unit h123 is stopped, and the control valves 27.28 and 29.30 are closed.

電力負荷要求が大きくなり、ガスタービン6および蒸気
タービン13の@WLlllでけ応じられない場合、負
荷上昇率の要求が大きく、ガスタービン6および蒸気タ
ービン13では対応できない場合には、酸素供給制御弁
28および水素供給制御弁30を徐々に開き、水冷管燃
IJ!8器33で燃焼を行なう。・一方、蒸気タービン
の給水ポンプ15で昇圧された給水は、高温蒸気タービ
ン35を冷却した後に1燃焼器蒸発ドラム34に入り、
水冷壁燃焼器を冷却する。燃焼器蒸発ドラムで発生した
蒸気は、酸素、蒸気混合器32で、酸素と混合し、水冷
壁燃焼器331C導かれ水素を燃焼させる。燃焼によっ
て発生した高温の水蒸気は高温蒸気タービン35に入り
仕事を行ない、復水器14にもどされる。なお、図中1
6は石炭の流れ、22けガスタービン排気の流れである
When the power load demand becomes large and cannot be met by @WLllll of the gas turbine 6 and steam turbine 13, when the demand for load increase rate is large and cannot be met by the gas turbine 6 and steam turbine 13, the oxygen supply control valve 28 and the hydrogen supply control valve 30 are gradually opened, and the water-cooled pipe is ignited! Combustion is carried out in eight vessels 33. - On the other hand, the feed water pressurized by the steam turbine feed water pump 15 cools the high temperature steam turbine 35 and then enters the 1 combustor evaporation drum 34,
Cools the water-cooled wall combustor. The steam generated in the combustor evaporator drum is mixed with oxygen in the oxygen/steam mixer 32, and is led to the water-cooled wall combustor 331C to burn hydrogen. High-temperature steam generated by combustion enters the high-temperature steam turbine 35 to perform work, and is returned to the condenser 14. In addition, 1 in the figure
6 is a coal flow, and 22 is a gas turbine exhaust flow.

本発明によれば、ガスタービンおよび蒸気タービンの発
電能力を予想される最大要求負荷より低く計画し、要求
負荷が発電能力を越える場合には、高温蒸気タービンの
運転により要求負荷に対応できる効果がある。
According to the present invention, when the power generation capacity of the gas turbine and the steam turbine is planned to be lower than the expected maximum required load, and the required load exceeds the power generation capacity, the high temperature steam turbine can be operated to meet the required load. be.

本発明によれば、酸素酸化石炭ガス化複合発電プラント
において、夜間等電力要求がない場合の余剰電力の貯蔵
が可能で、1力要求に応じその貯蔵エネルギを使用でき
るので、″成力要求に対して良好な運用を行なえる効果
がある。
According to the present invention, in an oxygen oxidation coal gasification combined cycle power generation plant, it is possible to store surplus power when there is no power demand such as at night, and the stored energy can be used in response to power demand. This has the effect of allowing better operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸素酸化石炭ガス化炉による・石炭ガス
化複合発゛亀プラントの系統図、第2.3図は本発明に
よる実施例の石炭ガス化複合発電プラントの系統図であ
る。
Fig. 1 is a system diagram of a coal gasification combined cycle plant using a conventional oxygen oxidation coal gasifier, and Figs. 2 and 3 are system diagrams of a coal gasification combined cycle power plant according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、酸素酸化石炭ガス化炉による複合発電プラントにお
いて、水の電気分解装置、酸素貯蔵タンク、水素貯蔵タ
ンクを設けたことを特徴とする石炭ガス化+J合発醒プ
ラント。
1. A combined coal gasification + J arousal plant characterized by being equipped with a water electrolyzer, an oxygen storage tank, and a hydrogen storage tank in a combined power generation plant using an oxygen-oxidized coal gasification furnace.
JP9320382A 1982-06-02 1982-06-02 Composite power generating plant using gasifyed coal Pending JPS58211511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9320382A JPS58211511A (en) 1982-06-02 1982-06-02 Composite power generating plant using gasifyed coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9320382A JPS58211511A (en) 1982-06-02 1982-06-02 Composite power generating plant using gasifyed coal

Publications (1)

Publication Number Publication Date
JPS58211511A true JPS58211511A (en) 1983-12-09

Family

ID=14076006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9320382A Pending JPS58211511A (en) 1982-06-02 1982-06-02 Composite power generating plant using gasifyed coal

Country Status (1)

Country Link
JP (1) JPS58211511A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH668290A5 (en) * 1987-09-02 1988-12-15 Sulzer Ag Combined gas turbine steam plant - has overheating device for saturated steam coupled to steam generator
US5251432A (en) * 1991-07-17 1993-10-12 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant
US5285627A (en) * 1991-07-17 1994-02-15 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and a plant for performing the method
JP2008163873A (en) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd Solid fuel gasified gas using plant
JP2014148576A (en) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd Integrated gasification combined cycle system and operation method thereof
CN107664046A (en) * 2017-09-22 2018-02-06 中国华能集团公司 A kind of energy-saving activation system in IGCC power stations
JP2018204601A (en) * 2017-05-30 2018-12-27 一般財団法人電力中央研究所 Power generation system producing fuel and raw material
WO2019151461A1 (en) * 2018-02-05 2019-08-08 三菱瓦斯化学株式会社 Biomass gasification power generation system and power generation method
CN113090349A (en) * 2021-03-29 2021-07-09 西安交通大学 Photo-thermal type coal supercritical water gasification hydrogen-heat-power cogeneration system and working method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH668290A5 (en) * 1987-09-02 1988-12-15 Sulzer Ag Combined gas turbine steam plant - has overheating device for saturated steam coupled to steam generator
US5251432A (en) * 1991-07-17 1993-10-12 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant
US5285627A (en) * 1991-07-17 1994-02-15 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and a plant for performing the method
US5345755A (en) * 1991-07-17 1994-09-13 Siemens Aktiengesellschaft Steam turbine plant
US5369949A (en) * 1991-07-17 1994-12-06 Siemens Aktiengensellschaft Method for operating a gas and steam turbine plant and a plant for performing the method
JP2008163873A (en) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd Solid fuel gasified gas using plant
JP2014148576A (en) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd Integrated gasification combined cycle system and operation method thereof
JP2018204601A (en) * 2017-05-30 2018-12-27 一般財団法人電力中央研究所 Power generation system producing fuel and raw material
CN107664046A (en) * 2017-09-22 2018-02-06 中国华能集团公司 A kind of energy-saving activation system in IGCC power stations
CN107664046B (en) * 2017-09-22 2023-05-30 中国华能集团公司 Energy-saving starting system of IGCC power station
WO2019151461A1 (en) * 2018-02-05 2019-08-08 三菱瓦斯化学株式会社 Biomass gasification power generation system and power generation method
CN113090349A (en) * 2021-03-29 2021-07-09 西安交通大学 Photo-thermal type coal supercritical water gasification hydrogen-heat-power cogeneration system and working method
CN113090349B (en) * 2021-03-29 2022-03-22 西安交通大学 Photo-thermal type coal supercritical water gasification hydrogen-heat-power cogeneration system and working method

Similar Documents

Publication Publication Date Title
JP3571071B2 (en) How to operate a combined generator
JP7207523B2 (en) hydrocarbon combustion system
JPH0472044B2 (en)
TW432741B (en) Fuel cell system and method for generating electrical energy by means of a fuel cell system
US20200291823A1 (en) Cost effective plasma combined heat and power system
JPS58211511A (en) Composite power generating plant using gasifyed coal
EP0831205A2 (en) Power generation system capable of separating and recovering carbon dioxide
JPH094418A (en) Hydrogen combustion power storage device
Abou Houran et al. Process development for a novel polygeneration purpose based on tars produced by a biomass gasification unit; feasibility study from the thermodynamic, economic, and environmental viewpoints
KR101450343B1 (en) Hybrid sulfur decomposition method for hydrogen generation process with dual pressure multi stage electrolysis
JPH06223851A (en) Fuel cell and gas turbine combined generation system
CN107792329A (en) Power and water joint supply method
US8733109B2 (en) Combined fuel and air staged power generation system
JPH1172028A (en) Electric power leveling power generation method
JPH11200884A (en) Gas turbine equipment and liquefied natural gas combined cycle power generation plant including this gas turbine equipment
JP3085798B2 (en) Pressurized high temperature steam electrolysis method
JPS6332111A (en) Power generating plant provided with hydrogen and oxygen producing facility
JPH04244035A (en) Production of methanol using nuclear heat
JPH0358154B2 (en)
JPH06146815A (en) Gas turbine composite power generator
JP2007138900A (en) Electric power generation system combined with hydrogen production facility, electric power generating method
JPS5848705A (en) Coal gasification power plant
JPS58155210A (en) Electricity generation equipment with storage of energy
RU2759794C1 (en) Energy-technology complex for heat and electric energy generation and method for operation of the complex
JPH11336562A (en) Hydrogen engine system