JP2007138900A - Electric power generation system combined with hydrogen production facility, electric power generating method - Google Patents

Electric power generation system combined with hydrogen production facility, electric power generating method Download PDF

Info

Publication number
JP2007138900A
JP2007138900A JP2005337449A JP2005337449A JP2007138900A JP 2007138900 A JP2007138900 A JP 2007138900A JP 2005337449 A JP2005337449 A JP 2005337449A JP 2005337449 A JP2005337449 A JP 2005337449A JP 2007138900 A JP2007138900 A JP 2007138900A
Authority
JP
Japan
Prior art keywords
power generation
hydrogen
amount
gas
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005337449A
Other languages
Japanese (ja)
Inventor
Haruhito Kubota
晴仁 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005337449A priority Critical patent/JP2007138900A/en
Publication of JP2007138900A publication Critical patent/JP2007138900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric power generation system combined with hydrogen production facility in which hydrogen production can be performed at low cost while increasing availability of the the whole system by sharing the use of gasification facility between the facilities of an electric power generation facility for generating electric power using gasification gas as fuel and hydrogen production facility for performing hydrogen production by separating hydrogen from the gasified gas. <P>SOLUTION: An electric power generation system includes a gasifying furnace 10 for gasifying raw materials such as coal, oil, biomass, a water supply apparatus 50 for supplying water to the raw materials or gasified gas, a heat exchanger 20 for cooling the gasified gas, a hydrogen separation apparatus 30 for separating hydrogen from the cooled gas, and an electric power generation facility 40 for generating electric power using a gas from which hydrogen has been separated as fuel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

石炭や石油、バイオマス等の原料をガス化したガスを燃料として発電すると共に、ガス化したガスから水素製造を行うことが可能な発電システム及び発電方法に関する。   The present invention relates to a power generation system and a power generation method capable of generating power using gas obtained by gasifying raw materials such as coal, petroleum, and biomass and producing hydrogen from the gasified gas.

従来より、火力発電システムとして、石炭等の原料をガス化し得られたガス化ガスを燃料として発電する発電システムが知られている。また、近年では、水素を燃料とする燃料電池も注目されており、水素の製造方法としては、水を電気分解する方法や、各種燃料ガスを改質して水素を製造する方法が知られている。   2. Description of the Related Art Conventionally, as a thermal power generation system, a power generation system that generates power using gasified gas obtained by gasifying a raw material such as coal as fuel is known. In recent years, fuel cells using hydrogen as a fuel have attracted attention, and methods for producing hydrogen include methods for electrolyzing water and methods for producing hydrogen by reforming various fuel gases. Yes.

以上のような発電システムや水素製造に関して、例えば、特許文献1には、水の電気分解により水素を製造する際に発生する酸素を、ガス化複合発電システムのガス化剤として利用すると共に、発電した電気エネルギーを水素製造に利用するようにしたガス化複合発電システムが開示されている。また、特許文献2には、熱分解して生成したガスから水素を分離し、この水素を燃料として発電すると共に、水素を分離した後のガスを熱分解のための加熱用燃料として用いるようにした熱分解ガス化システムが開示されている。
特開平10−17301号公報 特開2000−313892号公報
Regarding the power generation system and hydrogen production as described above, for example, in Patent Document 1, oxygen generated when hydrogen is produced by electrolysis of water is used as a gasifying agent for a gasification combined power generation system, and power generation is performed. A gasification combined power generation system is disclosed in which the electrical energy is used for hydrogen production. Further, in Patent Document 2, hydrogen is separated from a gas generated by thermal decomposition, and this hydrogen is used as a fuel to generate power, and the gas after separation of hydrogen is used as a heating fuel for thermal decomposition. An improved pyrolysis gasification system is disclosed.
Japanese Patent Laid-Open No. 10-17301 JP 2000-313892 A

ところで、水素製造設備の建設コストおよびランニングコストが高いため、水素も高コストになってしまうという問題がある。特に、改質ガスから純度の高い水素を製造するには、水素分離・精製に多大なコストを要することになってしまう。   By the way, since the construction cost and running cost of a hydrogen production facility are high, there also exists a problem that hydrogen also becomes high cost. In particular, to produce high-purity hydrogen from the reformed gas, a great deal of cost is required for hydrogen separation and purification.

一方、発電事業においては、発電需要のピークに対応できる設備容量を確保している。すなわち、電力設備容量は常に電力需要を上回っており、発電設備が有効活用できていない遊休容量が常に存在するという問題がある。また、一般に、部分負荷での運転は、定格運転時に比べて効率が低下するという問題もある。特に、夜間等発電需要の小さい時間帯には遊休容量は大きく、この遊休容量を有効に利用して、システムの利用率を向上させることが課題となっている。   On the other hand, in the power generation business, the facility capacity that can cope with the peak of power generation demand is secured. That is, there is a problem that the power equipment capacity always exceeds the power demand, and there is always an idle capacity where the power generation equipment cannot be effectively utilized. In general, the operation at a partial load has a problem that the efficiency is lower than that at the rated operation. In particular, the idle capacity is large during periods of low power generation demand such as at night, and it is an issue to improve the system utilization rate by effectively using the idle capacity.

しかしながら、特許文献1に記載されたシステムは、電気分解の際の副生品である酸素を有効利用することを目的とするものであって、水素製造設備の建設に多大なコストがかかるとの問題を解決するものではなく、また、水素を回収するための水素分離・精製に多大なコストを要するとの問題も解決できていない。さらに、発電設備の遊休容量を有効に活用することは何ら考慮されていない。   However, the system described in Patent Document 1 is intended to effectively use oxygen, which is a by-product of electrolysis, and it is said that it takes a great deal of cost to construct a hydrogen production facility. It does not solve the problem, and the problem that a great deal of cost is required for hydrogen separation and purification for recovering hydrogen has not been solved. Furthermore, no consideration is given to effectively utilizing the idle capacity of the power generation equipment.

また、特許文献2に記載されたシステムでも、時間帯による負荷変動によって設備の遊休容量が変動することは想定されておらず、設備の遊休容量の有効活用は何ら考慮されていない。   Further, even in the system described in Patent Document 2, it is not assumed that the idle capacity of the facility fluctuates due to load fluctuations according to time zones, and no effective utilization of the idle capacity of the facility is taken into consideration.

本発明は、上記の点に鑑みてなされたものであり、ガス化ガスを燃料として発電する発電設備と、ガス化ガスから水素を分離することにより水素製造を行う水素製造設備の両設備においてガス化設備を共用化することにより、システム全体の稼動効率を向上させつつ、水素の製造を低コストで行えるようにすることを目的とする。   The present invention has been made in view of the above points, and gas is used in both power generation equipment that generates power using gasified gas as fuel and hydrogen production equipment that produces hydrogen by separating hydrogen from the gasified gas. The purpose is to enable hydrogen production at low cost while improving the operating efficiency of the entire system by sharing the composting equipment.

上記の目的を達成するため、本発明に係る発電システムは、石炭や石油、バイオマス等の原料をガス化する手段と、前記原料または前記ガス化したガスに水を供給する水供給手段と、前記ガス化したガスを冷却する手段と、前記生成したガスから水素を分離する手段と、前記水素を分離した後のガスを燃料として発電する発電設備と、前記発電設備に対する発電指示量に応じて、前記水供給手段による水供給量を調整する水分量調整手段と、を備えることを特徴とする。   In order to achieve the above object, a power generation system according to the present invention includes means for gasifying raw materials such as coal, petroleum, and biomass, water supply means for supplying water to the raw materials or the gasified gas, According to a means for cooling the gasified gas, a means for separating hydrogen from the generated gas, a power generation facility that generates power using the gas after separating the hydrogen as fuel, and a power generation instruction amount for the power generation facility, And a moisture amount adjusting means for adjusting the amount of water supplied by the water supplying means.

本発明によれば、ガス化手段によりガス化したガスから水素分離すると共に、水素分離後のガスを燃料として発電するので、ガス化設備を水素製造設備と発電設備とで共用できることになる。したがって、システム全体の発電容量から発電需要を差し引いた遊休容量分を水素生産に回すことで、システム全体の利用率を上げつつ、低コストで水素製造を行うことができる。また、生産した水素のうち純水素として回収できないものは、ガス化ガスに残存したままで発電用燃料として有効利用できる。したがって、水素分離・精製工程において水素回収率を無理に高める必要はないため、水素分離手段の低コスト化も図ることができる。   According to the present invention, hydrogen is separated from the gas gasified by the gasification means and the hydrogen-separated gas is generated as fuel, so that the gasification facility can be shared by the hydrogen production facility and the power generation facility. Therefore, hydrogen production can be performed at low cost while increasing the utilization rate of the entire system by using the idle capacity obtained by subtracting the power generation demand from the power generation capacity of the entire system for hydrogen production. Further, hydrogen that cannot be recovered as pure hydrogen among the produced hydrogen can be effectively used as a fuel for power generation while remaining in the gasification gas. Therefore, it is not necessary to forcibly increase the hydrogen recovery rate in the hydrogen separation / purification step, and thus the cost of the hydrogen separation means can be reduced.

また、本発明において、前記発電設備に対する発電指示量に応じて、前記水供給手段による水供給量を調整する水量調整手段を備えることとしてもよい。このようにすれば、電力需要の小さいときは、水供給量を増加させることにより、水素発生量を増加させ、その分、水素製造量を増加させると共に、発電設備に供給される燃焼ガスの量の減少により発電出力を減少させることができる。また、電力需要が大きいときは、水供給量を減少させることにより、水素発生量を減少させ、その分、水素製造量を増加させると共に、発電設備に供給される燃焼ガスの量の増加により発電出力を増加させることができる。すなわち、電力需要(すなわち、発電設備に対する発電指示量)に応じて水供給量を調整することにより、発電設備の発電出力を調整し、その変動分を水素製造量の変化で吸収することができる。   Moreover, in this invention, it is good also as providing the water quantity adjustment means which adjusts the water supply amount by the said water supply means according to the electric power generation instruction | indication quantity with respect to the said power generation equipment. In this way, when the power demand is small, the amount of hydrogen generated is increased by increasing the amount of water supplied, and the amount of hydrogen produced is increased accordingly, and the amount of combustion gas supplied to the power generation facility It is possible to reduce the power generation output due to the decrease in. In addition, when power demand is large, the amount of hydrogen generation is reduced by reducing the water supply amount, and the amount of hydrogen produced is increased correspondingly, and the amount of combustion gas supplied to the power generation facilities is increased. The output can be increased. That is, by adjusting the water supply amount according to the power demand (that is, the power generation instruction amount for the power generation facility), the power generation output of the power generation facility can be adjusted, and the fluctuation can be absorbed by the change in the hydrogen production amount. .

また、水を供給するかわりに、水蒸気を供給することとしてもよい。   Moreover, it is good also as supplying water vapor | steam instead of supplying water.

また、前記発電設備に対する発電指示量に応じて、前記水素分離手段による水素分離量を調整する水素量調整手段を備えることとしてもよい。このようにすれば、電力需要の小さいときは、水素分離量を増加させることにより、水素製造量を増加させると共に、発電設備に供給される燃焼ガスの量の減少により発電出力を減少させることができる。また、電力需要が大きいときは、水素分離量を減少させることにより、水素製造量を減少させると共に、発電設備に供給される燃焼ガスの量の増加により発電出力を増加させることができる。すなわち、電力需要(すなわち、発電設備に対する発電指示量)に応じて水素分離量を調整することにより、発電設備の発電出力を調整し、その変動分を水素製造量の変化で吸収することができる。   Moreover, it is good also as providing the hydrogen amount adjustment means which adjusts the hydrogen separation amount by the said hydrogen separation means according to the electric power generation instruction | indication quantity with respect to the said power generation equipment. In this way, when the power demand is small, the amount of hydrogen separation can be increased to increase the amount of hydrogen produced, and the power generation output can be decreased by reducing the amount of combustion gas supplied to the power generation equipment. it can. Further, when the power demand is large, it is possible to reduce the amount of hydrogen produced by reducing the amount of hydrogen separation and to increase the power generation output by increasing the amount of combustion gas supplied to the power generation equipment. That is, by adjusting the hydrogen separation amount according to the power demand (that is, the power generation instruction amount for the power generation facility), the power generation output of the power generation facility can be adjusted, and the fluctuation can be absorbed by the change in the hydrogen production amount. .

本発明によれば、ガス化ガスを燃料として発電する発電設備と、ガス化ガスから水素を分離することにより水素製造を行う水素製造設備の両設備においてガス化設備を共用化することにより、システム全体の利用率を向上させつつ、水素の製造を低コストで行うことが可能となる。   According to the present invention, the gasification facility is shared by both the power generation facility that generates power using the gasification gas as fuel and the hydrogen production facility that performs hydrogen production by separating hydrogen from the gasification gas. It becomes possible to produce hydrogen at a low cost while improving the overall utilization rate.

図1は、本発明の一実施形態である水素製造設備併用発電システム(以下、単に発電システムという)1の全体構成図である。同図に示すように、本実施形態の発電システム1は、ガス化炉10、熱交換器20、水素分離装置30、発電設備40、水供給装置50、水素貯蔵庫60、及びコントローラ70を備えている。   FIG. 1 is an overall configuration diagram of a hydrogen production facility combined power generation system (hereinafter simply referred to as a power generation system) 1 according to an embodiment of the present invention. As shown in the figure, the power generation system 1 of the present embodiment includes a gasification furnace 10, a heat exchanger 20, a hydrogen separator 30, a power generation facility 40, a water supply device 50, a hydrogen storage 60, and a controller 70. Yes.

ガス化炉10には石炭または石油、バイオマス等の原料が投入され、これらの原料は、ガス化炉10内で熱分解されることにより揮発成分とチャー(C)となり、揮発成分と一部のチャーは燃焼する。これらの反応は下記の反応式1〜2に示す通りである。
石炭→揮発成分+チャー(C) (反応式1)
揮発成分→CO+HO (反応式2)
The gasification furnace 10 is fed with raw materials such as coal, petroleum, biomass, etc., and these raw materials are pyrolyzed in the gasification furnace 10 to become volatile components and char (C). Char burns. These reactions are as shown in the following reaction formulas 1-2.
Coal → Volatile component + Char (C) (Reaction formula 1)
Volatile component → CO 2 + H 2 O (Reaction Formula 2)

また、燃焼せずに残ったチャー(C)は、揮発成分等の燃焼により生じた燃焼熱等を使って、ガス化炉10内のガスと下記の反応式3〜5に示すような反応してガス化し、CO、CH、H等が生成される。
チャー(C)+CO→2CO (反応式3)
チャー(C)+2H→CH (反応式4)
チャー(C)+HO→H+CO (反応式5)
Further, the char (C) remaining without being burned reacts with the gas in the gasification furnace 10 using the combustion heat generated by the combustion of volatile components or the like as shown in the following reaction formulas 3 to 5. Gasification to produce CO, CH 4 , H 2 and the like.
Char (C) + CO 2 → 2CO (Reaction Formula 3)
Char (C) + 2H 2 → CH 4 (Scheme 4)
Char (C) + H 2 O → H 2 + CO (Scheme 5)

また、ガス化炉10へは水供給装置50から水が供給される。供給された水は、ガス化炉10内のガス化ガスやチャー(C)と下記の反応式5〜7に示すような反応をし、これにより水素が生成される。
チャー(C)+HO→CO+H (反応式6)
CH+HO→CO+3H (反応式7)
CO+HO→CO+H (反応式8)
Further, water is supplied from the water supply device 50 to the gasification furnace 10. The supplied water reacts with the gasification gas and char (C) in the gasification furnace 10 as shown in the following reaction formulas 5 to 7, thereby generating hydrogen.
Char (C) + H 2 O → CO + H 2 (Scheme 6)
CH 4 + H 2 O → CO + 3H 2 (Scheme 7)
CO + H 2 O → CO 2 + H 2 (Scheme 8)

水供給装置50による水供給量は、コントローラ70により制御される。上記反応式6〜8から分かるように、水素の生成量は、ガス化炉10に供給される水の量に応じた量となる。したがって、コントローラ70により水の供給量を制御することにより、生成される水素の量を調整することができる。なお、ガス化炉10における反応を促進するために、ガス化炉10に触媒を装着してもよい。   The amount of water supplied by the water supply device 50 is controlled by the controller 70. As can be seen from the reaction formulas 6 to 8, the amount of hydrogen generated is an amount corresponding to the amount of water supplied to the gasifier 10. Therefore, the amount of generated hydrogen can be adjusted by controlling the amount of water supplied by the controller 70. Note that a catalyst may be attached to the gasification furnace 10 in order to promote the reaction in the gasification furnace 10.

ガス化炉10で生成されたCO、CH、Hなどの熱分解ガスは、冷却手段としての熱交換器20に供給され、この熱交換器20にて冷却される。なお、上記した水供給装置50による水の供給は、ガス化炉10から熱交換器20へのガス供給路にて行ってもよい。 Pyrolysis gas such as CO, CH 4 and H 2 generated in the gasification furnace 10 is supplied to the heat exchanger 20 as a cooling means and cooled by the heat exchanger 20. In addition, you may perform the supply of the water by the above-mentioned water supply apparatus 50 in the gas supply path from the gasification furnace 10 to the heat exchanger 20. FIG.

熱交換器20で冷却された熱分解ガスは水素分離装置30に送られ、そこで水素が分離される。水素分離装置30により分離される水素の量はコントローラ70により制御される。なお、水素分離後の熱分解ガスに水素が残存していても、その水素はCOやCH等と共に発電設備40の燃料として有効に利用できるので、水素分離装置30における水素の分離効率は必ずしも高くなくてもよく、したがって、水素分離装置30のコストを抑えることが可能である。 The pyrolysis gas cooled by the heat exchanger 20 is sent to the hydrogen separator 30 where hydrogen is separated. The amount of hydrogen separated by the hydrogen separator 30 is controlled by the controller 70. Even if hydrogen remains in the pyrolysis gas after hydrogen separation, the hydrogen can be effectively used as fuel for the power generation facility 40 together with CO, CH 4 and the like. Therefore, the cost of the hydrogen separator 30 can be reduced.

水素分離装置30で分離された水素は圧縮または液化されて、水素貯槽60に貯蔵される。また、水素の一部は水素冷却発電機の冷媒として使用することもできる。一方、水素が分離された後の熱分解ガスは、発電設備40に送られ、そこで発電用燃料として燃焼される。発電設備40は、複合発電(コンバインド・サイクル)、ガスタービン発電(オープン・サイクル)、汽力発電のいずれでも良い。発電設備40により発電された電力は、送電設備44を経由して系統に送電される。   The hydrogen separated by the hydrogen separator 30 is compressed or liquefied and stored in the hydrogen storage tank 60. A part of hydrogen can also be used as a refrigerant for a hydrogen-cooled generator. On the other hand, the pyrolysis gas from which hydrogen has been separated is sent to the power generation facility 40 where it is burned as fuel for power generation. The power generation facility 40 may be any of combined power generation (combined cycle), gas turbine power generation (open cycle), and steam power generation. The electric power generated by the power generation facility 40 is transmitted to the system via the power transmission facility 44.

コントローラ70は、発電設備40に対する発電指示量が与えられ、この発電指示量に基づいて、上記のように、水供給装置50による水供給量あるいは水素分離装置30による水素分離量を制御する。   The controller 70 is given a power generation instruction amount for the power generation facility 40, and controls the water supply amount by the water supply device 50 or the hydrogen separation amount by the hydrogen separation device 30 as described above based on this power generation instruction amount.

すなわち、水供給装置50による水供給量が多いほど、生成される水素の量が増加し、その分、水素以外の燃焼ガスの量が減少して、発電設備40による発電量も減少する。したがって、例えば、水素分離装置30による水素分離量を一定量とした場合の、水供給量と発電量との関係(図2)を予め把握してコントローラ70に記憶させておき、コントローラ70はこの関係に従って、発電指示量に応じた発電量が得られるように水供給量を制御する。   That is, as the amount of water supplied by the water supply device 50 increases, the amount of generated hydrogen increases, the amount of combustion gas other than hydrogen decreases, and the amount of power generated by the power generation facility 40 also decreases. Therefore, for example, the relationship between the water supply amount and the power generation amount (FIG. 2) when the hydrogen separation amount by the hydrogen separation device 30 is a constant amount is grasped in advance and stored in the controller 70. According to the relationship, the water supply amount is controlled so that a power generation amount corresponding to the power generation instruction amount is obtained.

また、水素分離装置30による水素分離量が多いほど、発電設備40に供給される燃焼ガスの量が減少して発電設備40による発電量も減少する。したがって、例えば、水供給装置50による水供給量が一定量とした場合の、水素分離量と発電量との関係(図3)を予め把握して、コントローラ70に記憶させておき、コントローラ70はこの関係に従って、発電指示量に応じた発電量が得られるように水素分離量を制御する。   Further, as the amount of hydrogen separated by the hydrogen separator 30 increases, the amount of combustion gas supplied to the power generation facility 40 decreases and the amount of power generated by the power generation facility 40 also decreases. Therefore, for example, when the water supply amount by the water supply device 50 is a constant amount, the relationship (FIG. 3) between the hydrogen separation amount and the power generation amount is grasped in advance and stored in the controller 70. In accordance with this relationship, the hydrogen separation amount is controlled so that a power generation amount corresponding to the power generation instruction amount is obtained.

このように、コントローラ70が水供給装置50による水供給量または水素分離装置30による水素分離量を制御することにより、発電指示量に応じて発電量を調整することができる。したがって、ガス化炉10への原料投入量を一定にして、発電システム1を安定に動作させながら、水素を製造することができ、電力需要の変動分は水素製造量の変化で吸収することができる。これにより、システム全体の稼動率を向上できると共に、低コストで水素製造を行うことが可能となる。   As described above, the controller 70 controls the water supply amount by the water supply device 50 or the hydrogen separation amount by the hydrogen separation device 30, whereby the power generation amount can be adjusted according to the power generation instruction amount. Accordingly, hydrogen can be produced while the power generation system 1 is stably operated with the raw material input amount to the gasifier 10 kept constant, and fluctuations in power demand can be absorbed by changes in the hydrogen production amount. it can. As a result, the operating rate of the entire system can be improved, and hydrogen can be produced at low cost.

以下、水供給量に基づいて発電量を調整する場合について、発電システム1の運転例を説明する。   Hereinafter, an operation example of the power generation system 1 will be described in the case where the power generation amount is adjusted based on the water supply amount.

(1)運転例1
昼間時間帯等の電力需要が増加しているときは、水供給装置50からガス化炉10へ供給する水量をコントローラ70からの指令により減少させる。そうすると、ガス化炉内で生成される熱分解ガスのうち水素の量が減少し、その分だけ水素以外の熱分解ガスの量が増加する。発電設備40では、燃料として供給される、水素分離後の熱分解ガスの量が増加することにより発電量も増加する。これにより、昼間時間帯等の電力需要が増加しているときは、水素製造量を減らして、電力需要に見合った電力を発電することができる。
(1) Operation example 1
When the power demand during the daytime period is increasing, the amount of water supplied from the water supply device 50 to the gasifier 10 is decreased by a command from the controller 70. As a result, the amount of hydrogen in the pyrolysis gas produced in the gasifier decreases, and the amount of pyrolysis gas other than hydrogen increases accordingly. In the power generation facility 40, the amount of power generation increases as the amount of pyrolysis gas supplied as fuel after hydrogen separation increases. Thereby, when the electric power demand in daytime hours etc. is increasing, the amount of hydrogen production can be reduced and the electric power corresponding to the electric power demand can be generated.

(2)運転例2
夜間時間帯等の電力需要が減少しているときは、水供給装置50からガス化炉10へ供給する水量をコントローラ70からの指令により増加させる。そうすると、ガス化炉内で生成される熱分解ガスのうち水素の量が増加し、水素以外の熱分解ガスの量が減少する。発電設備40では、燃料として供給される、水素分離後の熱分解ガスの量が減少することにより発電量も減少する。これにより、夜間時間帯等の電力需要が減少しているときは、水素製造を増加することができる。すなわち、電力需要の減少分を水素製造に回すことができるので、多大な設備投資をせずに低コストで水素を製造することが可能となる。
(2) Operation example 2
When the power demand during the night time period is decreasing, the amount of water supplied from the water supply device 50 to the gasifier 10 is increased by a command from the controller 70. If it does so, the quantity of hydrogen will increase in the pyrolysis gas produced | generated within a gasification furnace, and the quantity of pyrolysis gases other than hydrogen will reduce. In the power generation facility 40, the amount of power generation also decreases due to a decrease in the amount of pyrolysis gas supplied as fuel after hydrogen separation. Thereby, when the electric power demand, such as a night time zone, is decreasing, hydrogen production can be increased. That is, since the decrease in electric power demand can be used for hydrogen production, it is possible to produce hydrogen at a low cost without making a large capital investment.

本発明の一実施形態である水素製造併用石炭ガス化ガス発電設備の全体構成図である。1 is an overall configuration diagram of a coal gasification gas power generation facility combined with hydrogen production that is an embodiment of the present invention. 水素分離装置による水素分離量を一定量とした場合の、水供給量と発電量との関係を示す図である。It is a figure which shows the relationship between the amount of water supply, and the electric power generation amount when the amount of hydrogen separation by a hydrogen separator is made into a fixed amount. 水供給装置による水供給量が一定量とした場合の、水素分離量と発電量との関係を示す図である。It is a figure which shows the relationship between the amount of hydrogen separation, and the electric power generation amount when the water supply amount by a water supply apparatus is made into a fixed amount.

符号の説明Explanation of symbols

1 水素製造設備併用発電システム
10 ガス化炉
20 熱交換器
30 水素分離装置
40 発電設備
44 送電設備
50 水供給装置
60 水素貯槽
70 コントローラ
DESCRIPTION OF SYMBOLS 1 Hydrogen production facility combined use power generation system 10 Gasification furnace 20 Heat exchanger 30 Hydrogen separator 40 Power generation facility 44 Power transmission facility 50 Water supply device 60 Hydrogen storage tank 70 Controller

Claims (6)

石炭や石油、バイオマス等の原料をガス化するガス化手段と、
前記原料または前記ガス化したガスに水を供給する水供給手段と、
前記ガス化したガスを冷却する冷却手段と、
前記冷却したガスから水素を分離する水素分離手段と、
前記水素を分離した後のガスを燃料として発電する発電設備と、を備えることを特徴とする水素製造設備併用発電システム。
Gasification means for gasifying raw materials such as coal, oil, and biomass;
Water supply means for supplying water to the raw material or the gasified gas;
Cooling means for cooling the gasified gas;
Hydrogen separation means for separating hydrogen from the cooled gas;
And a power generation facility that generates power using the gas after separating the hydrogen as a fuel.
請求項1記載の水素製造設備併用発電システムにおいて
前記発電設備に対する発電指示量に応じて、前記水供給手段による水供給量を調整する水量調整手段を備えることを特徴とする水素製造設備併用発電システム。
The hydrogen production facility combined use power generation system according to claim 1, further comprising water amount adjusting means for adjusting a water supply amount by the water supply means according to a power generation instruction amount for the power generation facility. .
請求項1又は2記載の水素製造設備併用発電システムにおいて
前記発電設備に対する発電指示量に応じて、前記水素分離手段による水素分離量を調整する水素量調整手段を備えることを特徴とする水素製造設備併用発電システム。
The hydrogen production facility combined use power generation system according to claim 1 or 2, further comprising a hydrogen amount adjusting means for adjusting a hydrogen separation amount by the hydrogen separation means according to a power generation instruction amount for the power generation facility. Combined power generation system.
石炭や石油、バイオマス等の原料をガス化するステップと、
前記原料または前記ガス化したガスに水を供給する水供給ステップと、
前記ガス化したガスを冷却するステップと、
前記生成したガスから水素を分離するステップと、
前記水素を分離した後のガスを燃料として発電するステップと、を備えることを特徴とする発電方法。
Gasifying raw materials such as coal, oil and biomass;
A water supply step for supplying water to the raw material or the gasified gas;
Cooling the gasified gas;
Separating hydrogen from the generated gas;
And a step of generating electricity using the gas after separating the hydrogen as a fuel.
請求項4記載の発電方法において、
前記発電設備に対する指示発電量に応じて、前記水供給ステップにおける水供給量を調整する調整ステップを備えることを特徴とする発電方法。
The power generation method according to claim 4, wherein
A power generation method comprising: an adjustment step of adjusting a water supply amount in the water supply step in accordance with an instruction power generation amount for the power generation facility.
請求項4又は5記載の発電方法において、
前記発電設備に対する指示発電量に応じて、前記水素分離ステップによる水素回収量を調整する調整ステップを備えることを特徴とする発電方法。

The power generation method according to claim 4 or 5,
A power generation method comprising: an adjustment step of adjusting a hydrogen recovery amount in the hydrogen separation step according to an instruction power generation amount for the power generation facility.

JP2005337449A 2005-11-22 2005-11-22 Electric power generation system combined with hydrogen production facility, electric power generating method Pending JP2007138900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337449A JP2007138900A (en) 2005-11-22 2005-11-22 Electric power generation system combined with hydrogen production facility, electric power generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337449A JP2007138900A (en) 2005-11-22 2005-11-22 Electric power generation system combined with hydrogen production facility, electric power generating method

Publications (1)

Publication Number Publication Date
JP2007138900A true JP2007138900A (en) 2007-06-07

Family

ID=38202074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337449A Pending JP2007138900A (en) 2005-11-22 2005-11-22 Electric power generation system combined with hydrogen production facility, electric power generating method

Country Status (1)

Country Link
JP (1) JP2007138900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197420A (en) * 2016-04-28 2017-11-02 国立大学法人東北大学 Production method of hydrogen gas, and production apparatus of hydrogen gas
JP2019082118A (en) * 2017-10-27 2019-05-30 一般財団法人電力中央研究所 Coal gasification power generation facility
CN113224360A (en) * 2021-05-14 2021-08-06 华能(天津)煤气化发电有限公司 Method and system for producing hydrogen and generating power by co-gasification of coal and biomass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197420A (en) * 2016-04-28 2017-11-02 国立大学法人東北大学 Production method of hydrogen gas, and production apparatus of hydrogen gas
JP2019082118A (en) * 2017-10-27 2019-05-30 一般財団法人電力中央研究所 Coal gasification power generation facility
CN113224360A (en) * 2021-05-14 2021-08-06 华能(天津)煤气化发电有限公司 Method and system for producing hydrogen and generating power by co-gasification of coal and biomass

Similar Documents

Publication Publication Date Title
US11254876B2 (en) Renewable electricity conversion of liquid fuels from hydrocarbon feedstocks
KR102225779B1 (en) Flexibly operable power plant and method for the operation thereof
US20160268616A1 (en) Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
EP2166064A1 (en) A chemical product providing system and method for providing a chemical product
KR102298466B1 (en) Combined system for producing steel and method for operating the combined system
JP4981439B2 (en) Solid fuel gasification gas utilization plant
US11142832B2 (en) Methods and systems for syngas production and for efficient, flexible energy generation
JP2008287940A (en) Power generation equipment
JP2008291081A (en) Gasification plant
EP4067509A1 (en) Method for operating blast furnace, and facility equipped with blast furnace
KR101441491B1 (en) Intergrated gasification combined cycle coupled fuel cells system and gas supplying method thereto
WO2020141153A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
WO2015180752A1 (en) Hydrocarbon-production-apparatus and method for producing hydrocarbons with renewable electric energy
JP2007138900A (en) Electric power generation system combined with hydrogen production facility, electric power generating method
JP4233175B2 (en) Power generation method using coal pyrolysis reaction products
EP3906356A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
US9328631B2 (en) Self-generated power integration for gasification
JP2005171148A (en) Coal gasification furnace and method for operating the same
KR101832807B1 (en) Method For Providing Synthethic natural gas with Fuel cell
JP2019082118A (en) Coal gasification power generation facility
US20230183083A1 (en) Ammonia production from carbon- and water-derived hydrogen
JP6978277B2 (en) Coal gasification power generation equipment
KR101541428B1 (en) Integrated gasification polygeneration plant and method for power generation and compound production thereof
KR20190131199A (en) Combined power generation system
JP2023143146A (en) Fuel manufacturing system