JP2019082118A - Coal gasification power generation facility - Google Patents

Coal gasification power generation facility Download PDF

Info

Publication number
JP2019082118A
JP2019082118A JP2017208546A JP2017208546A JP2019082118A JP 2019082118 A JP2019082118 A JP 2019082118A JP 2017208546 A JP2017208546 A JP 2017208546A JP 2017208546 A JP2017208546 A JP 2017208546A JP 2019082118 A JP2019082118 A JP 2019082118A
Authority
JP
Japan
Prior art keywords
coal gasification
gas
power generation
generation facility
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017208546A
Other languages
Japanese (ja)
Inventor
長谷川 武治
Takeji Hasegawa
武治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2017208546A priority Critical patent/JP2019082118A/en
Publication of JP2019082118A publication Critical patent/JP2019082118A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To maintain an operating rate of a coal gasification power generation facility without deteriorating an operating rate of coal gasification gas production means.SOLUTION: In accordance with fluctuation of required output (electric power supply state), Hthat is a constituent of part of coal gasification gas is separated in an Hseparation process 14, and the separated His sent from a branch passage 28 to a pipeline 3, so as to promptly respond to the fluctuation of the output. While an operating rate of a coal gasification facility 24 is maintained, fluctuation of output of a coal gasification power generation facility 11A (fluctuation of required output) is absorbed, so as to maintain an operating rate of the coal gasification power generation facility 11A.SELECTED DRAWING: Figure 2

Description

本発明は、石炭ガス化ガスを燃料として用いる石炭ガス化発電設備に関する。   The present invention relates to a coal gasification power generation facility using coal gasification gas as a fuel.

石炭は世界の広い地域に存在し、可採埋蔵量が多く、価格が安定しているため、供給安定性が高く発熱量あたりの価格が低廉である。石炭からガス化ガス(石炭ガス化ガス)を得て、石炭ガス化ガスを燃料として用いることで発電を行う石炭ガス化発電設備が実用化されてきている。   Coal exists in a wide area of the world, has a large amount of recoverable reserves and stable prices, so it has high supply stability and low price per calorific value. A coal gasification power generation facility has been put into practical use that generates gasification gas (coal gasification gas) from coal and uses the coal gasification gas as fuel to generate power.

石炭ガス化発電設備としては、石炭ガス化ガスを燃焼器で燃焼させてガスタービンを駆動して電力を得ると共に、ガスタービンの排気熱を回収して蒸気を発生させ、発生した蒸気により蒸気タービンを駆動して電力を得る石炭ガス化発電設備(IGCC)が知られている(例えば、特許文献1参照)。   As a coal gasification power generation facility, coal gasification gas is burned in a combustor to drive a gas turbine to obtain electric power, and the exhaust heat of the gas turbine is recovered to generate steam, and a steam turbine is generated by the generated steam. There is known a coal gasification power generation facility (IGCC) for driving electric power to obtain electric power (see, for example, Patent Document 1).

また、石炭ガス化発電設備として、石炭ガス化ガスを燃料電池の燃料として用い、燃料電池で発電を行うと同時に、燃料電池の排気ガスでガスタービンを駆動して電力を得ると共に、ガスタービンの排気熱を回収して蒸気を発生させ、発生した蒸気により蒸気タービンを駆動して電力を得る石炭ガス化発電設備(IGFC)が知られている。   In addition, as a coal gasification power generation facility, coal gasification gas is used as a fuel for a fuel cell, power is generated by the fuel cell, and at the same time the gas turbine is driven by the exhaust gas of the fuel cell to obtain electric power. A coal gasification power plant (IGFC) is known which recovers exhaust heat to generate steam and drives the steam turbine with the generated steam to obtain electric power.

一方、化石燃料を使用しない再生可能エネルギーを用いた再生可能エネルギー発電設備が導入されつつある。再生可能エネルギー発電設備は、石炭ガス化発電設備等の発電設備と同時に用いて電力需要に追従させている。このため、再生可能エネルギー発電設備の出力が増加した場合、発電した電力を蓄電して貯蔵することが考えられる。しかし、蓄電容量には限度があり、発電電力を必要に応じて蓄電することは非現実的であった。   Meanwhile, renewable energy power generation equipment using renewable energy that does not use fossil fuels is being introduced. Renewable energy power generation equipment is used simultaneously with power generation equipment such as coal gasification power generation equipment to keep up with the power demand. For this reason, when the output of a renewable energy power generation facility increases, it is conceivable to store and store the generated electric power. However, the storage capacity is limited, and it is impractical to store the generated power as needed.

このような状況から、再生可能エネルギー発電設備の出力の増減に応じて(出力の変動の要求により)、石炭ガス化発電設備等での発電量を変動させることができれば、再生可能エネルギー発電設備の出力が増減しても、発電電力の供給量を電力需要に追従させることができる。   Under such circumstances, if it is possible to change the amount of power generation in the coal gasification power generation facility or the like according to the increase or decrease of the output of the renewable energy power generation facility (by the demand of output fluctuation), Even if the output increases or decreases, the supply amount of generated power can be made to follow the power demand.

しかし、再生可能エネルギー発電設備は自然環境により短時間で出力が大きく左右されるため、短時間での出力の増減に応じて石炭ガス化発電設備等で発電量を変動させるには至っていないのが現状であった。このため、再生可能エネルギー発電設備に出力の増減があっても、発電した電力を蓄電することなく、余剰の電力が生じないようにすることができる技術が望まれているのが実情である。   However, since the output of renewable energy power generation equipment is greatly affected by the natural environment in a short time, the amount of power generation has not been changed with coal gasification power generation equipment etc. according to the increase or decrease of the output in a short time It was the present condition. For this reason, there is a need for a technology that can prevent surplus power from being generated without storing the generated power even if the output of the renewable energy power generation facility increases or decreases.

特開2005―171148号公報JP, 2005-171148, A

本発明は上記状況に鑑みてなされたもので、出力の変動の要求があった場合に速やかに変動に対応することができる石炭ガス化発電設備を提供し、もって、例えば、再生可能エネルギー発電設備と組み合わせて電力需要に応じる際に、再生可能エネルギー発電設備で発電する電力に余剰が生じても、発電電力を蓄電せずに、有効に利用できるようにすることを目的とする。   The present invention has been made in view of the above situation, and provides a coal gasification power generation facility capable of promptly coping with fluctuations when there is a demand for fluctuation of output, thereby, for example, a renewable energy power generation facility In order to meet the demand for electric power in combination with the above, it is an object of the present invention to enable effective use of generated electric power without storing electric power even if surplus is generated in electric power generated by a renewable energy generation facility.

上記目的を達成するための請求項1に係る本発明の石炭ガス化発電設備は、石炭をガス化して石炭ガス化ガスを得る石炭ガス化ガス製造手段と、前記石炭ガス化ガス製造手段で得られた前記石炭ガス化ガスが送られて高温・高圧ガスを得る膨張ガス生成手段(燃焼器、燃料電池)と、前記膨張ガス生成手段で得られた前記高温・高圧ガスを膨張させて発電動力を得る膨張タービンと、電力供給の状況に基づいて、前記膨張ガス生成手段に送る前記石炭ガス化ガスの成分の一部を分離することで、前記膨張ガス生成手段に送る前記石炭ガス化ガスの成分の状況を調節し、前記石炭ガス化ガス製造手段の稼働状況を調整するガス化ガス成分調節手段とを備えたことを特徴とする。   The coal gasification power generation facility of the present invention according to claim 1 for achieving the above object is obtained by means of coal gasification gas production means for gasifying coal to obtain coal gasification gas, and the coal gasification gas production means Expansion gas generation means (combustor, fuel cell) for sending the above-mentioned coal gasification gas and obtaining high temperature / high pressure gas, and generating power by expanding the high temperature / high pressure gas obtained by the expansion gas generation means By separating part of the components of the coal gasification gas sent to the expansion gas generation means based on the state of power supply and the expansion turbine to obtain the coal gasification gas of the coal gasification gas sent to the expansion gas generation means A gasification gas component control means is provided for adjusting the condition of the component and adjusting the operation condition of the coal gasification gas production means.

請求項1に係る本発明では、石炭ガス化ガス製造手段で得られた石炭ガス化ガスが膨張ガス生成手段(例えば、燃焼器、燃料電池の後燃焼器)で高温・高圧ガス(燃焼ガス)とされ、高温・高圧ガスを膨張タービンで膨張させることで発電電力を得る。電力供給の変動の要求があった場合、石炭ガス化ガス製造手段の稼動状態はそのままにして、ガス化ガス成分調節手段により石炭ガス化ガスの成分の一部を分離し、一部の成分が分離された石炭ガス化ガスを膨張ガス生成手段に送り、石炭ガス化ガス製造手段の稼働状況を調整して(維持して)出力の変動を吸収する。分離された石炭ガス化ガスの一部の成分は、貯留したり、他の需要地で燃料(燃料の一部)や原料として使用したりすることができる。   In the present invention according to claim 1, the coal gasification gas obtained by the coal gasification gas production means is a high temperature / high pressure gas (combustion gas) in the expansion gas production means (for example, a combustor, a fuel cell afterburner). The generated power is obtained by expanding the high temperature / high pressure gas with the expansion turbine. When there is a demand for fluctuations in the power supply, the operation status of the coal gasification gas production means remains unchanged, and some of the components of the coal gasification gas are separated by the gasification gas component adjustment means, and some components The separated coal gasification gas is sent to the expansion gas generation means, and the operating condition of the coal gasification gas production means is adjusted (maintained) to absorb the output fluctuation. Some components of the separated coal gasification gas can be stored or used as fuel (part of fuel) or raw material at other places of demand.

例えば、再生可能エネルギー発電設備と共に電力を供給する場合、再生可能エネルギー発電設備で発電する電力に余剰が生じても、発電電力を蓄電せずに有効に利用し、石炭ガス化ガスの一部の成分を分離することで出力の変動を吸収することができる。また、再生可能エネルギー発電設備で発電する余剰の電力を用いてHを製造する設備が併用されている場合、自然環境の変化により発電量が不安定になっても、石炭ガス化ガスの一部の成分としてHを分離してバックアップとすることで、石炭ガス化ガス製造手段の稼働率を維持した状態で、Hの供給量を安定させることができる。つまり、石炭ガス化発電設備(石炭ガス化ガス製造手段)の稼働率の低下を抑制した状態でHを安定して製造することが可能になる。 For example, when supplying power with a renewable energy power generation facility, even if surplus power is generated in the renewable energy power generation facility, a portion of the coal gasification gas can be effectively used without storing the generated power. By separating the components, output fluctuations can be absorbed. In addition, in the case where a facility that produces H 2 using surplus power generated by a renewable energy power generation facility is used in combination, even if the amount of power generation becomes unstable due to changes in the natural environment, By separating H 2 as a component of the part and using it as a backup, the supply amount of H 2 can be stabilized while maintaining the operation rate of the coal gasification gas production means. That is, H 2 can be stably manufactured in a state in which the decrease in the operation rate of the coal gasification power generation facility (coal gasification gas production means) is suppressed.

この結果、出力の変動の要求があった場合に速やかに変動に対応することが可能になり、例えば、再生可能エネルギー発電設備と組み合わせて電力需要に応じる際に、再生可能エネルギー発電設備で発電する電力に余剰が生じても、発電電力を蓄電せずに、有効に利用できる。   As a result, when there is a demand for fluctuation of output, it is possible to cope with fluctuation promptly, for example, when using it in combination with renewable energy power generation equipment to generate electric power with renewable energy power generation equipment Even if surplus occurs in power, it can be effectively used without storing generated power.

そして、請求項2に係る本発明の石炭ガス化発電設備は、請求項1に記載の石炭ガス化発電設備において、前記膨張タービンの排気ガスが熱回収されて蒸気を発生させる排熱回収ボイラと、前記排熱回収ボイラで発生した蒸気により駆動されて発電動力を得る蒸気タービンとを更に備えたことを特徴とする。   A coal gasification power generation facility according to a second aspect of the present invention is the coal gasification power generation facility according to the first aspect, wherein the exhaust gas of the expansion turbine is heat recovered to generate steam. And a steam turbine driven by steam generated by the waste heat recovery boiler to obtain power generation power.

請求項2に係る本発明では、膨張タービンと蒸気タービンの駆動により発電を行う複合発電設備で、出力の変動の要求があった場合でも、速やかに変動に対応することが可能になる。   According to the second aspect of the present invention, in the combined power generation facility that generates electric power by driving the expansion turbine and the steam turbine, even when there is a demand for output fluctuation, it is possible to cope with the fluctuation promptly.

また、請求項3に係る本発明の石炭ガス化発電設備は、請求項2に記載の石炭ガス化発電設備において、前記膨張ガス生成手段にO含有ガスを供給する酸化剤供給手段と、前記排熱回収ボイラで熱回収された排気ガスを前記膨張ガス生成手段に供給する循環手段とを備えたことを特徴とする。 A coal gasification power generation facility according to a third aspect of the present invention is the coal gasification power generation facility according to the second aspect, further comprising: an oxidant supply means for supplying an O 2 -containing gas to the expansion gas generation means; The exhaust gas recovered by the waste heat recovery boiler is provided with a circulating means for supplying the expanded gas generation means.

請求項3に係る本発明では、酸化剤供給手段からO含有ガスを膨張ガス生成手段に供給し、循環手段により排熱回収ボイラで熱回収された排気ガスを膨張ガス生成手段に供給することにより、COを循環させる閉サイクルの設備を構築することができる。酸化剤供給手段としては、例えば、空気からNを分離することでOを製造する酸素製造設備を適用することができる。そして、余剰となったCOは回収することができる。 In the present invention according to claim 3, the O 2 -containing gas is supplied from the oxidant supply means to the expansion gas generation means, and the exhaust gas heat-recovered by the exhaust heat recovery boiler by the circulation means is supplied to the expansion gas generation means Thus, it is possible to construct a closed cycle equipment that circulates CO 2 . As an oxidant supply means, for example, an oxygen production facility that produces O 2 by separating N 2 from air can be applied. Then, the surplus CO 2 can be recovered.

また、請求項4に係る本発明の石炭ガス化発電設備は、請求項1から請求項3のいずれか一項に記載の石炭ガス化発電設備において、前記ガス化ガス成分調節手段は、前記電力供給の状況を判断する制御手段と、前記制御手段の判断に基づいて、前記石炭ガス化ガスの成分を分離し、分離した成分を系外の設備に供給することで、前記膨張ガス生成手段に送る前記石炭ガス化ガスの成分の状況を調節する分離供給手段とを有することを特徴とする。   A coal gasification power generation facility according to a fourth aspect of the present invention is the coal gasification power generation facility according to any one of the first to third aspects, wherein the gasification gas component adjustment means is the electric power. The expansion gas generation means is separated by separating the components of the coal gasification gas based on the judgment of the control means for judging the supply condition and the control means, and supplying the separated components to equipment outside the system. And separating and supplying means for adjusting the conditions of the components of the coal gasification gas to be sent.

請求項4に係る本発明では、制御手段により電力供給の状況が判断され、制御手段の判断に基づいて、石炭ガス化ガスの成分を分離し、分離した成分を系外の設備に供給することで、膨張ガス生成手段に送る石炭ガス化ガスの成分の状況が調節される(燃料成分の状況が調節される)。   In the present invention according to claim 4, the control means determines the state of power supply, separates the component of the coal gasification gas based on the determination of the control means, and supplies the separated component to equipment outside the system. The conditions of the components of the coal gasification gas sent to the expansion gas generating means are adjusted (the conditions of the fuel components are adjusted).

また、請求項5に係る本発明の石炭ガス化発電設備は、請求項4に記載の石炭ガス化発電設備において、分離される前記石炭ガス化ガスの成分は、Hを含むことを特徴とする。 A coal gasification power generation facility according to a fifth aspect of the present invention is the coal gasification power generation facility according to the fourth aspect, wherein the component of the coal gasification gas to be separated contains H 2. Do.

請求項5に係る本発明では、石炭ガス化ガスのH成分を分離することができる。H成分だけを分離した場合、分離したH成分を、例えば、水素ステーションに供給することができる。また、水素製造設備で製造される水素(例えば、再生可能エネルギー発電設備の電力により水素を製造する設備で製造される水素)のバックアップとして用いることができる。 According to the fifth aspect of the present invention, the H 2 component of the coal gasification gas can be separated. If only the H 2 component is separated, the separated H 2 component can, for example, be supplied to a hydrogen station. In addition, it can be used as a backup of hydrogen produced by a hydrogen production facility (for example, hydrogen produced by a facility that produces hydrogen from the power of a renewable energy power production facility).

また、請求項6に係る本発明の石炭ガス化発電設備は、請求項5に記載の石炭ガス化発電設備において、前記石炭ガス化ガス製造手段にHOを供給するHO供給手段を備え、前記HO供給手段からHOを供給することにより、前記分離される前記石炭ガス化ガスの成分であるHを増加させることを特徴とする。 Further, the coal gasification power generation equipment of the present invention according to claim 6, in coal gasification power generating plant according to claim 5, of H 2 O supply means for supplying of H 2 O in the coal gasification gas production unit wherein said by the H 2 O supply means for supplying of H 2 O, wherein the increase of H 2 is a component of the coal gasification gas to be the separation.

請求項6に係る本発明では、HO供給手段から石炭ガス化ガス製造手段にHOを供給することにより、Hの供給量を増加させることができる。 In the sixth aspect of the present invention, the supply amount of H 2 can be increased by supplying H 2 O from the H 2 O supply means to the coal gasification gas production means.

また、請求項7に係る本発明の石炭ガス化発電設備は、請求項5もしくは請求項6に記載の石炭ガス化発電設備において、前記分離供給手段で分離された前記石炭ガス化ガスの成分が供給される系外の設備は、Hの需要設備であることを特徴とする。 The coal gasification power generation facility of the present invention according to claim 7 is the coal gasification power generation facility according to claim 5 or 6, wherein the component of the coal gasification gas separated by the separation and supply means is facilities outside system to be supplied, characterized in that it is a demand facility H 2.

請求項7に係る本発明では、Hの需要設備に石炭ガス化ガスの成分であるHを供給することができる。例えば、再生可能エネルギー発電が併用されて水素製造手段を備えている場合、Hの需要設備として、水素製造手段を適用した場合、自然環境に影響される再生可能エネルギー発電に基づいて製造される水素のバックアップが可能になり、安定して水素を供給(貯留)することができる。水素の需要設備としては、上述した、水素ステーション等が考えられる。また、ガスパイプラインに石炭ガス化ガスの成分であるHを供給することもできる。 According to the seventh aspect of the present invention, H 2 which is a component of the coal gasification gas can be supplied to the H 2 demand facility. For example, when renewable energy generation is used in combination and equipped with hydrogen production means, when hydrogen production means is applied as the H 2 demand facility, it is manufactured based on renewable energy generation affected by the natural environment Hydrogen backup is possible, and hydrogen can be stably supplied (stored). As a hydrogen demand facility, the above-mentioned hydrogen station etc. can be considered. In addition, H 2 which is a component of coal gasification gas can be supplied to the gas pipeline.

また、請求項8に係る本発明の石炭ガス化発電設備は、請求項1から請求項4のいずれか一項に記載の石炭ガス化発電設備において、分離される前記石炭ガス化ガスの成分は、COを含むことを特徴とする。   A coal gasification power generation facility according to an eighth aspect of the present invention is the coal gasification power generation facility according to any one of the first to fourth aspects, wherein the component of the coal gasification gas to be separated is , CO is included.

請求項8に係る本発明では、石炭ガス化ガスのCO成分を分離することができる。分離したCO成分は、例えば、天然ガスのパイプラインに供給することができる。天然ガスに供給することにより、燃料としての天然ガスの性状(燃焼速度等)にほとんど影響を与えることがない。   In the present invention according to claim 8, the CO component of the coal gasification gas can be separated. The separated CO component can, for example, be supplied to a natural gas pipeline. Supplying to natural gas hardly affects the properties (burning rate etc.) of natural gas as fuel.

また、請求項9に係る本発明の石炭ガス化発電設備は、請求項1から請求項8のいずれか一項に記載の石炭ガス化発電設備において、前記膨張ガス生成手段は、前記石炭ガス化ガスを燃焼し前記高温・高圧ガスとして燃焼ガスを前記膨張タービンに送る燃焼器であることを特徴とする。   A coal gasification power generation facility according to a ninth aspect of the present invention is the coal gasification power generation facility according to any one of the first to eighth aspects, wherein the expansion gas generation means is the coal gasification power plant. It is characterized by being a combustor which burns gas and sends combustion gas to the expansion turbine as the high temperature and high pressure gas.

請求項9に係る本発明では、石炭ガス化ガス製造手段で得られた石炭ガス化ガスを燃焼器で燃焼して燃焼ガスとし、高温・高圧の燃焼ガスを膨張タービンで膨張させることで発電電力を得ることができる。   In the present invention according to claim 9, the coal gasification gas obtained by the coal gasification gas production means is burned by the combustor to be combustion gas, and the high temperature / high pressure combustion gas is expanded by the expansion turbine to generate electric power. You can get

また、請求項10に係る本発明の石炭ガス化発電設備は、請求項1から請求項8のいずれか一項に記載の石炭ガス化発電設備において、前記膨張ガス生成手段は、前記石炭ガス化ガスが燃料極に送られ、空気極に酸化剤が送られて電気化学反応により発電を行うと共に、反応後のガスを前記高温・高圧ガスとして前記膨張タービンに送る燃料電池であることを特徴とする。   The coal gasification power generation facility of the present invention according to claim 10 is the coal gasification power generation facility according to any one of claims 1 to 8, wherein the expansion gas generation means is the coal gasification power facility. The fuel cell is characterized in that the gas is sent to the fuel electrode, the oxidant is sent to the air electrode, power is generated by the electrochemical reaction, and the reaction gas is sent to the expansion turbine as the high temperature / high pressure gas. Do.

請求項10に係る本発明では、石炭ガス化ガス製造手段で得られた石炭ガス化ガスを燃料電池の燃料極に供給し、酸化剤を空気極に供給して電気化学反応により発電を行い、反応後のガスを高温・高圧ガスとして膨張タービンで膨張させることで発電電力を得ることができる。   In the present invention according to claim 10, the coal gasification gas obtained by the coal gasification gas production means is supplied to the fuel electrode of the fuel cell, the oxidant is supplied to the air electrode, and power is generated by the electrochemical reaction. A generated power can be obtained by expanding the reaction gas as a high temperature / high pressure gas by an expansion turbine.

また、請求項11に係る本発明の石炭ガス化発電設備は、請求項1から請求項10のいずれか一項に記載の石炭ガス化発電設備において、前記膨張タービンで発電された電力が送られる電力系統と、前記電力系統に接続される再生可能エネルギー発電設備とを更に備え、前記ガス化ガス成分調節手段は、前記再生可能エネルギー発電設備の出力の変動に応じて前記電力供給の状況を判断し、前記電力供給の状況に基づいて前記石炭ガス化ガスの成分の分離状況を調節することを特徴とする。   In the coal gasification power generation facility of the present invention according to claim 11, in the coal gasification power generation facility according to any one of claims 1 to 10, the electric power generated by the expansion turbine is sent The system further includes a power system and a renewable energy power generation facility connected to the power system, and the gasification gas component adjustment unit determines the status of the power supply according to the fluctuation of the output of the renewable energy power generation facility. And adjusting the separation state of the component of the coal gasification gas based on the state of the power supply.

請求項11に係る本発明では、再生可能エネルギー発電設備の出力の変動に応じて電力供給の状況を判断し、石炭ガス化ガスの成分の分離状況を調節することで、再生可能エネルギー発電設備の出力の変動があっても、石炭ガス化ガス製造手段の稼働率を低下させずに速やかに変動に対応する。   In the present invention according to claim 11, the state of power supply is determined according to the fluctuation of the output of the renewable energy power generation facility, and the separation status of the components of the coal gasification gas is adjusted to thereby realize the renewable energy power generation facility. Even if there is fluctuation in output, the fluctuation is promptly dealt with without reducing the operation rate of the coal gasification gas production means.

本発明の石炭ガス化発電設備は、出力の変動の要求があった場合に速やかに変動に対応することが可能になる。この結果、例えば、再生可能エネルギー発電設備と組み合わせて電力需要に応じる際に、再生可能エネルギー発電設備で発電する電力に余剰が生じても、発電電力を蓄電せずに、有効に利用できるようになる。   The coal gasification power generation facility of the present invention can promptly cope with fluctuation when there is a demand for fluctuation of output. As a result, for example, when responding to the power demand in combination with the renewable energy power generation facility, even if surplus power is generated in the power generated by the renewable energy power generation facility, the generated power can be effectively used without being stored. Become.

本発明の石炭ガス化発電設備を備えた電力供給系統の全体の概略系統図である。It is a schematic diagram of the whole power supply system provided with the coal gasification power generation equipment of the present invention. 本発明の第1実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning a 1st example of the present invention. 本発明の第2実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning a 2nd example of the present invention. 本発明の第3実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning a 3rd example of the present invention. 本発明の第4実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning a 4th example of the present invention. 本発明の第5実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning a 5th example of the present invention. 本発明の第6実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning a 6th example of the present invention. 本発明の第7実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning a 7th example of the present invention. 本発明の第8実施例に係る石炭ガス化発電設備の系統図である。It is a systematic diagram of the coal gasification power generation equipment concerning the 8th example of the present invention.

石炭ガス化発電設備としてのIGCCは、石炭ガス化ガスを燃焼器で燃焼させて膨張タービン(ガスタービン)を駆動して電力を得る(発電動力)と共に、ガスタービンの排気熱を回収して蒸気を発生させ、発生した蒸気により蒸気タービンを駆動して(発電動力)電力を得る石炭ガス化発電設備である。   IGCC as a coal gasification power generation facility burns coal gasification gas with a combustor and drives an expansion turbine (gas turbine) to obtain electric power (power generation) and recovers the exhaust heat of the gas turbine for steam The coal gasification power generation facility generates electric power and drives the steam turbine with the generated steam (power generation power) to obtain electric power.

また、石炭ガス化発電設備としてのIGFCは、石炭ガス化ガスを燃料電池の燃料極に供給されるアノードガス(燃料)として用い、酸化剤を空気極に供給して電気化学反応により発電を行うと同時に、燃料電池の排気ガスでガスタービンを駆動して電力を得ると共に、ガスタービンの排気熱を回収して蒸気を発生させ、発生した蒸気により蒸気タービンを駆動して電力を得る石炭ガス化発電設備である。   In addition, IGFC as a coal gasification power generation facility uses coal gasification gas as an anode gas (fuel) supplied to a fuel electrode of a fuel cell and supplies an oxidant to an air electrode to perform power generation by an electrochemical reaction. At the same time, the exhaust gas from the fuel cell drives the gas turbine to obtain electric power, and the exhaust heat of the gas turbine is recovered to generate steam, and the generated steam drives the steam turbine to obtain electric power. It is a power generation facility.

図1には、本発明の実施例に係る石炭ガス化発電設備(IGCC、及び、IGFC)を備え、再生可能エネルギー発電設備、火力発電設備、原子力発電設備等と共に、需要地に電力及び天然ガスを供給する系統の全体の概略を示してある。   In FIG. 1, the coal gasification power generation facility (IGCC and IGFC) according to the embodiment of the present invention is provided, and electric power and natural gas are supplied to demand places along with renewable energy power generation facility, thermal power generation facility, nuclear power generation facility, etc. The overall outline of the system supplying

図に示すように、天然ガス(液化天然ガス:LNG)の貯蔵設備1から、需要地2の間には、LNGを需要地2に運搬する天然ガスパイプライン(パイプライン)3(都市ガス導管)が構築されている。また、需要地2には、送配電設備4(電力系統)を介して各種の発電設備が接続され、電力が供給される。需要地2としては、発電所、水素ステーション、電力需要家等が適用される(需要設備)。   As shown in the figure, a natural gas pipeline (pipeline) 3 for transporting LNG to the demand place 2 from the storage facility 1 for natural gas (liquefied natural gas: LNG) to the demand place 2 (city gas conduit) Is being built. In addition, various power generation facilities are connected to the demand place 2 via the transmission and distribution facility 4 (electric power system), and power is supplied. As the demand place 2, a power plant, a hydrogen station, a power demander, etc. are applied (demand equipment).

送配電設備4には、発電設備として、再生可能エネルギー発電設備5からの電力が供給される。再生可能エネルギー発電設備5は、例えば、太陽光発電、風力発電、水力発電、バイオマス発電が適用される。また、送配電設備4には、発電設備としてLNG火力発電設備6、微粉炭火力発電設備7、原子力発電設備8からの電力が供給される。   The power from the renewable energy power generation facility 5 is supplied to the power transmission and distribution facility 4 as a power generation facility. For example, solar power generation, wind power generation, hydroelectric power generation, and biomass power generation are applied to the renewable energy power generation facility 5. Further, power from the LNG thermal power generation facility 6, the pulverized coal thermal power generation facility 7, and the nuclear power generation facility 8 is supplied to the power transmission and distribution facility 4 as the power generation facility.

そして、送配電設備4には、膨張ガス生成手段としての燃焼器を備えた石炭ガス化発電設備11(IGCC)、及び、膨張ガス生成手段としての燃料電池を備えた石炭ガス化発電設備12(IGFC)が接続され、需要地2に電力が供給されるようになっている。再生可能エネルギー発電設備5は、自然環境により出力が大きく変化し、需要地2の電力の需要が変化することになる。   Then, the power transmission and distribution equipment 4 includes a coal gasification power generation facility 11 (IGCC) including a combustor as an expansion gas generation unit, and a coal gasification power generation facility 12 including a fuel cell as an expansion gas generation unit ( The IGFC is connected, and power is supplied to the customer 2. The output of the renewable energy power generation facility 5 changes largely due to the natural environment, and the demand for power of the demand place 2 changes.

再生可能エネルギー発電設備5で発電された電力の余剰分は、H製造設備13に送られてHが製造され、パイプライン3の燃料に混合される(もしくは、Hが単独で使用される)。また、安定した電力需要(要求負荷)に対応するため、石炭ガス化発電設備11、12の出力を変動させる必要がある。 Surplus of electric power generated by the renewable power generation system 5 is fed into H 2 production facility 13 is H 2 is produced, is mixed into the fuel pipeline 3 (or, H 2 is used alone ). Moreover, in order to respond to the stable power demand (required load), it is necessary to change the output of the coal gasification power generation equipment 11 and 12.

このため、本発明では、電力供給の状況に基づいて、石炭ガス化発電設備11、12で生成された石炭ガス化ガス成分の一部の成分(少なくともH)を分離し(分離状況を調節し)、膨張ガス生成手段(燃焼器、燃料電池)に送られる石炭ガス化ガスの成分の状況を調節し、石炭ガス化発電設備11、12の出力を調節している(ガス化ガス成分調節手段)。そして、分離された石炭ガス化ガス成分の一部の成分(少なくともH)を石炭ガス化発電設備11、12の系外のパイプライン3に供給している。 For this reason, in the present invention, a part (at least H 2 ) of the coal gasification gas component generated by the coal gasification power generation facility 11, 12 is separated based on the state of power supply (the separation state is adjusted) Control the state of the components of the coal gasification gas sent to the expansion gas generation means (combustor, fuel cell), and adjust the output of the coal gasification power plant 11, 12 (gasification gas component adjustment means). Then, a part (at least H 2 ) of a part of the separated coal gasification gas component is supplied to the pipeline 3 outside the system of the coal gasification power generation equipment 11 and 12.

これにより、石炭ガス化発電設備11、12に出力の変動の要求があった場合に、速やかに変動に対応して出力を調節することが可能になる。そして、石炭ガス化ガス製造手段(後述する石炭ガス化設備)の稼働率を維持した状態で、石炭ガス化発電設備11、12の出力の変動を吸収することができる。このため、石炭ガス化ガス製造手段(後述する石炭ガス化設備)の稼働率を低下させずに石炭ガス化発電設備11、12の稼働率を維持することが可能になる。   As a result, when the coal gasification power generation facilities 11, 12 are required to have fluctuations in output, it is possible to adjust the output in response to the fluctuation promptly. And the fluctuation | variation of the output of the coal gasification power generation equipment 11 and 12 can be absorbed in the state which maintained the operation rate of coal gasification gas production means (coal gasification equipment mentioned later). For this reason, it becomes possible to maintain the operation rate of the coal gasification power generation equipment 11, 12 without reducing the operation rate of the coal gasification gas production means (coal gasification equipment to be described later).

例えば、再生可能エネルギー発電設備5と共に需要地2に電力を供給する場合、再生可能エネルギー発電設備5で発電する電力に余剰が生じても、発電電力を蓄電せずに有効に利用し、石炭ガス化ガスの一部の成分(少なくともH)を分離することで出力の変動を吸収することができる。また、再生可能エネルギー発電設備5で発電する余剰の電力を用いてHを製造するH製造設備13が併用されている場合、自然環境の変化により発電量が不安定になっても、石炭ガス化ガスの一部の成分としてHを分離してバックアップとすることで、石炭ガス化ガス製造手段の稼働率を維持した状態で、Hの供給量を安定させることができる。 For example, when supplying power to the demand place 2 with the renewable energy power generation facility 5, even if surplus occurs in the power generated by the renewable energy power generation facility 5, the generated power is effectively used without being stored, coal gas By separating some components (at least H 2 ) of the chemical gas, it is possible to absorb output fluctuations. In addition, when the H 2 production facility 13 producing H 2 using the surplus power generated by the renewable energy power generation facility 5 is used in combination, even if the amount of power generation becomes unstable due to changes in the natural environment, coal By separating H 2 as a part of the component of the gasification gas and using it as a backup, the supply amount of H 2 can be stabilized while maintaining the operation rate of the coal gasification gas production means.

つまり、石炭ガス化発電設備(石炭ガス化ガス製造手段)の稼働率の低下を抑制した状態でHを安定して製造することが可能になる。この結果、出力の変動の要求があった場合に速やかに変動に対応することが可能になり、例えば、再生可能エネルギー発電設備5と組み合わせて電力需要に応じる際に、再生可能エネルギー発電設備5で発電する電力に余剰が生じても、発電電力を蓄電せずに、有効に利用できる。 That is, H 2 can be stably manufactured in a state in which the decrease in the operation rate of the coal gasification power generation facility (coal gasification gas production means) is suppressed. As a result, when there is a demand for fluctuation of the output, it becomes possible to promptly cope with the fluctuation. For example, when responding to the electric power demand in combination with the renewable energy generation facility 5, the renewable energy generation facility 5 Even if surplus power is generated, it can be effectively used without storing the generated power.

図2に基づいて、石炭ガス化発電設備11(IGCC)の実施例を具体的に説明する。図2には本発明の第1実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。第1実施例は、膨張ガス生成手段として燃焼器を備えた石炭ガス化発電設備11(IGCC)の具体例で、酸化剤として空気を石炭ガス化設備に投入する例を示してある。   An example of the coal gasification power generation facility 11 (IGCC) will be specifically described based on FIG. The system | strain condition explaining the whole structure of the coal gasification power generation equipment based on 1st Example of this invention is shown in FIG. The first embodiment is a specific example of a coal gasification power generation facility 11 (IGCC) equipped with a combustor as an expansion gas generation means, and shows an example in which air is introduced into the coal gasification facility as an oxidant.

図2に示すように、石炭ガス化発電設備11Aは、ガスタービン(圧縮機、燃焼器、膨張タービン)15、及び、蒸気タービン16で発電機17、18が駆動される複合発電設備により構築されている。   As shown in FIG. 2, the coal gasification power generation facility 11A is constructed by a gas turbine (compressor, combustor, expansion turbine) 15, and a combined power generation facility in which the generators 17, 18 are driven by the steam turbine 16. ing.

複合発電設備のガスタービン15は、圧縮機21、及び、膨張タービン22を備え、圧縮機21で圧縮された空気が膨張ガス生成手段としての燃焼器23に送られる。燃焼器23には、石炭ガス化ガス製造手段としての石炭ガス化設備24からガス精製設備25を介して石炭ガス化ガスが供給される。膨張タービン22では燃焼器23からの燃焼ガス(高温・高圧ガス)が膨張されて動力が回収され、発電機17が駆動される。   The gas turbine 15 of the combined power generation facility includes a compressor 21 and an expansion turbine 22, and the air compressed by the compressor 21 is sent to a combustor 23 as an expansion gas generation means. Coal gasification gas is supplied to the combustor 23 from a coal gasification facility 24 as a coal gasification gas production means via a gas purification facility 25. In the expansion turbine 22, the combustion gas (high temperature / high pressure gas) from the combustor 23 is expanded to recover the power, and the generator 17 is driven.

膨張タービン22で仕事を終えた排気ガスの熱回収を行う排熱回収ボイラ26が備えられ、排熱回収ボイラ26で発生した蒸気は蒸気タービン16に送られて動力が回収され、発電機18が駆動される。排熱回収ボイラ26で熱回収された排気ガスは排煙処理されて大気に放出される。   An exhaust heat recovery boiler 26 is provided which recovers the heat of the exhaust gas that has finished work in the expansion turbine 22. The steam generated by the exhaust heat recovery boiler 26 is sent to the steam turbine 16 to recover power, and the generator 18 It is driven. The exhaust gas heat-recovered by the exhaust heat recovery boiler 26 is subjected to exhaust gas treatment and released to the atmosphere.

一方、石炭ガス化設備24からガス精製設備25を介して燃焼器23に送られる石炭ガス化ガスは、一部の成分(例えば、H)が分離され、Hが分離されて成分が調節された石炭ガス化ガス(COリッチガス)が燃焼器23に送られ、出力が調整される。即ち、燃焼器23に送られる石炭ガス化ガスは、H分離プロセス14でHが分離され、Hが分離された石炭ガス化ガス(COリッチガス)が燃焼器23に送られる。 On the other hand, in the coal gasification gas sent from the coal gasification facility 24 to the combustor 23 via the gas purification facility 25, some components (for example, H 2 ) are separated and H 2 is separated to adjust the components. The obtained coal gasification gas (CO rich gas) is sent to the combustor 23 and the output is adjusted. That is, the coal gasification gas sent to the combustor 23 is separated into H 2 in the H 2 separation process 14, and the coal gasification gas (CO rich gas) from which H 2 is separated is sent to the combustor 23.

石炭ガス化ガスから分離された成分の一部であるHは分離供給手段(ガス化ガス成分調節手段)としての分岐路28に分岐されて貯槽9に貯められ、パイプライン3に送られる。貯槽9の上流側における分岐路28には分離供給手段(ガス化ガス成分調節手段)としての調整弁29が備えられ、調整弁29は、発電機17からの電力供給の状況に応じて制御される。 H 2, which is a part of the components separated from the coal gasification gas, is branched into a branch passage 28 as separation supply means (gasification gas component adjustment means), stored in the storage tank 9, and sent to the pipeline 3. The branch line 28 on the upstream side of the storage tank 9 is provided with a control valve 29 as a separate supply means (gasification gas component control means), and the control valve 29 is controlled according to the state of power supply from the generator 17 Ru.

調整弁29が電力供給の状況に応じて制御されることで、燃焼器23に送られる石炭ガス化ガスの成分(CO、H)が調節され、石炭ガス化設備24の稼働率を維持した状態で(稼働状況を変化させずに)、電力供給の状況の変化(発電設備の出力の変動)が吸収される。例えば、電力供給を抑制する状況の場合、燃焼器23に送られる石炭ガス化ガスのH成分を分離し、石炭ガス化設備24の稼動状況を変化させずに燃焼ガスの成分を調整し(Hを除き)、膨張タービン22の出力を低下させる。 The component (CO, H 2 ) of the coal gasification gas sent to the combustor 23 is adjusted by controlling the control valve 29 according to the state of the power supply, and the operation rate of the coal gasification facility 24 is maintained. In the situation (without changing the operating situation), changes in the situation of the power supply (fluctuations in the output of the power plant) are absorbed. For example, in the situation where the power supply is suppressed, the H 2 component of the coal gasification gas sent to the combustor 23 is separated, and the components of the combustion gas are adjusted without changing the operating condition of the coal gasification facility 24 ( H 2 except), reducing the output of the expansion turbine 22.

従って、出力の変動の要求があった場合に速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させずに石炭ガス化発電設備11Aの全体の稼働率を維持することが可能になる。   Therefore, when there is a demand for fluctuation of output, it becomes possible to promptly cope with fluctuation, and the overall operation rate of the coal gasification power generation facility 11A is maintained without reducing the operation rate of the coal gasification facility 24. It will be possible to

調整弁29は、電力供給の状況を判断する制御手段31の指令に基づいて制御される。制御手段31には再生可能エネルギー発電設備5の発電情報、即ち、再生可能エネルギー発電設備5の出力の情報が入力される。また、制御手段31には膨張タービン22で駆動される(燃焼ガスを動力として駆動される)発電機17の出力状況が入力される。   The adjustment valve 29 is controlled based on the command of the control means 31 which determines the condition of the power supply. The control means 31 receives power generation information of the renewable energy power generation facility 5, that is, information of the output of the renewable energy power generation facility 5. Further, the output condition of the generator 17 driven by the expansion turbine 22 (driven by the combustion gas as a motive power) is input to the control means 31.

制御手段31で、再生可能エネルギー発電設備5の出力が変動(増加)したことが判断されると、調整弁29が制御されて分離されたHの供給量が調整(増加)され、燃焼器23に送られる石炭ガス化ガスのH成分が除かれて膨張タービン22の出力を低下させる。分岐路28に送られたHの成分はパイプライン3に投入される。 When it is judged by the control means 31 that the output of the renewable energy power generation facility 5 has fluctuated (increased), the adjusting valve 29 is controlled to adjust (increase) the supply amount of H 2 which has been separated. The H 2 component of the coal gasification gas sent to 23 is removed to reduce the output of the expansion turbine 22. The component of H 2 sent to the branch 28 is introduced into the pipeline 3.

従って、再生可能エネルギー発電設備5の出力の変動に応じて、制御手段31で電力供給の状況が判断され、分離されるHの状況が調節される。このため、再生可能エネルギー発電設備5の出力の変動があっても、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させることなく、石炭ガス化発電設備11Aの全体の稼働率が維持される。 Therefore, according to the fluctuation of the output of the renewable energy power generation facility 5, the control means 31 determines the status of the power supply, and the status of the separated H 2 is adjusted. For this reason, even if the output of the renewable energy power generation facility 5 fluctuates, it becomes possible to promptly cope with the fluctuation, and the coal gasification power generation facility 11A can be performed without reducing the operation rate of the coal gasification facility 24. The overall availability of is maintained.

この結果、石炭ガス化発電設備11Aに出力の変動の要求があった場合でも、速やかに変動に対応し、石炭ガス化設備24の稼働率を低下させずに(稼働率を高い状態のまま維持して)、石炭ガス化発電設備11A設備の稼働率を維持することが可能になる。つまり、石炭ガス化設備24での石炭ガス化ガスの生成量(石炭の処理量)を安定させて石炭ガス化発電設備11Aを運用することが可能になる。   As a result, even when the coal gasification power generation facility 11A is requested to have a fluctuation in output, the fluctuation is promptly dealt with, and the operation rate of the coal gasification facility 24 is not reduced (the operation rate is maintained high ), It is possible to maintain the operating rate of the coal gasification power generation facility 11A. That is, it becomes possible to operate the coal gasification power generation facility 11A by stabilizing the amount of generated coal gasification gas (processed amount of coal) in the coal gasification facility 24.

そして、自然環境に左右される再生可能エネルギー発電設備5で発電する電力に余剰が生じた際に、H製造設備13でHを製造しているが、石炭ガス化ガスから分離された成分の一部であるHをH製造設備13のバックアップとして用いることができる。 Component and, when a surplus occurs in the electric power generated by the dependent renewable power generation equipment 5 to the natural environment, manufactures of H 2 with H 2 production facility 13, which is separated from the coal gasification gas H 2 , which is a part of H 2 , can be used as a backup for the H 2 production facility 13

つまり、自然環境の変化により再生可能エネルギー発電設備5の発電量が不安定になっても、石炭ガス化ガスの一部の成分としてHを分離してバックアップとすることで、石炭ガス化設備24の稼働率を維持した状態で、Hの供給量を安定させることができる。即ち、石炭ガス化発電設備(石炭ガス化ガス製造手段)の稼働率の低下を抑制した状態でHを安定して製造することが可能になる。 That is, even if the amount of power generation of the renewable energy power generation facility 5 becomes unstable due to the change of the natural environment, the coal gasification facility is separated by separating H 2 as a component of the coal gasification gas. The supply amount of H 2 can be stabilized while maintaining the operation rate of 24. That is, it becomes possible to manufacture H 2 stably in the state which controlled the fall of the operation rate of coal gasification power generation equipment (coal gasification gas production means).

この結果、出力の変動の要求があった場合に速やかに変動に対応することが可能になり、例えば、再生可能エネルギー発電設備5と組み合わせて電力需要に応じる際に、再生可能エネルギー発電設備5で発電する電力に余剰が生じても、発電電力を蓄電せずに、有効に利用できる。   As a result, when there is a demand for fluctuation of the output, it becomes possible to promptly cope with the fluctuation. For example, when responding to the electric power demand in combination with the renewable energy generation facility 5, the renewable energy generation facility 5 Even if surplus power is generated, it can be effectively used without storing the generated power.

上述した実施例では、石炭ガス化ガスから分離したHをパイプライン3の燃料に供給したが、ボンベ、ローリー、タンカー等で需要地に供給することが可能である。また、石炭ガス化ガスから分離したHを用いて化学製品を製造することも可能である。また、石炭ガス化ガスから分離する成分を調整し、Hリッチのガス(H+CO)とし、燃焼器23に送る石炭ガス化ガスをCOリッチのガスにすることが可能である。 In the above-described embodiment, H 2 separated from the coal gasification gas is supplied to the fuel of the pipeline 3. However, it is possible to supply the fuel to the demand place with a cylinder, a lorry, a tanker or the like. It is also possible to produce chemical products using H 2 separated from coal gasification gas. Further, by adjusting the components to separate from the coal gasification gas, and of H 2 rich gas (H 2 + CO), it is possible to the coal gasification gas to be sent to the combustor 23 to the CO-rich gas.

図3に基づいて、石炭ガス化発電設備11(IGCC)の他の実施例を説明する。図3には本発明の第2実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。   Another embodiment of the coal gasification power generation facility 11 (IGCC) will be described based on FIG. The system | strain condition explaining the whole structure of the coal gasification power generation equipment based on 2nd Example of this invention is shown in FIG.

第2実施例は、第1実施例に対し、燃焼器23に酸化剤としてOが供給されると共に、排熱回収ボイラ26で熱回収された排気ガス(CO)が圧縮機21に送られる構成となっている。このため、図2に示した部材と同一部材には同一符号を付して重複する説明は省略してある。 In the second embodiment, with respect to the first embodiment, O 2 is supplied to the combustor 23 as an oxidant and the exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 is fed to the compressor 21. Is configured to be For this reason, the same members as the members shown in FIG.

図に示すように、空気からNを分離してOを製造するための酸素製造設備35(酸化剤供給手段)が備えられ、酸素製造設備35で製造されたOが燃焼器23に送られる。酸素製造設備35で製造されたOは石炭ガス化設備24にも酸化剤として送られる。 As shown, provided with oxygen production facility 35 for producing O 2 by separating the N 2 from the air (oxidant supply means), the O 2 combustor 23 produced by the oxygen production facilities 35 Sent. The O 2 produced by the oxygen production unit 35 is also sent to the coal gasification unit 24 as an oxidant.

排熱回収ボイラ26で熱回収された排気ガス(CO)を圧縮機21に送る循環経路36(循環手段)が備えられ、排熱回収ボイラ26で熱回収された排気ガス(CO+HO)は圧縮機21に送られる。循環経路36には、CO回収装置37が分岐して備えられ、CO回収装置37では排気ガスからHOが分離されてCOが回収される。排熱回収ボイラ26で熱回収された排気ガス(CO)は圧縮機21に送られる。 A circulation path 36 (circulating means) for sending exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 to the compressor 21 is provided, and exhaust gas (CO 2 + H 2 ) heat-recovered by the exhaust heat recovery boiler 26 O) is sent to the compressor 21. The circulation path 36, CO 2 recovering apparatus 37 is provided with branches, CO 2 recovering apparatus 37 in to H 2 O is separated from the exhaust gas CO 2 is recovered. Exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 is sent to the compressor 21.

尚、本明細書で記載された、排気ガス(CO)は、特別な記載がない限り、COを主成分とする排気ガスを意味しており、その他の成分としてHOが含まれるものである。 In addition, exhaust gas (CO 2 ) described in the present specification means exhaust gas mainly composed of CO 2 unless otherwise specified, and H 2 O is contained as another component. It is a thing.

第2実施例の石炭ガス化発電設備11Bは、酸素製造設備35からO含有ガスを燃焼器23に供給し、排熱回収ボイラ26で熱回収された排気ガス(CO)を圧縮機21から燃焼器23に供給することにより、COを循環させる閉サイクルの設備を構築することができる。CO回収装置37により、余剰となったCOは回収することができる。 The coal gasification power generation facility 11B of the second embodiment supplies the O 2 -containing gas from the oxygen production facility 35 to the combustor 23, and the exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 is compressed by the compressor 21. By supplying to the combustor 23 from the above, it is possible to construct a closed cycle facility for circulating CO 2 . The surplus CO 2 can be recovered by the CO 2 recovery unit 37.

そして、第1実施例と同様に、制御手段31で、再生可能エネルギー発電設備5の出力が変動(増加)したことが判断されると、調整弁29が制御されて分離されるHの状況が調節される。このため、再生可能エネルギー発電設備5の出力の変動があっても、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させることなく、石炭ガス化発電設備11Bの全体の稼働率が維持される。 Then, as in the first embodiment, when it is judged by the control means 31 that the output of the renewable energy power generation facility 5 has fluctuated (increased), the condition of H 2 in which the adjusting valve 29 is controlled and separated Is adjusted. For this reason, even if the output of the renewable energy power generation facility 5 fluctuates, it becomes possible to promptly cope with the fluctuation, and the coal gasification power generation facility 11B can be performed without reducing the operation rate of the coal gasification facility 24. The overall availability of is maintained.

図4に基づいて、石炭ガス化発電設備11(IGCC)の他の実施例を説明する。図4には本発明の第3実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。   Another embodiment of the coal gasification power generation facility 11 (IGCC) will be described based on FIG. The system | strain condition explaining the whole structure of the coal gasification power generation equipment based on 3rd Example of this invention is shown in FIG.

第3実施例は、第2実施例に対し、石炭ガス化設備24にHOを供給するHO供給手段38を備えた構成となっている。このため、図3に示した部材と同一部材には同一符号を付して重複する説明は省略してある。 The third embodiment, with respect to the second embodiment has a configuration that includes of H 2 O supply means 38 for supplying of H 2 O to the coal gasification equipment 24. For this reason, the same members as the members shown in FIG. 3 are assigned the same reference numerals, and duplicate explanations are omitted.

石炭ガス化設備24には、HO供給手段38としてHO供給路39が接続され、HO供給路39にはHO調整弁40が備えられている。HO調整弁40は制御手段31の指令により開閉制御される。HO供給手段38から石炭ガス化設備24にHOを供給することにより、石炭ガス化ガス中のHの含有量(Hの供給量)を増加させることができる。 The coal gasification facility 24 is connected with an H 2 O supply passage 39 as an H 2 O supply means 38, and the H 2 O supply passage 39 is provided with an H 2 O adjusting valve 40. The H 2 O adjusting valve 40 is controlled to open and close by the command of the control means 31. By the H 2 O supply means 38 for supplying of H 2 O to the coal gasification equipment 24, it is possible to increase the content of H 2 coal gasification gas (supply amount of H 2).

例えば、H製造設備13からHの需要の増加の情報が制御手段31に入力されると、HO調整弁40が制御されて石炭ガス化設備24にHOが供給される。これにより、石炭ガス化ガス中のHの含有量(Hの供給量)を増加させることができ、石炭ガス化ガスから分離させるHの量を増加させることが可能になる。このため、H需要のピークに対応する設備を導入することなく、H需要のピークに対応でき、設備投資、H製造原価を低減することができる。 For example, when information on an increase in demand for H 2 is input from the H 2 manufacturing facility 13 to the control means 31, the H 2 O adjusting valve 40 is controlled to supply H 2 O to the coal gasification facility 24. As a result, the content of H 2 in the coal gasification gas (the supply amount of H 2 ) can be increased, and the amount of H 2 separated from the coal gasification gas can be increased. Thus, without introducing a facility corresponding to the peak of H 2 demand, can cope with the peak of H 2 demand, equipment investment can be reduced and H 2 production costs.

図5に基づいて、石炭ガス化発電設備12(IGFC)の実施例を説明する。図5には本発明の第4実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。   An example of the coal gasification power generation facility 12 (IGFC) will be described based on FIG. The system | strain condition explaining the whole structure of the coal gasification electric power generation equipment based on 4th Example of this invention is shown in FIG.

第4実施例は、第1実施例に対し、燃焼器23に代えて膨張ガス生成手段として燃料電池を備えた構成となっている。このため、図2に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   The fourth embodiment is different from the first embodiment in that a fuel cell is provided as an expansion gas generation unit in place of the combustor 23. For this reason, the same members as the members shown in FIG.

圧縮機21で圧縮された空気が送られる膨張ガス生成手段としての燃料電池41と後燃焼器42を備えている。また、燃料電池41には、H分離プロセス14でHが分離され、Hが分離された石炭ガス化ガス(COリッチガス)が送られる。即ち、圧縮機21で圧縮された圧縮空気が燃料電池41の空気極に送られ、石炭ガス化設備24からの石炭ガス化ガスが燃料電池41の燃料極に送られ、電気化学反応により発電が実施される。 A fuel cell 41 and an afterburner 42 are provided as expansion gas generating means to which air compressed by the compressor 21 is fed. Further, to the fuel cell 41, H 2 is separated in the H 2 separation process 14, and the coal gasification gas (CO rich gas) from which H 2 is separated is sent. That is, the compressed air compressed by the compressor 21 is sent to the air electrode of the fuel cell 41, the coal gasification gas from the coal gasification facility 24 is sent to the fuel electrode of the fuel cell 41, and power generation is performed by the electrochemical reaction. To be implemented.

燃料電池41での反応後のカソードガス、及び、アノードガスは、後燃焼器42で燃焼されて燃焼ガス(高温・高圧ガス)とされる。燃焼ガスは、膨張タービン22に送られ膨張され、発電機17が駆動される。   The cathode gas and the anode gas after the reaction in the fuel cell 41 are burned in the post-combustor 42 to become combustion gases (high temperature and high pressure gas). The combustion gas is sent to the expansion turbine 22 and expanded to drive the generator 17.

第4実施例の石炭ガス化発電設備12は、石炭ガス化設備24で得られた石炭ガス化ガスを燃料電池41の燃料極に供給されるアノードガス(燃料)として使用し、酸化剤を空気極に供給して電気化学反応により発電を行い、反応後のガスを高温・高圧ガスとして膨張タービン22で膨張させることで発電電力を得ることができる。   The coal gasification power generation facility 12 of the fourth embodiment uses the coal gasification gas obtained by the coal gasification facility 24 as an anode gas (fuel) supplied to the fuel electrode of the fuel cell 41, and uses an oxidant as air. The generated power can be obtained by supplying power to the pole and performing power generation by the electrochemical reaction, and expanding the reaction gas as a high temperature / high pressure gas by the expansion turbine 22.

そして、第1実施例と同様に、制御手段31で、再生可能エネルギー発電設備5の出力が変動(増加)したことが判断されると、調整弁29が制御されて石炭ガス化ガスから分離されるHの状況が調節される。このため、再生可能エネルギー発電設備5の出力の変動があっても、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させることなく、石炭ガス化発電設備12の全体の稼働率が維持される。 Then, as in the first embodiment, when the control means 31 determines that the output of the renewable energy power generation facility 5 has fluctuated (increased), the control valve 29 is controlled to be separated from the coal gasification gas. H 2 situation is adjusted. For this reason, even if the output of the renewable energy power generation facility 5 fluctuates, it becomes possible to promptly cope with the fluctuation, and the coal gasification power generation facility 12 is not reduced without reducing the operation rate of the coal gasification facility 24. The overall availability of is maintained.

図6に基づいて、石炭ガス化発電設備11(IGCC)の他の実施例を説明する。図6には本発明の第5実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。   Another embodiment of the coal gasification power generation facility 11 (IGCC) will be described based on FIG. FIG. 6 shows a system state for describing the entire configuration of the coal gasification power generation facility according to the fifth embodiment of the present invention.

第5実施例は、第1実施例に対し、H分離プロセス14に代えてCO分離プロセス10を備えた構成となっている。このため、図2に示した部材と同一部材には同一符号を付して重複する説明は省略してある。 The fifth embodiment is configured to include a CO separation process 10 in place of the H 2 separation process 14 in the first embodiment. For this reason, the same members as the members shown in FIG.

石炭ガス化設備24からガス精製設備25を介して燃焼器23に送られる石炭ガス化ガスは、一部の成分(CO)が分離され、COが分離されて成分が調節された石炭ガス化ガス(Hリッチガス)が燃焼器23に送られ、出力が調整される。即ち、燃焼器23に送られる石炭ガス化ガスは、CO分離プロセス10でCOが分離され、COが分離された石炭ガス化ガス(Hリッチガス)が燃焼器23に送られる。 The coal gasification gas sent from the coal gasification facility 24 to the combustor 23 via the gas purification facility 25 is a coal gasification gas in which a part of the components (CO) is separated, the CO is separated, and the components are adjusted. (H 2 rich gas) is sent to the combustor 23 to adjust the output. That is, the coal gasification gas sent to the combustor 23 is CO separated in the CO separation process 10, and the coal gasification gas (H 2 rich gas) from which CO is separated is sent to the combustor 23.

石炭ガス化ガスから分離された成分の一部であるCOは分岐路28に分岐されて貯槽9に貯められ、パイプライン3に送られる。   CO, which is a part of the components separated from the coal gasification gas, is branched into the branch passage 28 and stored in the storage tank 9 and sent to the pipeline 3.

調整弁29が電力供給の状況に応じて制御されることで、燃焼器23に送られる石炭ガス化ガスの成分(CO、H)が調節され、石炭ガス化設備24の稼働率を維持した状態で(稼働状況を変化させずに)、電力供給の状況の変化(発電設備の出力の変動)が吸収される。例えば、電力供給を抑制する状況の場合、燃焼器23に送られる石炭ガス化ガスのCO成分を分離し、石炭ガス化設備24の稼動状況を変化させずに燃焼ガスの成分を調整し(COを除き)、膨張タービン22の出力を低下させる。 The component (CO, H 2 ) of the coal gasification gas sent to the combustor 23 is adjusted by controlling the control valve 29 according to the state of the power supply, and the operation rate of the coal gasification facility 24 is maintained. In the situation (without changing the operating situation), changes in the situation of the power supply (fluctuations in the output of the power plant) are absorbed. For example, in a situation where the power supply is suppressed, the CO component of the coal gasification gas sent to the combustor 23 is separated, and the component of the combustion gas is adjusted without changing the operation status of the coal gasification facility 24 (CO Lower the output of the expansion turbine 22).

従って、出力の変動の要求があった場合に速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させずに石炭ガス化発電設備11Dの全体の稼働率を維持することが可能になる。   Therefore, when there is a demand for fluctuation of output, it becomes possible to respond promptly to fluctuation, and maintain the overall operation rate of the coal gasification power generation facility 11D without reducing the operation rate of the coal gasification facility 24. It will be possible to

制御手段31で、再生可能エネルギー発電設備5の出力が変動(増加)したことが判断されると、調整弁29が制御されて分離されたCOの供給量が調整(増加)され、燃焼器23に送られる石炭ガス化ガスのCO成分が除かれて膨張タービン22の出力を低下させる。   When the control means 31 determines that the output of the renewable energy power generation facility 5 has fluctuated (increased), the control valve 29 is controlled to adjust (increase) the supplied amount of CO, and the combustor 23 The CO component of the coal gasification gas sent to the is removed to reduce the output of the expansion turbine 22.

従って、第1実施例と同様に、再生可能エネルギー発電設備5の出力の変動に応じて、制御手段31で電力供給の状況が判断される。そして、分離されるCOの状況が調節され、再生可能エネルギー発電設備5の出力の変動があっても、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させることなく、石炭ガス化発電設備11Dの全体の稼働率が維持される。   Therefore, as in the first embodiment, the control means 31 determines the state of the power supply according to the fluctuation of the output of the renewable energy power generation facility 5. Then, the situation of the separated CO is adjusted, and even if there is a change in the output of the renewable energy power generation facility 5, it becomes possible to promptly cope with the change and lower the operation rate of the coal gasification facility 24 As a result, the overall operation rate of the coal gasification power generation facility 11D is maintained.

この結果、石炭ガス化発電設備11Dに出力の変動の要求があった場合でも、速やかに変動に対応し、石炭ガス化設備24の稼働率を低下させずに(稼働率を高い状態のまま維持して)、石炭ガス化発電設備11Dの稼働率を維持することが可能になる。つまり、石炭ガス化設備24での石炭ガス化ガスの生成量(石炭の処理量)を安定させて石炭ガス化発電設備11Dを運用することが可能になる。   As a result, even when the coal gasification power generation facility 11D is requested to have a fluctuation in output, the fluctuation is promptly dealt with and the operation rate of the coal gasification facility 24 is not reduced (the operation rate is maintained high ), It is possible to maintain the operating rate of the coal gasification power generation facility 11D. That is, it becomes possible to operate the coal gasification power generation facility 11D by stabilizing the amount of generated coal gasification gas (processed amount of coal) in the coal gasification facility 24.

図7に基づいて、石炭ガス化発電設備11(IGCC)の他の実施例を説明する。図7には本発明の第6実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。   Another embodiment of the coal gasification power generation facility 11 (IGCC) will be described based on FIG. FIG. 7 shows a system state for describing the entire configuration of the coal gasification power generation facility according to the sixth embodiment of the present invention.

第6実施例は、第5実施例(図6)に対し、燃焼器23に酸化剤としてOが供給されると共に、排熱回収ボイラ26で熱回収された排気ガス(CO)が圧縮機21に送られる構成となっている。即ち、図3に示した第2実施例に対応している。このため、図3、図6に示した部材と同一部材には同一符号を付して重複する説明は省略してある。 In the sixth embodiment, as compared with the fifth embodiment (FIG. 6), O 2 is supplied to the combustor 23 as an oxidant and the exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 is compressed. It is configured to be sent to the machine 21. That is, this corresponds to the second embodiment shown in FIG. For this reason, the same members as the members shown in FIG. 3 and FIG. 6 are assigned the same reference numerals and redundant explanations are omitted.

排熱回収ボイラ26で熱回収された排気ガス(CO)を圧縮機21に送る循環経路36(循環手段)が備えられ、排熱回収ボイラ26で熱回収された排気ガス(CO)は圧縮機21に送られる。循環経路36には、CO回収装置37が分岐して備えられ、CO回収装置37では排気ガスからHOが分離されてCOが回収される。排熱回収ボイラ26で熱回収された排気ガス(CO)は圧縮機21に送られる。 A circulation path 36 (circulating means) for sending exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 to the compressor 21 is provided, and exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 is It is sent to the compressor 21. The circulation path 36, CO 2 recovering apparatus 37 is provided with branches, CO 2 recovering apparatus 37 in to H 2 O is separated from the exhaust gas CO 2 is recovered. Exhaust gas (CO 2 ) heat-recovered by the exhaust heat recovery boiler 26 is sent to the compressor 21.

尚、本明細書で記載された、排気ガス(CO)は、前述同様に、特別な記載がない限り、COを主成分とする排気ガスを意味しており、その他の成分としてHOが含まれるものである。 Incidentally, as described herein, the exhaust gas (CO 2) is the same way as described above, unless otherwise specified, means a exhaust gas mainly composed of CO 2, H 2 as the other components O is included.

CO回収装置37で回収されたCOの一部が石炭ガス化設備24に供給される。COの一部が石炭ガス化設備24に供給されることで、分離されるCOの供給量を増加させることができる。尚、図6に示した第5実施例の石炭ガス化設備24に、酸化剤としてCOを供給することも可能である。 CO 2 recovering apparatus portion of the recovered CO 2 at 37 is supplied to the coal gasification equipment 24. By supplying a part of the CO 2 to the coal gasification facility 24, the supply amount of CO to be separated can be increased. It is also possible to supply CO 2 as an oxidant to the coal gasification facility 24 of the fifth embodiment shown in FIG.

第6実施例の石炭ガス化発電設備11Eは、酸素製造設備35からO含有ガスを燃焼器23に供給し、排熱回収ボイラ26で熱回収された排気ガスを(CO)を圧縮機21から燃焼器23に供給することにより、COを循環させる閉サイクルの設備を構築することができる。 The coal gasification power generation facility 11E of the sixth embodiment supplies the O 2 -containing gas from the oxygen production facility 35 to the combustor 23, and heats the exhaust gas recovered by the exhaust heat recovery boiler 26 into a compressor (CO 2 ) By supplying the combustor 21 with the combustor 23, a closed cycle facility for circulating CO 2 can be constructed.

そして、第5実施例と同様に、制御手段31で、再生可能エネルギー発電設備5の出力が変動(増加)したことが判断されると、調整弁29が制御されて分離されたCOの供給量が調整(増加)され、燃焼器23に送られる石炭ガス化ガスのCO成分が除かれて膨張タービン22の出力を低下させる。このため、再生可能エネルギー発電設備5の出力の変動があっても、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させることなく、石炭ガス化発電設備11Eの全体の稼働率が維持される。   Then, as in the fifth embodiment, when it is judged by the control means 31 that the output of the renewable energy power generation facility 5 has fluctuated (increased), the adjustment valve 29 is controlled and the separated supply amount of CO Is adjusted (increased) to remove the CO component of the coal gasification gas sent to the combustor 23 and reduce the output of the expansion turbine 22. For this reason, even if the output of the renewable energy power generation facility 5 fluctuates, it is possible to promptly cope with the fluctuation, and the coal gasification power generation facility 11E can be performed without reducing the operation rate of the coal gasification facility 24. The overall availability of is maintained.

図8に基づいて、石炭ガス化発電設備11(IGCC)の他の実施例を説明する。図8には本発明の第7実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。   Another embodiment of the coal gasification power generation facility 11 (IGCC) will be described based on FIG. FIG. 8 shows a system state for explaining the entire configuration of the coal gasification power generation facility according to the seventh embodiment of the present invention.

第7実施例は、第5実施例(図6)に対し、パイプライン3の天然ガスの組成情報に基づいて、石炭ガス化ガスの投入量を制御する構成となっている。図6に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   The seventh embodiment is configured to control the input amount of coal gasification gas based on the composition information of the natural gas of the pipeline 3 in the fifth embodiment (FIG. 6). The same members as those shown in FIG. 6 are denoted by the same reference numerals, and duplicate explanations are omitted.

図に示すように、石炭ガス化発電設備11Fは、パイプライン3には天然ガスの組成情報を検出する組成検出手段45が備えられ、組成検出手段45で検出された情報は、組成制御手段46に入力される。貯槽9とパイプライン3の間には組成調整弁48が備えられている。組成調整弁48は組成制御手段46の指令に基づいて開閉制御される。   As shown in the figure, the coal gasification power generation facility 11F is provided with the composition detection means 45 for detecting composition information of natural gas in the pipeline 3, and the information detected by the composition detection means 45 is the composition control means 46. Is input to A composition control valve 48 is provided between the reservoir 9 and the pipeline 3. The composition control valve 48 is controlled to open and close based on the command of the composition control means 46.

組成検出手段45によりパイプライン3の組成情報が検出され、パイプライン3の天然ガスの組成が所望の状態(例えば、露点、燃焼速度、熱量、天然ガスとの成分比率)に維持されるように、組成調整弁48が組成制御手段46により開閉制御され、分岐路28に送られ、貯槽9に貯蔵されたCO成分の供給量が調整される。   The composition information of the pipeline 3 is detected by the composition detection means 45 so that the composition of the natural gas in the pipeline 3 is maintained in a desired state (for example, dew point, burning rate, heat quantity, component ratio with natural gas) The composition control valve 48 is controlled to open and close by the composition control means 46, sent to the branch passage 28, and the supply amount of the CO component stored in the storage tank 9 is adjusted.

第7実施例の石炭ガス化発電設備11Fは、CO成分をパイプライン3に投入しても、パイプライン3の天然ガスの組成状態を維持することができる。   The coal gasification power generation facility 11F of the seventh embodiment can maintain the composition state of the natural gas of the pipeline 3 even if the CO component is introduced into the pipeline 3.

そして、第5実施例と同様に、制御手段31で、再生可能エネルギー発電設備5の出力が変動(増加)したことが判断されると、調整弁29が制御されて分離されたCOの供給量が調整(増加)され、燃焼器23に送られる石炭ガス化ガスのCO成分が除かれて膨張タービン22の出力を低下させる。このため、再生可能エネルギー発電設備5の出力の変動があっても、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させることなく、石炭ガス化発電設備11Fの全体の稼働率が維持される。   Then, as in the fifth embodiment, when it is judged by the control means 31 that the output of the renewable energy power generation facility 5 has fluctuated (increased), the adjustment valve 29 is controlled and the separated supply amount of CO Is adjusted (increased) to remove the CO component of the coal gasification gas sent to the combustor 23 and reduce the output of the expansion turbine 22. For this reason, even if the output of the renewable energy power generation facility 5 fluctuates, it becomes possible to promptly cope with the fluctuation, and the coal gasification power generation facility 11F can be performed without reducing the operation rate of the coal gasification facility 24. The overall availability of is maintained.

図9に基づいて、石炭ガス化発電設備11(IGCC)の他の実施例を説明する。図9には本発明の第8実施例に係る石炭ガス化発電設備の全体の構成を説明する系統状況を示してある。   Another embodiment of the coal gasification power generation facility 11 (IGCC) will be described based on FIG. FIG. 9 shows a system state for explaining the entire configuration of the coal gasification power generation facility according to the eighth embodiment of the present invention.

第8実施例は、第5実施例(図6)に対し、分離されたCOを化学製品に変換してパイプライン3に送る構成となっている。   The eighth embodiment is configured to convert separated CO into a chemical product and send it to the pipeline 3 in contrast to the fifth embodiment (FIG. 6).

図に示すように、石炭ガス化発電設備11Gは、分岐路28にはCO分離プロセス10で分離されたCO(H分離プロセス14で分離されたH、またはCO及びH)が送られて化学製品(炭化水素、NH等)が合成される化学製品合成設備51が備えられている。化学製品合成設備51には、例えば、HO、COが供給され、石炭ガス化ガスが炭化水素であるCH(もしくは、メタノール、DME)に合成される。合成された化学製品はパイプライン3に送られる。 As shown in the figure, the coal gasification power generation equipment. 11G, (H 2 separated with H 2 separation process 14 or CO and H 2,) CO separated in CO separation process 10 is sent to the branch passage 28 A chemical product synthesis facility 51 is provided to synthesize chemical products (hydrocarbons, NH 3, etc.). For example, H 2 O and CO 2 are supplied to the chemical product synthesis facility 51, and the coal gasification gas is synthesized into CH 4 (or methanol, DME) which is a hydrocarbon. The synthesized chemical product is sent to pipeline 3.

ここでは、CO分離プロセス10を用いて炭化水素を製造する場合を主に説明したが、NHを製造する場合には、CO分離プロセス10に代えて、H分離プロセス14を設置し、分離されたHを化学製品に変換してパイプライン3に送る構成とする。 Here, the case of producing hydrocarbons using the CO separation process 10 was mainly described, but in the case of producing NH 3 , the H 2 separation process 14 is installed instead of the CO separation process 10 and separation is performed. The converted H 2 is converted into a chemical product and sent to the pipeline 3.

第8実施例の石炭ガス化発電設備11Gは、CO分離プロセス10で分離されたCOを化学製品(炭化水素、NH等)に変換してパイプライン3に送ることができる。このため、天然ガスの組成を所望の状態に制御することが容易になる。 The coal gasification power generation facility 11 G of the eighth embodiment can convert the CO separated in the CO separation process 10 into chemical products (hydrocarbons, NH 3, etc.) and send it to the pipeline 3. For this reason, it becomes easy to control the composition of natural gas to a desired state.

そして、第5実施例と同様に、制御手段31で、再生可能エネルギー発電設備5の出力が変動(増加)したことが判断されると、調整弁29が制御されて分離されたCOの供給量が調整(増加)され、燃焼器23に送られる石炭ガス化ガスのCO成分が除かれて膨張タービン22の出力を低下させる。このため、再生可能エネルギー発電設備5の出力の変動があっても、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率を低下させることなく、石炭ガス化発電設備11Gの全体の稼働率が維持される。   Then, as in the fifth embodiment, when it is judged by the control means 31 that the output of the renewable energy power generation facility 5 has fluctuated (increased), the adjustment valve 29 is controlled and the separated supply amount of CO Is adjusted (increased) to remove the CO component of the coal gasification gas sent to the combustor 23 and reduce the output of the expansion turbine 22. For this reason, even if the output of the renewable energy power generation facility 5 fluctuates, it becomes possible to promptly cope with the fluctuation, and the coal gasification power generation facility 11G can be performed without reducing the operation rate of the coal gasification facility 24. The overall availability of is maintained.

上述した石炭ガス化発電設備11、12は、要求出力の変動(電力供給の状況)により
石炭ガス化ガスの一部の成分をパイプライン3に送り、石炭ガス化設備24の稼働率を維持した状態で、石炭ガス化発電設備11、12の出力の変動(要求出力の変動)を吸収することができる。従って、速やかに変動に対応することが可能になり、石炭ガス化設備24の稼働率が低下することがなく、石炭ガス化発電設備11、12の全体の稼働率を大きく低下させることなく稼働率を維持することが可能になる。
The coal gasification power generation equipment 11 and 12 which were mentioned above sent a part of component of coal gasification gas to the pipeline 3 by fluctuation of demand output (the situation of electric power supply), and maintained the operation rate of coal gasification equipment 24 In the state, it is possible to absorb the fluctuation of the output of the coal gasification power generation equipment 11 and 12 (the fluctuation of the required output). Therefore, it becomes possible to respond quickly to fluctuations, and the operating rate of the coal gasification facility 24 does not decrease, and the operating rate of the coal gasification power plant 11, 12 is not significantly reduced. It will be possible to maintain

尚、第1実施例から第8実施例の構成を適宜組み合わせて石炭ガス化発電設備を構築することが可能である。また、石炭を原料として記載したが、石炭に代えて重質油、天然ガス等の化石燃料を使用することも可能である。   Incidentally, it is possible to construct a coal gasification power generation facility by appropriately combining the configurations of the first embodiment to the eighth embodiment. Moreover, although coal was described as a raw material, it is also possible to replace with coal and to use fossil fuels, such as heavy oil and natural gas.

本発明は、石炭ガス化発電設備の産業分野で利用することができる。   The present invention can be used in the industrial field of coal gasification power generation equipment.

1 貯蔵設備
2 需要地
3 パイプライン
4 送配電設備
5 再生可能エネルギー発電設備
6 LNG火力発電設備
7 微粉炭火力発電設備
8 原子力発電設備
9 貯槽
10 CO分離プロセス
11、12 石炭ガス化発電設備
13 H製造設備
14 H分離プロセス
15 ガスタービン
16 蒸気タービン
17、18 発電機
21 圧縮機
22 膨張タービン
23 燃焼器
24 石炭ガス化設備
25 ガス精製設備
26 排熱回収ボイラ
28 分岐路
29 調整弁
31 制御手段
35 酸素製造設備
36 循環経路
37 CO回収装置
38 HO供給手段
39 HO供給路
40 HO調整弁
41 燃料電池
42 後燃焼器
45 組成検出手段
46 組成制御手段
48 組成調整弁
51 化学製品合成設備

Reference Signs List 1 storage facility 2 demand place 3 pipeline 4 transmission and distribution facility 5 renewable energy power generation facility 6 LNG thermal power generation facility 7 pulverized coal thermal power generation facility 8 nuclear power generation facility 9 storage tank 10 CO separation process 11, 12 coal gasification power generation facility 13 H 2 Manufacturing Equipment 14 H 2 Separation Process 15 Gas Turbine 16 Steam Turbine 17, 18 Generator 21 Compressor 22 Expansion Turbine 23 Combustor 24 Coal Gasification Equipment 25 Gas Purification Equipment 26 Exhaust Heat Recovery Boiler 28 Branch 29 Adjustment Valve 31 Control Means 35 Oxygen production facility 36 Circulation path 37 CO 2 recovery device 38 H 2 O supply means 39 H 2 O supply path 40 H 2 O control valve 41 Fuel cell 42 Post-combustor 45 Composition detection means 46 Composition control means 48 Composition adjustment valve 51 Chemical Product Synthesis Equipment

Claims (11)

石炭をガス化して石炭ガス化ガスを得る石炭ガス化ガス製造手段と、
前記石炭ガス化ガス製造手段で得られた前記石炭ガス化ガスが送られて高温・高圧ガスを得る膨張ガス生成手段と、
前記膨張ガス生成手段で得られた前記高温・高圧ガスを膨張させて発電動力を得る膨張タービンと、
電力供給の状況に基づいて、前記膨張ガス生成手段に送る前記石炭ガス化ガスの成分の一部を分離することで、前記膨張ガス生成手段に送る前記石炭ガス化ガスの成分の状況を調節し、前記石炭ガス化ガス製造手段の稼働状況を調整するガス化ガス成分調節手段とを備えた
ことを特徴とする石炭ガス化発電設備。
Coal gasification gas production means for gasifying coal to obtain coal gasification gas;
Expansion gas generation means for sending the coal gasification gas obtained by the coal gasification gas production means to obtain high temperature / high pressure gas;
An expansion turbine for generating power by expanding the high temperature / high pressure gas obtained by the expansion gas generation means;
By separating a part of the component of the coal gasification gas sent to the expansion gas generation means based on the state of power supply, the state of the component of the coal gasification gas sent to the expansion gas generation means is adjusted A coal gasification power generation facility, comprising: gasification gas component adjustment means for adjusting the operation status of the coal gasification gas production means.
請求項1に記載の石炭ガス化発電設備において、
前記膨張タービンの排気ガスが熱回収されて蒸気を発生させる排熱回収ボイラと、
前記排熱回収ボイラで発生した蒸気により駆動されて発電動力を得る蒸気タービンとを更に備えた
ことを特徴とする石炭ガス化発電設備。
In the coal gasification power generation facility according to claim 1,
An exhaust heat recovery boiler that recovers heat from exhaust gas of the expansion turbine to generate steam;
A coal gasification power generation facility, further comprising: a steam turbine driven by steam generated by the waste heat recovery boiler to obtain power generation power.
請求項2に記載の石炭ガス化発電設備において、
前記膨張ガス生成手段にO含有ガスを供給する酸化剤供給手段と、
前記排熱回収ボイラで熱回収された排気ガスを前記膨張ガス生成手段に供給する循環手段とを備えた
ことを特徴とする石炭ガス化発電設備。
In the coal gasification power generation facility according to claim 2,
An oxidant supply means for supplying an O 2 -containing gas to the expansion gas generation means;
A coal gasification power generation facility, comprising: circulation means for supplying exhaust gas heat-recovered by the waste heat recovery boiler to the expansion gas generation means.
請求項1から請求項3のいずれか一項に記載の石炭ガス化発電設備において、
前記ガス化ガス成分調節手段は、
前記電力供給の状況を判断する制御手段と、
前記制御手段の判断に基づいて、前記石炭ガス化ガスの成分を分離し、分離した成分を系外の設備に供給することで、前記膨張ガス生成手段に送る前記石炭ガス化ガスの成分の状況を調節する分離供給手段とを有する
ことを特徴とする石炭ガス化発電設備。
In the coal gasification power generation equipment according to any one of claims 1 to 3,
The gasification gas component adjustment means
Control means for determining the status of the power supply;
Based on the judgment of the control means, the component of the coal gasification gas is separated, and the separated component is supplied to equipment outside the system to send the state of the component of the coal gasification gas to the expansion gas generation means A coal gasification power generation facility characterized by comprising:
請求項4に記載の石炭ガス化発電設備において、
分離される前記石炭ガス化ガスの成分は、Hを含む
ことを特徴とする石炭ガス化発電設備。
In the coal gasification power generation facility according to claim 4,
Component of the coal gasification gas to be separated, coal gasification power plant, characterized in that it comprises an H 2.
請求項5に記載の石炭ガス化発電設備において、
前記石炭ガス化ガス製造手段にHOを供給するHO供給手段を備え、
前記HO供給手段からHOを供給することにより、前記分離される前記石炭ガス化ガスの成分であるHを増加させる
ことを特徴とする石炭ガス化発電設備。
In the coal gasification power generation facility according to claim 5,
Comprising of H 2 O supply means for supplying of H 2 O in the coal gasification gas production unit,
A coal gasification power generation facility characterized by increasing H 2 which is a component of the separated coal gasification gas by supplying H 2 O from the H 2 O supply means.
請求項5もしくは請求項6に記載の石炭ガス化発電設備において、
前記分離供給手段で分離された前記石炭ガス化ガスの成分が供給される系外の設備は、Hの需要設備である
ことを特徴とする石炭ガス化発電設備。
In the coal gasification power generation facility according to claim 5 or 6,
A facility outside the system to which the component of the coal gasification gas separated by the separation and supply means is supplied is a demand facility of H 2. A coal gasification power generation facility characterized by:
請求項1から請求項4のいずれか一項に記載の石炭ガス化発電設備において、
分離される前記石炭ガス化ガスの成分は、COを含む
ことを特徴とする石炭ガス化発電設備。
The coal gasification power generation facility according to any one of claims 1 to 4.
The component of the said coal gasification gas separated contains CO. The coal gasification power generation equipment characterized by the above-mentioned.
請求項1から請求項8のいずれか一項に記載の石炭ガス化発電設備において、
前記膨張ガス生成手段は、
前記石炭ガス化ガスを燃焼し前記高温・高圧ガスとして燃焼ガスを前記膨張タービンに送る燃焼器である
ことを特徴とする石炭ガス化発電設備。
The coal gasification power generation facility according to any one of claims 1 to 8.
The expansion gas generation means is
A coal gasification power generation facility, comprising: a combustor that burns the coal gasification gas and sends the combustion gas as the high temperature / high pressure gas to the expansion turbine.
請求項1から請求項8のいずれか一項に記載の石炭ガス化発電設備において、
前記膨張ガス生成手段は、
前記石炭ガス化ガスが燃料極に送られ、空気極に酸化剤が送られて電気化学反応により発電を行うと共に、反応後のガスを前記高温・高圧ガスとして前記膨張タービンに送る燃料電池である
ことを特徴とする石炭ガス化発電設備。
The coal gasification power generation facility according to any one of claims 1 to 8.
The expansion gas generation means is
The fuel gas is sent to the fuel electrode from the coal gasification gas, the oxidant is sent to the air electrode to generate electricity by electrochemical reaction, and a fuel cell after reaction is sent to the expansion turbine as the high temperature / high pressure gas. Coal gasification power generation facility characterized by
請求項1から請求項10のいずれか一項に記載の石炭ガス化発電設備において、
前記膨張タービンで発電された電力が送られる電力系統と、
前記電力系統に接続される再生可能エネルギー発電設備とを更に備え、
前記ガス化ガス成分調節手段は、
前記再生可能エネルギー発電設備の出力の変動に応じて前記電力供給の状況を判断し、前記電力供給の状況に基づいて前記石炭ガス化ガスの成分の分離状況を調節する
ことを特徴とする石炭ガス化発電設備。

The coal gasification power generation facility according to any one of claims 1 to 10,
A power system to which electric power generated by the expansion turbine is sent;
And a renewable energy generation facility connected to the power system,
The gasification gas component adjustment means
The state of the power supply is determined according to the fluctuation of the output of the renewable energy power generation facility, and the separation state of the component of the coal gasification gas is adjusted based on the state of the power supply. Power generation equipment.

JP2017208546A 2017-10-27 2017-10-27 Coal gasification power generation facility Pending JP2019082118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017208546A JP2019082118A (en) 2017-10-27 2017-10-27 Coal gasification power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017208546A JP2019082118A (en) 2017-10-27 2017-10-27 Coal gasification power generation facility

Publications (1)

Publication Number Publication Date
JP2019082118A true JP2019082118A (en) 2019-05-30

Family

ID=66670282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017208546A Pending JP2019082118A (en) 2017-10-27 2017-10-27 Coal gasification power generation facility

Country Status (1)

Country Link
JP (1) JP2019082118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351793B2 (en) 2020-05-08 2023-09-27 一般財団法人電力中央研究所 Coal-fired power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214631A (en) * 1996-12-19 1998-08-11 Westinghouse Electric Corp <We> Device and method of reproducing electricity and by-producing hydrogen
JP2007138900A (en) * 2005-11-22 2007-06-07 Chugoku Electric Power Co Inc:The Electric power generation system combined with hydrogen production facility, electric power generating method
JP2014105593A (en) * 2012-11-26 2014-06-09 Central Research Institute Of Electric Power Industry Co2 recovery type gasification gas power generation plant
JP2016502020A (en) * 2012-12-06 2016-01-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Integrated facilities and flexible usage of electricity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214631A (en) * 1996-12-19 1998-08-11 Westinghouse Electric Corp <We> Device and method of reproducing electricity and by-producing hydrogen
JP2007138900A (en) * 2005-11-22 2007-06-07 Chugoku Electric Power Co Inc:The Electric power generation system combined with hydrogen production facility, electric power generating method
JP2014105593A (en) * 2012-11-26 2014-06-09 Central Research Institute Of Electric Power Industry Co2 recovery type gasification gas power generation plant
JP2016502020A (en) * 2012-12-06 2016-01-21 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Integrated facilities and flexible usage of electricity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351793B2 (en) 2020-05-08 2023-09-27 一般財団法人電力中央研究所 Coal-fired power generation system

Similar Documents

Publication Publication Date Title
DK2334590T3 (en) Power Supply System and method of operation
Li et al. Performance and costs of advanced sustainable central power plants with CCS and H2 co-production
JP5229772B2 (en) Power generation equipment
US20100076097A1 (en) Chemical Product Providing System and Method for Providing a Chemical Product
KR20160028479A (en) Flexibly operable power plant and method for the operation thereof
Kezibri et al. Conceptual design and modelling of an industrial scale power to gas-oxy-combustion power plant
CA2623824A1 (en) Method for generating power
Buttler et al. IGCC–EPI: Decentralized concept of a highly load-flexible IGCC power plant for excess power integration
Filippov et al. Coal gasification: at the crossroads. economic outlook
US20240125278A1 (en) Blended fuel dispensing system with adaptive fuel storage parameters
Spazzafumo Cogeneration of power and substitute of natural gas using electrolytic hydrogen, biomass and high temperature fuel cells
JP2013522516A (en) Power generation method using air gas separation device and combustion device
JP2019082118A (en) Coal gasification power generation facility
US20140021721A1 (en) Method and apparatus for efficient balancing baseload power generation production deficiencies against power demand transients
US20100126135A1 (en) Method and apparatus for operating an integrated gasifier power plant
JP6978277B2 (en) Coal gasification power generation equipment
KR102423015B1 (en) Multi power generation system responsive to power demand and operation methd for the same
NL1029758C2 (en) System and method for integration of renewable energy and fuel cell for the production of electricity and hydrogen.
JP2007138900A (en) Electric power generation system combined with hydrogen production facility, electric power generating method
EP2758638A2 (en) Energy storage technology for demanded supply optimisation
Gülen et al. Hydrogen and Gas Turbines–A Rational Approach
JP2018204601A (en) Power generation system producing fuel and raw material
JP6301118B2 (en) Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system
Ghasemzadeh et al. Cost estimation of an integrated system for co-production of electricity and methanol
EP3979461A1 (en) Facility for compensating external power supply fluctuations and method for operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211027