KR102423015B1 - Multi power generation system responsive to power demand and operation methd for the same - Google Patents

Multi power generation system responsive to power demand and operation methd for the same Download PDF

Info

Publication number
KR102423015B1
KR102423015B1 KR1020200049390A KR20200049390A KR102423015B1 KR 102423015 B1 KR102423015 B1 KR 102423015B1 KR 1020200049390 A KR1020200049390 A KR 1020200049390A KR 20200049390 A KR20200049390 A KR 20200049390A KR 102423015 B1 KR102423015 B1 KR 102423015B1
Authority
KR
South Korea
Prior art keywords
hydrogen
power
fuel cell
renewable energy
generation system
Prior art date
Application number
KR1020200049390A
Other languages
Korean (ko)
Other versions
KR20210131499A (en
Inventor
장대준
박성호
박현준
Original Assignee
한국수력원자력 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사, 한국과학기술원 filed Critical 한국수력원자력 주식회사
Priority to KR1020200049390A priority Critical patent/KR102423015B1/en
Publication of KR20210131499A publication Critical patent/KR20210131499A/en
Application granted granted Critical
Publication of KR102423015B1 publication Critical patent/KR102423015B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0581Power plants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

재생에너지를 이용하여 전력을 생산하는 재생에너지발전시스템; 상기 재생에너지발전지스템에서 생산된 전력을 공급받아 수소를 생산하는 수전해시스템; 상기 수전해시스템에서 생산된 수소를 공급받아 전력을 생산하는 연료전지시스템; 및 상기 재생에너지발전시스템에서 생산된 전력을 제어하는 제 1 제어부를 포함하며, 상기 제 1 제어부는, 상기 재생에너지발전지스템에서 생산된 전력이 기설정된 기준치를 초과하는 경우 상기 전력을 상기 수전해시스템으로 공급하여 수소를 생산하는 것을 특징으로 하는, 전력수요 대응형 재생에너지-연료전지 다중 발전시스템이 제공된다. Renewable energy generation system for generating electricity using renewable energy; a water electrolysis system for producing hydrogen by receiving electric power produced by the renewable energy generation system; a fuel cell system that receives hydrogen produced in the water electrolysis system and generates electricity; and a first control unit for controlling the power generated by the renewable energy generation system, wherein the first control unit receives and electrolyzes the power when the power generated by the renewable energy generation system exceeds a preset reference value Renewable energy-fuel cell multiple power generation system corresponding to power demand, characterized in that it is supplied to the system to produce hydrogen.

Description

전력수요 대응형 재생에너지-연료전지 다중 발전시스템 및 그 운용방법{Multi power generation system responsive to power demand and operation methd for the same}Multi power generation system responsive to power demand and operation methd for the same}

본 발명은 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 및 그 운용방법에 관한 것으로, 보다 상세하게는 출력이 가변적인 재생에너지 발전시스템을 통하여 수소를 생산하고 생산된 수소를 탄력적으로 운용하여 전력수요에 대하여 탄력적 대응이 가능한 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 및 그 운용방법에 관한 것이다.The present invention relates to a power demand-responsive renewable energy-fuel cell multiple power generation system and an operating method thereof, and more particularly, to generate hydrogen through a renewable energy power generation system with a variable output and flexibly operate the produced hydrogen to generate power It relates to a power demand responsive renewable energy-fuel cell multiple power generation system capable of flexibly responding to demand and an operating method thereof.

재생에너지는 화석연료나 우라늄과 달리 고갈되지 않기 때문에 지속적으로 이용할 수 있는 에너지로서, 태양에너지, 풍력, 수력, 바이오 에너지, 지열, 조력, 파력 등 다양한 종류가 있다.Unlike fossil fuels or uranium, renewable energy is energy that can be used continuously because it is not depleted.

하지만, 재생에너지원 확대 보급에 따라 기상 조건 등에 따라 설비 출력이 변화하는 재생에너지원 특성이 전력 계통에 미치는 영향이 커질 것으로 예상된다. However, with the expansion of renewable energy sources, it is expected that the effects of the characteristics of renewable energy sources, which change facility output depending on weather conditions, etc., on the power system will increase.

이러한 문제를 보완하기 위해서 리튬이온 배터리와 같은 화학 배터리 연계를 통한 전력 계통 안전성 확보가 확대 보급 되고 있으나, 대용량 리튬 이온 배터리의 경제적/기술적 어려움으로 인해서 대안이 필요한 상황이다. In order to compensate for this problem, securing power system safety through the connection of chemical batteries such as lithium-ion batteries is expanding and spreading, but alternatives are needed due to the economic/technical difficulties of large-capacity lithium-ion batteries.

이를 위해 재생에너지원으로부터 발생되는 잉여전력을 수전해를 통해 수소를 생산하고 이를 저장한 후 전력 수요 급증이 발생할 시 이를 다시 연료전지나 가스터빈에 공급하여 전력으로 전환하는 방식이 주목 받고 있다. To this end, attention is being paid to a method of converting surplus power generated from renewable energy sources into electricity by producing hydrogen through water electrolysis, storing it, and then supplying it to fuel cells or gas turbines when there is a surge in power demand.

하지만 재생에너지원 자체의 가동률(연간 운용률)이 상대적으로 낮고, 여기에 수요/공급에 따른 잉여전력을 추산한다면 그 비율은 현저하게 낮아지게 된다. 즉, 저장된 수소를 다시 전기로 변환하기 위해 운용되는 연료전지나 가스터빈의 이용률 또한 현저하게 낮아져 경제성 확보가 어려우며, 특히 수소를 연료로 이용할 수 있는 연료전지나 가스터빈은 화력발전의 스팀터빈이나 엔진 발전기에 비해서 상대적으로 비싸므로 경제성 확보가 어렵다는 문제가 있다. However, the utilization rate (annual operation rate) of the renewable energy source itself is relatively low, and if the surplus power according to demand/supply is estimated here, the ratio will be significantly lowered. That is, the utilization rate of fuel cells or gas turbines operated to convert stored hydrogen back into electricity is also significantly lowered, making it difficult to secure economic feasibility. Since it is relatively expensive, it is difficult to secure economic feasibility.

대한민국 공개특허 10-2019-0066857 " 태양광-수소 기반의 소형 전력 발생 장치 및 그 방법"Korean Patent Laid-Open Patent No. 10-2019-0066857 "Solar-hydrogen-based small power generation device and method therefor"

따라서, 본 발명이 해결하고자 하는 과제는 재생에너지원 전력과 수전해기로부터 생산된 수소를 부분부하운전을 하는 연료전지에 공급하여 전력수요에 탄력적으로 대응할 수 있는 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 및 그 운용방법을 제공하는 것이다.Therefore, the problem to be solved by the present invention is a renewable energy-fuel cell that can respond flexibly to electricity demand by supplying renewable energy source power and hydrogen produced from a water electrolyzer to a fuel cell that operates under partial load. It is to provide a multiple power generation system and its operating method.

상기 과제를 해결하기 위하여, 본 발명은 재생에너지를 이용하여 전력을 생산하는 재생에너지발전시스템; 상기 재생에너지발전지스템에서 생산된 전력을 공급받아 수소를 생산하는 수전해시스템; 상기 수전해시스템에서 생산된 수소를 공급받아 전력을 생산하는 연료전지시스템; 및 상기 재생에너지발전시스템에서 생산된 전력을 제어하는 제 1 제어부를 포함하며, 상기 제 1 제어부는, 상기 재생에너지발전지스템에서 생산된 전력이 기설정된 기준치를 초과하는 경우 상기 전력을 상기 수전해시스템으로 공급하여 수소를 생산하는 것을 특징으로 하는, 전력수요 대응형 재생에너지-연료전지 다중 발전시스템을 제공한다. In order to solve the above problems, the present invention is a renewable energy generation system for producing electricity using renewable energy; a water electrolysis system for producing hydrogen by receiving electric power produced by the renewable energy generation system; a fuel cell system that receives hydrogen produced in the water electrolysis system and generates electricity; and a first control unit for controlling the power generated by the renewable energy generation system, wherein the first control unit receives and electrolyzes the power when the power generated by the renewable energy generation system exceeds a preset reference value It provides a power demand-responsive renewable energy-fuel cell multiple power generation system, characterized in that it is supplied to the system to produce hydrogen.

본 발명의 일 실시예에서, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은, 상기 수전해시스템에서 생산된 수소를 저장하는 수소저장부를 더 포함한다. In an embodiment of the present invention, the power demand-responsive renewable energy-fuel cell multiple power generation system further includes a hydrogen storage unit for storing hydrogen produced in the water electrolysis system.

본 발명의 일 실시예에서, 상기 연료전지시스템은 상기 수전해시스템에서 생산된 수소외의 천연가스 및 외부 수소를 선택적으로 공급받아 전력을 생산한다. In an embodiment of the present invention, the fuel cell system selectively receives natural gas other than hydrogen produced in the water electrolysis system and external hydrogen to generate electric power.

본 발명의 일 실시예에서, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은, 외부전력수요가 기설정된 기준치 초과인 경우 상기 수소저장부에 저장된 수소를 상기 연료전지시스템으로 공급하여 상기 연료전지시스템으로부터 전력을 생산하는 제 2 제어부를 더 포함한다. In an embodiment of the present invention, the power demand-responsive renewable energy-fuel cell multiple power generation system supplies the hydrogen stored in the hydrogen storage unit to the fuel cell system when the external power demand exceeds a preset reference value to the fuel cell system. It further includes a second control unit for generating power from the battery system.

본 발명의 일 실시예에서, 상기 제 2 제어부는 상기 외부전력수요가 기설정된 기준치 이하인 경우, 상기 외부수소와 천연가스를 상기 연료전지시스템으로 공급하여 상기 연료전지시스템으로부터 전력을 생산한다. In an embodiment of the present invention, when the external power demand is less than or equal to a preset reference value, the second control unit supplies the external hydrogen and natural gas to the fuel cell system to generate power from the fuel cell system.

본 발명의 일 실시예에서, 상기 수소저장부는 상기 수소를 압축수소 또는 액화수소로 저장한다. In one embodiment of the present invention, the hydrogen storage unit stores the hydrogen as compressed hydrogen or liquid hydrogen.

본 발명의 일 실시예에서, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은, 상기 수소저장부가 상기 수소를 액화수소로 저장하는 경우 상기 수소저장부로부터의 액화수소를 기화시켜 냉열을 저장하는 상변화물질부를 더 포함한다. In an embodiment of the present invention, the power demand-responsive renewable energy-fuel cell multiple power generation system stores cold heat by vaporizing liquid hydrogen from the hydrogen storage unit when the hydrogen storage unit stores the hydrogen as liquid hydrogen It further includes a phase change material unit.

본 발명의 일 실시예에서, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은, 상기 수소저장부가 상기 수소를 압축수소로 저장하는 경우 상기 압축수소의 압력에너지를 축동력으로 전환하여 상기 연료전지시스템으로 공급하는 터보차져부를 더 포함한다. In an embodiment of the present invention, the power demand-responsive renewable energy-fuel cell multiple power generation system converts the pressure energy of the compressed hydrogen into axial power when the hydrogen storage unit stores the hydrogen as compressed hydrogen to convert the fuel cell It further includes a turbocharger for supplying the system.

본 발명의 일 실시예에서, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은, 상기 외부전력 수요량 및 상기 수전해시스템에서 생산된 수소량에 따라 상기 연료전지시스템에서 생산되는 전력량을 제어하는 제 3 제어부를 더 포함한다. In an embodiment of the present invention, the power demand-responsive renewable energy-fuel cell multiple power generation system controls the amount of power produced in the fuel cell system according to the external power demand and the amount of hydrogen produced in the water electrolysis system. It further includes a third control unit.

본 발명은 또한 상술한 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 운전방법으로, 재생에너지발전시스템을 이용하여 전력을 생산하는 단계; 상기 생산된 전력을 공급받아 수전해시스템으로부터 수소를 생산하는 단계; 상기 수소를 공급받아 연료전지시스템으로부터 전력을 생산하는 단계를 포함하며, 상기 수소를 생산하는 단계는 상기 재생에너지발전시스템에서 생산된 전력이 기설정된 기준치를 초과하는 경우 상기 전력을 상기 수전해시스템으로 공급하여 수소를 생산하는 것을 특징으로 하는 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 운전방법을 제공한다. The present invention also provides a method for operating the above-described power demand-responsive renewable energy-fuel cell multiple power generation system, the method comprising: generating power using a renewable energy power generation system; receiving the generated power and producing hydrogen from a water electrolysis system; and generating electric power from a fuel cell system by receiving the hydrogen, wherein the generating of hydrogen converts the electric power to the water electrolysis system when the electric power produced by the renewable energy generation system exceeds a preset reference value. It provides a method of operating a renewable energy-fuel cell multiple power generation system responsive to electricity demand, characterized in that it produces hydrogen by supplying it.

본 발명의 일 실시예에서, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 운전방법은, 상기 수전해시스템으로 공급하여 수소를 생산하는 단계 후, 수소를 저장하는 단계; 상기 저장된 수소는 외부전력수요가 기설정된 기준치를 초과하는 경우 상기 수소저장부에 저장된 수소를 상기 연료전지시스템로 공급하여 상기 연료전지시스템으로부터 전력을 생산하는 단계를 더 포함한다. In an embodiment of the present invention, the power demand-responsive renewable energy-fuel cell multiple power generation system operating method includes the steps of supplying hydrogen to the water electrolysis system to produce hydrogen, and then storing hydrogen; The method further includes generating electric power from the fuel cell system by supplying the hydrogen stored in the hydrogen storage unit to the fuel cell system when the external power demand for the stored hydrogen exceeds a preset reference value.

본 발명의 일 실시예에서, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 운전방법은, 외부전력 수요량 및 상기 수전해시스템에서 생산된 수소량을 모니터링하는 단계; 및 상기 모니터링된 외부전력 수요량 및 상기 수전해시스템에서 생산된 수소량에 따라 상기 연료전지시스템에서 생산되는 전력량을 제어하는 단계를 더 포함한다. In an embodiment of the present invention, the power demand-responsive renewable energy-fuel cell multiple power generation system operating method includes: monitoring an external power demand amount and an amount of hydrogen produced in the water electrolysis system; and controlling the amount of electric power produced by the fuel cell system according to the monitored amount of external electric power demand and the amount of hydrogen produced by the water electrolysis system.

본 발명에 따르면, 재생에너지발전지스템에서 생산된 전력을 공급받아 수소를 생산한 후, 이를 저장하여 외부의 전력수요량에 대응하여 연료전지에 수소를 공급, 전력을 생산하므로, 외부 전략수용량에 탄력적인 대응이 가능하다. 특히 외부 대기 조건에 영향을 받는 재생에너지원과, 전력계통의 가변적인 전력수요의 문제를 수전해시스템과 수소저장, 그리고 연료전지시스템으로서 해결할 수 있으므로, 재생에너지의 에너지 효율과 경제성을 제고시킬 수 있다. According to the present invention, since hydrogen is produced by receiving electric power produced by the renewable energy generation system and storing it to supply hydrogen to the fuel cell in response to external electric power demand to produce electric power, it is flexible to external strategic capacity. Human response is possible. In particular, since the problem of renewable energy sources affected by external atmospheric conditions and the variable power demand of the power system can be solved with the water electrolysis system, hydrogen storage, and fuel cell system, the energy efficiency and economic feasibility of renewable energy can be improved. have.

도 1은 본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템의 블록도이다.
도 2는 본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템의 수소저장부에 대한 블록도이다.
도 3 내지 5는 본 발명의 일 실시예에 따른 시스템의 운전방법을 설명하는 단계도이다.
1 is a block diagram of a power demand-responsive renewable energy-fuel cell multiple power generation system according to an embodiment of the present invention.
2 is a block diagram of a hydrogen storage unit of a power demand-responsive renewable energy-fuel cell multiple power generation system according to an embodiment of the present invention.
3 to 5 are step diagrams for explaining a method of operating a system according to an embodiment of the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not

본 발명은 상술한 재생에너지의 외부조건에 의한 영향, 그리고 계속 변화되는 외부 전력 수요량의 문제를 해결하기 위하여, 재생에너지발전시스템-수전해시스템-수소저장-연료전지시스템을 포함하는 전력수요 대응형 재생에너지-연료전지 다중 발전시스템을 제공한다. The present invention provides a power demand response type including a renewable energy generation system-water electrolysis system-hydrogen storage-fuel cell system in order to solve the problem of the influence of the above-described external conditions of renewable energy and the continuously changing external power demand. A renewable energy-fuel cell multi-generation system is provided.

도 1은 본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템의 블록도이다. 1 is a block diagram of a power demand-responsive renewable energy-fuel cell multiple power generation system according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은, 재생에너지를 이용하여 전력을 생산하는 재생에너지발전시스템(100); 상기 재생에너지발전지스템(100)에서 생산된 전력을 공급받아 수소를 생산하는 수전해시스템(200); 상기 수전해시스템(200)에서 생산된 수소를 공급받아 전력을 생산하는 연료전지시스템(300); 및 상기 재생에너지발전시스템(100)에서 생산된 전력을 제어하는 제 1 제어부(110)를 포함한다. Referring to FIG. 1 , a renewable energy-fuel cell multiple power generation system responsive to power demand according to an embodiment of the present invention includes: a renewable energy power generation system 100 for generating power using renewable energy; a water electrolysis system 200 for producing hydrogen by receiving the power produced by the renewable energy generation system 100; a fuel cell system 300 for receiving the hydrogen produced in the water electrolysis system 200 and producing electric power; And it includes a first control unit 110 for controlling the power generated by the renewable energy power generation system (100).

본 발명의 일 실시예에서 재생에너지발전지스템(100)에서 생산된 전력이 기설정된 기준치, 예를 들어 태양광 발전인 경우 낮이나 여름과 같이 태양광 발전량이 많은 경우, 상기 제 1 제어부(110)는 기설정된 기준치 이상의 전력을 상기 수전해시스템으로 공급하여 수소를 생산한다. In an embodiment of the present invention, when the amount of solar power generated by the renewable energy generation system 100 is a preset reference value, for example, in the case of solar power generation, the amount of solar power generation is large, such as during the day or summer, the first control unit 110 ) produces hydrogen by supplying more than a preset reference value to the water electrolysis system.

즉, 본 발명은 재생에너지원의 외부 공급 후의 잉여전력을 사용하여 수소를 생산/저장하고, 이후 전력수요가 급증할 시 부분 부하로 운전 중인 연료전지에 잉여 부하만큼 수소를 공급하여 전력 수요에 대응하도록 한다. That is, the present invention responds to power demand by producing/storing hydrogen by using the surplus power after external supply of a renewable energy source, and then supplying as much hydrogen as the surplus load to the fuel cell operating at partial load when the power demand increases rapidly. do it

도 1을 다시 참조하면, 본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은 상기 수전해시스템(200)으로부터 생산된 수소를 저장하는 수소저장부(210)를 포함할 수 있다. Referring back to FIG. 1 , the power demand-responsive renewable energy-fuel cell multiple power generation system according to an embodiment of the present invention includes a hydrogen storage unit 210 for storing hydrogen produced from the water electrolysis system 200 . can do.

본 발명의 일 실시예에서 상기 수소저장부(210)는 상기 수전해시스템(200)에서 생산된 수소를 압축수소 또는 액화수소로 형태로 저장한 후, 선택적으로 연료전지시스템(300)에 공급하여 전력을 생산한다. In an embodiment of the present invention, the hydrogen storage unit 210 stores the hydrogen produced in the water electrolysis system 200 in the form of compressed hydrogen or liquid hydrogen, and then selectively supplies it to the fuel cell system 300 . generate electricity

본 발명의 일 실시예에서 상기 연료전지시스템(300)은 상기 수전해시스템에서 생산된 수소 또는 외부 수소 공급원(미도시)로부터 수소를 공급받아 전력을 생산할 수 있다. In an embodiment of the present invention, the fuel cell system 300 may generate electricity by receiving hydrogen produced in the water electrolysis system or hydrogen from an external hydrogen source (not shown).

본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은 또한 외부전력수요가 기설정된 기준치를 초과하는 경우 상기 수소저장부(210)에 저장된 수소를 상기 연료전지시스템(300)으로 공급하여 상기 연료전지시스템(300)으로부터 전력을 생산하는 수소 제어를 위한 제 2 제어부(220)를 더 포함한다. Power demand-responsive renewable energy-fuel cell multiple power generation system according to an embodiment of the present invention also converts hydrogen stored in the hydrogen storage unit 210 to the fuel cell system 300 when the external power demand exceeds a preset reference value. ) and further includes a second control unit 220 for controlling hydrogen to produce electric power from the fuel cell system 300 .

본 발명의 일 실시예에서 상기 제 2 제어부는 상기 외부전력수요가 기설정된 기준치 이하인 경우, 상기 외부수소와 천연가스를 상기 연료전지시스템으로 공급하여 상기 연료전지시스템으로부터 전력을 생산하고, 외부 전력 수요가 커지는 경우 저장된 수소를 활용하여 연료전지의 전력 생산량을 증가시켜, 전력 수요에 대응한다. In an embodiment of the present invention, when the external power demand is less than or equal to a preset reference value, the second control unit supplies the external hydrogen and natural gas to the fuel cell system to generate power from the fuel cell system, and external power demand In the case of an increase in , the stored hydrogen is used to increase the power output of the fuel cell to respond to the power demand.

본 발명은 선택적으로 또한 외부전력 수요량 및 상기 수전해시스템에서 생산되어 저장된 수소량에 따라 상기 연료전지시스템에서 생산되는 전력량을 제어하는 제 3 제어부(310)를 더 포함할 수 있다. The present invention may also optionally further include a third control unit 310 for controlling the amount of power produced in the fuel cell system according to the amount of external power demand and the amount of hydrogen produced and stored in the water electrolysis system.

상기 제 3 제어부(310)는 전력수요 대응과 수전해 생산 수소의 저장량에 따라 연료전지에 공급하는 천연가스의 유량나 천연가스의 유량에 따라 요구되는 스팀의 유량 등을 제어할 수 있으며, 연료전지에 공급되는 천연가스/스팀 유량 감소 및 순수 수소 연료 증가로 인해 연료전지의 부하를 조절할 수도 있다. The third control unit 310 may control the flow rate of natural gas supplied to the fuel cell or the flow rate of steam required according to the flow rate of the natural gas according to the response to the electric power demand and the storage amount of hydrogen produced by water electrolysis. It is also possible to adjust the load on the fuel cell due to a decrease in the flow rate of natural gas/steam supplied to the system and an increase in pure hydrogen fuel.

본 발명에 따른 상기 제 1 내지 제 3 제어부를 선택적으로 사용할 수 있는데, 제 1 제어부는 재생에너지발전시스템으로부터 수소생산을 위하여 공급하는 전력제어, 제 2 제어부는 수소저장부로부터 연료전지로 공급되는 수소공급량 제어, 그리고 제 3 제어부는 연료전지시스템의 부하 제어(연료량, 스팀량, 공기량 등의 제어)의 기능을 갖는다. The first to third control units according to the present invention can be selectively used. The first control unit controls power supplied from the renewable energy power generation system for hydrogen production, and the second control unit controls hydrogen supplied from the hydrogen storage unit to the fuel cell. The supply amount control and the third control section have a function of load control (control of fuel amount, steam amount, air amount, etc.) of the fuel cell system.

상술한 본 발명의 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은, 상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템으로부터 전력을 공급받는 외부의 전력수요가 증가하는 경우 상기 재생에너지발전시스템의 전력에 의하여 생산되어 저장된 수소를 다시 상기 연료전지시스템으로 공급하여 전력을 생산한다. 특히 주변 환경에 영향을 많이 받는 재생에너지 특성을 고려하여, 본 발명은 재생에너지원으로부터의 전력을 다시 안정된 전력생산이 가능한 연료전지의 연료로 전환시켜 재생에너지가 가지는 한계를 극복할 수 있다. The power demand-responsive renewable energy-fuel cell multiple power generation system of the present invention as described above, when the external power demand supplied from the power demand-responsive renewable energy-fuel cell multiple power generation system increases, the renewable energy power generation system Hydrogen produced and stored by the electric power is supplied back to the fuel cell system to produce electric power. In particular, in consideration of the characteristics of renewable energy that are highly influenced by the surrounding environment, the present invention can overcome the limitations of renewable energy by converting power from a renewable energy source back to fuel for a fuel cell capable of stable power production.

도 2는 본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템의 수소저장부(210)에 대한 도면이다.2 is a view of the hydrogen storage unit 210 of the power demand-responsive renewable energy-fuel cell multiple power generation system according to an embodiment of the present invention.

도 2를 참조하면, 본 발명의 일 실시예에 따른 수소저장부(210)는 2가지 형태로 수소를 저장하고 있는데, 하나는 고압의 압축기(211)를 거친 후 압축수소로 압축수소저장기(212)에 저장하는 형태이고, 또 다른 하나는 수전해시스템부로부터의 생산된 수소를 냉열을 저장하는 상변화물질부(213)를 거쳐 냉각한 후 액화 반응기(214)를 거친 후 액화수소저장기(215)에 저장되는 형태이다. 상기 상변화물질부(213)는 이후 액화수소를 기화시켜 냉열을 저장하는 일종의 냉력 저장수단으로 사용된다. Referring to FIG. 2 , the hydrogen storage unit 210 according to an embodiment of the present invention stores hydrogen in two forms, one of which is converted into compressed hydrogen after passing through a high-pressure compressor 211. 212), and the other one is the liquid hydrogen storage after passing through the liquefaction reactor 214 after cooling the hydrogen produced from the water electrolysis system unit through the phase change material unit 213 for storing cooling heat. It is a form stored in (215). The phase change material unit 213 is then used as a kind of cooling power storage means for storing cooling heat by vaporizing liquid hydrogen.

본 발명은 특히 압축수소저장기(212)의 압축에너지를 연료전지의 공기 등으 공급할 때 필요한 사용시 터보차져(216)의 운동에너지로 전환하여 시스템의 에너지 효율을 향상시킨다. 즉, 압축수소가 압축수소저장기(212)로부터 외부로 나오는 경우 발생하는 운동에너지를 이용 터보차져(216)를 돌리고, 이를 통하여 연료전지 시스템(300)에 공급되는 공기를 블로잉하여, 시스템의 에너지 효율을 향상시킨다. In particular, the present invention improves the energy efficiency of the system by converting the compressed energy of the compressed hydrogen storage 212 into the kinetic energy of the turbocharger 216 when it is necessary to supply air of the fuel cell or the like. That is, when compressed hydrogen comes out from the compressed hydrogen storage 212 to the outside, the turbocharger 216 is rotated using kinetic energy generated, and air supplied to the fuel cell system 300 is blown through this, so that the energy of the system improve efficiency.

도 3 내지 5는 본 발명의 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템의 운전방법을 설명하는 단계도이다. 3 to 5 are step diagrams for explaining a method of operating a power demand-responsive renewable energy-fuel cell multi-generation system according to an embodiment of the present invention.

도 3을 참조하면, 먼저 재생에너지발전시스템을 이용하여 전력을 생산하는 단계; 상기 생산된 전력을 공급받아 수전해시스템으로부터 수소를 생산하는 단계; 상기 수소를 공급받아 연료전지시스템으로부터 전력을 생산하는 단계를 포함하며, 상기 수소를 생산하는 단계는 상기 재생에너지발전시스템에서 생산된 전력이 기설정된 기준치를 초과하는 경우 상기 전력을 상기 수전해시스템으로 공급하여 수소를 생산한다. 즉, 본 발명은 외부 전력 수요나 재생에너지 생산 환경에 따라 전력생산량이 많은 경우 수소를 생산한다. Referring to FIG. 3 , first, generating electricity using a renewable energy generation system; receiving the generated power and producing hydrogen from a water electrolysis system; and generating electric power from a fuel cell system by receiving the hydrogen, wherein the generating of hydrogen converts the electric power to the water electrolysis system when the electric power produced by the renewable energy generation system exceeds a preset reference value. supply to produce hydrogen. That is, the present invention produces hydrogen when the amount of electricity produced is large according to external power demand or a renewable energy production environment.

도 4를 참조하면, 본 발명의 또 다른 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템의 운전방법은, 수전해시스템으로 공급하여 수소를 생산하는 단계 후, 수소를 저장하는 단계; 상기 저장된 수소는 외부전력수요가 기설정된 기준치를 초과하는 경우 상기 수소저장부에 저장된 수소를 상기 연료전지로 공급하여 상기 연료전지로부터 전력을 생산하는 단계를 더 포함한다. 즉, 본 발명은 외부 전력 수요에 따라 액상 또는 압축 형태로 저장된 수소를 연료전지에 공급하여 탄력적인 전력 수요에 대응할 수 있다. Referring to FIG. 4 , a method for operating a power demand-responsive renewable energy-fuel cell multiple power generation system according to another embodiment of the present invention comprises supplying hydrogen to a water electrolysis system to produce hydrogen, and then storing hydrogen. step; The method further includes generating electric power from the fuel cell by supplying the hydrogen stored in the hydrogen storage unit to the fuel cell when the external power demand for the stored hydrogen exceeds a preset reference value. That is, according to the present invention, hydrogen stored in a liquid or compressed form can be supplied to a fuel cell according to an external power demand to respond to a flexible power demand.

도 5를 참조하면, 본 발명의 또 다른 일 실시예에 따른 전력수요 대응형 재생에너지-연료전지 다중 발전시스템의 운전방법은, 상기 외부전력 수요량 및 상기 수전해시스템에서 생산된 수소량을 모니터링하는 단계; 및 상기 모니터링된 외부전력 수요량 및 상기 수전해시스템에서 생산된 수소량에 따라 상기 연료전지에서 생산되는 전력량을 제어하는 단계를 포함하며, 이때 연료전지에 공급되는 천연가스, 연료전지 시스템의 개질기에 공급되는 스팀 등을 제어하여 연료전지 부하를 제어할 수 있다. Referring to FIG. 5 , a method for operating a power demand-responsive renewable energy-fuel cell multiple power generation system according to another embodiment of the present invention includes monitoring the external power demand and the amount of hydrogen produced in the water electrolysis system. step; and controlling the amount of electric power produced by the fuel cell according to the monitored external electric power demand and the amount of hydrogen produced by the water electrolysis system, wherein the natural gas supplied to the fuel cell is supplied to the reformer of the fuel cell system. It is possible to control the fuel cell load by controlling the steam and the like.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and likewise components described as distributed may also be implemented in a combined form.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.

Claims (11)

재생에너지를 이용하여 전력을 생산하는 재생에너지발전시스템;
상기 재생에너지발전시스템에서 생산된 전력을 공급받아 수소를 생산하는 수전해시스템;
상기 수전해시스템에서 생산된 수소를 공급받아 전력을 생산하는 연료전지시스템; 및
상기 재생에너지발전시스템에서 생산된 전력을 제어하는 제 1 제어부를 포함하며,
상기 제 1 제어부는, 상기 재생에너지발전시스템에서 생산된 전력이 기설정된 기준치를 초과하는 경우 상기 전력을 상기 수전해시스템으로 공급하여 수소를 생산하는 전력수요 대응형 재생에너지-연료전지 다중 발전시스템으로,
상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은,
상기 수전해시스템에서 생산된 수소를 저장하는 수소저장부;
외부전력수요가 기설정된 기준치를 초과하는 경우 상기 수소저장부에 저장된 수소를 상기 연료전지시스템으로 공급하여 상기 연료전지시스템으로부터 전력을 생산하는 제 2 제어부; 및
상기 외부전력 수요량 및 상기 수전해시스템에서 생산된 수소량에 따라 상기 연료전지시스템에서 생산되는 전력량을 제어하는 제 3 제어부를 더 포함하며,
상기 연료전지시스템은 상기 수전해시스템에서 생산된 수소외의 외부 수소를 선택적으로 공급받아 전력을 생산하며,
상기 수소저장부는 상기 수소를 압축수소로 저장하며,
상기 전력수요 대응형 재생에너지-연료전지 다중 발전시스템은,
상기 수소저장부가 상기 수소를 압축수소로 저장하는 경우 상기 압축수소의 압력에너지를 축동력으로 전환하는 터보차져부를 더 포함하며,
상기 터보차져부에 의하여 상기 연료전지로 공급되는 공기가 블로잉되어 상기 시스템의 에너지 효율이 향상되는, 전력수요 대응형 재생에너지-연료전지 다중 발전시스템.
Renewable energy generation system for generating electricity using renewable energy;
a water electrolysis system for producing hydrogen by receiving the electric power produced by the renewable energy power generation system;
a fuel cell system that receives the hydrogen produced in the water electrolysis system and generates electric power; and
A first control unit for controlling the power produced by the renewable energy generation system,
The first control unit is a power demand-responsive renewable energy-fuel cell multiple power generation system that supplies the power to the water electrolysis system to produce hydrogen when the power produced by the renewable energy power generation system exceeds a preset reference value. ,
The power demand response type renewable energy-fuel cell multiple power generation system,
a hydrogen storage unit for storing hydrogen produced in the water electrolysis system;
a second control unit for supplying hydrogen stored in the hydrogen storage unit to the fuel cell system to generate power from the fuel cell system when the external power demand exceeds a preset reference value; and
Further comprising a third control unit for controlling the amount of power produced in the fuel cell system according to the external power demand and the amount of hydrogen produced in the water electrolysis system,
The fuel cell system selectively receives external hydrogen other than the hydrogen produced in the water electrolysis system to produce electric power,
The hydrogen storage unit stores the hydrogen as compressed hydrogen,
The power demand response type renewable energy-fuel cell multiple power generation system,
When the hydrogen storage unit stores the hydrogen as compressed hydrogen, it further comprises a turbocharger for converting the pressure energy of the compressed hydrogen into shaft power,
Air supplied to the fuel cell by the turbocharger is blown to improve energy efficiency of the system, a power demand-responsive renewable energy-fuel cell multiple power generation system.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200049390A 2020-04-23 2020-04-23 Multi power generation system responsive to power demand and operation methd for the same KR102423015B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200049390A KR102423015B1 (en) 2020-04-23 2020-04-23 Multi power generation system responsive to power demand and operation methd for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200049390A KR102423015B1 (en) 2020-04-23 2020-04-23 Multi power generation system responsive to power demand and operation methd for the same

Publications (2)

Publication Number Publication Date
KR20210131499A KR20210131499A (en) 2021-11-03
KR102423015B1 true KR102423015B1 (en) 2022-07-22

Family

ID=78505011

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200049390A KR102423015B1 (en) 2020-04-23 2020-04-23 Multi power generation system responsive to power demand and operation methd for the same

Country Status (1)

Country Link
KR (1) KR102423015B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545927B1 (en) * 2021-12-23 2023-06-21 한국해양과학기술원 System and method for floating marine liquefied hydrogen production facility using marine renewable energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099359A (en) * 2002-09-09 2004-04-02 Yukio Wakahata Energy supply system using hydrogen energy and various systems as its applied patterns
JP2013044032A (en) * 2011-08-25 2013-03-04 Sharp Corp Power generation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190066857A (en) 2017-12-06 2019-06-14 주식회사 오버플러스파워 Apparatus for generating photovoltaic-hydrogen based small power and method for generating thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099359A (en) * 2002-09-09 2004-04-02 Yukio Wakahata Energy supply system using hydrogen energy and various systems as its applied patterns
JP2013044032A (en) * 2011-08-25 2013-03-04 Sharp Corp Power generation system

Also Published As

Publication number Publication date
KR20210131499A (en) 2021-11-03

Similar Documents

Publication Publication Date Title
Ntziachristos et al. A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid
AU2008313636B2 (en) Production system for electric energy and hydrogen
Ahmed et al. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems
Shen et al. Introducing and investigation of a pumped hydro-compressed air storage based on wind turbine and alkaline fuel cell and electrolyzer
JP7286071B2 (en) Hydrogen supply system and hydrogen supply method
Guo et al. Determining the appropriate size of the electrical energy storage system of an energy process based on a solid oxide fuel cell and wind turbine
Blanco et al. Hydrogen and renewable energy sources integrated system for greenhouse heating
CN114374220A (en) Electrochemical cell-water electrolysis hydrogen production-hydrogen storage-hydrogen fuel cell coupling energy storage system and control method
CN113565684A (en) Power generation method and system for realizing new energy storage through carbon dioxide liquefaction
KR102423015B1 (en) Multi power generation system responsive to power demand and operation methd for the same
Li et al. Coordinated power control of wind-PV-fuel cell for hybrid distributed generation systems
Kim et al. Status report on the high-temperature steam electrolysis plant model developed in the modelica framework (fy17)
KR102410689B1 (en) Power generation system capturing CO2 and operation method for the same
US20230243271A1 (en) System having a liquid air energy storage and power plant apparatus
US10573907B2 (en) Load-following fuel cell system with energy storage
CN215860603U (en) Power generation system for realizing new energy storage by carbon dioxide liquefaction
Ceran et al. Performance Analysis of a Hybrid Generation System of Wind Turbines, Photovoltaic Modules, and a Fuel Cell
Tywoniuk et al. Storage of wind power energy
Bendib et al. Wind-solar power system associated with flywheel and pumped-hydro energy storage
Hassan et al. Load sharing and arrangement through an effective utilization of SOFC/Super-capacitor/Battery in a hybrid power system
Ezeodili et al. Coordinated power balance scheme for a wind-to-hydrogen set in standalone power systems
KR102589167B1 (en) High temperature water electrolysis-fuel cell system and its operation method
CN219548934U (en) Flexible power system based on transformation of retired thermal power plant
Suárez et al. Feasibility of efficiency improvement in a fuel cell system powered by a metal hydride tank
Japikse et al. An analysis of an advanced compressed air energy system (CAES) using turbomachinery for energy storage and recovery and for continuous on-site power augmentation as an air Brayton cycle

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right