JP2002050387A - Energy generating device from solid organic substance - Google Patents

Energy generating device from solid organic substance

Info

Publication number
JP2002050387A
JP2002050387A JP2000237532A JP2000237532A JP2002050387A JP 2002050387 A JP2002050387 A JP 2002050387A JP 2000237532 A JP2000237532 A JP 2000237532A JP 2000237532 A JP2000237532 A JP 2000237532A JP 2002050387 A JP2002050387 A JP 2002050387A
Authority
JP
Japan
Prior art keywords
fuel cell
solid organic
solid
mpa
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000237532A
Other languages
Japanese (ja)
Inventor
Keiichi Komai
啓一 駒井
Satoshi Hirata
悟史 平田
Seiichiro Matsuo
誠一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2000237532A priority Critical patent/JP2002050387A/en
Publication of JP2002050387A publication Critical patent/JP2002050387A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel Cell (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficient energy converting device which utilizes the sensible heat of the combustible gas that is obtained by gasifying a solid organic substance and also effectively utilizes the pressure of generated gas when the gasifying reaction of the solid organic substance is made under a high pressure condition. SOLUTION: The gas product that is obtained by gasification of a solid organic substance is maintained at a high temperature and supplied to the fuel cell for generating electricity. A decompression turbine is driven by the pressure of a gas product that is obtained by gasification of a solid organic substance for generating electricity, and the decompressed gas product is supplied to the fuel cell for generating electricity. Also generation is made by driving a steam turbine by the high temperature steam, that is discharged from the fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体有機物及び有機
物を主成分とする固形燃料からエネルギーを発生させる
ための装置に関するもので、詳しくは固体有機物及び有
機物を主成分とする固形燃料から水素を主成分とするガ
スを発生させ、それを燃料電池に供給して発電するとと
もに冷温熱を回収する装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for generating energy from a solid organic substance and a solid fuel containing an organic substance as a main component, and more particularly, to an apparatus for producing hydrogen from a solid organic substance and a solid fuel containing an organic substance as a main component. The present invention relates to an apparatus for generating gas as a component, supplying the gas to a fuel cell, generating power, and recovering cold and hot heat.

【0002】[0002]

【従来の技術】本発明は固体有機物及び有機物を主成分
とする固形燃料からエネルギーを発生させるための装置
に関するものであるが、本明細書においては固体有機物
及び有機物を主成分とする固形燃料の代表例として、石
炭及び石炭を主成分とする固形燃料を用いて説明する。
ただし以下の説明が、請求項に記した内容に対しいかな
る制約も与えない。石炭の持つエネルギーを電気エネル
ギーに変換する方法としては、石炭を燃焼させたときの
熱を水蒸気として回収し蒸気タービンにより発電する汽
力発電,石炭の燃焼ガスでガスタービンを回転させて発
電するガスタービン発電,及びこれらを組み合せたコン
バインド発電が実用化されている。しかし、石炭を直接
燃焼させた場合には、有効に仕事に変換できるエネルギ
ー(エクセルギー)に制限があり、発電効率の更なる向
上は困難である。そこで、石炭を直接燃焼させる場合に
比べてエクセルギーを高め、もって発電効率を高めた発
電方式として、石炭をガス化して水素,一酸化炭素,メ
タン等の可燃性ガスを製造し、これらをガスタービンや
燃料電池に供給することにより発電するための様々なシ
ステムが開示されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for generating energy from a solid organic substance and a solid fuel containing an organic substance as a main component. As a representative example, a description will be given using coal and a solid fuel containing coal as a main component.
However, the following description does not impose any restrictions on what is claimed. Methods for converting the energy of coal into electric energy include steam power, which collects the heat of burning coal as steam and generates power using a steam turbine, and gas turbine, which generates power by rotating a gas turbine using coal combustion gas. Power generation and combined power generation combining them have been put to practical use. However, when coal is directly burned, the energy (exergy) that can be effectively converted into work is limited, and it is difficult to further improve the power generation efficiency. Therefore, as a power generation method that raises exergy compared to the case of directly burning coal and thereby increases power generation efficiency, flammable gas such as hydrogen, carbon monoxide, and methane is produced by gasifying coal, Various systems for generating electricity by supplying turbines and fuel cells have been disclosed.

【0003】石炭をガス化して可燃性ガスを得る方法と
して、種々の方法が知られている。最も一般的な方法と
しては、高温高圧下で石炭に水蒸気と酸素を作用させ、
一酸化炭素と水素を主成分とするガスを得る方法が知ら
れている。石炭をガス化して得られる可燃性ガスの成分
のうち、一酸化炭素及びメタンは燃焼後に地球温暖化の
原因物質である二酸化炭素を発生するが、水素は燃焼に
よって水以外の物質を発生しないことから、クリーンな
エネルギー源として水素の需要は強く、水素の生成比率
が高いガス化技術が求められている。例えば、特開平5
−78671号公報には、石炭を1673K〜1973
Kで加熱することで従来法よりも水素生成比率が高い石
炭のガス化方法の開示がある。また、特開平8−338
260号公報には、従来法で製造した可燃性ガスを水素
分離透過膜を有する改質装置を用いて水蒸気改質し、高
純度水素を得る方法の開示がある。さらに特開2000
−143202号公報には、石炭,二酸化炭素吸収物
質,水を圧力22MPa以上、反応温度923K〜10
73Kで反応させ、水素を主成分とする可燃性ガスを製
造する技術の開示がある。この技術における主反応式
は、次のとおりである。 C + 2H2O + CaO → CaCO3 + 2H2
[0003] Various methods are known for gasifying coal to obtain a combustible gas. The most common method is to apply steam and oxygen to coal under high temperature and pressure,
A method for obtaining a gas containing carbon monoxide and hydrogen as main components is known. Among the combustible gas components obtained by gasifying coal, carbon monoxide and methane generate carbon dioxide, which is a substance causing global warming after combustion, but hydrogen does not generate substances other than water by combustion. Therefore, there is a strong demand for hydrogen as a clean energy source, and a gasification technology having a high hydrogen generation ratio is required. For example, Japanese Unexamined Patent Publication
No. 78671 discloses that coal is used in 1673K-1973.
There is a disclosure of a coal gasification method in which heating at K results in a higher hydrogen generation ratio than the conventional method. Also, JP-A-8-338
No. 260 discloses a method of obtaining high-purity hydrogen by steam reforming a combustible gas produced by a conventional method using a reformer having a hydrogen separation and permeable membrane. JP 2000
No. 143202 discloses that coal, a carbon dioxide absorbing substance, and water are subjected to a pressure of 22 MPa or more and a reaction temperature of 923 K to 10
There is disclosed a technology for producing a combustible gas containing hydrogen as a main component by reacting at 73K. The main reaction formula in this technology is as follows. C + 2H2O + CaO → CaCO3 + 2H2

【0004】上記の可燃性ガスを得る技術は、いずれも
水素の生成比率の向上を目的の一つとして開発されたも
のである。このうち、特開2000−143202号公
報に記載の技術は、石炭のガス化により生成するガスの
80%が水素であり、ガスの改質が不要であること、石
炭のガス化反応によって生じる二酸化炭素を吸収物質と
反応させることによって固体として回収することが可能
であるという特徴がある。また、本技術が石炭以外の固
体有機物、例えばバイオマス、プラスチック等のガス化
に有効であることは言うまでもない。
[0004] All of the above techniques for obtaining flammable gas have been developed with the object of improving the hydrogen generation ratio. Among them, the technology described in Japanese Patent Application Laid-Open No. 2000-143202 discloses that 80% of the gas generated by gasification of coal is hydrogen, so that gas reforming is not required, and that carbon dioxide generated by the gasification reaction of coal is reduced. It is characterized in that it can be recovered as a solid by reacting carbon with an absorbing substance. Needless to say, the present technology is effective for gasification of solid organic matter other than coal, such as biomass and plastic.

【0005】次に、石炭を燃料としたときの発電効率を
向上させる方法として、例えば、特開平8−33826
0号公報には、石炭をガス化して得られる可燃性ガスの
顕熱を、炭化水素から水素を得るための改質装置の熱源
として利用しようとする発電方法が開示されている。具
体的には、石炭に水蒸気と酸素を作用させて一酸化炭素
及び水素を主成分とする高温の可燃性ガスを製造し、こ
の可燃性ガスをガスタービン発電の燃料としてガスター
ビン発電装置に供給して発電する。同時に、前記ガスタ
ービン発電装置に供給する前の可燃性ガス及び前記ガス
タービンを駆動させた後の高温燃焼ガスを各々加熱源と
して、水素分離透過膜を有する改質装置により各々炭化
水素を水蒸気改質させて高純度水素を製造し、該高純度
水素を燃料電池に供給して発電することを特徴とする検
討がなされている。
Next, as a method for improving the power generation efficiency when coal is used as fuel, for example, Japanese Patent Application Laid-Open No. 8-33826 is disclosed.
No. 0 discloses a power generation method in which sensible heat of a combustible gas obtained by gasifying coal is used as a heat source of a reformer for obtaining hydrogen from hydrocarbons. Specifically, steam and oxygen act on coal to produce a high-temperature flammable gas containing carbon monoxide and hydrogen as main components, and supply this flammable gas to a gas turbine power plant as fuel for gas turbine power generation. To generate electricity. At the same time, the combustible gas before being supplied to the gas turbine power generator and the high-temperature combustion gas after driving the gas turbine are used as heating sources, respectively, and the hydrocarbons are steam-reformed by the reformer having the hydrogen separation and permeable membrane. Investigations have been made to produce high-purity hydrogen by heating and supplying the high-purity hydrogen to a fuel cell to generate power.

【0006】また、石炭を燃料として用い効率よく発電
を行うとともに、電力需要の変動に対応する方法とし
て、例えば、特開平10−214631号公報には、石
炭に蒸気と空気を作用させて一酸化炭素,水素,メタ
ン,二酸化炭素からなる合成ガスを製造し、この合成ガ
スの一部をガスタービン発電の燃料としてガスタービン
発電装置に供給して発電するとともに、残りの合成ガス
はシフト反応によって水素を製造し、水素ガスは固体酸
化物型燃料電池に供給して発電する方法が開示されてい
る。そして前記ガスタービンを駆動させた後の高温燃焼
ガスの顕熱を、固体酸化物型燃料電池に供給する空気の
加熱に利用しようとするものである。
In addition, as a method for efficiently generating power using coal as fuel and responding to fluctuations in power demand, Japanese Patent Application Laid-Open No. Hei 10-214631 discloses a method in which steam and air act on coal to cause monoxide. A synthesis gas consisting of carbon, hydrogen, methane, and carbon dioxide is produced, and a part of this synthesis gas is supplied to a gas turbine generator as a fuel for gas turbine power generation to generate power. And a method for supplying hydrogen gas to a solid oxide fuel cell to generate power. Then, the sensible heat of the high-temperature combustion gas after driving the gas turbine is used for heating the air supplied to the solid oxide fuel cell.

【0007】[0007]

【発明が解決しようとする課題】ところで、石炭のエク
セルギーを高め、効率のよい発電を行うためには、石炭
をガス化して可燃性ガスに変換し、これをエネルギー効
率の高い発電方式である燃料電池によって電力に変換す
ることが望まれる。燃料電池による発電は次式で表され
る。 (燃料極) 2H2 → 4H+ + 4e− (空気極) O2 + 4H+ + 4e− → 2H2O 上式で示されるように、燃料電池においては燃料として
水素が用いられるため、石炭ガス化によって生成する可
燃性ガス中の水素の比率をできるだけ高くする技術が必
要となる。また、石炭のエクセルギーを更に高めるため
には、石炭ガス化によって生成する高温の可燃性ガスの
顕熱の有効利用が求められる。
By the way, in order to increase the exergy of coal and perform efficient power generation, coal is gasified and converted into flammable gas, which is a highly energy-efficient power generation system. It is desired to convert to electric power by a fuel cell. Power generation by the fuel cell is expressed by the following equation. (Fuel electrode) 2H2 → 4H ++ 4e− (Air electrode) O2 + 4H +++ 4e− → 2H2O As shown in the above formula, since hydrogen is used as a fuel in a fuel cell, the flammability generated by coal gasification A technique for increasing the ratio of hydrogen in the gas as high as possible is required. Further, in order to further increase the exergy of coal, effective utilization of sensible heat of high-temperature combustible gas generated by coal gasification is required.

【0008】ところが、石炭から水素の比率の高い可燃
性ガスを製造する技術については、特開2000−14
3202号公報に開示があり、この技術を用いることで
圧力22MPa以上、温度923K〜1073Kの水素
とメタンを主成分とする可燃性ガスを得ることが可能で
ある。ところが石炭のガス化によって得られる高温の可
燃性ガスの顕熱については、前記した従来技術では石炭
ガス化と燃料電池との組合せにおいて、必ずしも有効に
利用されていない。すなわち、特開平8−338260
号公報記載の技術においては、可燃性ガスの顕熱は炭化
水素から水素を得るための改質装置の熱源として利用し
ている。また、特開平10−214631号公報記載の
技術では、合成ガスは冷却され、その顕熱は利用されて
いない。さらに、石炭ガス化反応で生成した可燃性ガス
の圧力の利用については、全く検討されていない。
However, a technique for producing a flammable gas having a high ratio of hydrogen from coal is disclosed in JP-A-2000-14.
There is a disclosure in Japanese Patent Publication No. 3202, and by using this technique, it is possible to obtain a combustible gas mainly composed of hydrogen and methane at a pressure of 22 MPa or more and a temperature of 923 K to 1073 K. However, the sensible heat of the high-temperature flammable gas obtained by coal gasification is not always effectively used in the combination of coal gasification and a fuel cell in the above-described conventional technology. That is, JP-A-8-338260
In the technology described in the publication, the sensible heat of the combustible gas is used as a heat source of a reformer for obtaining hydrogen from hydrocarbons. In the technique described in Japanese Patent Application Laid-Open No. Hei 10-214631, the synthesis gas is cooled, and the sensible heat is not used. Further, no consideration has been given to the use of the pressure of the combustible gas generated in the coal gasification reaction.

【0009】本発明は上記諸点に鑑みてなされたもの
で、石炭を初めとする固体有機物のガス化によって得ら
れる可燃性ガスの顕熱を有効に利用するとともに、固体
有機物のガス化反応が高圧条件のもとで行われる場合、
生成する可燃性ガスの圧力を有効に利用することによ
り、従来の装置と比較して極めて効率の高い固体有機物
からのエネルギー発生装置を提供するものである。
The present invention has been made in view of the above-mentioned points, and effectively utilizes the sensible heat of a combustible gas obtained by gasification of solid organic matter such as coal. If done under conditions,
An object of the present invention is to provide a device for generating energy from solid organic matter which is extremely efficient compared to conventional devices by effectively utilizing the pressure of the combustible gas generated.

【0010】[0010]

【課題を解決するための手段】このような技術の現状に
鑑み、本発明者らはすでに開示されている石炭からの水
素製造方法と燃料電池発電設備を所定方法で総合的に組
み合せることにより、これまで知られていた以上の高い
発電効率が達成されるとともに、石炭及び石炭を初めと
する固体有機物のエクセルギー向上が図られることに想
到し、本発明を完成されることができた。
SUMMARY OF THE INVENTION In view of the state of the art, the present inventor has proposed a method of comprehensively combining a previously disclosed method for producing hydrogen from coal and a fuel cell power generation facility by a predetermined method. The present invention has been completed, with the aim of achieving higher power generation efficiency than previously known, and improving the exergy of coal and solid organic matter such as coal.

【0011】本発明は、(1)固体有機物及び有機物を
主成分とする固形燃料と、生石灰を主成分とする吸収剤
と、水を、温度873K〜1273K、圧力10MPa
〜25MPaで反応させて、水素を主成分とする製品ガ
スと、炭酸カルシウムを主成分とする使用済吸収剤を生
成するガス化反応器と、水素と酸素から電力と水蒸気を
生成するリン酸型燃料電池から構成されるエネルギー発
生装置であって、製品ガスの温度を463K〜493K
に維持したままリン酸型燃料電池に供給し、発電を行う
ことを特徴とするものである。
The present invention provides (1) a solid organic substance and a solid fuel mainly composed of an organic substance, an absorbent mainly composed of quicklime, and water at a temperature of 873K to 1273K and a pressure of 10 MPa.
A gasification reactor that produces a product gas containing hydrogen as a main component and a spent absorbent containing calcium carbonate as a main component, and a phosphoric acid type that produces electric power and water vapor from hydrogen and oxygen An energy generator comprising a fuel cell, wherein the temperature of a product gas is set to 463K to 493K.
The power is supplied to the phosphoric acid type fuel cell while maintaining the power to generate electric power.

【0012】(2)固体有機物及び有機物を主成分とす
る固形燃料と、生石灰を主成分とする吸収剤と、水を、
温度873K〜1273K、圧力10MPa〜25MP
aで反応させて、水素を主成分とする製品ガスと、炭酸
カルシウムを主成分とする使用済吸収剤を生成するガス
化反応器と、水素と酸素から電力と水蒸気を生成する溶
融炭酸塩型燃料電池から構成されるエネルギー発生装置
であって、製品ガスの温度を873K〜973Kに維持
したまま溶融炭酸塩型燃料電池に供給し、発電を行うこ
とを特徴とするものである。
(2) A solid organic substance and a solid fuel mainly composed of an organic substance, an absorbent mainly composed of quicklime, and water,
Temperature 873K-1273K, pressure 10MPa-25MP
a, a gasification reactor for producing a product gas containing hydrogen as a main component and a spent absorbent containing calcium carbonate as a main component, and a molten carbonate type for producing electric power and water vapor from hydrogen and oxygen An energy generator comprising a fuel cell, wherein power is supplied to a molten carbonate fuel cell while maintaining the temperature of a product gas at 873K to 973K to generate power.

【0013】(3)固体有機物及び有機物を主成分とす
る固形燃料と、生石灰を主成分とする吸収剤と、水を、
温度873K〜1273K、圧力10MPa〜25MP
aで反応させて、水素を主成分とする製品ガスと、炭酸
カルシウムを主成分とする使用済吸収剤を生成するガス
化反応器と、水素と酸素から電力と水蒸気を生成する固
体酸化物型燃料電池から構成されるエネルギー発生装置
であって、製品ガスの温度を973K〜1273Kに維
持したまま固体酸化物型燃料電池に供給し、発電を行う
ことを特徴とするものである。
(3) A solid organic substance and a solid fuel mainly composed of an organic substance, an absorbent mainly composed of quicklime and water,
Temperature 873K-1273K, pressure 10MPa-25MP
a, a gasification reactor for producing a product gas mainly composed of hydrogen and a spent absorbent mainly composed of calcium carbonate, and a solid oxide type for producing electric power and water vapor from hydrogen and oxygen An energy generator comprising a fuel cell, wherein power is supplied to a solid oxide fuel cell while maintaining the temperature of a product gas at 973K to 1273K to generate power.

【0014】(4)ガス化反応器と燃料電池の水素供給
口の間に、発電機に直結した減圧タービンを設けて発電
を行うことを特徴とする請求項1ないし請求項3のいず
れか一つに記載された固体有機物からのエネルギー発生
装置、(5)燃料電池への水素供給圧を1MPa〜3M
Paとし、燃料電池で生成する水を1MPa〜3MPa
の水蒸気として回収することを特徴とする、請求項1な
いし請求項4のいずれか一つに記載された固体有機物か
らのエネルギー発生装置、(6)燃料電池から回収され
た1MPa〜3MPaの水蒸気を、発電機に直結した蒸
気タービンに供給して発電を行うことを特徴とする請求
項5に記載の固体有機物からのエネルギー発生装置、
(7)燃料電池から回収された1MPa〜3MPaの水
蒸気を、冷暖房設備の熱源として利用することを特徴と
する請求項5又は6に記載の固体有機物からのエネルギ
ー発生装置である。
(4) The power generation system according to any one of claims 1 to 3, wherein a decompression turbine directly connected to the generator is provided between the gasification reactor and the hydrogen supply port of the fuel cell to generate power. (5) A hydrogen supply pressure to a fuel cell of 1 MPa to 3 M
And the water generated by the fuel cell is 1 MPa to 3 MPa.
The energy generator from solid organic matter according to any one of claims 1 to 4, wherein the steam of 1 MPa to 3 MPa collected from the fuel cell is recovered as water vapor. The apparatus for generating energy from solid organic matter according to claim 5, wherein power is supplied to a steam turbine directly connected to the generator to generate power.
(7) The apparatus for generating energy from solid organic matter according to claim 5 or 6, wherein the steam of 1 MPa to 3 MPa recovered from the fuel cell is used as a heat source of a cooling and heating facility.

【0015】(8)燃料電池に供給する酸素を1MPa
〜3MPaに昇圧するための圧縮機を、ガス化反応器と
燃料電池の水素供給口の間に設けた減圧タービンによっ
て駆動することを特徴とする請求項5に記載の固体有機
物からのエネルギー発生装置、(9)燃料電池に供給す
る酸素を1MPa〜3MPaに昇圧するための圧縮機
を、燃料電池の水蒸気発生口に設けた蒸気タービンによ
って駆動することを特徴とする、請求項5に記載の固体
有機物からのエネルギー発生装置である。
(8) The oxygen supplied to the fuel cell is 1 MPa
The apparatus for generating energy from solid organic matter according to claim 5, wherein the compressor for increasing the pressure to -3MPa is driven by a pressure reducing turbine provided between the gasification reactor and the hydrogen supply port of the fuel cell. (9) The solid according to claim 5, wherein a compressor for increasing the pressure of oxygen supplied to the fuel cell to 1 MPa to 3 MPa is driven by a steam turbine provided at a steam generation port of the fuel cell. It is an energy generator from organic matter.

【0016】[0016]

【発明の実施の形態】以下、本発明によるエネルギー発
生装置の実施例を図面により詳細に説明する。ここでは
固体有機物及び有機物を主成分とする固形燃料の一例と
して、石炭を用いて説明する。なおここでの説明が、本
発明の請求項に何ら制約を与えるものではないことは言
うまでもない。図1は本発明に係るエネルギー発生装置
の一実施例を示す概略説明図であり、本発明の要旨を説
明するための主要装置や主要生成物のみを示し、付属装
置の多くは省略している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the energy generator according to the present invention will be described below in detail with reference to the drawings. Here, coal is described as an example of a solid organic substance and a solid fuel containing an organic substance as a main component. It goes without saying that the description here does not impose any restrictions on the claims of the present invention. FIG. 1 is a schematic explanatory view showing an embodiment of an energy generating apparatus according to the present invention, in which only main devices and main products for explaining the gist of the present invention are shown, and many of the attached devices are omitted. .

【0017】図1において、石炭のガス化はガス化反応
器2に石炭及び石炭を主成分とする固形燃料4、生石灰
を主成分とする吸収剤6及び超臨界水又は亜臨界水8を
供給して行われる。ガス化反応は、一例として温度87
3K〜1273K,圧力10MPa〜25MPaの高温
高圧状態で行われ、水素,メタンを主成分とする高温高
圧の可燃性ガスと、炭酸カルシウムを主成分とする使用
済吸収剤及び反応残渣が懸濁した超臨界水又は亜臨界水
の混合物が生成する。前記の混合物は熱交換器10によ
って温度を下げられたのち、気液分離器12において粗
製ガス14と気液分離後液体16に分けられる。粗製ガ
スには水素,メタンの他に少量の一酸化炭素,硫化水素
などが存在するため、ガス精製装置18によって後述の
燃料電池に供給するに足る品質の製品ガス20に精製さ
れる。
In FIG. 1, for gasification of coal, coal and a solid fuel 4 mainly containing coal, an absorbent 6 mainly containing quicklime and supercritical water or subcritical water 8 are supplied to a gasification reactor 2. It is done. The gasification reaction is carried out at a temperature of 87 as an example.
It is performed in a high temperature and high pressure state of 3K to 1273K and a pressure of 10MPa to 25MPa, and a high temperature and high pressure combustible gas mainly composed of hydrogen and methane, a used absorbent mainly composed of calcium carbonate and a reaction residue are suspended. A mixture of supercritical or subcritical water is formed. After the temperature of the mixture is lowered by the heat exchanger 10, the mixture is separated into a crude gas 14 and a liquid 16 after gas-liquid separation in the gas-liquid separator 12. Since the crude gas contains a small amount of carbon monoxide, hydrogen sulfide and the like in addition to hydrogen and methane, it is purified by the gas purifier 18 into a product gas 20 of a quality sufficient to be supplied to a fuel cell described later.

【0018】前記の気液分離後液体16は、固液分離器
22によって液体と炭酸カルシウムを主成分とする使用
済吸収剤23に分けられる。液体は、排水処理装置24
で浄化したのち、リサイクル水26として超臨界水又は
亜臨界水8の原料となる。超臨界水又は亜臨界水8は、
水25又はリサイクル水26を原料とし、熱交換器10
で加熱されたのち、加圧ポンプ28で所定の圧力、一例
として圧力10MPa〜25MPaまで加圧され、さら
に加熱手段30により所定の温度、一例として873K
〜1273Kまで加熱して製造される。
The liquid 16 after gas-liquid separation is separated by a solid-liquid separator 22 into a liquid and a used absorbent 23 mainly containing calcium carbonate. The liquid is supplied to the wastewater treatment device 24
After the purification, the water is used as the supercritical water or the subcritical water 8 as the recycled water 26. Supercritical water or subcritical water 8
Using water 25 or recycled water 26 as a raw material, heat exchanger 10
After being heated at a predetermined pressure by a pressurizing pump 28, for example, a pressure of 10 MPa to 25 MPa, for example, and a predetermined temperature by a heating means 30, for example, 873K
It is manufactured by heating up to 1273K.

【0019】燃料電池による発電は、上記に記載した式
の基づき、水素を主成分とする製品ガス20を燃料電池
40の燃料極42に、酸素44を燃料電池40の空気極
46に供給することで行われる。発電された直流電流
は、インバーター48で交流電力50に変換された。本
発明で使用される燃料電池40としては、リン酸塩型、
溶融炭酸塩型、固体酸化物型などが挙げられるが、形式
により装置の仕様や生成物が若干異なる。溶融炭酸塩型
燃料電池及び固体酸化物型燃料電池では、発電と同時
に、燃料極42からは水蒸気52が、空気極46からは
排気54がそれぞれ排出される。一方、リン酸型燃料電
池では、発電と同時に、燃料極からは排気が、空気極か
らは水蒸気がそれぞれ排出される。また燃料電池に供給
される製品ガス20の温度は、燃料電池40がリン酸塩
型の場合463〜493K、溶融炭酸塩型の場合は87
3〜973K、固体酸化物型の場合は973〜1273
Kであることが望ましい。さらに空気極46に供給され
る酸素44として、空気を用いる場合もある。
In the power generation by the fuel cell, the product gas 20 containing hydrogen as a main component is supplied to the fuel electrode 42 of the fuel cell 40 and the oxygen 44 is supplied to the air electrode 46 of the fuel cell 40 based on the above-described formula. Done in The generated DC current was converted to AC power 50 by the inverter 48. As the fuel cell 40 used in the present invention, a phosphate type,
Examples include a molten carbonate type and a solid oxide type, but the specifications and products of the apparatus slightly differ depending on the type. In the molten carbonate fuel cell and the solid oxide fuel cell, water vapor 52 is discharged from the fuel electrode 42 and exhaust gas 54 is discharged from the air electrode 46 simultaneously with power generation. On the other hand, in the phosphoric acid type fuel cell, exhaust is discharged from the fuel electrode and water vapor is discharged from the air electrode simultaneously with power generation. The temperature of the product gas 20 supplied to the fuel cell is 463 to 493K when the fuel cell 40 is of a phosphate type, and 87 when the fuel cell 40 is of a molten carbonate type.
3 to 973K, 973-1273 for solid oxide type
K is desirable. Further, air may be used as the oxygen 44 supplied to the air electrode 46.

【0020】図2は本発明に係るエネルギー発生装置の
他の実施例を示す概略説明図であり、本発明の要旨を説
明するための主要装置や主要生成物のみを示し、付属装
置の多くは省略している。以下にその内容を詳細に説明
するが、前記の図1と共通する部分については説明を省
略する。図2における製品ガス20の圧力は10MPa
〜25MPaであり、この圧力によって発電機64に直
結した減圧タービン60を回転させて発電するととも
に、製品ガスの圧力を所定圧力、一例として1MPa〜
3MPaに減圧した。また減圧タービン60によって圧
縮機62を駆動させ、酸素44の圧力を所定圧力、一例
として1MPa〜3MPaに昇圧した。
FIG. 2 is a schematic explanatory view showing another embodiment of the energy generating apparatus according to the present invention, in which only main devices and main products for explaining the gist of the present invention are shown. Omitted. The contents will be described in detail below, but the description of the parts common to FIG. 1 will be omitted. The pressure of the product gas 20 in FIG.
With this pressure, the pressure reducing turbine 60 directly connected to the generator 64 is rotated to generate electricity, and the pressure of the product gas is set to a predetermined pressure, for example, 1 MPa to 25 MPa.
The pressure was reduced to 3 MPa. The compressor 62 was driven by the decompression turbine 60, and the pressure of the oxygen 44 was increased to a predetermined pressure, for example, 1 MPa to 3 MPa.

【0021】燃料電池による発電は、水素を主成分とす
る製品ガス20を燃料電池の形式毎に後述する所定温
度、1MPa〜3MPaの所定圧力で燃料電池40の燃
料極42に供給すると同時に、酸素44を圧縮機62で
1MPa〜3MPaの所定圧力に昇圧したのち熱交換器
10で所定温度まで昇温させて燃料電池40の空気極4
6に供給することによって行われる。発電された直流電
流は、インバーター48で交流電力50に変換された。
本発明で使用される燃料電池40としては、リン酸塩
型、溶融炭酸塩型、固体酸化物型などが挙げられるが、
形式により装置の仕様や生成物が若干異なる。溶融炭酸
塩型燃料電池及び固体酸化物型燃料電池では、発電と同
時に、燃料極42からは水蒸気52が、空気極46から
は排気54がそれぞれ排出される。一方、リン酸型燃料
電池では、発電と同時に、燃料極からは排気が、空気極
からは水蒸気がそれぞれ排出される。前記の水蒸気52
は温度423K〜1273K、圧力は1MPa〜3MP
aであり、これを発電機64に直結した蒸気タービン6
6に供給して発電する。蒸気タービン66を出た温水6
8及び前記の水蒸気52の一部は冷暖房設備の熱源とし
て有効利用される。また、前記の排気54は、温度42
3K〜1273K、圧力1MPa〜3MPaであり、熱
交換器10で酸素44を昇温させた後、大気中へ放出さ
れる。
In the power generation by the fuel cell, the product gas 20 containing hydrogen as a main component is supplied to the fuel electrode 42 of the fuel cell 40 at a predetermined temperature and a predetermined pressure of 1 MPa to 3 MPa, which will be described later, for each type of fuel cell. 44 is increased to a predetermined pressure of 1 MPa to 3 MPa by a compressor 62, and then heated to a predetermined temperature by a heat exchanger 10 so that the air electrode 4 of the fuel cell 40 is
6. The generated DC current was converted to AC power 50 by the inverter 48.
Examples of the fuel cell 40 used in the present invention include a phosphate type, a molten carbonate type, and a solid oxide type.
The specifications and products of the device differ slightly depending on the type. In the molten carbonate fuel cell and the solid oxide fuel cell, water vapor 52 is discharged from the fuel electrode 42 and exhaust gas 54 is discharged from the air electrode 46 simultaneously with power generation. On the other hand, in the phosphoric acid type fuel cell, exhaust is discharged from the fuel electrode and water vapor is discharged from the air electrode simultaneously with power generation. The steam 52
Is temperature 423K ~ 1273K, pressure is 1MPa ~ 3MP
a, and the steam turbine 6 directly connected to the generator 64
6 to generate electricity. Hot water 6 leaving steam turbine 66
8 and a part of the steam 52 are effectively used as a heat source of the cooling and heating equipment. Further, the exhaust gas 54 has a temperature 42
The pressure is 3 K to 1273 K and the pressure is 1 MPa to 3 MPa. After the temperature of the oxygen 44 is increased by the heat exchanger 10, the oxygen 44 is released into the atmosphere.

【0022】[0022]

【発明の効果】本発明で提供される固体有機物からのエ
ネルギー発生装置を採用することにより、固体有機物の
ガス化によって生成する高温の可燃性ガスの顕熱を、燃
料電池発電における燃料ガスの加熱手段として利用する
ことができる。また、固体有機物のガス化によって精製
する可燃性ガスの圧力によってタービンを回転させて発
電を行うことができるため、固体有機物のエクセルギー
を高め効率のよいエネルギー変換利用を行うことができ
る。
According to the present invention, the sensible heat of the high-temperature combustible gas generated by the gasification of the solid organic substance can be used for heating the fuel gas in the fuel cell power generation by employing the apparatus for generating energy from the solid organic substance provided by the present invention. It can be used as a means. In addition, since power can be generated by rotating the turbine by the pressure of the flammable gas purified by gasification of the solid organic matter, exergy of the solid organic matter can be increased and efficient energy conversion and utilization can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるエネルギー発生装置の一実施例を
示す概略説明図である。
FIG. 1 is a schematic explanatory view showing one embodiment of an energy generating device according to the present invention.

【図2】本発明によるエネルギー発生装置の他の実施例
を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing another embodiment of the energy generating device according to the present invention.

【符号の説明】[Explanation of symbols]

2 ガス化反応器 4 固形燃料 6 吸収剤 8 超臨界水又は亜臨界水 10 熱交換器 12 気液分離器 14 粗製ガス 16 気液分離後液体 18 ガス精製装置 20 製品ガス 25 水 40 燃料電池 42 燃料極 46 空気極 60 減圧タービン 62 圧縮機 66 蒸気タービン 2 Gasification reactor 4 Solid fuel 6 Absorbent 8 Supercritical water or subcritical water 10 Heat exchanger 12 Gas-liquid separator 14 Crude gas 16 Liquid after gas-liquid separation 18 Gas purification device 20 Product gas 25 Water 40 Fuel cell 42 Fuel electrode 46 Air electrode 60 Decompression turbine 62 Compressor 66 Steam turbine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 6/00 F02C 6/00 E F02G 5/04 F02G 5/04 H H01M 8/00 H01M 8/00 Z 8/04 8/04 J 8/08 8/08 8/12 8/12 8/14 8/14 Fターム(参考) 3G081 BA02 BA20 BB00 BC07 4H060 AA02 BB05 BB22 CC03 DD02 FF03 GG01 GG02 5H026 AA04 AA05 AA06 HH08 5H027 AA04 AA05 AA06 BA01 BA16 DD02 DD06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 6/00 F02C 6/00 E F02G 5/04 F02G 5/04 H H01M 8/00 H01M 8/00 Z 8/04 8/04 J 8/08 8/08 8/12 8/12 8/14 8/14 F term (reference) 3G081 BA02 BA20 BB00 BC07 4H060 AA02 BB05 BB22 CC03 DD02 FF03 GG01 GG02 5H026 AA04 AA05 AA06 HH08 5H027 AA04 AA05 AA06 BA01 BA16 DD02 DD06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】固体有機物及び有機物を主成分とする固形
燃料と、生石灰を主成分とする吸収剤と、水を、温度8
73K〜1273K、圧力10MPa〜25MPaで反
応させて、水素を主成分とする製品ガスと、炭酸カルシ
ウムを主成分とする使用済吸収剤を生成するガス化反応
器と、水素と酸素から電力と水蒸気を生成するリン酸型
燃料電池から構成されるエネルギー発生装置であって、
製品ガスの温度を463K〜493Kに維持したままリ
ン酸型燃料電池に供給し、発電を行うことを特徴とする
固体有機物からのエネルギー発生装置。
1. A solid organic substance and a solid fuel mainly composed of an organic substance, an absorbent mainly composed of quick lime, and water at a temperature of 8%.
A gasification reactor which reacts at 73K to 1273K at a pressure of 10 to 25 MPa to produce a product gas containing hydrogen as a main component and a spent absorbent containing calcium carbonate as a main component; electricity and steam from hydrogen and oxygen An energy generator comprising a phosphoric acid fuel cell that generates
An apparatus for generating energy from solid organic matter, wherein a power is supplied to a phosphoric acid type fuel cell while maintaining the temperature of a product gas at 463K to 493K to generate power.
【請求項2】固体有機物及び有機物を主成分とする固形
燃料と、生石灰を主成分とする吸収剤と、水を、温度8
73K〜1273K、圧力10MPa〜25MPaで反
応させて、水素を主成分とする製品ガスと、炭酸カルシ
ウムを主成分とする使用済吸収剤を生成するガス化反応
器と、水素と酸素から電力と水蒸気を生成する溶融炭酸
塩型燃料電池から構成されるエネルギー発生装置であっ
て、製品ガスの温度を873K〜973Kに維持したま
ま溶融炭酸塩型燃料電池に供給し、発電を行うことを特
徴とする固体有機物からのエネルギー発生装置。
2. A solid organic substance and a solid fuel mainly composed of an organic substance, an absorbent mainly composed of quick lime, and water at a temperature of 8%.
A gasification reactor which reacts at 73K to 1273K at a pressure of 10 to 25 MPa to produce a product gas containing hydrogen as a main component and a spent absorbent containing calcium carbonate as a main component; electricity and steam from hydrogen and oxygen An energy generating apparatus comprising a molten carbonate fuel cell for generating electricity, characterized in that power is supplied to the molten carbonate fuel cell while maintaining the temperature of the product gas at 873K to 973K to generate electricity. Energy generator from solid organic matter.
【請求項3】固体有機物及び有機物を主成分とする固形
燃料と、生石灰を主成分とする吸収剤と、水を、温度8
73K〜1273K、圧力10MPa〜25MPaで反
応させて、水素を主成分とする製品ガスと、炭酸カルシ
ウムを主成分とする使用済吸収剤を生成するガス化反応
器と、水素と酸素から電力と水蒸気を生成する固体酸化
物型燃料電池から構成されるエネルギー発生装置であっ
て、製品ガスの温度を973K〜1273Kに維持した
まま固体酸化物型燃料電池に供給し、発電を行うことを
特徴とする固体有機物からのエネルギー発生装置。
3. A solid organic substance and a solid fuel mainly composed of an organic substance, an absorbent mainly composed of quick lime, and water at a temperature of 8%.
A gasification reactor which reacts at 73K to 1273K at a pressure of 10 to 25 MPa to produce a product gas containing hydrogen as a main component and a spent absorbent containing calcium carbonate as a main component; electricity and steam from hydrogen and oxygen An energy generator comprising a solid oxide fuel cell for generating electricity, characterized in that power is supplied to the solid oxide fuel cell while maintaining the temperature of the product gas at 973K to 1273K to generate electric power. Energy generator from solid organic matter.
【請求項4】ガス化反応器と燃料電池の水素供給口の間
に、発電機に直結した減圧タービンを設けて発電を行う
ことを特徴とする請求項1ないし請求項3のいずれか一
つに記載された固体有機物からのエネルギー発生装置。
4. The power generation system according to claim 1, wherein a pressure reducing turbine directly connected to the generator is provided between the gasification reactor and the hydrogen supply port of the fuel cell to generate power. A device for generating energy from solid organic matter as described in (1).
【請求項5】燃料電池への水素供給圧を1MPa〜3M
Paとし、燃料電池で生成する水を1MPa〜3MPa
の水蒸気として回収することを特徴とする請求項1ない
し請求項4のいずれか一つに記載された固体有機物から
のエネルギー発生装置。
5. The hydrogen supply pressure to a fuel cell is 1 MPa to 3 M.
And the water generated by the fuel cell is 1 MPa to 3 MPa.
The energy generator from solid organic matter according to any one of claims 1 to 4, wherein the energy is recovered as water vapor.
【請求項6】燃料電池から回収された1MPa〜3MP
aの水蒸気を、発電機に直結した蒸気タービンに供給し
て発電を行うことを特徴とする請求項5に記載の固体有
機物からのエネルギー発生装置。
6. 1MPa to 3MP recovered from a fuel cell
The energy generator from solid organic matter according to claim 5, wherein the steam of (a) is supplied to a steam turbine directly connected to a generator to generate power.
【請求項7】燃料電池から回収された1MPa〜3MP
aの水蒸気を、冷暖房設備の熱源として利用することを
特徴とする、請求項5又は6に記載の固体有機物からの
エネルギー発生装置。
7. 1MPa to 3MPa recovered from a fuel cell
The energy generator from solid organic matter according to claim 5 or 6, wherein the steam of (a) is used as a heat source of a cooling and heating facility.
【請求項8】燃料電池に供給する酸素を1MPa〜3M
Paに昇圧するための圧縮機を、ガス化反応器と燃料電
池の水素供給口の間に設けた減圧タービンによって駆動
することを特徴とする請求項5に記載の固体有機物から
のエネルギー発生装置。
8. An oxygen supplied to the fuel cell is 1 MPa to 3 M.
The apparatus for generating energy from solid organic matter according to claim 5, wherein the compressor for increasing the pressure to Pa is driven by a pressure reducing turbine provided between the gasification reactor and the hydrogen supply port of the fuel cell.
【請求項9】燃料電池に供給する酸素を1MPa〜3M
Paに昇圧するための圧縮機を、燃料電池の水蒸気発生
口に設けた蒸気タービンによって駆動することを特徴と
する請求項5に記載の固体有機物からのエネルギー発生
装置。
9. The oxygen supplied to the fuel cell is 1 MPa to 3 M.
The apparatus for generating energy from solid organic matter according to claim 5, wherein the compressor for increasing the pressure to Pa is driven by a steam turbine provided at a steam generation port of the fuel cell.
JP2000237532A 2000-08-04 2000-08-04 Energy generating device from solid organic substance Pending JP2002050387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237532A JP2002050387A (en) 2000-08-04 2000-08-04 Energy generating device from solid organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237532A JP2002050387A (en) 2000-08-04 2000-08-04 Energy generating device from solid organic substance

Publications (1)

Publication Number Publication Date
JP2002050387A true JP2002050387A (en) 2002-02-15

Family

ID=18729376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237532A Pending JP2002050387A (en) 2000-08-04 2000-08-04 Energy generating device from solid organic substance

Country Status (1)

Country Link
JP (1) JP2002050387A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007399A (en) * 2007-06-26 2009-01-15 Metawater Co Ltd Method of extracting drainage and residue from hydrothermal gasification device
WO2013005699A1 (en) * 2011-07-05 2013-01-10 国立大学法人 東京大学 Power generator and power-generating method
JP2014139918A (en) * 2006-05-16 2014-07-31 Fuelcell Energy Inc Fuel battery hybrid power generation system and method for gas delivery system
CN107221695A (en) * 2017-06-30 2017-09-29 北京理工大学 A kind of fuel cell system and its electricity-generating method with biomass gasifying hydrogen making

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139918A (en) * 2006-05-16 2014-07-31 Fuelcell Energy Inc Fuel battery hybrid power generation system and method for gas delivery system
JP2009007399A (en) * 2007-06-26 2009-01-15 Metawater Co Ltd Method of extracting drainage and residue from hydrothermal gasification device
WO2013005699A1 (en) * 2011-07-05 2013-01-10 国立大学法人 東京大学 Power generator and power-generating method
JP5286529B2 (en) * 2011-07-05 2013-09-11 国立大学法人 東京大学 Power generation apparatus and power generation method
CN107221695A (en) * 2017-06-30 2017-09-29 北京理工大学 A kind of fuel cell system and its electricity-generating method with biomass gasifying hydrogen making
CN107221695B (en) * 2017-06-30 2023-05-30 北京理工大学 Fuel cell system for producing hydrogen by biomass gasification and power generation method thereof

Similar Documents

Publication Publication Date Title
JP2572905B2 (en) Internal reforming molten carbonate fuel cell power generator
JP5695377B2 (en) Carbon capture cooling system and method
CN108439336B (en) Zero-emission hydrogen electric cogeneration system
JP5196482B2 (en) Turbine equipment with alkali carbonate
EP2432730A1 (en) Process for co-producing synthesis gas and power
JP4981439B2 (en) Solid fuel gasification gas utilization plant
CN109181776B (en) Coal-based poly-generation system and method for integrated fuel cell power generation
CN101540410B (en) Natural gas hydrogen production and proton-exchange film fuel cell integrated generation method and device thereof
AU2020414988A1 (en) Ammonia derivative production plant and production method for ammonia derivative
JP6999213B1 (en) Carbon neutral liquid fuel manufacturing system
KR20040067952A (en) Generating method and system of MHD
KR101441491B1 (en) Intergrated gasification combined cycle coupled fuel cells system and gas supplying method thereto
JP2002050387A (en) Energy generating device from solid organic substance
KR20140038672A (en) Igcc with co2 removal system
CN115651714A (en) Device and method for gasification conversion of low-calorific-value fuel
US9328631B2 (en) Self-generated power integration for gasification
CN210092233U (en) Molten carbonate fuel cell and calcium circulation integrated system
JP3786759B2 (en) Gas generator
JPH04261130A (en) Production of methanol utilizing nuclear heat
JP7474013B1 (en) E-fuel production system with power generation facility and e-fuel production method with power generation facility
CN114988364B (en) Power generation system based on natural gas hydrogen production and fuel cell technology
US11952276B1 (en) Process for producing hydrogen product having reduced carbon intensity
US20230167748A1 (en) Method and apparatus for co-generating electricity in a process plant integrated with a thermal power generator using feedwater
JPS6044590A (en) Thermal power station equipped with coal gasification facilities
JPH04244035A (en) Production of methanol using nuclear heat