WO2013005699A1 - Power generator and power-generating method - Google Patents

Power generator and power-generating method Download PDF

Info

Publication number
WO2013005699A1
WO2013005699A1 PCT/JP2012/066821 JP2012066821W WO2013005699A1 WO 2013005699 A1 WO2013005699 A1 WO 2013005699A1 JP 2012066821 W JP2012066821 W JP 2012066821W WO 2013005699 A1 WO2013005699 A1 WO 2013005699A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
hydrogen
power generation
fluidized bed
heat
Prior art date
Application number
PCT/JP2012/066821
Other languages
French (fr)
Japanese (ja)
Inventor
堤 敦司
堤 香津雄
Original Assignee
国立大学法人 東京大学
エクセルギー工学研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, エクセルギー工学研究所株式会社 filed Critical 国立大学法人 東京大学
Priority to JP2012549932A priority Critical patent/JP5286529B2/en
Publication of WO2013005699A1 publication Critical patent/WO2013005699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation apparatus combining a gasifier using a carbon-based fuel as a raw material and a fuel cell, and more particularly to a high efficiency power generation apparatus and a power generation method.
  • a fuel cell is a power generation device capable of continuously extracting electric power by supplying hydrogen and oxygen from the outside to a negative electrode and a positive electrode, respectively, and causing them to react.
  • the electric capacity is limited.
  • the fuel cell supplies the reducing agent and the oxidizing agent from the outside, there is no limitation on the electric capacity, and the fuel cell has a great feature in that power generation can be continuously performed.
  • a fuel cell is characterized by the absence of a combustion process in its power generation process, and hydrogen and oxygen react to form water, so it is said to be a power generation apparatus with a small load on the environment.
  • Patent Document 3 discloses a fuel cell combined cycle power generation system provided with a fluidized bed gas furnace and a fuel cell. That is, the fuel supplied to the fluidized bed gas furnace undergoes thermal decomposition in a high temperature range to produce a gas containing carbon monoxide and hydrogen which is an effective gas component for fuel cell power generation. In this case, the temperature rise from the temperature at the time of fuel injection to a high temperature range is performed by partially burning the fuel. The generated gas from the fluidized bed gas furnace is subjected to dust removal to remove ash and the like, and the reactor generates hydrogen gas, which is sent to the fuel cell to generate electricity.
  • gasification gas generated in a coal gasification furnace is reformed into hydrogen gas in a shift reactor, supplied to a fuel cell to be generated, and supplied to a gas turbine for generation Do.
  • the technology which generates steam using exhaust heat of a gas turbine, supplies this steam to a steam turbine, and generates electricity is indicated.
  • the fuel cell is excellent in environmental performance, it is an exothermic reaction, and it can not be said that the exergy rate is high.
  • the heat generated at the time of power generation is used, for example, for district heating and cooling, but the heat recovery is not sufficient.
  • the heat radiated from the fuel cell main body is energy which is difficult to recover as power in terms of energy. That is, under the present circumstances, the heat generated from the fuel cell at the time of power generation is not always used effectively.
  • ⁇ G can be extracted as electricity and T ⁇ S can be extracted as heat by setting the energy that the fuel originally has as ⁇ H.
  • ⁇ H reaction heat of formation, and it is a negative value in the case of an exothermic reaction such as a combustion reaction, and is also called a calorific value.
  • ⁇ G free energy, energy that can be taken out as work, and is called exergy as effective energy.
  • T ⁇ S is heat generated with the reaction, and is expressed by the product of entropy change and temperature. And as an ability to take out effective energy, ⁇ G / ⁇ H is called an exergy rate. The exergy rate can be referred to as theoretical efficiency.
  • FIG. 1 shows the relationship between the temperature T and the exergy rate ⁇ G / ⁇ H.
  • the exergy rate of the gas at 1500 ° C. is about 65%
  • the gas at 600 ° C. is about 43%. Even if waste heat power generation is accumulated, this efficiency can not be exceeded. That is, the exergy rate, which is the rate at which the energy of the gas is converted into electrical energy, decreases at the time of heat generation. As a result, the rate at which the energy of the gas is converted to electrical energy is reduced.
  • the exergy rate also depends on the pressure. The higher the pressure, the higher the exergy rate. From this, the exergy rate itself can be brought close to 1 if high temperature and high pressure can be maintained in the reaction process.
  • the object of the present invention is to solve the above-mentioned problems, and is to bring the power generation efficiency close to the exergy rate ⁇ G / ⁇ H.
  • a power generation apparatus comprises a fluidized bed gas furnace that generates a gas by heating a raw material containing carbon and / or hydrocarbons, and gasified in the fluidized bed gas furnace.
  • a power generation apparatus comprising: a shift reactor that generates hydrogen from product gas; and a fuel cell that generates power using hydrogen generated by the shift reactor, wherein the fuel cell is installed in the fluidized bed gas furnace There is.
  • the fluidized bed gas furnace includes the fluidized bed provided with the fluidized medium and the freeboard portion provided in the upper space of the fluidized bed.
  • the raw material supplied to the fluidized bed gas furnace contains carbon, hydrocarbon, or a mixture of carbon and hydrocarbon.
  • the raw material is a carbon source and also a reducing material.
  • the fluidized bed gas furnace is provided with a fluidized bed, and further, a dispersion plate is provided under the fluidized bed, and the fuel cell is disposed in the fluidized bed. Preferably, it is disposed downstream of the dispersion plate.
  • the fluid bed is filled with the fluid medium, and the fluid medium is held by the dispersion plate.
  • the fuel cell is disposed in the fluidized bed that is a component of the fluidized bed gas furnace.
  • solid particles made of sand or the like having a suitable size are disposed as a fluid medium.
  • the fluidized bed gas furnace it is preferable to use the heat generated by the power generation of the fuel cell, which is necessary to gasify the raw material. That is, according to this configuration, since the fuel cell is installed in the fluidized bed, the heat generated when the fuel cell reacts (power generation) is transferred without waste to the fluidized bed directly through the fluidized medium, effectively The heat required to gasify the feedstock in the fluidized bed gas furnace is provided. Usually, in a fluidized bed gasifier, gasification of the raw material is attempted by utilizing heat from partial combustion of the raw material.
  • the heat necessary for the gasification of the raw material does not use the heat from the combustion of the raw material, but uses the heat generated by the reaction (power generation) of the fuel cell.
  • the power generation apparatus according to the present invention is characterized in that there is no combustion process.
  • the intention of the present invention is to eliminate the combustion process as a means to bring the power generation efficiency closer to the exergy rate ⁇ G / ⁇ H.
  • the operation of extracting heat is eliminated, and the power generation efficiency becomes the exergy rate ⁇ G / ⁇ H which is the theoretical efficiency.
  • there is a means to decrease T ⁇ S and to increase ⁇ G That is, since ⁇ G is determined by the temperature and the pressure, T ⁇ S can be reduced and the value of ⁇ G / ⁇ H can be increased by raising the temperature and the pressure by forming a process.
  • gasification of a raw material in a gasification furnace requires heat for gasifying the raw material. This heat is obtained by the combustion of the raw material.
  • the feature of the present invention is that the gasification of the raw material does not require the combustion of the raw material.
  • combustion means a wide combustion process including partial combustion.
  • the raw material referred to in the present invention may be not only fossil fuels such as coal, oil, and natural gas, but also biomass and manure of livestock, etc., and is a reducing material other than hydrogen.
  • the raw material is preferably introduced into the fluidized bed gas furnace from a hopper or the like.
  • the steam generated during the power generation of the fuel cell is supplied to the fluidized bed gas furnace from a wind box disposed upstream of the dispersion plate.
  • a windbox at the bottom of the fluidized bed gas furnace, and the steam necessary for fluidizing the fluidized medium is blown into the fluidized bed from the windbox.
  • a fluidized medium such as high temperature sand is fluidized in the bed by hot air, and the raw materials etc. are pyrolyzed therein. Gasification is performed. If air is fed into the fluidized bed by a blower or the like, the oxygen contained in the air burns the raw material. As described above, if the combustion process is involved in power generation, an exergy loss occurs to cause a decrease in the exergy rate ⁇ G / ⁇ H. Also, if air is used for fluidization, nitrogen will also be heated.
  • the fluidization uses steam generated by the reaction (power generation) of the fuel cell. Since air is not externally taken in for fluidization, it is possible to prevent the decrease in the value of the exergy rate ⁇ G / ⁇ H. By using high pressure steam it is possible to keep the pressure in the fluidized bed gas furnace and its downstream high. The higher the pressure of the reaction, the higher the exergy rate.
  • steam generated by the power generation of the fuel cell is supplied to the shift reactor, and hydrogen is generated from the generated gas using the heat of the steam.
  • the shift reactor reforms the product gas to produce hydrogen to be supplied to the fuel cell.
  • reforming is to produce hydrogen from carbon monoxide in the product gas, and is usually supplied using steam as a heat source, and the shift reaction proceeds with the aid of a catalyst. Only hydrogen may be generated from the product gas.
  • the fuel cell generates high temperature water vapor during power generation.
  • the heat generated by the fuel cell can be effectively used without wasting it.
  • the gasification reaction is represented by the following formula (1)
  • the shift reaction is represented by the following formula (2).
  • the power generation apparatus preferably includes a generator driven by the steam turbine, which guides the steam generated by the power generation of the fuel cell to the steam turbine.
  • a condenser may be provided downstream of the steam turbine.
  • the provision of the condenser increases the heat drop and makes it possible to extract a large amount of power from the steam turbine.
  • an electrolysis tank having a sealed structure for electrolyzing exhaust gas of the steam turbine is connected to an exhaust outlet of the steam turbine, and hydrogen and oxygen generated by the electrolysis are used as the fuel It is preferable to supply the battery to generate electricity.
  • the electrolysis tank By providing the electrolysis tank, it is possible to produce and accumulate hydrogen using surplus power.
  • the exhaust heat of the exhaust can be effectively used, the heat loss can be suppressed. If hydrogen and oxygen are generated at normal pressure, they will work with the atmosphere, causing losses.
  • the electrolysis tank since the electrolysis tank has a closed structure, the internal pressure is maintained at a higher pressure than the atmosphere. For this reason, by producing hydrogen by electrolysis of water in the electrolysis tank, it is possible to prevent the loss of the expansion component to the atmospheric pressure that has occurred under normal pressure. That is, the pressure in the electrolysis tank increases, and the exergy rate increases accordingly.
  • the outside of the system means the outside of the power generation device according to the present invention, and means a tank for storage, a pipeline for gas transportation, or the like.
  • a control valve that controls the amount of hydrogen supplied to the fuel cell is provided between the shift reactor and the fuel cell. By adjusting the control valve, it is possible to adjust the amount of hydrogen supplied to the fuel cell in order to secure the amount of heat corresponding to the supply of the raw material.
  • the power generation apparatus includes a scale that measures the weight of the raw material, and a control device that controls the control valve, and the control device can gasify the raw material based on a signal from the scale.
  • a heat quantity calculation circuit that calculates the amount of heat required for the fuel cell
  • a hydrogen quantity calculation circuit that calculates the quantity of hydrogen required for power generation of the fuel cell based on the signal from the heat quantity calculation circuit
  • the output of the hydrogen quantity calculation circuit Preferably, a control valve control circuit is provided to control the control valve.
  • a power generation apparatus comprises a fluidized bed gas furnace which generates a gas by heating a raw material containing carbon and / or hydrocarbons, and a shift reaction which generates hydrogen from the gasified gas produced in the fluidized bed gas furnace.
  • Generator and a fuel cell generating electricity using hydrogen generated by the shift reactor, wherein the heat necessary for gasifying the raw material is not derived from the combustion of the raw material; Use the heat generated by power generation.
  • a power generation apparatus comprises a fluidized bed gas furnace which generates a gas by heating a raw material containing carbon and / or hydrocarbons, and a shift reaction which generates hydrogen from the gasified gas produced in the fluidized bed gas furnace.
  • Generator and a fuel cell generating electricity using hydrogen generated in the shift reactor, wherein the gas for fluidization in the fluidized bed gasifier is not supplied from the outside, The steam generated by the fuel cell's power generation is used.
  • the power generation method comprises the steps of generating power by a fuel cell, gasifying the raw material by the heat generated at the time of power generation of the fuel cell to generate generated gas, and generating power of the fuel cell
  • a shift reaction step of reforming the product gas to generate hydrogen by heat generated at the time, a step of supplying hydrogen generated in the shift reaction step to the fuel cell to generate electric power, and The step of supplying steam generated by the power generation to the steam turbine to generate power is included.
  • the fuel cell is installed in the fluidized bed.
  • the feedstock comprises carbon and / or hydrocarbons.
  • the method includes the steps of: supplying the fuel cell for power generation; and removing hydrogen not supplied to the fuel cell from the hydrogen generated in the shift reaction step.
  • the fuel cell is installed in a fluidized bed, and the raw material contains carbon and / or hydrocarbon. Then, a part of hydrogen generated in the fluidized bed gasification furnace and the shift reactor is supplied to the fuel cell to perform power generation, and the remaining hydrogen can be taken out as a product, so the method of cogeneration of hydrogen is called be able to.
  • FIG. 1 is a basic configuration diagram of a power generation device according to an embodiment of the present invention. It is a basic block diagram of the electric power generating apparatus which concerns on another embodiment of this invention. It is a control systematic diagram which controls the control valve of FIG. It is a flow sheet of the electric power generating apparatus which concerns on embodiment of this invention.
  • A) is a flow sheet which concerns on embodiment of FIG. 2
  • (b) is a flow sheet which concerns on embodiment of FIG.
  • Figure 2 is a diagram showing coal gasification fuel cell power generation energy conversion.
  • FIG. 2 is a diagram showing a basic configuration of a power generation device according to an embodiment of the present invention.
  • the fluidized bed gas furnace 8 mainly includes the wind box 3 serving as an intake of working gas, the fluidized bed 2 located downstream of the wind box 3, and the freeboard portion 7 located downstream of the fluidized bed 2 It has as.
  • the wind box 3 and the fluidized bed 2 are separated by a dispersing plate 4.
  • the raw material 1 is supplied to the fluidized bed 2 from a raw material feeder (not shown) and undergoes thermal decomposition in a temperature range of 400 ° C. to 1000 ° C. to produce a gas containing hydrogen, carbon monoxide and some hydrocarbons. .
  • hydrogen is an effective gas component for power generation by the fuel cell 6.
  • the temperature rise from the temperature at the time of charge to 400 ° C. to 1000 ° C. is performed using the heat generated by the reaction (power generation) of the fuel cell 6.
  • the non-combustible substance mixed in the raw material 1 is discharged from the fluidized bed 2.
  • the raw material 1 may be carbon, a hydrocarbon and a mixture thereof.
  • coal is used in this embodiment, fossil fuel other than coal or biomass may be used. It may be methanol and ethanol, or may be a polymer compound such as plastic.
  • the superheated vapor from the fuel cell 6 is fed into the wind box 3 to suspend and suspend the fluid medium 5 composed of solid particles on the dispersion plate 4.
  • the fluid medium 5 is silica sand, powder particles such as alumina or iron particles, or a mixture of these. Further, the fluid medium 5 may carry a catalyst that reduces water to produce hydrogen.
  • the fluid medium 5 has a function of performing heat transfer to the raw material 1 in the fluid bed 2.
  • a fuel cell 6 is installed in the fluid medium 5.
  • the gas generated in the fluidized bed 2 (hereinafter referred to as product gas GG) contains carbon dioxide, water vapor, carbon monoxide, hydrogen, and dust.
  • product gas GG contains carbon dioxide, water vapor, carbon monoxide, hydrogen, and dust.
  • the generated gas GG is sent to the dust collector 12 through the piping 11 via the free board unit 7.
  • the generated gas GG sent to the dust collector 12 has a temperature of approximately 400 ° C. to 650 ° C. at the inlet of the dust collector 12.
  • the thermal decomposition endothermic reaction proceeds, so the gas temperature is lower than that of the fluidized bed part.
  • the gas temperature at the freeboard portion 7 may be lower than 650 ° C.
  • air or oxygen may be supplied to the freeboard 7 to raise the gas temperature to avoid a tar problem.
  • a cyclone system can be used as the dust collector 12
  • a filter system may be adopted.
  • the filter system is preferable from the viewpoint of high dust collection.
  • a bag filter can be used as the dust collector 12, but a cyclone may be used and a ceramic filter may be disposed further downstream thereof.
  • Solids such as ash and alkali metal salts removed by the dust collector 12 are discharged from the discharge passage 13 out of the system.
  • the product gas GG from which the ash content and the like have been removed is sent to the shift reactor 17 via the pipe 14.
  • a corrosive gas removal device (not shown) may be provided between the precipitator 12 and the shift reactor 17 for removing corrosive gas such as hydrogen chloride and hydrogen sulfide contained in the product gas GG.
  • a catalyst for enhancing the reaction rate such as magnetite (Fe 3 O 4 ) or platinum is filled inside the shift reactor 17.
  • the high temperature steam generated by the reaction (power generation) in the fuel cell 6 is supplied to the shift reactor 17.
  • the shift reactor 17 uses the heat and moisture of the high temperature steam, the shift reactor 17 reacts carbon monoxide in the product gas GG with water to produce hydrogen.
  • This hydrogen is supplied to the anode (negative electrode) of the fuel cell 6.
  • This reaction formula is shown in the following formula (5).
  • a fuel gas containing hydrogen as a main component (hereinafter referred to as a fuel gas FG) generated in the shift reactor 17 is sent to a hydrogen tank 21 via a pipe 18. Further, carbon dioxide is discharged from the pipe 19 to the outside of the system.
  • the fuel gas FG mainly composed of hydrogen stored in the hydrogen tank 21 is sent to the anode of the fuel cell 6 at high pressure.
  • Oxygen is supplied from the oxygen tank 23 to the cathode of the fuel cell 6 through the pipe 25.
  • the utilization efficiency of the fuel gas FG inside the fuel cell is not 100%, so the exhaust from the anode of the fuel cell 6 contains water vapor which is the main component and some unreacted fuel gas. Hydrogen in unreacted fuel gas is recovered and supplied to the fuel cell again.
  • the heat generated from the fuel cell 6 is substantially equal to the heat absorption component of the gasification reaction, this heat can be used as a heat source for gasification in the fluidized bed gas furnace 8.
  • gasification can be performed without partially burning the raw material 1, so power generation with high energy efficiency can be achieved.
  • the hydrogen tank 21 is supplied with hydrogen from the shift reactor 17 and also supplied from the electrolysis tank 26.
  • the exhaust of the steam turbine 31 is connected to the electrolysis tank 26 through a pipe 35.
  • the exhaust gas supplied to the electrolysis tank 26 is warmer than the normal temperature, and the content of air is small, so that water suitable for electrolysis is supplied.
  • makeup water is supplied to the electrolysis tank 26 from a system (not shown).
  • the electrolysis tank 26 has a closed structure, the internal pressure is maintained at a higher pressure than the atmosphere. For this reason, by producing hydrogen by electrolysis of water in the electrolysis tank 26, it is possible to prevent the loss of the expansion component to the atmospheric pressure that has occurred under normal pressure.
  • the oxygen produced in the electrolysis tank 26 is sent to the oxygen tank 23 through the pipe 28.
  • the power 46 required for the electrolysis may be supplied from the generated power 42 of the fuel cell 6.
  • the fuel cell 6 generates electric power 42, water vapor and heat.
  • the electric power 42 can be transmitted from the fuel cell 6 through the electric power system.
  • the generated heat is transferred to the raw material 1 through the fluid medium 5 and becomes a heat source for gasification. Further, a part of the generated steam is introduced from the dispersion plate 4 of the fluidized bed 2 as a gas for fluidization of the fluidized bed 2 and a heat source for gasification.
  • Part of the high-temperature steam (superheated steam) generated in the fuel cell 6 is introduced from the windbox 3 of the fluidized bed 2 through the piping 34, supplied to the fluidized medium 5, and endothermic gasification in the fluidized bed 2 Contribute to the reaction.
  • Another part can be supplied to the steam turbine 31 to drive the steam turbine generator 32 and extract it as the generated power 44 of the steam turbine.
  • a condenser 33 is provided downstream of the steam turbine 31. By reducing the exhaust pressure, the heat drop is increased to increase the power generated by the steam turbine generator 32. Further, the steam leaving the steam turbine 31 is sent to the electrolysis tank 26 through the pipe 35 and becomes a supply source of heat and water for electrolysis.
  • the DC power 46 required for the electrolysis may separately supply surplus power or the like, but it is also possible to use a part of the generated power 42 of the fuel cell 6.
  • Hydrogen is also supplied to the hydrogen tank 21 from the electrolysis tank 26 via the pipe 27. At this time, since the temperature of hydrogen supplied via the pipe 27 is low, heat exchange with the high temperature hydrogen of the hydrogen tank 21 is desirable.
  • the heat exchanger 29 is for raising the temperature of low-temperature hydrogen by heat exchange.
  • the steam turbine 31 is driven by the surplus of the steam generated by the fuel cell 6 to generate power, this surplus steam can also be used for cooling and heating, and a so-called regional cooling and heating system is constructed. It is also possible. In this sense, this embodiment can be viewed as a power and heat cogeneration system.
  • FIG. 3 shows a basic configuration diagram according to another embodiment of the present invention.
  • the power generation apparatus mainly includes a fluidized bed gas furnace 8 in which a fuel cell 6 is installed in the fluidized bed 2, a dust collector 12 and a shift reactor 17.
  • the hydrogen generated in the shift reactor 17 is temporarily stored in the hydrogen tank 21, a part of which is supplied to the fuel cell 6, and the rest can be supplied to other facilities through the pipe 38.
  • a control valve 36 may be provided in the middle of the pipe 22 between the fuel cell 6 and the hydrogen tank 21 to adjust the amount of hydrogen supplied to the fuel cell 6.
  • a controller 52 may be provided to adjust the control valve 36.
  • the weight of the raw material 1 supplied to the fluidized bed gas furnace 8 is measured using a weigher 51.
  • the heat quantity calculation circuit 54 calculates the quantity of heat necessary for the gasification and shift reaction based on the signal from the weighing device 51 and the signal from the raw material property table 53.
  • the raw material characteristic table 53 includes statistical data of the calorific value of the raw material 1.
  • the hydrogen amount calculation circuit 56 calculates the amount of hydrogen required to generate the heat amount obtained by the heat amount calculation circuit 54.
  • a fuel cell characteristic table 55 holding the relationship between the calorific value of the fuel cell 6 and the amount of supplied hydrogen is used.
  • the controller 52 controls the control valve 36 via the control valve control circuit 57 to adjust it to the calculated amount of hydrogen.
  • the present embodiment is also a facility that produces hydrogen while performing power generation by the fuel cell 6, and therefore can be considered as a co-production system of power and hydrogen.
  • the heat of the fuel cell 6 is supplied to the steam turbine 31 and a part of the heat is recovered, but is discarded via the condenser 33, thereby avoiding the occurrence of energy loss Absent.
  • the hydrogen cogeneration power generation device shown in FIG. 3 since there is no energy loss due to waste heat, high power generation efficiency can be achieved.
  • FIG. 5 (a) shows a flow sheet of cogeneration of power heat, which co-produces power and heat.
  • FIG. 5 (b) shows a flow sheet of co-production of power hydrogen, which co-produces power and hydrogen.
  • the figures in the figure show the energy at each stage when the energy of coal is 100, and the figures in parentheses show the energy ratio and the exergy ratio.
  • co-production of power hydrogen (FIG. 5 (b)) has no such energy loss.
  • heat is always generated, and cogeneration to be used as heat is performed, or the generated heat is used to operate a heat engine having a lower temperature level.
  • the heat generated has been heat exchanged with combustion air to reuse primary energy, such as reusing heat.
  • Such types of heat generating power generation devices exchange heat and transfer heat to fuel and air, or use a cascade of heat to install a heat engine that operates in a lower temperature range to obtain more electrical energy. Although it has been devised to generate the problem, it can not be said that it is sufficient.
  • the amount of fuel supplied is changed to change the amount of power generation.
  • the exhaust gas loss is kept constant by performing air-fuel ratio control in which the amount of air is controlled at a constant rate to the fuel, but when the load decreases, the amount of heat release decreases little with respect to the calorific value, so the power generation efficiency decreases.
  • a boiler turbine generator a generator with 100% load and 40% power generation efficiency, with 33% load, the power generation efficiency drops to about 30%.
  • the power generation efficiency according to the present invention is the power generation efficiency by performing the gasification using the heat generation of the fuel cell, although the power generation efficiency of 70% calculated in the partial combustion gasification fuel cell combined power generation so far Increases to 89%.
  • Figure 1 shows the relationship between temperature and exergy rate. If thermal energy is generated by a chemical reaction, the process will reduce exergy. When the temperature is high, the exergy rate is high.
  • FIG. 6 is a schematic view of a fluidized bed gasifier, a shift reactor, and a fuel cell, which play a central role in the embodiment of the present invention.
  • coal is introduced into a high temperature fluidized bed to reduce steam to generate hydrogen and carbon monoxide. Since carbon monoxide reacts with water to form hydrogen and carbon dioxide, the following formula (6) is obtained as a whole.
  • C + 2 H 2 O + Q CO 2 + 2 H 2 (6)
  • Q represents the amount of heat necessary for the reaction, and is supplied by the amount of heat generated from the fuel cell installed in the fluidized bed.
  • Q indicates the calorific value associated with power generation, which is the same value as the amount of heat when carbon is gasified.
  • W is electrical energy. If these two equations are added, it becomes the following equation (8), and carbon reacts with oxygen and is converted to carbon dioxide and electrical energy.
  • C + O 2 CO 2 + W (8)
  • FIG. 7 shows an energy conversion diagram when gasification of coal, oil, biomass and the like is performed by the fuel cell.
  • the energy possessed by the raw materials is shown on the top, and the exergy is shown on the bottom.
  • Coal of energy 100 has 95 exergy.
  • Coal is supplied with water vapor and heat of exergy 17 energy 35 from the fuel cell to generate hydrogen of exergy rate 83% exergy 112 energy 135 at 900 ° C.
  • Hydrogen becomes 81 electric energy with 60% efficiency in the fuel cell (SOFC), and the remaining Exergy 17 energy 35 water vapor and heat are supplied to the fluid bed, and the Exergy 10 energy 19 heat and hydrogen steam turbine It generates 8 electricity at 40% efficiency by power generation.
  • a total of 89 electricity will be generated, making it a 94% generator based on an 89% exergy basis with a 89% generation efficiency.
  • the power generation device according to the present invention can be suitably used as a power generation device in a power plant of a commercial power grid. Moreover, it can be suitably used as a power generation device in a private power generation facility or a power generation device connected to a micro grid.

Abstract

[Problem] In order to improve power generation efficiency, the exergy rate (ΔG/ΔH) must be as close to 1 as possible. For this reason, the ratio to heat (ΔG) must be reduced, and the input energy (ΔH) must be electrical energy as much as possible. [Solution] A power generator is provided which has a fluidised bed gas furnace for gasifying raw materials including carbon and/or hydrocarbons, a fuel cell installed inside the fluidised bed gas furnace, and a shift reactor for reforming the gas generated by the gasification in the fluidised bed gas furnace to produce hydrogen. In this power generator, the fuel cell generates electrical power using the hydrogen generated in the shift reactor, and the heat needed to gasify the raw materials in the fluidised bed reactor is created by the generation of electrical power in the fuel cell.

Description

発電装置および発電方法POWER GENERATION DEVICE AND POWER GENERATION METHOD
 本発明は、炭素系燃料を原料とするガス化炉と燃料電池とを組み合わせた発電装置に関し、詳しくは高効率発電装置および発電方法に関する。 The present invention relates to a power generation apparatus combining a gasifier using a carbon-based fuel as a raw material and a fuel cell, and more particularly to a high efficiency power generation apparatus and a power generation method.
 近年、環境への配慮から、自動車または電車などの車両用の動力源または発電設備として、燃料電池を用いることが提案されている(例えば、特許文献1)。燃料電池は、外部から水素および酸素を、それぞれ、負極および正極に供給して、反応させることにより継続的に電力を取り出すことができる発電装置である。一方、一次電池および二次電池は、還元剤と酸化剤が電池内の電極に充填されるので、電気容量に限界がある。これに対して、燃料電池は、還元剤と酸化剤を外部から供給するので、電気容量に制限がなく、発電を継続的に行うことが可能な点で大きな特徴を有している。 In recent years, it has been proposed to use a fuel cell as a power source or a power generation facility for a vehicle such as a car or a train, in consideration of the environment (for example, Patent Document 1). A fuel cell is a power generation device capable of continuously extracting electric power by supplying hydrogen and oxygen from the outside to a negative electrode and a positive electrode, respectively, and causing them to react. On the other hand, in the primary battery and the secondary battery, since the reducing agent and the oxidizing agent are charged in the electrode in the battery, the electric capacity is limited. On the other hand, since the fuel cell supplies the reducing agent and the oxidizing agent from the outside, there is no limitation on the electric capacity, and the fuel cell has a great feature in that power generation can be continuously performed.
 燃料電池は、その発電過程において燃焼過程が存在しないことを特徴としており、水素と酸素が反応して水を生成するので、環境への負荷が小さい発電装置と言われている。 A fuel cell is characterized by the absence of a combustion process in its power generation process, and hydrogen and oxygen react to form water, so it is said to be a power generation apparatus with a small load on the environment.
 水素の製造方法として、石炭等の化石燃料を流動層を用いてガス化を行い、シフト反応で水素を生成する技術が広く知られている。すなわち、特許文献2には、チャー発生量の大きな燃料であっても、チャーの移送量を容易に制御でき、しかも配管内部の閉塞などの問題がなく、簡単な設備でチャーを燃焼し、さらにチャーの燃焼熱をガス化用熱源として利用できる流動層ガス化燃焼炉に関する技術が開示されている。 As a method of producing hydrogen, there is widely known a technique of gasifying fossil fuel such as coal using a fluid bed to generate hydrogen by shift reaction. That is, even if it is a fuel with a large char generation amount, according to Patent Document 2, the char transfer amount can be easily controlled, and moreover, there is no problem such as clogging inside the pipe, and the char is burned with simple equipment, and further There is disclosed a technology relating to a fluidized bed gasification combustion furnace which can use the heat of combustion of char as a heat source for gasification.
 特許文献3には、流動層ガス炉と燃料電池とを備えた燃料電池複合サイクル発電システムが開示されている。すなわち、流動層ガス炉へ供給される燃料は高温の温度域で熱分解を受け、一酸化炭素と燃料電池発電のための有効ガス成分である水素を含んだガスを生成する。この場合、燃料投入時の温度から高温の温度域への昇温は、燃料を部分燃焼させることにより行われる。流動層ガス炉から出た生成ガスは集塵装置で灰分等が除去され、反応器において水素ガスが生成され、燃料電池へと送られ発電する。 Patent Document 3 discloses a fuel cell combined cycle power generation system provided with a fluidized bed gas furnace and a fuel cell. That is, the fuel supplied to the fluidized bed gas furnace undergoes thermal decomposition in a high temperature range to produce a gas containing carbon monoxide and hydrogen which is an effective gas component for fuel cell power generation. In this case, the temperature rise from the temperature at the time of fuel injection to a high temperature range is performed by partially burning the fuel. The generated gas from the fluidized bed gas furnace is subjected to dust removal to remove ash and the like, and the reactor generates hydrogen gas, which is sent to the fuel cell to generate electricity.
 また特許文献4には、石炭ガス化炉で生成されたガス化ガスが、シフト反応器において水素ガスに改質されて、燃料電池に供給されて発電されるとともに、ガスタービンに供給されて発電する。そして、ガスタービンの排熱を利用して蒸気を発生させて、この蒸気を蒸気タービンに供給して発電する技術が開示されている。 Further, according to Patent Document 4, gasification gas generated in a coal gasification furnace is reformed into hydrogen gas in a shift reactor, supplied to a fuel cell to be generated, and supplied to a gas turbine for generation Do. And the technology which generates steam using exhaust heat of a gas turbine, supplies this steam to a steam turbine, and generates electricity is indicated.
特開2006-092920号公報JP, 2006-092920, A 特開2009-019870号公報JP, 2009-019870, A 国際公開第2000-027951号公報International Publication No. 2000-027951 特開2008-291081号公報JP 2008-291081 A
 燃料電池は対環境性能に優れるが、発熱反応であり、エクセルギー率が高いとはいえない。発電の際に発生する熱は、例えば地域冷暖房等に利用されるが、熱の回収は十分とはいえない。燃料電池本体から放熱される熱は、エネルギー的には動力として回収しにくいエネルギーである。すなわち、燃料電池から発電の際に発生する熱は、必ずしも有効に利用されているとはいえないのが現状である。 Although the fuel cell is excellent in environmental performance, it is an exothermic reaction, and it can not be said that the exergy rate is high. The heat generated at the time of power generation is used, for example, for district heating and cooling, but the heat recovery is not sufficient. The heat radiated from the fuel cell main body is energy which is difficult to recover as power in terms of energy. That is, under the present circumstances, the heat generated from the fuel cell at the time of power generation is not always used effectively.
 流動層ガス炉においては、原料となる化石燃料をガス化するために必要な熱を供給する必要があり、加熱に必要な熱エネルギーは原料の一部を燃焼させることにより得ている。したがって燃焼により、本来電気として取り出すことができるエネルギーの一部が熱に変換され、取り出すことができる電力量が減少する。そして、減少した分のエネルギーは熱となって熱損失が発生する。 In a fluidized bed gas furnace, it is necessary to supply the heat necessary to gasify the fossil fuel as the raw material, and the thermal energy necessary for heating is obtained by burning a part of the raw material. Therefore, the combustion converts a portion of the energy that can be originally extracted as electricity into heat, and reduces the amount of power that can be extracted. Then, the reduced energy becomes heat and a heat loss occurs.
 化学反応を利用して電力を取り出す場合、燃料が本来有するエネルギーをΔHとすれば、ΔGを電気として取り出すことができ、TΔSを熱として取り出すことができる。ΔHは反応生成熱と呼ばれ、燃焼反応などの発熱反応であれば負の値であり、発熱量とも呼ばれている。ΔHは、ΔGとTΔSの和である(ΔH=ΔG+TΔS)。ΔGは自由エネルギーと呼ばれ、仕事として取り出すことができるエネルギーであり、有効なエネルギーとしてエクセルギーと呼ばれている。TΔSは反応に伴って発生する熱であり、エントロピー変化と温度の積で表されている。そして有効なエネルギーを取り出す能力としてΔG/ΔHをエクセルギー率と呼んでいる。エクセルギー率は理論効率と称することができる。 In the case of extracting electric power using a chemical reaction, ΔG can be extracted as electricity and TΔS can be extracted as heat by setting the energy that the fuel originally has as ΔH. ΔH is called reaction heat of formation, and it is a negative value in the case of an exothermic reaction such as a combustion reaction, and is also called a calorific value. ΔH is the sum of ΔG and TΔS (ΔH = ΔG + TΔS). ΔG is called free energy, energy that can be taken out as work, and is called exergy as effective energy. TΔS is heat generated with the reaction, and is expressed by the product of entropy change and temperature. And as an ability to take out effective energy, ΔG / ΔH is called an exergy rate. The exergy rate can be referred to as theoretical efficiency.
 熱が電気エネルギーに変換される割合は、温度に依存している。図1に温度Tとエクセルギー率ΔG/ΔHの関係を示す。図1によれば、1500℃の気体のエクセルギー率は65%、600℃の気体は43%程度である。廃熱発電を積み重ねてもこの効率を超えることはできない。すなわち、気体の持つエネルギーが電気エネルギーに変換される割合であるエクセルギー率は、熱が発生した時点で低下する。その結果、気体の持つエネルギーが電気エネルギーに変換される割合が下がるのである。
 また、エクセルギー率は圧力にも依存する。圧力が高ければエクセルギー率も高くなる。これより、反応プロセスにおいて、高い温度と高い圧力を維持することができれば、エクセルギー率自体を1に近づけることができる。
The rate at which heat is converted to electrical energy is dependent on temperature. FIG. 1 shows the relationship between the temperature T and the exergy rate ΔG / ΔH. According to FIG. 1, the exergy rate of the gas at 1500 ° C. is about 65%, and the gas at 600 ° C. is about 43%. Even if waste heat power generation is accumulated, this efficiency can not be exceeded. That is, the exergy rate, which is the rate at which the energy of the gas is converted into electrical energy, decreases at the time of heat generation. As a result, the rate at which the energy of the gas is converted to electrical energy is reduced.
The exergy rate also depends on the pressure. The higher the pressure, the higher the exergy rate. From this, the exergy rate itself can be brought close to 1 if high temperature and high pressure can be maintained in the reaction process.
 本発明の目的は、上記課題を解決するためになされたものであり、発電効率をエクセルギー率ΔG/ΔHに近づけることである。換言すれば、ΔGを熱にする割合を減らすことにより、エクセルギーΔGを可能な限り電気エネルギーに変換することで、発電効率の高い発電装置を提供することにある。更には、エクセルギー率を1に近づけることにより、発電効率を高めることにある。 The object of the present invention is to solve the above-mentioned problems, and is to bring the power generation efficiency close to the exergy rate ΔG / ΔH. In other words, it is an object of the present invention to provide a power generation device with high power generation efficiency by converting exergy ΔG into electric energy as much as possible by reducing the rate of converting ΔG into heat. Furthermore, by bringing the exergy rate closer to 1, the power generation efficiency is to be enhanced.
 前記した目的を達成するために、本発明に係る発電装置は、炭素および/または炭化水素を含む原料を加熱してガスを生成する流動層ガス炉と、前記流動層ガス炉でガス化された生成ガスから水素を生成するシフト反応器と、前記シフト反応器で生成された水素を用いて発電する燃料電池を有する発電装置であって、前記燃料電池が前記流動層ガス炉内に設置されている。 In order to achieve the above-described object, a power generation apparatus according to the present invention comprises a fluidized bed gas furnace that generates a gas by heating a raw material containing carbon and / or hydrocarbons, and gasified in the fluidized bed gas furnace. A power generation apparatus comprising: a shift reactor that generates hydrogen from product gas; and a fuel cell that generates power using hydrogen generated by the shift reactor, wherein the fuel cell is installed in the fluidized bed gas furnace There is.
 この構成によれば、流動層ガス炉は流動媒体が配備された流動層と流動層の上部空間に設けたフリーボード部を備えている。そして、流動層ガス炉に供給される原料には、炭素、炭化水素、または炭素と炭化水素の混合物が含まれている。原料は炭素源であって、還元材でもある。 According to this configuration, the fluidized bed gas furnace includes the fluidized bed provided with the fluidized medium and the freeboard portion provided in the upper space of the fluidized bed. And, the raw material supplied to the fluidized bed gas furnace contains carbon, hydrocarbon, or a mixture of carbon and hydrocarbon. The raw material is a carbon source and also a reducing material.
 本発明に係る発電装置において、前記流動層ガス炉には、流動層が配備されていて、更に、前記流動層の下部には分散板が配備されていて、前記燃料電池が前記流動層内であって前記分散板の下流に配置されていることが好ましい。この構成によれば、流動層には流動媒体が充填されていて、流動媒体は分散板により保持されている。これにより、流動層ガス炉の構成要素である流動層に燃料電池が配置される。流動層には,適当な大きさの砂などからなる固体粒子が流動媒体としてその内部に配備されいる。流動層の下部から気体を吹き込むことにより、流動媒体をある高さまで浮遊させ、激しく動き回る状態にする。 In the power generation apparatus according to the present invention, the fluidized bed gas furnace is provided with a fluidized bed, and further, a dispersion plate is provided under the fluidized bed, and the fuel cell is disposed in the fluidized bed. Preferably, it is disposed downstream of the dispersion plate. According to this configuration, the fluid bed is filled with the fluid medium, and the fluid medium is held by the dispersion plate. Thus, the fuel cell is disposed in the fluidized bed that is a component of the fluidized bed gas furnace. In the fluidized bed, solid particles made of sand or the like having a suitable size are disposed as a fluid medium. By blowing gas from the lower part of the fluidized bed, the fluidized medium is floated up to a certain height and made to move vigorously.
 このため、前記流動層ガス炉において、前記原料をガス化するのに必要な熱を前記燃料電池の発電により生じた熱を用いることが好ましい。すなわち、この構成によれば、燃料電池が流動層内に設置されているので、燃料電池が反応(発電)に際して生成する熱は無駄なく直接流動媒体を介して流動層に伝達され、効果的に流動層ガス炉内の原料のガス化に必要な熱を供給する。通常、流動層ガス化炉においては、原料の部分燃焼による熱を利用して原料のガス化を図っている。しかし、本発明に係る発電装置においては、原料のガス化に必要な熱は、原料の燃焼による熱を用いるのではなく、燃料電池の反応(発電)により生じた熱を用いる。本発明に係る発電装置においては、燃焼過程が存在しないという特徴を有する。本発明の意図するところは、発電効率をエクセルギー率ΔG/ΔHに近づける手段として、燃焼過程を排除することである。これによって熱を取り出す操作が無くなり、発電効率は理論効率であるエクセルギー率ΔG/ΔHになる。
 更に、TΔSを減少させてΔGを増加する手段がある。すなわち、ΔGは温度と圧力により決まるので、プロセスを組んで温度と圧力を上げることにより、TΔSを小さくして、ΔG/ΔHの値を上げることができる。
For this reason, in the fluidized bed gas furnace, it is preferable to use the heat generated by the power generation of the fuel cell, which is necessary to gasify the raw material. That is, according to this configuration, since the fuel cell is installed in the fluidized bed, the heat generated when the fuel cell reacts (power generation) is transferred without waste to the fluidized bed directly through the fluidized medium, effectively The heat required to gasify the feedstock in the fluidized bed gas furnace is provided. Usually, in a fluidized bed gasifier, gasification of the raw material is attempted by utilizing heat from partial combustion of the raw material. However, in the power generation apparatus according to the present invention, the heat necessary for the gasification of the raw material does not use the heat from the combustion of the raw material, but uses the heat generated by the reaction (power generation) of the fuel cell. The power generation apparatus according to the present invention is characterized in that there is no combustion process. The intention of the present invention is to eliminate the combustion process as a means to bring the power generation efficiency closer to the exergy rate ΔG / ΔH. As a result, the operation of extracting heat is eliminated, and the power generation efficiency becomes the exergy rate ΔG / ΔH which is the theoretical efficiency.
Furthermore, there is a means to decrease TΔS and to increase ΔG. That is, since ΔG is determined by the temperature and the pressure, TΔS can be reduced and the value of ΔG / ΔH can be increased by raising the temperature and the pressure by forming a process.
 一般にガス化炉における原料のガス化には、原料をガス化する熱が必要である。この熱は原料の燃焼により得ている。本発明の特徴とするところは、原料のガス化に原料の燃焼を必要としないことである。ここで燃焼とは、部分燃焼を含む広い燃焼過程を意味する。 In general, gasification of a raw material in a gasification furnace requires heat for gasifying the raw material. This heat is obtained by the combustion of the raw material. The feature of the present invention is that the gasification of the raw material does not require the combustion of the raw material. Here, combustion means a wide combustion process including partial combustion.
 本発明にいう原料は、石炭、石油、および天然ガス等の化石燃料のみならず、バイオマスおよび家畜の糞尿等であってよく、水素以外の還元材である。原料は好ましくはホッパー等から流動層ガス炉内に投入される。 The raw material referred to in the present invention may be not only fossil fuels such as coal, oil, and natural gas, but also biomass and manure of livestock, etc., and is a reducing material other than hydrogen. The raw material is preferably introduced into the fluidized bed gas furnace from a hopper or the like.
 また、本発明に係る発電装置は、前記燃料電池の発電の際に生じた蒸気を、前記分散板の上流に配備したウインドボックスから流動層ガス炉に供給することが好ましい。この構成によれば、流動層ガス炉の底部にウインドボックスがあり、ウインドボックスから流動媒体の流動化に必要な蒸気を流動層に吹き込む。 Further, in the power generation device according to the present invention, it is preferable that the steam generated during the power generation of the fuel cell is supplied to the fluidized bed gas furnace from a wind box disposed upstream of the dispersion plate. According to this configuration, there is a windbox at the bottom of the fluidized bed gas furnace, and the steam necessary for fluidizing the fluidized medium is blown into the fluidized bed from the windbox.
 一般の流動層ガス炉においては、炉の底部にあるウインドボックスから空気を吹き込むことにより、高温の砂などの流動媒体を層内で熱風により流動化させ、その中で原料等を熱分解することによりガス化を行っている。空気を送風機等で流動層内に送り込めば、空気に含まれる酸素により原料が燃焼する。発電に燃焼過程が関与すれば、エクセルギー損失が発生して、エクセルギー率ΔG/ΔHの低下を招くことは前述の通りである。また流動化に空気を使えば、窒素も加熱することとなる。しかし、本発明に係る発電装置における流動層ガス化炉において、流動化は、燃料電池の反応(発電)により生じた蒸気を用いている。流動化のために空気を外部から取り入れることは行っていないので、エクセルギー率ΔG/ΔHの値の低下を防ぐことができる。
 高圧の蒸気を用いることにより、流動層ガス炉およびその下流の圧力を高く維持することが可能となる。反応の圧力が高いと、エクセルギー率は高くなる。
In a general fluidized bed gas furnace, by blowing air from a windbox at the bottom of the furnace, a fluidized medium such as high temperature sand is fluidized in the bed by hot air, and the raw materials etc. are pyrolyzed therein. Gasification is performed. If air is fed into the fluidized bed by a blower or the like, the oxygen contained in the air burns the raw material. As described above, if the combustion process is involved in power generation, an exergy loss occurs to cause a decrease in the exergy rate ΔG / ΔH. Also, if air is used for fluidization, nitrogen will also be heated. However, in the fluidized bed gasification furnace in the power generator according to the present invention, the fluidization uses steam generated by the reaction (power generation) of the fuel cell. Since air is not externally taken in for fluidization, it is possible to prevent the decrease in the value of the exergy rate ΔG / ΔH.
By using high pressure steam it is possible to keep the pressure in the fluidized bed gas furnace and its downstream high. The higher the pressure of the reaction, the higher the exergy rate.
 本発明に係る発電装置は、前記シフト反応器には、前記燃料電池の発電により生じた水蒸気が供給されるようになっていて、当該水蒸気の熱を利用して、前記生成ガスから水素が生成されることが好ましい。ここに、シフト反応器は生成ガスを改質して、燃料電池に供給する水素を生成する。ここに改質とは生成ガス中の一酸化炭素から水素を作り出すことであり、通常は水蒸気を熱源として供給され、触媒の助けを借りてシフト反応が進む。前記生成ガスから水素だけが生成されてもよい。 In the power generation apparatus according to the present invention, steam generated by the power generation of the fuel cell is supplied to the shift reactor, and hydrogen is generated from the generated gas using the heat of the steam. Preferably. Here, the shift reactor reforms the product gas to produce hydrogen to be supplied to the fuel cell. Here, reforming is to produce hydrogen from carbon monoxide in the product gas, and is usually supplied using steam as a heat source, and the shift reaction proceeds with the aid of a catalyst. Only hydrogen may be generated from the product gas.
 この構成によれば、燃料電池は発電に際して高温度の水蒸気を発生する。この水蒸気をガス化反応およびシフト反応に利用することにより、燃料電池の発生する熱を無駄にすることなく、有効に利用することができる。ここに、ガス化反応は下式(1)で表され、シフト反応は下式(2)で表される。
     C+2H2O=CO2+2H2   (1)
     CO+H2O=CO2+H2    (2)
According to this configuration, the fuel cell generates high temperature water vapor during power generation. By using this water vapor for the gasification reaction and the shift reaction, the heat generated by the fuel cell can be effectively used without wasting it. Here, the gasification reaction is represented by the following formula (1), and the shift reaction is represented by the following formula (2).
C + 2H 2 O = CO 2 + 2H 2 (1)
CO + H 2 O = CO 2 + H 2 (2)
 本発明に係る発電装置は、前記燃料電池の発電により生じた蒸気を蒸気タービンに導き、当該蒸気タービンにより駆動される発電機を備えていることが好ましい。 The power generation apparatus according to the present invention preferably includes a generator driven by the steam turbine, which guides the steam generated by the power generation of the fuel cell to the steam turbine.
 この構成によれば、蒸気タービンの下流には復水器が設けられていてもよい。復水器を設けることにより、熱落差が大きくなり、蒸気タービンから大きな電力を取り出すことが可能となる。 According to this configuration, a condenser may be provided downstream of the steam turbine. The provision of the condenser increases the heat drop and makes it possible to extract a large amount of power from the steam turbine.
 本発明に係る発電装置は、前記蒸気タービンの排気出口に、前記蒸気タービンの排気を電気分解する、密閉構造を有する電気分解槽が接続されていて、電気分解により生じた水素および酸素を前記燃料電池に供給して発電することが好ましい。電気分解槽を設けることにより、余剰電力を利用して水素を製造、蓄積することができる。また排気の排熱を有効に利用できるので、熱損失を抑えることができる。
 常圧で水素と酸素を発生させると、大気に対して仕事をすることになり損失が発生する。この構成によれば、電気分解槽は密閉構造を有しているので、その内部の圧力は大気よりも高圧に保持されている。このため、電気分解槽で水の電気分解により水素を製造することにより、常圧であれば生じた大気圧への膨張分の損失を防ぐことができる。つまり、電気分解槽の圧力が高くなり、その分エクセルギー率は高くなる。
In the power generation apparatus according to the present invention, an electrolysis tank having a sealed structure for electrolyzing exhaust gas of the steam turbine is connected to an exhaust outlet of the steam turbine, and hydrogen and oxygen generated by the electrolysis are used as the fuel It is preferable to supply the battery to generate electricity. By providing the electrolysis tank, it is possible to produce and accumulate hydrogen using surplus power. In addition, since the exhaust heat of the exhaust can be effectively used, the heat loss can be suppressed.
If hydrogen and oxygen are generated at normal pressure, they will work with the atmosphere, causing losses. According to this configuration, since the electrolysis tank has a closed structure, the internal pressure is maintained at a higher pressure than the atmosphere. For this reason, by producing hydrogen by electrolysis of water in the electrolysis tank, it is possible to prevent the loss of the expansion component to the atmospheric pressure that has occurred under normal pressure. That is, the pressure in the electrolysis tank increases, and the exergy rate increases accordingly.
 本発明に係る発電装置は、前記シフト反応器からの水素が前記燃料電池に供給されると共に、系外に取り出し可能となっていることが好ましい。この構成において、系外とは本発明に係る発電装置の外部をいい、貯蔵用のタンクまたはガス輸送用のパイプライン等をいう。 In the power generation apparatus according to the present invention, preferably, hydrogen from the shift reactor is supplied to the fuel cell and can be taken out of the system. In this configuration, the outside of the system means the outside of the power generation device according to the present invention, and means a tank for storage, a pipeline for gas transportation, or the like.
 本発明に係る発電装置は、前記シフト反応器と前記燃料電池の間に、前記燃料電池に供給する水素の量を調節する調節弁が設けられていることが好ましい。調節弁を調節することにより、原料の供給に見合った熱量を確保すべく、燃料電池に供給する水素の量が調節可能となる。 In the power generation apparatus according to the present invention, it is preferable that a control valve that controls the amount of hydrogen supplied to the fuel cell is provided between the shift reactor and the fuel cell. By adjusting the control valve, it is possible to adjust the amount of hydrogen supplied to the fuel cell in order to secure the amount of heat corresponding to the supply of the raw material.
 本発明に係る発電装置は、前記原料の重量を測定する秤量器と、前記調節弁を制御する制御装置を備えていて、前記制御装置は、前記秤量器からの信号に基づき前記原料のガス化に必要な熱量を計算する熱量計算回路と、当該熱量計算回路からの信号に基づき前記燃料電池の発電に必要な水素の量を計算する水素量計算回路と、当該水素量計算回路の出力に応じて前記調節弁を制御する調節弁制御回路を有していることが好ましい。 The power generation apparatus according to the present invention includes a scale that measures the weight of the raw material, and a control device that controls the control valve, and the control device can gasify the raw material based on a signal from the scale. A heat quantity calculation circuit that calculates the amount of heat required for the fuel cell, a hydrogen quantity calculation circuit that calculates the quantity of hydrogen required for power generation of the fuel cell based on the signal from the heat quantity calculation circuit, and the output of the hydrogen quantity calculation circuit Preferably, a control valve control circuit is provided to control the control valve.
 本発明に係る発電装置は、炭素および/または炭化水素を含む原料を加熱してガスを生成する流動層ガス炉と、前記流動層ガス炉でガス化された生成ガスから水素を生成するシフト反応器と、前記シフト反応器で生成された水素を用いて発電する燃料電池を有する発電装置であって、前記原料のガス化に必要な熱を、前記原料の燃焼によらず、前記燃料電池の発電により生じる熱を用いる。 A power generation apparatus according to the present invention comprises a fluidized bed gas furnace which generates a gas by heating a raw material containing carbon and / or hydrocarbons, and a shift reaction which generates hydrogen from the gasified gas produced in the fluidized bed gas furnace. Generator and a fuel cell generating electricity using hydrogen generated by the shift reactor, wherein the heat necessary for gasifying the raw material is not derived from the combustion of the raw material; Use the heat generated by power generation.
 本発明に係る発電装置は、炭素および/または炭化水素を含む原料を加熱してガスを生成する流動層ガス炉と、前記流動層ガス炉でガス化された生成ガスから水素を生成するシフト反応器と、前記シフト反応器で生成された水素を用いて発電する燃料電池を有する発電装置であって、前記流動層ガス化炉における流動化のための気体を、外部から供給することなく、前記燃料電池の発電により生じた蒸気を用いる。 A power generation apparatus according to the present invention comprises a fluidized bed gas furnace which generates a gas by heating a raw material containing carbon and / or hydrocarbons, and a shift reaction which generates hydrogen from the gasified gas produced in the fluidized bed gas furnace. Generator and a fuel cell generating electricity using hydrogen generated in the shift reactor, wherein the gas for fluidization in the fluidized bed gasifier is not supplied from the outside, The steam generated by the fuel cell's power generation is used.
 本発明に係る発電方法は、燃料電池により発電を行うステップと、前記燃料電池の発電の際に発生する熱により、前記原料をガス化して生成ガスを生成するステップと、前記燃料電池の発電の際に発生する熱により、前記生成ガスを改質して水素を生成するシフト反応ステップと、前記シフト反応ステップにおいて生成された水素を前記燃料電池に供給して発電するステップと、前記燃料電池の発電により生じた蒸気を蒸気タービンに供給して発電をするステップを有する。この方法によれば、燃料電池は、流動層内に設置されている。原料は炭素および/または炭化水素を含む。 The power generation method according to the present invention comprises the steps of generating power by a fuel cell, gasifying the raw material by the heat generated at the time of power generation of the fuel cell to generate generated gas, and generating power of the fuel cell A shift reaction step of reforming the product gas to generate hydrogen by heat generated at the time, a step of supplying hydrogen generated in the shift reaction step to the fuel cell to generate electric power, and The step of supplying steam generated by the power generation to the steam turbine to generate power is included. According to this method, the fuel cell is installed in the fluidized bed. The feedstock comprises carbon and / or hydrocarbons.
 また、本発明に係る発電方法は、燃料電池により発電を行うステップと、前記燃料電池の発電の際に発生する熱により、前記原料をガス化して生成ガスを生成するステップと、前記燃料電池の発電の際に発生する熱により、前記生成ガスを改質して水素を生成するシフト反応ステップと、前記シフト反応ステップにおいて生成された水素を、前記流動層ガス炉に供給された前記原料の量に応じて、前記燃料電池に供給して発電するステップと、前記シフト反応ステップにおいて生成された水素のうち、前記燃料電池に供給されない水素を取り出すステップを有することが好ましい。この方法によれば、燃料電池は、流動層内に設置されており、原料は炭素および/または炭化水素を含む。そして、流動層ガス化炉およびシフト反応器で生成された水素の一部が燃料電池に供給されて発電を行い、残りの水素は生産物として取り出すことができるので、水素併産の発電方法ということができる。 In the power generation method according to the present invention, a step of generating power by a fuel cell, a step of gasifying the raw material by heat generated at the time of power generation of the fuel cell, and generating a generated gas; A shift reaction step of reforming the product gas to generate hydrogen by heat generated during power generation, and the amount of the raw material supplied to the fluidized bed gas furnace with hydrogen generated in the shift reaction step Preferably, the method includes the steps of: supplying the fuel cell for power generation; and removing hydrogen not supplied to the fuel cell from the hydrogen generated in the shift reaction step. According to this method, the fuel cell is installed in a fluidized bed, and the raw material contains carbon and / or hydrocarbon. Then, a part of hydrogen generated in the fluidized bed gasification furnace and the shift reactor is supplied to the fuel cell to perform power generation, and the remaining hydrogen can be taken out as a product, so the method of cogeneration of hydrogen is called be able to.
 燃料電池発電によって発生する熱を原料のガス化および改質反応に必要な熱に利用することにより、原料の持つエクセルギーを可能な限り電気エネルギーにすることで発電効率の高い発電装置を提供することが可能となる。 By using the heat generated by fuel cell power generation as the heat necessary for gasification and reforming reaction of the raw material, by making the exergy possessed by the raw material as electric energy as possible, a power generation device with high power generation efficiency is provided. It becomes possible.
エクセルギー率と温度の関係を示すグラフである。It is a graph which shows the relationship between an exergy rate and temperature. 本発明の実施形態に係る発電装置の基本的構成図である。FIG. 1 is a basic configuration diagram of a power generation device according to an embodiment of the present invention. 本発明の別の実施形態に係る発電装置の基本的構成図である。It is a basic block diagram of the electric power generating apparatus which concerns on another embodiment of this invention. 図3の調節弁を制御する制御系統図である。It is a control systematic diagram which controls the control valve of FIG. 本発明の実施形態に係る発電装置のフローシートである。(a)は図2の実施形態に係るフローシートで、(b)は図3の実施形態に係るフローシートである。It is a flow sheet of the electric power generating apparatus which concerns on embodiment of this invention. (A) is a flow sheet which concerns on embodiment of FIG. 2, (b) is a flow sheet which concerns on embodiment of FIG. 石炭ガス化燃料電池発電装置の概略構成図である。It is a schematic block diagram of a coal gasification fuel cell power generator. 石炭ガス化燃料電池発電エネルギー変換を示すダイヤグラムである。Figure 2 is a diagram showing coal gasification fuel cell power generation energy conversion.
 以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。 Hereinafter, although an embodiment concerning the present invention is described according to a drawing, the present invention is not limited to this embodiment.
 図2は本発明の実施形態に係る発電装置の基本的構成を示す図である。流動層ガス炉8は、作動気体の取り入れ口となるウインドボックス3、ウインドボックス3の下流側に位置する流動層2、および流動層2の下流側に位置するフリーボード部7を主な構成要素として有している。ウインドボックス3と流動層2は分散板4により仕切られている。 FIG. 2 is a diagram showing a basic configuration of a power generation device according to an embodiment of the present invention. The fluidized bed gas furnace 8 mainly includes the wind box 3 serving as an intake of working gas, the fluidized bed 2 located downstream of the wind box 3, and the freeboard portion 7 located downstream of the fluidized bed 2 It has as. The wind box 3 and the fluidized bed 2 are separated by a dispersing plate 4.
 原料1は原料フィーダ(図示せず)から流動層2に供給され、400℃から1000℃の温度域で熱分解を受け、水素、一酸化炭素、及び若干の炭化水素を含んだガスを生成する。このうち水素は、燃料電池6による発電のための有効ガス成分となる。このとき、投入時の温度から400℃~1000℃への昇温は、燃料電池6の反応(発電)により生じた熱を利用して行う。また原料1中に混入した不燃物は、流動層2から排出される。原料1としては、炭素、炭化水素およびこれらの混合物であればよい。本実施形態では石炭を使用するが、石炭以外の化石燃料やバイオマスであってもよい。メタノールおよびエタノールであってもよく、プラスチック等の高分子化合物であってもよい。 The raw material 1 is supplied to the fluidized bed 2 from a raw material feeder (not shown) and undergoes thermal decomposition in a temperature range of 400 ° C. to 1000 ° C. to produce a gas containing hydrogen, carbon monoxide and some hydrocarbons. . Among these, hydrogen is an effective gas component for power generation by the fuel cell 6. At this time, the temperature rise from the temperature at the time of charge to 400 ° C. to 1000 ° C. is performed using the heat generated by the reaction (power generation) of the fuel cell 6. Further, the non-combustible substance mixed in the raw material 1 is discharged from the fluidized bed 2. The raw material 1 may be carbon, a hydrocarbon and a mixture thereof. Although coal is used in this embodiment, fossil fuel other than coal or biomass may be used. It may be methanol and ethanol, or may be a polymer compound such as plastic.
 原料1が炭素(例えば石炭)の場合、水で原料を還元して水素を作る。反応式は下式(3)となる。
     C + 2H2O = CO2 + 2H2  (3)
When the raw material 1 is carbon (for example, coal), the raw material is reduced with water to produce hydrogen. The reaction formula is the following formula (3).
C + 2 H 2 O = CO 2 + 2 H 2 (3)
 原料1が天然ガスの場合も同様である。反応式は下式(4)となる。
    CH4 + 2H2O = CO2 + 4H2  (4)
The same applies to the case where the raw material 1 is natural gas. The reaction formula is the following formula (4).
CH 4 + 2H 2 O = CO 2 + 4H 2 (4)
 これらの反応は還元であるので反応に熱を必要とし、その熱は燃料電池6から供給される。 Since these reactions are reductions, the reactions require heat, which is supplied from the fuel cell 6.
 燃料電池6からの過熱蒸気がウインドボックス3に送り込まれ、分散板4上で固体粒子からなる流動媒体5を浮遊懸濁させる。流動媒体5は珪砂、アルミナまたは鉄粒子等の粉粒体、もしくはこれらの混合物である。また、流動媒体5には、水を還元して水素を製造する触媒が担持されていてもよい。流動媒体5は、流動層2において、原料1への伝熱を行う働きを有する。流動媒体中5に燃料電池6が設置されている。 The superheated vapor from the fuel cell 6 is fed into the wind box 3 to suspend and suspend the fluid medium 5 composed of solid particles on the dispersion plate 4. The fluid medium 5 is silica sand, powder particles such as alumina or iron particles, or a mixture of these. Further, the fluid medium 5 may carry a catalyst that reduces water to produce hydrogen. The fluid medium 5 has a function of performing heat transfer to the raw material 1 in the fluid bed 2. A fuel cell 6 is installed in the fluid medium 5.
 流動層2で生成されたガス(以下、生成ガスGGと称す)には二酸化炭素、水蒸気、一酸化炭素、水素、ダストが含まれている。生成ガスGGは、フリーボード部7を経由して配管11を通じて集塵機12に送られる。 The gas generated in the fluidized bed 2 (hereinafter referred to as product gas GG) contains carbon dioxide, water vapor, carbon monoxide, hydrogen, and dust. The generated gas GG is sent to the dust collector 12 through the piping 11 via the free board unit 7.
 集塵機12に送られた生成ガスGGは、集塵機12の入口で概ね400℃~650℃の温度となっている。流動層2の下流部、即ちフリーボード部7では、熱分解吸熱反応が進むため、ガス温度が流動層部よりも低下する。たとえば、流動層温度が950℃であっても、フリーボード部7でのガス温度は650℃より低温になる可能性がある。ガス温度が400℃以下になる場合には、タールトラブルを避けるためにフリーボード部7に空気もしくは酸素を供給し、ガス温度を上げることがある。 The generated gas GG sent to the dust collector 12 has a temperature of approximately 400 ° C. to 650 ° C. at the inlet of the dust collector 12. In the downstream part of the fluidized bed 2, ie, the freeboard part 7, the thermal decomposition endothermic reaction proceeds, so the gas temperature is lower than that of the fluidized bed part. For example, even if the fluid bed temperature is 950 ° C., the gas temperature at the freeboard portion 7 may be lower than 650 ° C. When the gas temperature falls to 400 ° C. or less, air or oxygen may be supplied to the freeboard 7 to raise the gas temperature to avoid a tar problem.
 集塵機12としてはサイクロン方式を用いることができるが、フィルター方式を採用してもよい。フィルター方式は集塵性が高い点から好ましい。400℃~650℃の温度域では、集塵機12としてバグフィルターを用いることができるが、サイクロンを用い、更にその下流にセラミックフィルターを配置してもよい。 Although a cyclone system can be used as the dust collector 12, a filter system may be adopted. The filter system is preferable from the viewpoint of high dust collection. In the temperature range of 400 ° C. to 650 ° C., a bag filter can be used as the dust collector 12, but a cyclone may be used and a ceramic filter may be disposed further downstream thereof.
 集塵機12で除去された灰及びアルカリ金属塩類等の固形分は排出路13から系外に排出される。灰分等が除去された生成ガスGGは、配管14を介してシフト反応器17に送られる。集塵機12とシフト反応器17の間に、生成ガスGGに含まれる塩化水素や硫化水素といった腐食性ガスを除去するための腐食性ガス除去装置(図示せず)を設けてもよい。 Solids such as ash and alkali metal salts removed by the dust collector 12 are discharged from the discharge passage 13 out of the system. The product gas GG from which the ash content and the like have been removed is sent to the shift reactor 17 via the pipe 14. A corrosive gas removal device (not shown) may be provided between the precipitator 12 and the shift reactor 17 for removing corrosive gas such as hydrogen chloride and hydrogen sulfide contained in the product gas GG.
 シフト反応器17の内部であって、生成ガスGGが流通する配管内に、反応速度を高めるための触媒、例えばマグネタイト(Fe)もしくは白金等が充填されている。そして、燃料電池6での反応(発電)により生じた高温の蒸気が、シフト反応器17に供給されている。この高温の蒸気の有する熱と水分を用いて、シフト反応器17は、生成ガスGG中の一酸化炭素と水を反応させて、水素を生成する。この水素は燃料電池6のアノード(負極)に供給される。この反応式を下式(5)に示す。
       CO + H2O → H2 + CO2  (5)
Inside the shift reactor 17 and in a pipe through which the generated gas GG flows, a catalyst for enhancing the reaction rate, such as magnetite (Fe 3 O 4 ) or platinum is filled. The high temperature steam generated by the reaction (power generation) in the fuel cell 6 is supplied to the shift reactor 17. Using the heat and moisture of the high temperature steam, the shift reactor 17 reacts carbon monoxide in the product gas GG with water to produce hydrogen. This hydrogen is supplied to the anode (negative electrode) of the fuel cell 6. This reaction formula is shown in the following formula (5).
CO + H 2 O → H 2 + CO 2 (5)
 シフト反応器17で生成された水素を主成分とする燃料ガス(以下、燃料ガスFGと称す)は、配管18を介して水素タンク21に送られる。また、二酸化炭素は配管19から系外に排出される。 A fuel gas containing hydrogen as a main component (hereinafter referred to as a fuel gas FG) generated in the shift reactor 17 is sent to a hydrogen tank 21 via a pipe 18. Further, carbon dioxide is discharged from the pipe 19 to the outside of the system.
 水素タンク21に蓄えられた水素を主成分とした燃料ガスFGは、高圧のまま燃料電池6のアノードへと送られる。燃料電池6のカソードへは、酸素タンク23から配管25を介して酸素が供給される。通常、燃料電池内部での燃料ガスFGの利用効率は100%ではないので、燃料電池6のアノードからの排気には、主成分である水蒸気と多少の未反応燃料ガスを含んでいる。未反応燃料ガス中の水素は回収して再度燃料電池に供給する。 The fuel gas FG mainly composed of hydrogen stored in the hydrogen tank 21 is sent to the anode of the fuel cell 6 at high pressure. Oxygen is supplied from the oxygen tank 23 to the cathode of the fuel cell 6 through the pipe 25. Usually, the utilization efficiency of the fuel gas FG inside the fuel cell is not 100%, so the exhaust from the anode of the fuel cell 6 contains water vapor which is the main component and some unreacted fuel gas. Hydrogen in unreacted fuel gas is recovered and supplied to the fuel cell again.
 また、燃料電池6から発生する熱は、ガス化反応の吸熱分にほぼ等しいので、この熱を流動層ガス炉8におけるガス化の熱源に用いることができる。これにより、流動層ガス炉8において、原料1を部分燃焼させることなくガス化が可能となるので、エネルギー効率の高い発電が達成できる。 Further, since the heat generated from the fuel cell 6 is substantially equal to the heat absorption component of the gasification reaction, this heat can be used as a heat source for gasification in the fluidized bed gas furnace 8. Thereby, in the fluidized bed gas furnace 8, gasification can be performed without partially burning the raw material 1, so power generation with high energy efficiency can be achieved.
 水素タンク21には、シフト反応器17から水素が供給されると共に電気分解槽26からも水素が供給される。電気分解槽26には蒸気タービン31の排気が配管35を介して接続されている。電気分解槽26に供給される排気は常温に比べて温かく、また空気の含有率も小さく電気分解に好適な水を供給することとなる。水が不足する場合は、図示せぬ系統からメーキャップ用の水が電気分解槽26に供給される。 The hydrogen tank 21 is supplied with hydrogen from the shift reactor 17 and also supplied from the electrolysis tank 26. The exhaust of the steam turbine 31 is connected to the electrolysis tank 26 through a pipe 35. The exhaust gas supplied to the electrolysis tank 26 is warmer than the normal temperature, and the content of air is small, so that water suitable for electrolysis is supplied. When water is insufficient, makeup water is supplied to the electrolysis tank 26 from a system (not shown).
 常圧での電気分解により、水素と酸素を発生させると、大気に対して仕事をすることになり損失となる。ところが、本発明の実施形態によれば、電気分解槽26は密閉構造を有しているので、その内部の圧力は大気よりも高圧に保持される。このため、電気分解槽26で水の電気分解により水素を製造することにより、常圧であれば生じた大気圧への膨張分の損失を防ぐことができる。電気分解槽26で製造された酸素は配管28を介して酸素タンク23に送られる。電気分解に必要な電力46は、燃料電池6の発電電力42から供給してもよい。 If hydrogen and oxygen are generated by electrolysis at normal pressure, they will work against the atmosphere and become a loss. However, according to the embodiment of the present invention, since the electrolysis tank 26 has a closed structure, the internal pressure is maintained at a higher pressure than the atmosphere. For this reason, by producing hydrogen by electrolysis of water in the electrolysis tank 26, it is possible to prevent the loss of the expansion component to the atmospheric pressure that has occurred under normal pressure. The oxygen produced in the electrolysis tank 26 is sent to the oxygen tank 23 through the pipe 28. The power 46 required for the electrolysis may be supplied from the generated power 42 of the fuel cell 6.
 燃料電池6で電力42と水蒸気と熱が発生する。電力42は燃料電池6から電力系統を介して送電可能となっている。発生した熱は流動媒体5を介して原料1に伝熱されてガス化のための熱源となる。また、発生した水蒸気の一部は流動層2の流動化用気体およびガス化のための熱源として流動層2の分散板4から投入される。 The fuel cell 6 generates electric power 42, water vapor and heat. The electric power 42 can be transmitted from the fuel cell 6 through the electric power system. The generated heat is transferred to the raw material 1 through the fluid medium 5 and becomes a heat source for gasification. Further, a part of the generated steam is introduced from the dispersion plate 4 of the fluidized bed 2 as a gas for fluidization of the fluidized bed 2 and a heat source for gasification.
 燃料電池6で発生した高温の蒸気(過熱蒸気)は、一部が配管34を介して、流動層2のウインドボックス3から投入され、流動媒体5に供給されて流動層2内の吸熱ガス化反応に寄与する。他の一部は蒸気タービン31に供給されて、蒸気タービン発電機32を駆動して、蒸気タービンの発電電力44として取り出すことができる。 Part of the high-temperature steam (superheated steam) generated in the fuel cell 6 is introduced from the windbox 3 of the fluidized bed 2 through the piping 34, supplied to the fluidized medium 5, and endothermic gasification in the fluidized bed 2 Contribute to the reaction. Another part can be supplied to the steam turbine 31 to drive the steam turbine generator 32 and extract it as the generated power 44 of the steam turbine.
 蒸気タービン31の下流には復水器33が設けられていて、排気圧力を下げることにより熱落差を大きくして蒸気タービン発電機32の発生電力の増加を図っている。また、蒸気タービン31を出た蒸気は、配管35を介して電気分解槽26に送られ、熱および電気分解用の水の供給源となる。電気分解に必要な直流電力46は、余剰電力などを別途供給してもよいが、燃料電池6の発電電力42の一部を利用することも可能である。 A condenser 33 is provided downstream of the steam turbine 31. By reducing the exhaust pressure, the heat drop is increased to increase the power generated by the steam turbine generator 32. Further, the steam leaving the steam turbine 31 is sent to the electrolysis tank 26 through the pipe 35 and becomes a supply source of heat and water for electrolysis. The DC power 46 required for the electrolysis may separately supply surplus power or the like, but it is also possible to use a part of the generated power 42 of the fuel cell 6.
 水素タンク21には電気分解槽26からも配管27を介して水素が供給される。このとき、配管27を介して供給される水素の温度は低いので、水素タンク21の高温の水素と熱交換することが望ましい。熱交換器29は、低温の水素を熱交換により昇温するためのものである。本発明の実施形態において、燃料電池6で生じた蒸気の余剰分で蒸気タービン31を駆動して発電を行っているが、この余剰蒸気を冷暖房に使用することもでき、いわゆる地域冷暖房システムを構築することも可能である。この意味において、本実施形態は電力と熱のコジェネレーションシステムとみることができる。 Hydrogen is also supplied to the hydrogen tank 21 from the electrolysis tank 26 via the pipe 27. At this time, since the temperature of hydrogen supplied via the pipe 27 is low, heat exchange with the high temperature hydrogen of the hydrogen tank 21 is desirable. The heat exchanger 29 is for raising the temperature of low-temperature hydrogen by heat exchange. In the embodiment of the present invention, although the steam turbine 31 is driven by the surplus of the steam generated by the fuel cell 6 to generate power, this surplus steam can also be used for cooling and heating, and a so-called regional cooling and heating system is constructed. It is also possible. In this sense, this embodiment can be viewed as a power and heat cogeneration system.
 図3に本発明の別の実施形態に係る基本的構成図を示す。図3において、本発明に係る発電装置は、流動層2内に燃料電池6を設置した流動層ガス炉8、集塵機12およびシフト反応器17を主要構成要素としている。シフト反応器17で生成された水素は水素タンク21に一時的に蓄えられて、その一部が燃料電池6に供給され、残りが配管38を介して他の設備に供給可能となっている。 FIG. 3 shows a basic configuration diagram according to another embodiment of the present invention. In FIG. 3, the power generation apparatus according to the present invention mainly includes a fluidized bed gas furnace 8 in which a fuel cell 6 is installed in the fluidized bed 2, a dust collector 12 and a shift reactor 17. The hydrogen generated in the shift reactor 17 is temporarily stored in the hydrogen tank 21, a part of which is supplied to the fuel cell 6, and the rest can be supplied to other facilities through the pipe 38.
 なお、燃料電池6と水素タンク21の間の配管22の途中に調節弁36を配して、燃料電池6に供給する水素の量を調節してもよい。具体的には、図4に示すように制御装置52を設けて、調節弁36を調節してもよい。流動層ガス炉8に供給される原料1の重量を秤量器51を用いて測定する。そして、秤量器51からの信号と、原料特性テーブル53からの信号により、熱量計算回路54はガス化およびシフト反応に必要な熱量を計算する。原料特性テーブル53には、原料1が有する発熱量の統計データが含まれている。そして、水素量計算回路56にて、熱量計算回路54にて求めた熱量を発生するに必要な水素の量を計算する。水素の量の計算には、燃料電池6の発熱量と供給水素量と関係を保持した燃料電池特性テーブル55が利用される。制御装置52は、調節弁制御回路57を介して調節弁36を制御して、計算で求めた水素の量となるよう調節する。 A control valve 36 may be provided in the middle of the pipe 22 between the fuel cell 6 and the hydrogen tank 21 to adjust the amount of hydrogen supplied to the fuel cell 6. Specifically, as shown in FIG. 4, a controller 52 may be provided to adjust the control valve 36. The weight of the raw material 1 supplied to the fluidized bed gas furnace 8 is measured using a weigher 51. Then, the heat quantity calculation circuit 54 calculates the quantity of heat necessary for the gasification and shift reaction based on the signal from the weighing device 51 and the signal from the raw material property table 53. The raw material characteristic table 53 includes statistical data of the calorific value of the raw material 1. Then, the hydrogen amount calculation circuit 56 calculates the amount of hydrogen required to generate the heat amount obtained by the heat amount calculation circuit 54. For calculation of the amount of hydrogen, a fuel cell characteristic table 55 holding the relationship between the calorific value of the fuel cell 6 and the amount of supplied hydrogen is used. The controller 52 controls the control valve 36 via the control valve control circuit 57 to adjust it to the calculated amount of hydrogen.
 本実施形態は、燃料電池6による発電を行いつつも水素を生産する設備でもあるので、電力と水素のコプロダクションシステムとして捉えることができる。図2に示す実施形態において、燃料電池6の熱は蒸気タービン31に供給され、熱の一部が回収されるが、復水器33を介して廃棄されるので、エネルギー損失の発生が避けられない。しかし、図3に示す、水素併産の発電装置によれば、廃熱によるエネルギー損失がないので、高い発電効率を達成することができる。 The present embodiment is also a facility that produces hydrogen while performing power generation by the fuel cell 6, and therefore can be considered as a co-production system of power and hydrogen. In the embodiment shown in FIG. 2, the heat of the fuel cell 6 is supplied to the steam turbine 31 and a part of the heat is recovered, but is discarded via the condenser 33, thereby avoiding the occurrence of energy loss Absent. However, according to the hydrogen cogeneration power generation device shown in FIG. 3, since there is no energy loss due to waste heat, high power generation efficiency can be achieved.
 図5(a)に、電力と熱を併産する、電力熱のコジェネレーションのフローシートを示す。また、図5(b)に、電力と水素を併産する、電力水素のコプロダクションのフローシートを示す。図中の数値は石炭の持つエネルギーを100とした場合の、各段階におけるエネルギーを示しており、カッコ内の数値は、エネルギー割合とエクセルギー割合を示す。電力熱のコジェネレーション(図5(a))は、11%のエネルギーが排気されている。一方、電力水素のコプロダクション(図5(b))は、このようなエネルギー損失がない。 FIG. 5 (a) shows a flow sheet of cogeneration of power heat, which co-produces power and heat. Further, FIG. 5 (b) shows a flow sheet of co-production of power hydrogen, which co-produces power and hydrogen. The figures in the figure show the energy at each stage when the energy of coal is 100, and the figures in parentheses show the energy ratio and the exergy ratio. In the cogeneration of power heat (FIG. 5 (a)), 11% of the energy is exhausted. On the other hand, co-production of power hydrogen (FIG. 5 (b)) has no such energy loss.
 産業革命以来、電気エネルギー、運動エネルギー、位置エネルギーなどは石炭や石油、バイオマス、太陽光、原子力を熱に変換して取り出してきた。電気エネルギー、運動エネルギー、位置エネルギーなどは相互に変換することができるのでここでは電気エネルギーで表現する。熱エネルギーは蒸気機関、スターリング機関などの外燃機関やガスタービンエンジン、ディーゼルエンジン、火花点火機関などで電気エネルギーを取り出してきた。また燃料電池は水素を電気エネルギーにする際には熱の発生を伴ってきた。 Since the industrial revolution, electrical energy, kinetic energy, and positional energy have been converted to heat from coal, oil, biomass, sunlight, and nuclear energy. Since electrical energy, kinetic energy, potential energy, etc. can be mutually converted, they are expressed here as electrical energy. Thermal energy has been used to extract electrical energy from steam engines, external combustion engines such as Stirling engines, gas turbine engines, diesel engines and spark ignition engines. Fuel cells have also been accompanied by the generation of heat when converting hydrogen to electrical energy.
 上記発電方法では必ず熱が発生し、熱として利用するコジェネレーションを実施するか、または発生した熱を利用して更に温度レベルが低い熱機関を作動させてきた。また発生した熱を、燃焼用空気と熱交換して、熱の再利用をするなどの一次エネルギーの有効利用が図られてきた。 In the above power generation method, heat is always generated, and cogeneration to be used as heat is performed, or the generated heat is used to operate a heat engine having a lower temperature level. In addition, the heat generated has been heat exchanged with combustion air to reuse primary energy, such as reusing heat.
 このような熱が発生する形式の発電装置は、熱交換を行い燃料や空気に伝熱させたり、熱のカスケード利用として、より低い温度域で作動する熱機関を設置してより多くの電気エネルギーを発生する工夫がなされているが、十分とはいえない。 Such types of heat generating power generation devices exchange heat and transfer heat to fuel and air, or use a cascade of heat to install a heat engine that operates in a lower temperature range to obtain more electrical energy. Although it has been devised to generate the problem, it can not be said that it is sufficient.
 負荷が変化する場合は、燃料供給量を変化させ発電量を変えている。燃料に対して空気量は一定の割合で制御する空燃比制御を行うことにより、排ガス損失を一定にしているが、負荷が下がると発熱量に対して放熱量は低下が少ないので発電効率が低下し、ボイラタービン発電機で100%負荷で40%の発電効率の発電機は、負荷33%では発電効率は30%程度に低下する。 When the load changes, the amount of fuel supplied is changed to change the amount of power generation. The exhaust gas loss is kept constant by performing air-fuel ratio control in which the amount of air is controlled at a constant rate to the fuel, but when the load decreases, the amount of heat release decreases little with respect to the calorific value, so the power generation efficiency decreases. With a boiler turbine generator, a generator with 100% load and 40% power generation efficiency, with 33% load, the power generation efficiency drops to about 30%.
 燃料電池を使用して水素を電気エネルギーに変換するときには水素の発熱量の17%が熱となって発生する。この熱を利用して石炭、石油、バイオマス、天然ガスで水を還元して水素を製造すれば、熱の発生を抑えることができ、発電効率を上げることが可能となる。 When hydrogen is converted to electrical energy using a fuel cell, 17% of the calorific value of hydrogen is generated as heat. If this heat is used to reduce water with coal, oil, biomass, and natural gas to produce hydrogen, the generation of heat can be suppressed and power generation efficiency can be increased.
 燃料電池を使用して水素を電気エネルギーに変換するときには水素の発熱量の17%が熱となって発生する。この熱の発生量を低くするためには高圧水素を燃料電池に送り込み、水素を製造すれば熱の発生を抑えることができ、発電効率を上げることが可能となる。 When hydrogen is converted to electrical energy using a fuel cell, 17% of the calorific value of hydrogen is generated as heat. In order to reduce the amount of generated heat, high-pressure hydrogen is sent to the fuel cell to produce hydrogen, whereby the generation of heat can be suppressed and the power generation efficiency can be increased.
 燃料電池を使用して水素を電気エネルギーから製造するときには水素の発熱量の17%の熱が必要となり、その時常圧で水素と酸素を発生させると大気に対して仕事をすることになり損失となる。そこで電気分解を密閉空間で行なわせ、17%のTΔSを小さくすることができる。 When hydrogen is produced from electrical energy using a fuel cell, 17% of the heat of hydrogen is required, and then hydrogen and oxygen are generated under normal pressure, which causes the work to be done to the atmosphere, causing losses and Become. Thus, electrolysis can be performed in a closed space to reduce 17% TΔS.
 これまでの部分燃焼ガス化燃料電池複合発電で計算上70%の発電効率であったものが、本発明に係る発電装置では、燃料電池の発熱を利用してガス化を行なうことにより、発電効率が89%に増加する。 In the power generation apparatus according to the present invention, the power generation efficiency according to the present invention is the power generation efficiency by performing the gasification using the heat generation of the fuel cell, although the power generation efficiency of 70% calculated in the partial combustion gasification fuel cell combined power generation so far Increases to 89%.
 図1は温度とエクセルギー率の関係を示している。化学反応により熱エネルギーを生成するとその過程がエクセルギーを減少させてしまう。温度が高いとエクセルギー率が高い。 Figure 1 shows the relationship between temperature and exergy rate. If thermal energy is generated by a chemical reaction, the process will reduce exergy. When the temperature is high, the exergy rate is high.
 図6は本発明の実施形態において中心的な役割を果たす流動層炉(gasifier)とシフト反応器(shift reactor)および燃料電池を抜き出した概略構成図である。図6において、石炭(coal)は高温の流動層に投入されて水蒸気を還元して水素と一酸化炭素を発生させる。一酸化炭素は水と反応して水素と二酸化炭素になるので全体では下式(6)となる。
      C + 2H2O + Q = CO2 + 2H2 (6)
FIG. 6 is a schematic view of a fluidized bed gasifier, a shift reactor, and a fuel cell, which play a central role in the embodiment of the present invention. In FIG. 6, coal is introduced into a high temperature fluidized bed to reduce steam to generate hydrogen and carbon monoxide. Since carbon monoxide reacts with water to form hydrogen and carbon dioxide, the following formula (6) is obtained as a whole.
C + 2 H 2 O + Q = CO 2 + 2 H 2 (6)
 ここでQは反応に必要な熱量を示していて、流動層内に設置された燃料電池より発生する熱量で供給される。燃料電池では下式(7)の反応が起こる。
      2H2 + O2 = 2H2O + Q + W  (7)
Here, Q represents the amount of heat necessary for the reaction, and is supplied by the amount of heat generated from the fuel cell installed in the fluidized bed. In the fuel cell, the reaction of the following formula (7) occurs.
2H 2 + O 2 = 2H 2 O + Q + W (7)
 ここでQは発電に伴う発熱量を示していて、炭素がガス化するときの熱量と同じ値である。Wは電気エネルギーである。この二つの式を足し合わせると下式(8)となり、炭素は酸素と反応して二酸化炭素と電気エネルギーに変換される。
      C + O2  = CO2 + W   (8)
Here, Q indicates the calorific value associated with power generation, which is the same value as the amount of heat when carbon is gasified. W is electrical energy. If these two equations are added, it becomes the following equation (8), and carbon reacts with oxygen and is converted to carbon dioxide and electrical energy.
C + O 2 = CO 2 + W (8)
 図7は石炭、石油、バイオマスなどをガス化して燃料電池で発電する場合におけるエネルギー変換ダイヤグラムを示している。原料の持っているエネルギーを上段に示し、下段にエクセルギーを示している。エネルギー100の石炭は95のエクセルギーを持っている。石炭に燃料電池よりエクセルギー17エネルギー35の水蒸気と熱を供給して900℃のエクセルギー率83%エクセルギー112エネルギー135の水素を生成する。水素は燃料電池(SOFC)で60%の効率で81の電気エネルギーになり、残りのエクセルギー17エネルギー35の水蒸気と熱を流動層に供給してエクセルギー10エネルギー19の熱と水素で蒸気タービン発電により効率40%で8の電気をえる。合計89の電気が発生し、発電効率89%エクセルギーベースで94%の発電装置となる。 FIG. 7 shows an energy conversion diagram when gasification of coal, oil, biomass and the like is performed by the fuel cell. The energy possessed by the raw materials is shown on the top, and the exergy is shown on the bottom. Coal of energy 100 has 95 exergy. Coal is supplied with water vapor and heat of exergy 17 energy 35 from the fuel cell to generate hydrogen of exergy rate 83% exergy 112 energy 135 at 900 ° C. Hydrogen becomes 81 electric energy with 60% efficiency in the fuel cell (SOFC), and the remaining Exergy 17 energy 35 water vapor and heat are supplied to the fluid bed, and the Exergy 10 energy 19 heat and hydrogen steam turbine It generates 8 electricity at 40% efficiency by power generation. A total of 89 electricity will be generated, making it a 94% generator based on an 89% exergy basis with a 89% generation efficiency.
 本発明に係る発電装置は、商用電力系統の発電所における発電装置として好適に用いることができる。また、自家発電設備における発電装置やマイクログリッドに接続する発電装置としても好適に用いることができる。 The power generation device according to the present invention can be suitably used as a power generation device in a power plant of a commercial power grid. Moreover, it can be suitably used as a power generation device in a private power generation facility or a power generation device connected to a micro grid.
 1 原料
 2 流動層
 3 ウインドボックス
 4 分散板
 5 流動媒体
 6 燃料電池
 7 フリーボード部
 8 流動層ガス炉
11 配管(a生成ガス)
12 集塵機
13 排出路
14 配管
17 シフト反応器
18 配管
19 配管
21 水素タンク
22 配管
23 酸素タンク
24 配管
25 配管
26 電気分解槽
27 配管
28 配管
29 熱交換器
31 蒸気タービン
32 蒸気タービン発電機
33 復水器
34 配管
35 配管
36 調節弁
38 配管
42 燃料電池発電電力
44 蒸気タービン発電電力
46 直流電力
51 秤量器
52 制御装置
53 原料特性テーブル
54 熱量計算回路
55 燃料電池特性テーブル
56 水素量計算回路
57 調節弁制御回路
DESCRIPTION OF SYMBOLS 1 raw material 2 fluidized bed 3 wind box 4 dispersion | distribution board 5 flowing medium 6 fuel cell 7 free board part 8 fluidized bed gas furnace 11 piping (a produced gas)
12 dust collector 13 discharge passage 14 piping 17 shift reactor 18 piping 19 piping 21 hydrogen tank 22 piping 23 oxygen tank 24 piping 25 piping 26 electrolysis tank 27 piping 28 piping 29 heat exchanger 31 steam turbine 32 steam turbine generator 33 condensate 34 piping 35 piping 36 control valve 38 piping 42 fuel cell power generation 44 steam turbine power generation 46 direct current power 51 weighing unit 52 control device 53 raw material characteristic table 54 heat quantity calculation circuit 55 fuel cell characteristic table 56 hydrogen amount calculation circuit 57 control valve Control circuit

Claims (15)

  1.  炭素および/または炭化水素を含む原料を加熱してガスを生成する流動層ガス炉と、
     前記流動層ガス炉でガス化された生成ガスから水素を生成するシフト反応器と、
     前記シフト反応器で生成された水素を用いて発電する燃料電池を有する発電装置であって、
     前記燃料電池が前記流動層ガス炉内に設置されている発電装置。
    A fluidized bed gas furnace which produces a gas by heating a raw material containing carbon and / or hydrocarbons.
    A shift reactor for producing hydrogen from product gas gasified by the fluidized bed gas furnace;
    A power generation apparatus having a fuel cell that generates power using hydrogen generated by the shift reactor, comprising:
    A power generator wherein the fuel cell is installed in the fluidized bed gas furnace.
  2.  前記流動層ガス炉には、流動層が配備されていて、更に、前記流動層の下部には分散板が配備されていて、
     前記燃料電池が前記流動層内であって前記分散板の下流に配置されている請求項1に記載の発電装置。
    The fluidized bed gas furnace is provided with a fluidized bed, and further, a dispersion plate is provided under the fluidized bed,
    The power generator according to claim 1, wherein the fuel cell is disposed in the fluidized bed and downstream of the dispersion plate.
  3.  前記流動層ガス炉において、前記原料をガス化するのに必要な熱を前記燃料電池の発電により生じた熱を用いる請求項1に記載の発電装置。 The power generation apparatus according to claim 1, wherein heat generated by the fuel cell power generation is used in the fluidized bed gas furnace, the heat necessary for gasifying the raw material.
  4.  前記燃料電池の発電の際に生じた蒸気を、前記分散板の上流に配備したウインドボックスから流動層ガス炉に供給する請求項2に記載の発電装置。 The power generation apparatus according to claim 2, wherein the steam generated at the time of power generation of the fuel cell is supplied to a fluidized bed gas furnace from a wind box disposed upstream of the dispersion plate.
  5.  前記シフト反応器には、前記燃料電池の発電により生じた水蒸気が供給されるようになっていて、当該水蒸気の熱を利用して、前記生成ガスから水素が生成される請求項1に記載の発電装置。 The water vapor generated by the power generation of the fuel cell is supplied to the shift reactor, and the heat of the water vapor is used to generate hydrogen from the product gas. Power generator.
  6.  前記シフト反応器は、前記生成ガスから水素だけを生成する請求項5に記載の発電装置。 The power generation apparatus according to claim 5, wherein the shift reactor produces only hydrogen from the product gas.
  7.  前記燃料電池の発電により生じた蒸気を蒸気タービンに導き、当該蒸気タービンにより駆動される発電機を備えた請求項1に記載の発電装置。 The power generation system according to claim 1, further comprising a generator driven by the steam turbine that guides the steam generated by the power generation of the fuel cell to the steam turbine.
  8.  前記蒸気タービンの排気出口に、前記蒸気タービンの排気を電気分解する、密閉構造を有する電気分解槽が接続されていて、電気分解により生じた水素および酸素を前記燃料電池に供給して発電する請求項7に記載の発電装置。 At the exhaust outlet of the steam turbine, an electrolysis tank having a sealed structure is electrolyzed to electrolyze the exhaust of the steam turbine, and hydrogen and oxygen generated by the electrolysis are supplied to the fuel cell to generate electricity. The power generator according to Item 7.
  9.  前記シフト反応器からの水素が前記燃料電池に供給されると共に、系外に取り出し可能となっている請求項1に記載の発電装置。 The power generator according to claim 1, wherein hydrogen from the shift reactor is supplied to the fuel cell and can be taken out of the system.
  10.  前記シフト反応器と前記燃料電池の間に、前記燃料電池に供給する水素の量を調節する調節弁が設けられている請求項9に記載の発電装置。 The power generator according to claim 9, wherein a control valve is provided between the shift reactor and the fuel cell to control the amount of hydrogen supplied to the fuel cell.
  11.  前記原料の重量を測定する秤量器と、前記調節弁を制御する制御装置を備えていて、
     前記制御装置は、前記秤量器からの信号に基づき前記原料のガス化に必要な熱量を計算する熱量計算回路と、当該熱量計算回路からの信号に基づき前記燃料電池の発電に必要な水素の量を計算する水素量計算回路と、当該水素量計算回路の出力に応じて前記調節弁を制御する調節弁制御回路を有している請求項10に記載の発電装置。
    It has a scale that measures the weight of the raw material, and a controller that controls the control valve.
    The control device calculates a heat amount necessary for gasification of the raw material based on the signal from the weighing device, and an amount of hydrogen necessary for power generation of the fuel cell based on the signal from the heat amount calculation circuit. 11. The power generation apparatus according to claim 10, further comprising: a hydrogen amount calculation circuit that calculates the hydrogen concentration control circuit;
  12.  炭素および/または炭化水素を含む原料を加熱してガスを生成する流動層ガス炉と、
     前記流動層ガス炉でガス化された生成ガスから水素を生成するシフト反応器と、
     前記シフト反応器で生成された水素を用いて発電する燃料電池を有する発電装置であって、
     前記原料のガス化に必要な熱を、前記原料の燃焼によらず、前記燃料電池の発電により生じる熱を用いる発電装置。
    A fluidized bed gas furnace which produces a gas by heating a raw material containing carbon and / or hydrocarbons.
    A shift reactor for producing hydrogen from product gas gasified by the fluidized bed gas furnace;
    A power generation apparatus having a fuel cell that generates power using hydrogen generated by the shift reactor, comprising:
    A power generator using heat generated by power generation of the fuel cell, not by combustion of the raw material, as heat necessary for gasification of the raw material.
  13.  炭素および/または炭化水素を含む原料を加熱してガスを生成する流動層ガス炉と、
     前記流動層ガス炉でガス化された生成ガスから水素を生成するシフト反応器と、
     前記シフト反応器で生成された水素を用いて発電する燃料電池を有する発電装置であって、
     前記流動層ガス化炉における流動化のための気体を、外部から供給することなく、前記燃料電池の発電により生じた蒸気を用いる発電装置。
    A fluidized bed gas furnace which produces a gas by heating a raw material containing carbon and / or hydrocarbons.
    A shift reactor for producing hydrogen from product gas gasified by the fluidized bed gas furnace;
    A power generation apparatus having a fuel cell that generates power using hydrogen generated by the shift reactor, comprising:
    A power generator using steam generated by power generation of the fuel cell without supplying gas for fluidization in the fluidized bed gasifier from the outside.
  14.  燃料電池により発電を行うステップと、
     前記燃料電池の発電の際に発生する熱により、前記原料をガス化して生成ガスを生成するステップと、
     前記燃料電池の発電の際に発生する熱により、前記生成ガスを改質して水素を生成するシフト反応ステップと、
     前記シフト反応ステップにおいて生成された水素を前記燃料電池に供給して発電するステップと、
     前記燃料電池の発電により生じた蒸気を蒸気タービンに供給して発電をするステップを有する発電方法。
    Generating electricity from the fuel cell;
    Gasifying the raw material with the heat generated during power generation of the fuel cell to generate a product gas;
    A shift reaction step of reforming the product gas with the heat generated during power generation of the fuel cell to generate hydrogen;
    Supplying hydrogen generated in the shift reaction step to the fuel cell to generate electricity;
    A power generation method comprising: supplying steam generated by the power generation of the fuel cell to a steam turbine to generate power.
  15.  燃料電池により発電を行うステップと、
     前記燃料電池の発電の際に発生する熱により、前記原料をガス化して生成ガスを生成するステップと、
     前記燃料電池の発電の際に発生する熱により、前記生成ガスを改質して水素を生成するシフト反応ステップと、
     前記シフト反応ステップにおいて生成された水素を、前記流動層ガス炉に供給された前記原料の量に応じて、前記燃料電池に供給して発電するステップと、
     前記シフト反応ステップにおいて生成された水素のうち、前記燃料電池に供給されない水素を取り出すステップを有する水素併産の発電方法。
     
     
    Generating electricity from the fuel cell;
    Gasifying the raw material with the heat generated during power generation of the fuel cell to generate a product gas;
    A shift reaction step of reforming the product gas with the heat generated during power generation of the fuel cell to generate hydrogen;
    Supplying the hydrogen generated in the shift reaction step to the fuel cell to generate electricity according to the amount of the raw material supplied to the fluidized bed gas furnace;
    A hydrogen cogeneration method, comprising the step of taking out hydrogen not supplied to the fuel cell among hydrogen generated in the shift reaction step.

PCT/JP2012/066821 2011-07-05 2012-06-30 Power generator and power-generating method WO2013005699A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549932A JP5286529B2 (en) 2011-07-05 2012-06-30 Power generation apparatus and power generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-148886 2011-07-05
JP2011148886 2011-07-05

Publications (1)

Publication Number Publication Date
WO2013005699A1 true WO2013005699A1 (en) 2013-01-10

Family

ID=47437051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066821 WO2013005699A1 (en) 2011-07-05 2012-06-30 Power generator and power-generating method

Country Status (3)

Country Link
JP (1) JP5286529B2 (en)
TW (1) TWI438336B (en)
WO (1) WO2013005699A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137212A (en) * 2016-02-03 2017-08-10 エクセルギー・パワー・システムズ株式会社 Power generator and power generation method
JP2022030460A (en) * 2020-08-07 2022-02-18 株式会社堤水素研究所 Hydrogen production device
WO2023238015A1 (en) * 2022-06-10 2023-12-14 金尚志 Hydrogen energy uninterruptible power system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
JP2002050387A (en) * 2000-08-04 2002-02-15 Kawasaki Heavy Ind Ltd Energy generating device from solid organic substance
JP2005272530A (en) * 2004-03-23 2005-10-06 Central Res Inst Of Electric Power Ind Biomass power generation system
JP2005330370A (en) * 2004-05-19 2005-12-02 Takuma Co Ltd Indirectly heating-type fluidized bed gasification system
JP2006128006A (en) * 2004-10-29 2006-05-18 Central Res Inst Of Electric Power Ind High temperature type fuel cell power generation system by carbonizing and gasifying biomass
JP2008291081A (en) * 2007-05-23 2008-12-04 Central Res Inst Of Electric Power Ind Gasification plant
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027951A1 (en) * 1998-11-05 2000-05-18 Ebara Corporation Power generation system based on gasification of combustible material
JP2002050387A (en) * 2000-08-04 2002-02-15 Kawasaki Heavy Ind Ltd Energy generating device from solid organic substance
JP2005272530A (en) * 2004-03-23 2005-10-06 Central Res Inst Of Electric Power Ind Biomass power generation system
JP2005330370A (en) * 2004-05-19 2005-12-02 Takuma Co Ltd Indirectly heating-type fluidized bed gasification system
JP2006128006A (en) * 2004-10-29 2006-05-18 Central Res Inst Of Electric Power Ind High temperature type fuel cell power generation system by carbonizing and gasifying biomass
JP2008291081A (en) * 2007-05-23 2008-12-04 Central Res Inst Of Electric Power Ind Gasification plant
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137212A (en) * 2016-02-03 2017-08-10 エクセルギー・パワー・システムズ株式会社 Power generator and power generation method
JP2022030460A (en) * 2020-08-07 2022-02-18 株式会社堤水素研究所 Hydrogen production device
JP7118341B2 (en) 2020-08-07 2022-08-16 株式会社堤水素研究所 Hydrogen production equipment
WO2023238015A1 (en) * 2022-06-10 2023-12-14 金尚志 Hydrogen energy uninterruptible power system

Also Published As

Publication number Publication date
JPWO2013005699A1 (en) 2015-02-23
TWI438336B (en) 2014-05-21
JP5286529B2 (en) 2013-09-11
TW201329339A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
CN101875483B (en) Integrated process for production of energy and/or synthesis gas by production of oxygen in situ, combustion and gasification in a chemical cycle
US20070217995A1 (en) Hydrogen Producing Method and Apparatus
CN107221695B (en) Fuel cell system for producing hydrogen by biomass gasification and power generation method thereof
US20070183966A1 (en) Waste heat recovery apparatus, waste heat recovery system, and method of recovering waste heat
KR20160030559A (en) Methanation method and power plant comprising co_2 methanation of power plant flue gas
Jiang et al. Novel two-stage fluidized bed-plasma gasification integrated with SOFC and chemical looping combustion for the high efficiency power generation from MSW: A thermodynamic investigation
CN115190955A (en) Raw material processing apparatus and processing method
Kawabata et al. Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation--technical challenges for future generations.
JP5448961B2 (en) Coal gasification combined power plant
Yan et al. Performance of hydrogen and power co-generation system based on chemical looping hydrogen generation of coal
WO2013005699A1 (en) Power generator and power-generating method
Lin et al. Concept design, parameter analysis, and thermodynamic evaluation of a novel integrated gasification chemical-looping combustion combined cycle power generation system
NL2025903B1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
KR20150071292A (en) Dual fluidized bed gasifier
JP6229115B2 (en) Power generation apparatus and power generation method
Nurdiawati et al. Efficient hydrogen production from algae and its conversion to methylcyclohexane
CN211199137U (en) Circulating fluidized bed pulverized coal pyrolysis-gasification device
JP7118341B2 (en) Hydrogen production equipment
Jovanovic et al. Possibility of industrial scale BioH 2 production from product gas in existing dual fluidized bed biomass gasification plant
Kalidasan et al. Reduction of emission gas concentration from coal based thermal power plant using full combustion and partial oxidation system
CN220506699U (en) Biomass fluidized bed gasification staged combustion boiler
CN211111887U (en) Thermal power plant pyrolysis of coal gas hydrogen manufacturing system
CN108865284A (en) A kind of high-effective gasization and energy utilization system and coal gasification and energy utilizing method
Volkova et al. SOFC power plant with circulating fluidized bed gasifier
Shankar et al. Reduction of emission gas concentration from coal based thermal power plant using full combustion and partial oxidation system.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012549932

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807629

Country of ref document: EP

Kind code of ref document: A1