JP2008156160A - Corrosion resistant member and its production method - Google Patents

Corrosion resistant member and its production method Download PDF

Info

Publication number
JP2008156160A
JP2008156160A JP2006346992A JP2006346992A JP2008156160A JP 2008156160 A JP2008156160 A JP 2008156160A JP 2006346992 A JP2006346992 A JP 2006346992A JP 2006346992 A JP2006346992 A JP 2006346992A JP 2008156160 A JP2008156160 A JP 2008156160A
Authority
JP
Japan
Prior art keywords
corrosion
resistant member
plasma
sintered body
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006346992A
Other languages
Japanese (ja)
Other versions
JP5004573B2 (en
Inventor
Hidenori Yamanoguchi
秀則 山之口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006346992A priority Critical patent/JP5004573B2/en
Publication of JP2008156160A publication Critical patent/JP2008156160A/en
Application granted granted Critical
Publication of JP5004573B2 publication Critical patent/JP5004573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in the case when a corrosion resistant member, used for a semiconductor manufacturing apparatus for plasma CVD or the like, has an uneven part on its surface, the efficiency of film deposition of a semiconductor wafer is reduced because a plasma generated in the semiconductor manufacturing apparatus is made unstable by edge effect and thereby, the etching rate becomes unstable. <P>SOLUTION: A corrosion resistant member is made of an oxide ceramic sintered compact and is characterized in that the arithmetical average height (Ra) on the surface, exposed to a halogen-based corrosive gas or a plasma of the gas, is ≤3 μm, the average crystal grain diameter of the oxide ceramic sintered compact is 1-50 μm, and the skewness (Rsk) obtained from the roughness curve of the surface is within a range of -1.0 to +0.5. Since a plasma generated in a semiconductor manufacturing apparatus is dispersed to uneven parts of the surface of the sintered compact, and the edge effect having an affect on the stability is reduced, the etching rate is stabilized in a short time and the efficiency of film deposition of the semiconductor wafer can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体製造装置に用いる耐食性部材に関し、特にハロゲン系腐食性ガスまたはそのプラズマに曝される部位に用いられる耐食性部材に関する。   The present invention relates to a corrosion-resistant member used in a semiconductor manufacturing apparatus, and more particularly to a corrosion-resistant member used in a portion exposed to a halogen-based corrosive gas or plasma thereof.

従来から、プラズマCVD装置等の半導体製造装置内でハロゲン系腐食性ガスまたはそのプラズマに曝される部位に高い耐食性を有する部材としてセラミックスが用いられている。   Conventionally, ceramics have been used as a member having high corrosion resistance in a halogen-based corrosive gas or a part exposed to the plasma in a semiconductor manufacturing apparatus such as a plasma CVD apparatus.

そして、この耐食性を有する部材として用いられるセラミックスには、例えばアルミナ,イットリウム・アルミニウム・ガーネット,イットリア等の酸化物セラミック焼結体が挙げられる。このような酸化物セラミック焼結体はいずれもハロゲン系腐食性ガスまたはそのプラズマとの反応で生成するハロゲン化物の融点や沸点が高く、腐食の進行を遅らせることができるので耐食性に優れている。   Examples of the ceramic used as the corrosion-resistant member include oxide ceramic sintered bodies such as alumina, yttrium / aluminum / garnet, and yttria. Any of such oxide ceramic sintered bodies has a high melting point and boiling point of a halogen-based corrosive gas or a halide produced by a reaction thereof with plasma, and is excellent in corrosion resistance because the progress of corrosion can be delayed.

しかしながら、プラズマCVD装置等に用いられるプラズマは活性であるため、耐食性に優れる酸化物セラミック焼結体であっても腐食が進行すると、ハロゲン化物の生成に伴うパーティクルが発生する。なお、パーティクルは、ハロゲン系腐食性ガスまたはそのプラズマに曝されることによって反応して生成するハロゲン化物が蒸発と固化を繰り返して堆積したものが剥離して発生する場合と、電場によって加速されたイオンがハロゲン化物に入射するイオン衝撃によって発生する場合とが考えられる。半導体の製造においてはこれらのパーティクルが不良の原因となるため、パーティクルが発生しにくい耐食性部材が求められている。   However, since plasma used in a plasma CVD apparatus or the like is active, even when an oxide ceramic sintered body having excellent corrosion resistance is corroded, particles accompanying the generation of halide are generated. The particles were accelerated by an electric field when the halogenated corrosive gas or the halide produced by reaction upon exposure to the plasma was peeled off and deposited by repeated evaporation and solidification. It is considered that ions are generated by ion bombardment incident on the halide. Since these particles cause defects in the manufacture of semiconductors, there is a need for corrosion resistant members that are less likely to generate particles.

この要求に対し、例えば、特許文献1には、腐食性ガスを用いて処理を行なう半導体製造装置に使用される半導体製造装置用部材であって、気孔率が10%以下で、かつ表面粗さRaが1μmより大きいセラミックス焼結体からなる半導体製造装置用部材が提案されている。このような半導体製造装置用部材であれば、部材表面の凹凸が表面に生成するハロゲン化膜や析出物に対するアンカー効果をもたらすため、ハロゲン系腐食性ガスやそのプラズマに対して十分な耐食性を維持しつつ、ハロゲン化膜や析出物が剥離し難くなり、パーティクルの発生が低減できるというものである。   In response to this requirement, for example, Patent Document 1 discloses a member for a semiconductor manufacturing apparatus used in a semiconductor manufacturing apparatus that performs processing using a corrosive gas, having a porosity of 10% or less and a surface roughness. A member for a semiconductor manufacturing apparatus made of a ceramic sintered body with an Ra of more than 1 μm has been proposed. In such a member for semiconductor manufacturing equipment, the unevenness on the surface of the member brings about an anchor effect on the halogenated film and precipitates generated on the surface, so that sufficient corrosion resistance is maintained against the halogen-based corrosive gas and its plasma. However, the halogenated film and precipitates are difficult to peel off, and the generation of particles can be reduced.

また、特許文献2では、純度95%以上の緻密質セラミックスからなる基材の表面が、表面粗さRaが3〜40μmの丸みを帯びた第1の凹凸に形成され、かつ、この第1の凹凸の表面が表面粗さRaが0.1〜2.9μmの丸みを帯びた第2の凹凸に形成されている粗表面を有するセラミックス部材が提案されている。この粗表面を有するセラミックス部材によれば、全表面積が第1の凹凸の表面積と第2の凹凸の表面積とを加えたものとなると共に、第2の凹凸の中にその指向方向が基材の元の表面を指向しないものが存在し、かつ、表面の全てが丸みを帯びたものとなるので、極めて優れたアンカー効果を発揮し、従来よりもパーティクルを低減できるというものである。
特開2000−247726号公報 特開2003−171190号公報
Moreover, in patent document 2, the surface of the base material which consists of dense ceramics with a purity of 95% or more is formed in the rounded 1st unevenness | corrugation whose surface roughness Ra is 3-40 micrometers, and this 1st A ceramic member having a rough surface in which the surface of the unevenness is formed into a second unevenness having a round surface roughness Ra of 0.1 to 2.9 μm has been proposed. According to the ceramic member having the rough surface, the total surface area is obtained by adding the surface area of the first unevenness and the surface area of the second unevenness, and the directing direction of the second unevenness is that of the substrate. Some of them do not point to the original surface, and all the surfaces are rounded, so that an extremely excellent anchor effect is exhibited and particles can be reduced as compared with the prior art.
JP 2000-247726 A JP 2003-171190 A

しかしながら、特許文献1または2に開示されている半導体製造装置用部材は、パーティクルとなるハロゲン化膜や析出物の落下を防止するために、部材表面に無数の凹凸部が存在し、または形成されており、この凹凸部によって形成される突起(エッジ)が半導体製造用装置内で発生させるプラズマの安定性に影響を及ぼすことが明らかとなっている。特に近年では、半導体技術の進歩に伴って半導体ウエハも8インチから12インチへ大径化され、より安定なプラズマを生成して精度のよいエッチングを短時間で行なう必要がある。   However, the member for a semiconductor manufacturing apparatus disclosed in Patent Document 1 or 2 has an infinite number of uneven portions on or formed on the surface of the member in order to prevent the falling of a halogenated film or precipitates that become particles. It has been clarified that the projections (edges) formed by the uneven portions affect the stability of plasma generated in the semiconductor manufacturing apparatus. Particularly in recent years, with the advancement of semiconductor technology, the diameter of a semiconductor wafer has been increased from 8 inches to 12 inches, and it is necessary to generate more stable plasma and perform highly accurate etching in a short time.

したがって、特許文献1,2に記載の従来の半導体製造装置用部材をプラズマCVD等の半導体製造装置に用いると、装置内で生成させるプラズマが安定せず、長時間の慣らし運転を必要とし、成膜工程の遅れや高精度なエッチングを短時間で安定させて実施することができないおそれがあった。特に、高周波を印加してプラズマ生成する初期段階に耐食性部材の表面の粗さ曲線に見られる非常に尖った山や深い谷がある場合には、プラズマが安定せず、エッチングレートに大きなバラツキが生じるため、耐食性部材の表面の粗さ曲線に見られる非常に尖った山や深い谷が腐食されるまで、もしくはハロゲン化膜や析出物の付着により滑らかになるまで長時間の慣らし運転を実施しなければならないという問題があり、このように長時間の慣らし運転を必要とすると、エッチング工程以降の成膜工程の実施が遅れ、半導体製造工程における生産効率が著しく低下するという問題があった。   Therefore, when the conventional semiconductor manufacturing apparatus members described in Patent Documents 1 and 2 are used in a semiconductor manufacturing apparatus such as plasma CVD, the plasma generated in the apparatus is not stable and requires a long-time break-in operation. There was a possibility that the delay of the film process and high-precision etching could not be performed stably in a short time. In particular, if there are very sharp peaks or deep valleys in the roughness curve of the surface of the corrosion-resistant member in the initial stage of plasma generation by applying a high frequency, the plasma is not stable and the etching rate varies greatly. Because of this, long running-in operation is carried out until the very sharp peaks and deep valleys seen in the roughness curve of the surface of the corrosion-resistant member are corroded, or until it becomes smooth due to adhesion of halogenated film and precipitates. There is a problem that a long running-in operation is required. Thus, there is a problem that the implementation of the film forming process after the etching process is delayed and the production efficiency in the semiconductor manufacturing process is remarkably lowered.

本発明は、上記課題を解決すべく案出されたものであり、長時間の慣らし運転を行なう必要なく短時間で安定したエッチングレートを確保することが可能な耐食性部材およびその製造方法を提供することを目的とする。   The present invention has been devised to solve the above problems, and provides a corrosion-resistant member capable of ensuring a stable etching rate in a short time without the need for a long-term break-in operation and a method for manufacturing the same. For the purpose.

本発明の耐食性部材は、酸化物セラミック焼結体からなり、ハロゲン系腐食性ガスまたはそのプラズマに曝される表面の算術平均高さ(Ra)が3μm以下の耐食性部材であって、前記酸化物セラミック焼結体の平均結晶粒径が1〜50μmであり、かつ前記表面の粗さ曲線から求められるスキューネス(Rsk)が−1.0〜+0.5の範囲内であることを特徴とするものである。   The corrosion-resistant member of the present invention is a corrosion-resistant member comprising an oxide ceramic sintered body and having an arithmetic average height (Ra) of a surface exposed to a halogen-based corrosive gas or plasma thereof of 3 μm or less. The average crystal grain size of the ceramic sintered body is 1 to 50 μm, and the skewness (Rsk) obtained from the surface roughness curve is in the range of −1.0 to +0.5. .

また、本発明の耐食性部材は、上記構成において、前記酸化物セラミック焼結体の前記表面の粗さ曲線から求められるクルトシス(Rku)が3.0〜4.5であることを特徴とするものである。   Moreover, the corrosion-resistant member of the present invention is characterized in that, in the above configuration, the kurtosis (Rku) determined from the surface roughness curve of the oxide ceramic sintered body is 3.0 to 4.5.

さらに、本発明の耐食性部材は、上記いずれかの構成において、前記酸化物セラミック焼結体がアルミナまたはイットリアまたはアルミナとイットリウム・アルミニウム・ガーネットとの複合材料からなることを特徴とするものである。   Furthermore, the corrosion-resistant member of the present invention is characterized in that, in any one of the above structures, the oxide ceramic sintered body is made of alumina, yttria, or a composite material of alumina, yttrium, aluminum, and garnet.

また、本発明の耐食性部材の製造方法は、上記いずれかの構成において、セラミック材料とバインダと溶媒とを混合して2次原料を得る工程と、前記2次原料を成形型に充填して成形し、該成形型の表面の面粗さをその表面に転写した成形体を得る工程と、大気または酸化性雰囲気にて1550〜1700℃の最高温度を2時間以上保持した後、最高温度から1000℃までを5〜20℃/時間、1000℃から500℃までを20〜50℃/時間、500℃から常温までを50〜100℃/時間の速度で降温する工程とからなることを特徴とするものである。   The method for producing a corrosion-resistant member of the present invention includes a step of mixing a ceramic material, a binder, and a solvent to obtain a secondary raw material, and filling the secondary raw material in a mold in any one of the above configurations. And a step of obtaining a molded body in which the surface roughness of the mold is transferred to the surface, and a maximum temperature of 1550 to 1700 ° C. is maintained for 2 hours or more in air or an oxidizing atmosphere, and then the maximum temperature is 1000 5 to 20 ° C./hour from 1000 ° C., 20 to 50 ° C./hour from 1000 ° C. to 500 ° C., and 50 to 100 ° C./hour from 500 ° C. to room temperature. Is.

本発明の耐食性部材によれば、酸化物セラミック焼結体からなり、ハロゲン系腐食性ガスまたはそのプラズマに曝される表面の算術平均高さ(Ra)が3μm以下の耐食性部材であって、前記酸化物セラミック焼結体の平均結晶粒径が1〜50μmであり、かつ前記表面の粗さ曲線から求められるスキューネス(Rsk)が−1.0〜+0.5の範囲内であることにより、耐食性部材表面に無数の凹凸部(エッジ)が存在し、または形成されており、半導体製造装置内で発生させるプラズマがこの凹凸部によって分散されて安定性に影響するエッジ効果を低減できるので、このような耐食性部材をプラズマCVD装置用の耐食性部材として用いた場合に、エッチングレートを短時間で安定させることが可能なため、高周波を印加してプラズマを生成する初期段階から安定したエッチングを実施でき、その後の成膜を実施できるため、半導体製造工程における生産効率を向上させることが可能となる。   According to the corrosion-resistant member of the present invention, the corrosion-resistant member comprises an oxide ceramic sintered body, and has an arithmetic average height (Ra) of a surface exposed to a halogen-based corrosive gas or plasma thereof of 3 μm or less, The oxide ceramic sintered body has an average crystal grain size of 1 to 50 μm and a skewness (Rsk) determined from the roughness curve of the surface in the range of −1.0 to +0.5. Innumerable irregularities (edges) exist or are formed on the surface, and the plasma generated in the semiconductor manufacturing apparatus is dispersed by the irregularities to reduce the edge effect that affects the stability. When the member is used as a corrosion-resistant member for a plasma CVD apparatus, the etching rate can be stabilized in a short time, so the initial stage of generating plasma by applying a high frequency Can implement stable etching from floor, for the subsequent deposition can be carried out, it is possible to improve production efficiency in the semiconductor manufacturing process.

また、本発明の耐食性部材によれば、セラミック焼結体の表面の粗さ曲線から求められるクルトシス(Rku)が3.0〜4.5である耐食性部材とすることにより、耐食性部材の表面を従来よりも滑らかな表面とすることができるので、プラズマの安定性に影響するエッジ効果をさらに低減できるため、半導体ウエハ表面のエッチングレートをより短時間で安定させることができ、半導体製造工程における生産効率を向上させることが可能となる。   Further, according to the corrosion-resistant member of the present invention, the surface of the corrosion-resistant member is smoother than before by using a corrosion-resistant member having a kurtosis (Rku) of 3.0 to 4.5 determined from the surface roughness curve of the ceramic sintered body. Since the edge effect that affects the stability of the plasma can be further reduced, the etching rate of the semiconductor wafer surface can be stabilized in a shorter time and the production efficiency in the semiconductor manufacturing process can be improved. It becomes possible.

さらに、本発明の耐食性部材によれば、セラミック焼結体がアルミナまたはイットリアまたはアルミナとイットリウム・アルミニウム・ガーネットとの複合材料からなることにより、プラズマとの反応で生成するハロゲン化物の融点や沸点が高く、腐食の進行を遅らせることができるので、充分な耐食性を兼ね備えた耐食性部材とすることが可能となる。   Furthermore, according to the corrosion-resistant member of the present invention, the ceramic sintered body is made of alumina, yttria, or a composite material of alumina and yttrium, aluminum, and garnet, so that the melting point and boiling point of the halide generated by the reaction with plasma can be reduced. Since it is high and the progress of corrosion can be delayed, a corrosion resistant member having sufficient corrosion resistance can be obtained.

また、本発明の耐食性部材の製造方法によれば、耐食性部材を、セラミック材料とバインダと溶媒とを混合して2次原料を得る工程と、前記2次原料を成形型に充填して成形し、該成形型の表面の面粗さをその表面に転写した成形体を得る工程と、大気または酸化性雰囲気にて1550〜1700℃の最高温度を2時間以上保持した後、最高温度から1000℃までを5〜20℃/時間、1000℃から500℃までを20〜50℃/時間、500℃から常温までを50〜100℃/時間の速度で降温する工程とからなる方法で製造することにより、塑性変形可能な金属製成形型のより滑らかな表面をセラミック成形体の表面に転写し、かつその表面を保つためにより均質なセラミック粒子の粒成長を促す焼成パターンとしているために、従来はブラストや各種研削,研磨加工等の焼成後の加工により所定の面粗さを得ていた製法は元より、成形体に加工を施して焼成した製法による表面と比較して、より滑らかでエッジの少ない表面状態を有する上記各構成の本発明の耐食性部材を得ることが可能となる。さらには、最高焼成温度からの降温時間を従来よりも長くしたことにより、特に耐食性部材の表面近傍のセラミック粒子の粒成長を促進させることが可能なため、より凹凸部の少ない滑らかな表面状態とした本発明の耐食性部材を製造可能となる。   According to the method for producing a corrosion-resistant member of the present invention, the corrosion-resistant member is formed by mixing a ceramic material, a binder, and a solvent to obtain a secondary raw material, and filling the secondary raw material in a mold. , A step of obtaining a molded body in which the surface roughness of the mold is transferred to the surface, and a maximum temperature of 1550 to 1700 ° C. is maintained for 2 hours or more in air or an oxidizing atmosphere, and then the maximum temperature is 1000 ° C. 5 to 20 ° C / hour, 20 to 50 ° C / hour from 1000 ° C to 500 ° C, and a method of lowering the temperature from 500 ° C to room temperature at a rate of 50 to 100 ° C / hour. The blasting pattern has been used in the past because of the firing pattern that transfers the smoother surface of the plastically deformable metal mold to the surface of the ceramic body and promotes more uniform grain growth of the ceramic particles to maintain the surface. And after firing such as various grinding and polishing processes The manufacturing method that has obtained a predetermined surface roughness by the process of the present invention of each of the above configurations having a surface state that is smoother and has fewer edges as compared to the surface by the manufacturing method obtained by processing and firing the molded body. It becomes possible to obtain a corrosion-resistant member. Furthermore, by making the temperature lowering time from the maximum firing temperature longer than before, it is possible to promote the grain growth of the ceramic particles especially near the surface of the corrosion-resistant member, so that the smooth surface state with less uneven parts and Thus, the corrosion-resistant member of the present invention can be manufactured.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明の耐食性部材は、酸化物セラミック焼結体からなり、ハロゲン系腐食性ガスまたはそのプラズマに曝される表面の算術平均高さ(Ra)が3μm以下の耐食性部材であって、酸化物セラミック焼結体の平均結晶粒径が1〜50μmであり、かつ表面の粗さ曲線から求められるスキューネス(Rsk)が−1.0〜+0.5の範囲内であることを特徴としている。   The corrosion-resistant member of the present invention is a corrosion-resistant member comprising an oxide ceramic sintered body and having an arithmetic average height (Ra) of a surface exposed to a halogen-based corrosive gas or plasma thereof of 3 μm or less. The sintered body has an average crystal grain size of 1 to 50 μm and a skewness (Rsk) determined from a surface roughness curve within a range of −1.0 to +0.5.

ここで、ハロゲン系腐食性ガスとしては、プラズマCVD装置等の半導体製造装置内で用いられるもので、SF,CF,CHF,ClF,HF等のフッ素系ガス、Cl,HCl,BCl等の塩素系ガス、Br,HBr,BBr等の臭素系ガスおよびヨウ素系ガス等が挙げられる。これらのガスが導入された雰囲気にマイクロ波や高周波を誘導し、あるいはガスの解離電圧以上の電位差を加えることにより、これらのガスがプラズマ化され、例えば近年のプラズマCVD装置では、このプラズマにより半導体ウエハの表面をエッチングまたはクリーニングした後、半導体ウエハ上に窒化膜や酸化膜等の保護膜を形成する。本発明の耐食性部材は、その表面がこれらのハロゲン系腐食性ガスまたはそのプラズマに曝されても優れた耐食性を有するものである。 Here, the halogen-based corrosive gas is used in a semiconductor manufacturing apparatus such as a plasma CVD apparatus, and is a fluorine-based gas such as SF 6 , CF 4 , CHF 3 , ClF 3 , HF, Cl 2 , HCl, Examples include chlorine-based gases such as BCl 3 , bromine-based gases such as Br 2 , HBr, and BBr 3, and iodine-based gases. These gases are turned into plasma by inducing microwaves or high-frequency waves into the atmosphere in which these gases are introduced, or by applying a potential difference equal to or higher than the dissociation voltage of the gases. After etching or cleaning the surface of the wafer, a protective film such as a nitride film or an oxide film is formed on the semiconductor wafer. The corrosion-resistant member of the present invention has excellent corrosion resistance even when its surface is exposed to these halogen-based corrosive gases or plasma thereof.

また、本発明の耐食性部材は、優れた耐食性を有するとともに、その表面状態が半導体製造装置内で生成されるプラズマの安定性に影響を与えないものとなっている。従来の耐食性部材は、半導体製造装置内で、耐食性部材の表面上に堆積する堆積物に対して表面をアンカー効果を有するものとして堆積物の落下によるパーティクル発生を防止するため、その表面状態は多数の凹凸部を有したものとされていたが、このような表面状態を有する耐食性部材では、半導体製造装置内で発生するプラズマが安定せず、半導体ウエハの表面をエッチングする際のエッチングレートが安定しにくいものとなっていた。この原因としては、耐食性部材の表面の粗さ曲線に見られる非常に尖った山や深い谷等のエッジによってプラズマが分散するエッジ効果が影響しているものと考えられるが、真の原因は明らかになっていない。本発明の耐食性部材は、原因は明確ではないものの、このようなプラズマの不安定性を解消できる表面状態を有するものである。   In addition, the corrosion resistant member of the present invention has excellent corrosion resistance, and its surface state does not affect the stability of plasma generated in the semiconductor manufacturing apparatus. The conventional corrosion-resistant member has a surface anchoring effect on the deposit deposited on the surface of the corrosion-resistant member in the semiconductor manufacturing apparatus, and prevents the generation of particles due to the fall of the deposit. However, with the corrosion resistant member having such a surface state, the plasma generated in the semiconductor manufacturing apparatus is not stable, and the etching rate when etching the surface of the semiconductor wafer is stable. It was difficult to do. The cause of this is thought to be due to the edge effect in which the plasma is dispersed by the edges of very sharp peaks and deep valleys seen in the roughness curve of the surface of the corrosion-resistant member, but the true cause is obvious It is not. Although the cause is not clear, the corrosion resistant member of the present invention has a surface state capable of eliminating such plasma instability.

より具体的には、その表面の算術平均高さ(Ra)を3μm以下としたものであって、平均結晶粒径が1〜50μmであり、かつその表面の粗さ曲線から求められるスキューネス(Rsk)が−1.0〜+0.5である耐食性部材とする。   More specifically, the arithmetic average height (Ra) of the surface is 3 μm or less, the average crystal grain size is 1 to 50 μm, and the skewness (Rsk) determined from the roughness curve of the surface ) Is -1.0 to +0.5.

ここで、本発明の耐食性部材の表面の算術平均高さ(Ra)を3μm以下とするのは、プラズマの安定性に影響を与えると考えられる耐食性部材の表面のエッジとなりうる凹凸部を従来と比較して平均的に低減することが可能となり、高周波を印加して初期段階から安定したプラズマを発生させ、エッチングレートの安定性を確保できるとともに、耐食性部材の表面と半導体製造装置内のハロゲン系腐食性ガスとの接触面積を低減でき耐食性部材の耐食性をも向上させることが可能となるからである。表面の算術平均高さ(Ra)が3μmより大きい場合には、必然的に耐食性部材の表面の凹凸部の高さが全体的に高くなり、プラズマに影響を与えると考えられるエッジ部が形成され易くなり好ましくない。半導体ウエハから製造されるICチップに回路パターンを焼き付けるための半導体ウエハの表面に形成された溝の底部までを安定してエッチングすることが可能なエッチングレートを得ようとすると、耐食性部材の表面の算術平均高さ(Ra)を1μm以下とするのがより好ましい。なお、表面の算術平均高さ(Ra)は、市販の接触式または非接触式の表面粗さ計を用い、JIS規格(JIS B 0601−2001,JIS B 0633−2001,JIS B 0031−2003 付属書G,F)に準拠して、例えば、算術平均高さRaが0.1μmより大きく2μm以下と推定されるときは、評価長さが4mm,カットオフ値(基準長さ)が0.8mmの設定条件で測定することができる。   Here, the reason that the arithmetic average height (Ra) of the surface of the corrosion-resistant member of the present invention is 3 μm or less is that the uneven portion that can be the edge of the surface of the corrosion-resistant member, which is considered to affect the stability of the plasma, In comparison, it is possible to reduce the average, and by applying a high frequency, stable plasma is generated from the initial stage, the etching rate stability can be ensured, and the surface of the corrosion resistant member and the halogen system in the semiconductor manufacturing apparatus This is because the contact area with the corrosive gas can be reduced, and the corrosion resistance of the corrosion resistant member can be improved. When the arithmetic average height (Ra) of the surface is larger than 3 μm, the height of the uneven portion on the surface of the corrosion resistant member is inevitably increased as a whole, and an edge portion that is considered to affect the plasma is formed. It becomes easy and is not preferable. When trying to obtain an etching rate capable of stably etching up to the bottom of the groove formed on the surface of the semiconductor wafer for baking the circuit pattern on the IC chip manufactured from the semiconductor wafer, the surface of the corrosion-resistant member The arithmetic average height (Ra) is more preferably 1 μm or less. The arithmetic average height (Ra) of the surface is measured using a commercially available contact type or non-contact type surface roughness meter and attached to JIS standards (JIS B 0601-2001, JIS B 0633-2001, JIS B 0031-2003). For example, when the arithmetic average height Ra is estimated to be greater than 0.1 μm and 2 μm or less, the evaluation length is set to 4 mm and the cutoff value (reference length) is set to 0.8 mm. It can be measured under conditions.

また、本発明の耐食性部材の平均結晶粒径を1〜50μmの範囲内としたのは、従来と同等以上の耐食性や機械的特性を維持しつつ、高周波を印加して初期段階から安定したプラズマを発生させ、エッチングレートを安定させることのできる耐食性部材を得るためである。平均結晶粒径が1μm未満であると、耐食性部材の表面が腐食される場合にはまず結晶粒界から腐食を受け易いので、平均結晶粒径が小さくなると結晶同士を結合している結晶粒界がより減少するので、腐食によって容易に結晶粒子が脱粒し易くなり、パーティクルが生じ易くなるために好ましくなく、また50μmより大きな平均結晶粒径とすると、耐食性部材自体の強度が著しく低下するために好ましくない。   In addition, the average crystal grain size of the corrosion-resistant member of the present invention is in the range of 1 to 50 μm because the plasma is stable from the initial stage by applying a high frequency while maintaining corrosion resistance and mechanical characteristics equal to or higher than conventional ones. This is to obtain a corrosion-resistant member that can stabilize the etching rate. If the average crystal grain size is less than 1 μm, when the surface of the corrosion-resistant member is corroded, it is likely to be corroded from the grain boundaries. Therefore, when the average crystal grain size is larger than 50 μm, the strength of the corrosion-resistant member itself is significantly reduced. It is not preferable.

なお、平均結晶粒径の測定方法は、耐食性部材から切り出した試験片を用意し、さらに観察面を化学的または熱処理してエッチング処理を行なってアルミナ結晶の粒界組成を除去した後、1000倍の倍率にて走査型電子顕微鏡(SEM)で写真を撮影し、その写真像から任意に10個の結晶粒を選択し、各々の結晶粒の最大長を結晶粒径として10個の結晶粒の測定値の平均を平均結晶粒径としている。   The average crystal grain size was measured by preparing a test piece cut out from a corrosion-resistant member, and further removing the grain boundary composition of the alumina crystal by chemically or heat treating the observation surface to remove the grain boundary composition of the alumina crystal. A photograph was taken with a scanning electron microscope (SEM) at a magnification of 10 and arbitrarily selected 10 crystal grains from the photographic image, and the maximum length of each crystal grain was defined as the crystal grain size. The average of the measured values is the average crystal grain size.

さらに、本発明の耐食性部材のスキューネス(Rsk)を−1.0〜+0.5の範囲内としたのは、耐食性部材の表面に存在する凹凸部の高さを全体的に低くするためである。スキューネスは、耐食性部材の表面の凹凸部が山と谷のどちらに偏っているかその度合いを示すものであり、山と谷のどちらかに偏りが大きければ、その部分が半導体製造装置内で発生させるプラズマの安定性に影響を与え、エッチングレートの安定性に影響すると考えられる。スキューネス(Rsk)の詳細な説明を以下に示す。なお、スキューネス(Rsk)に関しては、JIS B 0601−2001に基づいて詳細を説明する。   Furthermore, the reason why the skewness (Rsk) of the corrosion-resistant member of the present invention is set within the range of -1.0 to +0.5 is to reduce the overall height of the uneven portions present on the surface of the corrosion-resistant member. Skewness indicates the degree of unevenness of the surface of the corrosion-resistant member being biased to peaks or valleys. If the peaks or valleys are biased, that portion is generated in the semiconductor manufacturing apparatus. It is thought that it affects the stability of the plasma and affects the stability of the etching rate. A detailed description of the skewness (Rsk) is shown below. The skewness (Rsk) will be described in detail based on JIS B 0601-2001.

図1は、スキューネス(Rsk)の性質の解説図であり、(a)はスキューネス(Rsk)が正の値をとる場合の粗さ曲線と確率密度関数、(b)はスキューネス(Rsk)が負の値をとる場合の粗さ曲線と確率密度関数、(c)はスキューネス(Rsk)の値が0に近づいた場合の粗さ曲線と確率密度関数である。   FIG. 1 is an explanatory diagram of the nature of skewness (Rsk), where (a) is a roughness curve and probability density function when skewness (Rsk) takes a positive value, and (b) is a negative skewness (Rsk). (C) is the roughness curve and probability density function when the skewness (Rsk) value approaches zero.

図1(a)に示すように、山に対して谷の部分が広い粗さ曲線の場合は、確率密度関数は谷の方へ偏った分布形となり、スキューネス(Rsk)の値は0より大きくなり正の値を示す。一方、図1(b)に示すように山頂部分が比較的平らな粗さ曲線の場合には、確率密度関数は山側に偏って、スキューネス(Rsk)の値は0より小さくなり負の値を示す。これら図1(a),(b)に示すような粗さ曲線が得られる表面を持つ耐食性部材は、その表面の凹凸部のエッジ効果により、プラズマに影響を及ぼし、エッチングレートが安定しにくくなるものと考えられる。   As shown in FIG. 1A, in the case of a roughness curve in which the valley portion is wide with respect to the mountain, the probability density function has a distribution shape biased toward the valley, and the value of the skewness (Rsk) is larger than 0. Shows a positive value. On the other hand, when the peak portion is a relatively flat roughness curve as shown in FIG. 1B, the probability density function is biased toward the peak side, and the value of the skewness (Rsk) becomes smaller than 0 and becomes a negative value. Show. These corrosion-resistant members having a surface with a roughness curve as shown in FIGS. 1 (a) and 1 (b) affect the plasma due to the edge effect of the uneven portions on the surface, and the etching rate is difficult to stabilize. It is considered a thing.

したがって、本発明の耐食性部材表面は、粗さ曲線のスキューネス(Rsk)の値を−1.0〜+0.5の範囲とするのがよい。スキューネス(Rsk)の値が−1.0より小さい値となると、図1(b)に示すように、山頂部分が比較的平らな粗さ曲線となり、また、+0.5より大きい値では、図1(a)に示すように、山に対して谷の部分が広い粗さ曲線となる。このような粗さ曲線では、高さや深さの異なる山や谷がエッジとなり、このエッジ効果により半導体製造装置内で発生させるプラズマを不安定化させる要因になると考えられるため好ましくない。これに対し、本発明の耐食性部材のようにスキューネス(Rsk)の値が−1.0〜+0.5のときは、図1(c)に示すような粗さ曲線となり、確率密度関数はほぼ正規分布に近づいたものとなる。このような粗さ曲線が得られる耐食性部材の表面状態とすれば、半導体製造装置内で生成されるプラズマに対してエッジ効果による影響を与えにくく、安定したエッチングレートを得られるようになる。より好ましくは−0.5〜+0.5の範囲内とするのがよく、そうすれば、粗さ曲線の確率密度関数はより正規分布に近いものとなり、山側および谷側のいずれにも偏りがなくなるため、プラズマに与える影響もより少なくなるものと考えられる。粗さ曲線の確率密度関数において山側または谷側のいずれかに偏りが生じるということは、プラズマの安定性に影響を与えると考えられる鋭いエッジを有しているということであり、これを防止するには偏りのない正規分布の状態に近づけることが好ましい。   Therefore, the surface of the corrosion-resistant member of the present invention should have a skewness (Rsk) value of the roughness curve in the range of −1.0 to +0.5. When the value of the skewness (Rsk) is smaller than −1.0, as shown in FIG. 1B, the peak portion becomes a relatively flat roughness curve, and when the value is larger than +0.5, the value of FIG. As shown in a), the valley portion has a wide roughness curve with respect to the mountain. In such a roughness curve, peaks and valleys having different heights and depths become edges, and this edge effect is considered to be a factor destabilizing plasma generated in the semiconductor manufacturing apparatus, which is not preferable. On the other hand, when the value of skewness (Rsk) is −1.0 to +0.5 as in the corrosion resistant member of the present invention, the roughness curve as shown in FIG. It will be close to. If the surface state of the corrosion resistant member is such that such a roughness curve is obtained, the plasma generated in the semiconductor manufacturing apparatus is hardly affected by the edge effect, and a stable etching rate can be obtained. More preferably, it should be in the range of −0.5 to +0.5, and then the probability density function of the roughness curve will be closer to a normal distribution, and there will be no bias on either the mountain side or the valley side. It is considered that the influence on plasma is also reduced. In the probability density function of the roughness curve, the occurrence of a bias on either the peak side or the valley side means that there is a sharp edge that is thought to affect the stability of the plasma, and this is prevented. It is preferable to approximate a normal distribution state with no bias.

なお、スキューネス(Rsk)は、市販の接触式または非接触式の表面粗さ計を用い、JIS規格(JIS B 0601−2001,JIS B 0633−2001,JIS B 0031−2003 付属書G,F)に準拠して、例えば、算術平均高さRaが0.1μmより大きく2μm以下と推定されるときは、評価長さが4mm,カットオフ値(基準長さ)が0.8mmの設定条件で測定することができる。   For skewness (Rsk), a commercially available contact-type or non-contact-type surface roughness meter is used, and JIS standards (JIS B 0601-2001, JIS B 0633-2001, JIS B 0031-2003, Appendix G, F). For example, when the arithmetic average height Ra is estimated to be greater than 0.1 μm and 2 μm or less, the measurement should be performed under the setting conditions where the evaluation length is 4 mm and the cutoff value (reference length) is 0.8 mm. Can do.

また、本発明の耐食性部材は、酸化物セラミック焼結体の表面の粗さ曲線から求められるクルトシス(Rku)が3.0〜4.5であることが好ましい。   Further, the corrosion-resistant member of the present invention preferably has a kurtosis (Rku) of 3.0 to 4.5 determined from the surface roughness curve of the oxide ceramic sintered body.

ここで、クルトシス(Rku)に関してもJIS B 0601−2001に基づき詳細を説明する。   Here, details of Kurtosis (Rku) will be described based on JIS B 0601-2001.

図2は、クルトシス(Rku)の性質の解説図であり、(a)はクルトシス(Rku)が3より大きくなる場合の粗さ曲線と確率密度関数、(b)はクルトシス(Rku)が3より小さくなる場合の粗さ曲線と確率密度関数である。   FIG. 2 is an explanatory diagram of the nature of kurtosis (Rku), (a) is a roughness curve and probability density function when kurtosis (Rku) is greater than 3, and (b) is kurtosis (Rku) from 3. It is a roughness curve and probability density function when it becomes small.

図2(a)に示すように、非常に尖った山および深い谷が所々にある粗さ曲線では、確率密度関数の分布形は鋭くとがり、この場合のクルトシス(Rku)の値は3より大きくなる。これに対し、図2(b)のように、なだらかな山および谷からなる粗さ曲線では、確率密度関数の分布形はなだらかになり、クルトシス(Rku)の値は3より小さくなる。   As shown in FIG. 2 (a), in the roughness curve having very sharp peaks and deep valleys, the distribution form of the probability density function is sharp, and the value of Kurtosis (Rku) in this case is larger than 3. Become. On the other hand, as shown in FIG. 2B, in the roughness curve composed of gentle peaks and valleys, the distribution form of the probability density function is gentle and the value of kurtosis (Rku) is smaller than 3.

本発明の耐食性部材は、その表面の粗さ曲線から求められるクルトシス(Rku)の値を3.0〜4.5の範囲内としたことによって、エッジ効果によるプラズマへの影響をより低減させた耐食性部材とでき、安定したエッチングレートを得ることができる。このクルトシス(Rku)の値が3.0より小さいと、耐食性部材の表面に非常にとがった山や深い谷がなく、プラズマの安定化のためにはより良好な表面状態となるものの、極めて平滑な表面となり耐食性部材の表面へ付着した堆積物が極めて落下し易くなるので、パーティクルが極端に増加してしまうために好ましくない。また、クルトシス(Rku)の値が4.5より大きくなると、耐食性部材の表面に非常にとがった山や深い谷がより多く形成されるため、このような表面を有する耐食性部材をプラズマCVD装置等の装置内でプラズマを生成させる半導体製造装置用部材として用いると、非常に尖った山や深い谷のエッジ効果により生成させたプラズマが安定しにくくなり、半導体ウエハの表面のエッチングレートが安定しなくなるために好ましくない。   The corrosion-resistant member of the present invention can be a corrosion-resistant member in which the influence of the edge effect on the plasma is further reduced by setting the kurtosis (Rku) value obtained from the roughness curve of the surface within the range of 3.0 to 4.5. A stable etching rate can be obtained. If the value of this kurtosis (Rku) is less than 3.0, the surface of the corrosion-resistant member has no very sharp peaks or deep valleys, and although a better surface state is obtained for plasma stabilization, an extremely smooth surface Therefore, the deposits adhering to the surface of the corrosion-resistant member are extremely easy to fall, which is not preferable because the particles are extremely increased. In addition, when the value of kurtosis (Rku) is greater than 4.5, more sharp peaks and deep valleys are formed on the surface of the corrosion-resistant member. Therefore, the corrosion-resistant member having such a surface is used as an apparatus such as a plasma CVD apparatus. When used as a member for semiconductor manufacturing equipment that generates plasma inside, the plasma generated by the edge effect of very sharp peaks and deep valleys becomes difficult to stabilize, and the etching rate on the surface of the semiconductor wafer becomes unstable It is not preferable.

なお、確率密度関数が正規分布に従うときは、クルトシス(Rku)は3である。本発明の耐食性部材は、その表面のクルトシス(Rku)が3.0〜4.5の範囲内であることにより、その確率密度関数の分布形は正規分布に近づき、部材の表面にはプラズマの安定性に影響を与えるような非常にとがった山や深い谷の存在が極めて少ない状態となっている。   Note that the kurtosis (Rku) is 3 when the probability density function follows a normal distribution. The corrosion-resistant member of the present invention has a surface kurtosis (Rku) in the range of 3.0 to 4.5, so that the distribution form of the probability density function approaches a normal distribution, and the surface of the member affects the plasma stability. There are very few sharp points and deep valleys that give

このクルトシス(Rku)は、市販の接触式または非接触式の表面粗さ計を用い、JIS規格(JIS B 0601−2001,JIS B 0633−2001,JIS B 0031−2003 付属書G,F)に準拠して、例えば、算術平均高さRaが0.1μmより大きく2μm以下と推定されるときは、評価長さが4mm,カットオフ値(基準長さ)が0.8mmの設定条件で測定することができる。   This kurtosis (Rku) uses a commercially available contact type or non-contact type surface roughness meter and conforms to JIS standards (JIS B 0601-2001, JIS B 0633-2001, JIS B 0031-2003 appendices G and F). In conformity, for example, when the arithmetic average height Ra is estimated to be greater than 0.1 μm and 2 μm or less, the measurement may be performed under the setting conditions where the evaluation length is 4 mm and the cutoff value (reference length) is 0.8 mm. it can.

また、本発明の耐食性部材は酸化物セラミック焼結体から主に構成されている。特に酸化物セラミックスの中でもハロゲン系腐食性ガスまたはそのプラズマに対する耐食性に優れるアルミナまたはイットリアまたはアルミナとイットリウム・アルミニウム・ガーネット(以下、YAGと称す。)との複合材料から構成されることが好ましい。これらの材料と、ハロゲン系腐食性ガスまたはそのプラズマとが接触した場合は、AlFやYF等のフッ化物等、接触ガスとの反応生成物が表面に生成されるが、その融点,沸点は他の材料との反応生成物よりも高い。従って、プラズマの熱によっても耐食性部材の表面からこの反応生成物は溶融,昇華しにくく、このため優れた耐食性を有することになる。また、本発明に用いられる酸化物セラミックスは、純度99%以上、相対密度90%以上の特性を有するものを用いることが、耐食性をより高める点において好ましい。さらに、アルミナとYAGとの複合材料については、アルミナが70〜90質量%、YAGが10〜30質量%の割合で複合化された焼結体を用いるのがよい。YAGの割合が10質量%未満では耐食性が低下し、30質量%を超えると、強度低下が著しくなるからである。 The corrosion-resistant member of the present invention is mainly composed of an oxide ceramic sintered body. In particular, among oxide ceramics, it is preferable to be composed of a composite material of alumina or yttria or alumina and yttrium aluminum garnet (hereinafter referred to as YAG), which is excellent in corrosion resistance to halogen-based corrosive gas or plasma thereof. When these materials come into contact with halogen-based corrosive gas or plasma thereof, reaction products with contact gas such as fluoride such as AlF 3 and YF 3 are generated on the surface, but their melting point and boiling point Is higher than the reaction product with other materials. Therefore, the reaction product is not easily melted and sublimated from the surface of the corrosion-resistant member even by the heat of the plasma, and therefore has excellent corrosion resistance. The oxide ceramics used in the present invention are preferably those having a purity of 99% or more and a relative density of 90% or more in terms of further improving the corrosion resistance. Furthermore, for the composite material of alumina and YAG, it is preferable to use a sintered body in which alumina is compounded in a proportion of 70 to 90 mass% and YAG in a ratio of 10 to 30 mass%. This is because if the proportion of YAG is less than 10% by mass, the corrosion resistance decreases, and if it exceeds 30% by mass, the strength decreases significantly.

次に、本発明の耐食性部材の製造方法について以下に詳細を説明する。   Next, the manufacturing method of the corrosion resistant member of the present invention will be described in detail below.

本発明の耐食性部材に用いる酸化物セラミック焼結体の製造方法としては、セラミック材料として例えば平均粒径が0.5〜10μm,純度が96%以上の市販のアルミナを用いる。そして、このセラミック材料を造粒またはスラリー化して2次原料とする。造粒する場合には、このセラミック材料をPVA(ポリビニールアルコール),PEG(ポリエチレングリコール)等の一般的な市販の各種バインダおよび溶媒である水とともに混合撹拌機にて混合し、ボールミルや振動ミル等の混合ミルにてさらに混合し撹拌して、バインダの分散性を高めたスラリーとする。そして、このスラリーをスプレードライヤーで造粒して2次原料とする。また、スラリー化する場合には、このセラミック材料をアクリル樹脂系バインダ,溶媒として水,硬化剤,分散剤とともに混合撹拌機にて混合し、脱鉄機による脱鉄、真空脱泡機による脱泡を実施して、スラリー化した2次原料とする。   As a method for producing an oxide ceramic sintered body used for the corrosion-resistant member of the present invention, for example, commercially available alumina having an average particle diameter of 0.5 to 10 μm and a purity of 96% or more is used as the ceramic material. Then, this ceramic material is granulated or slurried to obtain a secondary raw material. In the case of granulation, this ceramic material is mixed with various commercially available binders such as PVA (polyvinyl alcohol) and PEG (polyethylene glycol) and water as a solvent by a mixing stirrer, and then a ball mill or vibration mill. Further, the mixture is further mixed and stirred by a mixing mill such as a slurry having increased binder dispersibility. And this slurry is granulated with a spray dryer, and it is set as a secondary raw material. In addition, when making a slurry, this ceramic material is mixed with an acrylic resin binder, water, a curing agent, and a dispersant as a solvent in a mixing stirrer, and then defoamed by a deironer and defoamed by a vacuum defoamer. To obtain a slurryed secondary material.

しかる後、造粒した2次原料は金型プレス成形法や静水圧プレス成形法(ラバープレス)等の成形法を用いて成形し、スラリー化した2次原料は鋳込み成形法や射出成形法を用いて成形する。   Thereafter, the granulated secondary material is molded using a molding method such as a die press molding method or an isostatic press molding method (rubber press), and the slurryed secondary material is subjected to a casting molding method or an injection molding method. Use to mold.

ここで、本発明の耐食性部材の製造方法では、成形時に用いる成形型の表面の面粗さを成形体の表面に転写する。成形型の表面の面粗さを成形体の表面へ転写するには、まず成形型の表面を成形体において得たい表面粗さに加工しなければならない。成形型の加工は、まず型の原型となる金属のインゴットを準備し、研削盤やフライス盤等の金属加工装置を用いて所定形状に加工する。しかる後、2次原料と接する表面に硬質のメッキ加工を施し、さらにメッキ加工が施された表面にブラスト加工や研磨加工を施して、必要とする算術平均高さ(Ra),スキューネス(Rsk),クルトシス(Rku)を有する表面に仕上げる。成形型の表面を種々の状態の表面に加工するためには、硬質のメッキ加工を施す際のメッキの厚みと研磨加工やブラスト加工に用いる砥粒粒径,粒度を種々に調整することが重要となる。   Here, in the manufacturing method of the corrosion-resistant member of the present invention, the surface roughness of the surface of the molding die used at the time of molding is transferred to the surface of the molded body. In order to transfer the surface roughness of the surface of the mold to the surface of the molded body, the surface of the mold must first be processed to the desired surface roughness in the molded body. For processing the forming die, first, a metal ingot serving as a prototype of the die is prepared and processed into a predetermined shape using a metal processing apparatus such as a grinding machine or a milling machine. After that, a hard plating process is applied to the surface in contact with the secondary material, and a blasting process or a polishing process is applied to the plated surface to obtain the required arithmetic average height (Ra) and skewness (Rsk). Finish with a surface with kurtosis (Rku). In order to process the surface of the mold in various states, it is important to adjust the thickness of the plating when performing hard plating and the grain size and grain size used for polishing and blasting. It becomes.

本発明の耐食性部材である酸化物セラミック焼結体の表面の算術平均高さ(Ra)の値を大きくしたい場合には、メッキ厚みを厚くして、研磨加工やブラスト加工に用いる砥粒の粒径を粗くすればよい。本発明の耐食性部材における上限である3μmの算術平均高さ(Ra)を得るには、少なくともメッキ厚みを5μmとし、研磨加工やブラスト加工で用いる砥粒についても5μm以下の粒径のものを用いるとよい。また、焼結体の表面の算術平均高さ(Ra)の値を小さくしたい場合には、メッキ厚みを薄くして研磨加工やブラスト加工に用いる砥粒の粒径を小さくすればよい。1μm以下の算術平均高さ(Ra)を得ようとすれば、少なくともメッキ厚みを2μm以下とし、砥粒粒径を2μm以下とするとよい。   When it is desired to increase the arithmetic average height (Ra) of the surface of the oxide ceramic sintered body that is the corrosion-resistant member of the present invention, the thickness of the plating is increased, and the abrasive grains used for polishing and blasting are used. What is necessary is just to make a diameter coarse. In order to obtain the arithmetic average height (Ra) of 3 μm, which is the upper limit in the corrosion-resistant member of the present invention, at least the plating thickness is 5 μm, and the abrasive grains used in polishing and blasting are also 5 μm or less in size. Good. When it is desired to reduce the arithmetic average height (Ra) value of the surface of the sintered body, the plating thickness may be reduced to reduce the grain size of the abrasive grains used for polishing or blasting. In order to obtain an arithmetic average height (Ra) of 1 μm or less, it is preferable to set the plating thickness to 2 μm or less and the abrasive grain size to 2 μm or less.

さらに、焼結体の表面のスキューネス(Rsk)を本発明の範囲内とするには、研磨加工やブラスト加工に用いる砥粒の粒度をなるべく揃える必要がある。砥粒の粒径バラツキが大きい場合には、本発明のようにスキューネス(Rsk)の確率密度関数が正規分布となるような表面状態となりにくい。例えば、算術平均高さ(Ra)として3μmを得るために5μm以下の粒径の砥粒を用いる場合には、振動ふるい機等を用いてその80%以上が1〜5μmの範囲内となるように粒度を調整するとよい。   Furthermore, in order to keep the skewness (Rsk) of the surface of the sintered body within the range of the present invention, it is necessary to make the grain sizes of abrasive grains used for polishing and blasting as uniform as possible. When the grain size variation of the abrasive grains is large, it is difficult to obtain a surface state in which the probability density function of skewness (Rsk) has a normal distribution as in the present invention. For example, in the case of using abrasive grains having a particle size of 5 μm or less in order to obtain 3 μm as the arithmetic average height (Ra), 80% or more of them are in the range of 1 to 5 μm using a vibration sieve etc. It is better to adjust the particle size.

また、焼結体の表面のクルトシス(Rku)については、研磨加工やブラスト加工に用いる砥粒の粒子形状が影響する。本発明の好適範囲内とするには、粒径が2〜100μmの市販のアルミナ(WA)やSiC,ダイヤモンド(GC)製の砥粒をボールミルや振動ミルを用いて数時間再粉砕し、砥粒の鋭角部をなるべくなだらかな形状とするとよい。再粉砕するのは、市販の砥粒ではその粒度が得られる最短時間で粉砕されており、粒子形状までは揃えられていないからである。このように鋭角部を取り除いた砥粒の粒子表面であれば、金型のメッキ表面に砥粒が接触した際に、メッキ表面に高い凸部や深い凹部が形成されにくく、このメッキ表面を転写した本発明の耐食性部材の表面にも高い凸部や深い凹部が存在しにくくなる。クルトシス(Rku)が3.0〜4.5の表面状態を得ようとすれば、粒径が2〜100μmで1〜10時間の再粉砕を実施した砥粒を研磨加工やブラスト加工に用いればよい。   Moreover, about the kurtosis (Rku) of the surface of a sintered compact, the particle shape of the abrasive grain used for a grinding | polishing process and a blast process influences. In order to make it within the preferred range of the present invention, commercially available alumina (WA), SiC, and diamond (GC) abrasive grains having a particle size of 2 to 100 μm are reground for several hours using a ball mill or vibration mill, The sharp corners of the grains should be as gentle as possible. The reason why re-pulverization is performed is that commercially available abrasive grains are pulverized in the shortest time to obtain the particle size, and the particle shape is not uniform. If the grain surface of the abrasive grains is such that the sharp corners are removed, when the abrasive grains come into contact with the plating surface of the mold, it is difficult to form high projections or deep depressions on the plating surface, and this plating surface is transferred. High protrusions and deep recesses are less likely to be present on the surface of the corrosion-resistant member of the present invention. In order to obtain a surface state with a kurtosis (Rku) of 3.0 to 4.5, abrasive grains that have been reground for 1 to 10 hours with a particle size of 2 to 100 μm may be used for polishing or blasting.

また、成形体の表面に転写させる成形型の表面の面粗さは、成形体がその後の焼成工程で収縮すること、あるいは成形する圧力を考慮して決定しなければならないが、これまでの検討の結果、成形圧力による影響は少なく、焼成工程での収縮のみ考慮すればよいことが判明している。よって、例えば酸化物セラミック焼結体としてアルミナを用いて本発明の表面状態を有する耐食性部材を得ようとすれば、焼成時の収縮率を考慮して、成形型を算術平均高さ(Ra)が4μm以下,スキューネス(Rsk)が−1.0〜+0.5の範囲の表面状態に研磨加工するとよい。なお、表面状態の加工においては、加工と表面状態の測定とを繰り返しながら、得たい表面状態となるように再度研磨やブラスト加工を施す。そして、この成形型を用いて成形体を作製し、これを焼成すれば、表面の算術平均高さ(Ra)が3μm以下,スキューネス(Rsk)が−1.0〜+0.5の酸化物セラミック焼結体からなる耐食性部材を得ることができる。さらには、クルトシス(Rku)が3.0〜4.5の範囲であることが好ましい。   In addition, the surface roughness of the mold surface transferred to the surface of the molded body must be determined in consideration of the shrinkage of the molded body in the subsequent firing process or the pressure to be molded. As a result, it has been found that there is little influence of the molding pressure, and only the shrinkage in the firing process should be taken into consideration. Therefore, for example, if it is intended to obtain a corrosion-resistant member having the surface state of the present invention using alumina as the oxide ceramic sintered body, the arithmetic average height (Ra) of the mold is taken into consideration in consideration of the shrinkage rate during firing. Is preferably polished to a surface state in which the skewness (Rsk) is in the range of -1.0 to +0.5. In the processing of the surface state, polishing and blasting are performed again so as to obtain the desired surface state while repeating the processing and the measurement of the surface state. Then, if a molded body is prepared using this mold and fired, the oxide ceramic sintered having an arithmetic average height (Ra) of 3 μm or less and a skewness (Rsk) of −1.0 to +0.5. A corrosion-resistant member made of a body can be obtained. Furthermore, it is preferable that kurtosis (Rku) is in the range of 3.0 to 4.5.

ここでは、金属製の成形型を用いたプレス成形法を一例として説明したが、成形体との接触面が金属以外である場合には本発明の製造方法を実施するのは困難である。よって、静水圧プレス成形法では、一般的にゴム製と金属製との成形型により成形を実施するが、成形体の表面状態を効率よく本発明の範囲内とできるのは、成形体の表面が金属製の成形型の表面に接する部分のみとなる。また、鋳込み成形法においては、吸水性の石膏型や非吸水性の金属製成形型を用いるが、成形体の表面状態を効率よく本発明の範囲内とできるのは、非吸水性の成形型を用いるゲルキャスティング法のみとなる。このように、製品形状やどの部位に本発明における表面状態が必要かによって、成形方法を考慮しなければならない。
次に、得られた成形体を焼成する。用いる焼成炉としては市販のものを用いればよく、焼成雰囲気としては、大気雰囲気または酸化性雰囲気とすればよい。焼成温度については、耐食性部材として用いた酸化物セラミック焼結体が充分に緻密化する最高温度で焼成すればよい。本発明の製造方法では、最高温度に保持した後の降温側の温度パターンを、最高温度から1000℃までを5〜20℃/時間,1000℃から500℃までを20〜50℃/時間,500℃から常温までを50〜100℃/時間とした温度パターンにて降温する。
Here, the press molding method using a metal mold has been described as an example. However, when the contact surface with the molded body is other than metal, it is difficult to carry out the manufacturing method of the present invention. Therefore, in the hydrostatic press molding method, molding is generally carried out with rubber and metal molds, but the surface state of the molded body can be efficiently within the scope of the present invention. Is only a portion in contact with the surface of the metal mold. Further, in the casting molding method, a water-absorbing gypsum mold or a non-water-absorbing metal mold is used, but the surface state of the molded body can be efficiently within the scope of the present invention. Only the gel casting method using Thus, the molding method must be taken into account depending on the product shape and in which part the surface condition in the present invention is necessary.
Next, the obtained molded body is fired. A commercially available firing furnace may be used, and the firing atmosphere may be an air atmosphere or an oxidizing atmosphere. The firing temperature may be fired at the highest temperature at which the oxide ceramic sintered body used as the corrosion-resistant member is sufficiently densified. In the manufacturing method of the present invention, the temperature pattern on the temperature-lowering side after maintaining the maximum temperature is 5 to 20 ° C./hour from the maximum temperature to 1000 ° C., 20 to 50 ° C./hour from 1000 to 500 ° C., 500 The temperature is lowered from 50 ° C. to room temperature in a temperature pattern of 50 to 100 ° C./hour.

ここで、本発明の耐食性部材の焼成方法において、降温側の焼成の温度パターンをコントロールするのは、耐食性部材の表面またはその近傍の酸化物セラミックス粒子の粒成長をコントロールし、表面状態を良好な状態に保持するためである。耐食性部材の表面またはその近傍の粒子は、焼成の昇温過程で粒成長して焼成収縮が生じるが、多少の温度差で粒成長の度合いにバラツキを生じ、このため焼成収縮にもバラツキを生じる。このバラツキを降温側の温度パターンを調整し、特に最高温度から1000℃までの降温速度を遅くする温度パターンとすることで、小さい結晶粒子に熱エネルギーを付与し、粒成長を促すことによって平均化させ、成形型の表面粗さを転写した表面全体が本発明の範囲内の表面状態となるようにする。   Here, in the firing method of the corrosion-resistant member of the present invention, the temperature pattern of firing on the temperature lowering side is controlled by controlling the grain growth of the oxide ceramic particles on the surface of the corrosion-resistant member or in the vicinity thereof, and the surface state is good. This is for maintaining the state. Particles on or near the surface of the corrosion-resistant member undergo grain growth and firing shrinkage during the temperature rise process of firing, but the degree of grain growth varies with a slight temperature difference, and thus firing shrinkage also varies. . This variation is averaged by adjusting the temperature pattern on the temperature drop side, especially by setting the temperature pattern to slow down the temperature drop rate from the maximum temperature to 1000 ° C, giving thermal energy to small crystal grains and promoting grain growth. The entire surface to which the surface roughness of the mold is transferred is in a surface state within the scope of the present invention.

より具体的には、最高温度から1000℃までを5〜20℃/時間とする。5℃/時間未満とした場合には、降温速度が遅すぎるため、耐食性部材の表面またはその近傍の粒子が最高焼成温度時の粒成長バラツキを持ったままさらに粒成長するため、耐食性部材の表面の粒子結晶の大きさが平均化せず、成形型の転写面全体を本発明の範囲内の表面状態とすることができなくなる。さらに、粒成長しすぎて酸化物セラミック焼結体の強度が著しく低下することとなるため好ましくない。また、20℃/時間を超える降温速度とすると、降温速度が速すぎ、遅い場合と同様に、粒成長にバラツキを生じたままとなるため好ましくない。   More specifically, the maximum temperature to 1000 ° C is set to 5 to 20 ° C / hour. When the temperature is less than 5 ° C./hour, the rate of temperature decrease is too slow, and the surface of the corrosion-resistant member or the particles in the vicinity thereof further grow while maintaining the grain growth variation at the maximum firing temperature. The size of the particle crystal is not averaged, and the entire transfer surface of the mold cannot be brought into the surface state within the scope of the present invention. Furthermore, it is not preferable because the grains grow too much and the strength of the oxide ceramic sintered body is remarkably lowered. Further, if the temperature lowering rate exceeds 20 ° C./hour, it is not preferable because the temperature decreasing rate is too high and slow, as in the case where the temperature decreasing rate is too slow.

また、1000℃〜500℃までの降温速度を20〜50℃/時間とする。この温度域をコントロールしなければならないのは、粒成長よりもむしろ耐食性部材の表面に生じる温度差を少なくし、ヒートショック等による熱ストレスの影響を緩和して、本発明の耐食性部材における表面状態を維持するためである。20℃/時間未満の降温速度であると、降温が遅すぎるため焼成に長時間を要し、耐食性部材の生産効率が低下して製造コストが著しく上昇するために好ましくない。他方、50℃/時間を超える降温速度とすると、耐食性部材の表面に温度差が生じ易く、温度差で生じる熱応力により表面に微細な亀裂が生じ、本発明の範囲内の表面状態が得られないおそれがあるために好ましくない。   Moreover, the temperature-fall rate from 1000 degreeC to 500 degreeC shall be 20-50 degreeC / hour. The temperature range must be controlled by reducing the temperature difference that occurs on the surface of the corrosion-resistant member rather than grain growth, and mitigating the effects of thermal stress due to heat shock, etc., and the surface state of the corrosion-resistant member of the present invention It is for maintaining. A temperature lowering rate of less than 20 ° C./hour is not preferable because the temperature lowering is too slow, so that a long time is required for firing, the production efficiency of the corrosion-resistant member is lowered, and the production cost is remarkably increased. On the other hand, when the temperature decreasing rate exceeds 50 ° C./hour, a temperature difference is likely to occur on the surface of the corrosion-resistant member, and a fine crack is generated on the surface due to the thermal stress generated by the temperature difference, and a surface state within the scope of the present invention is obtained. This is not preferable because there is a risk of not being present.

また、500℃から常温(室温)までの降温速度を50〜100℃/時間とする。50℃/時間未満の降温速度であると、降温が遅すぎるため焼成に長時間を要し、耐食性部材の生産効率が低下して製造コストが著しく上昇するために好ましくなく、100℃/時間を超える降温速度であると、表面に発生する熱応力の影響により、微細な亀裂が生じ、本発明の範囲内の表面状態を維持できなくなるために好ましくない。   Moreover, the temperature-fall rate from 500 degreeC to normal temperature (room temperature) shall be 50-100 degreeC / hour. If the rate of temperature drop is less than 50 ° C / hour, the temperature drop is too slow, so it takes a long time for firing, which is not preferable because the production efficiency of the corrosion-resistant member is lowered and the manufacturing cost is significantly increased. If the temperature lowering rate is higher than that, it is not preferable because fine cracks are generated due to the influence of thermal stress generated on the surface, and the surface state within the scope of the present invention cannot be maintained.

そして、焼成終了後、焼成炉より焼結体を取り出し、表面を軽く洗浄することにより、本発明の酸化物セラミック焼結体からなる耐食性部材が得られる。得られた耐食性部材は、特に研削加工を施す必要はないが、焼成により多少の変形を生じた場合には、半導体製造装置へ取り付けた場合に腐食性ガスへ接触する表面以外の面に研削加工を施したり、変形部位に荷重をかけながら1000℃以下の温度で変形を修正したりすることも可能である。   And after completion | finish of baking, the corrosion-resistant member which consists of an oxide ceramic sintered compact of this invention is obtained by taking out a sintered compact from a kiln and wash | cleaning the surface lightly. The obtained corrosion-resistant member does not need to be particularly ground, but if it is somewhat deformed by firing, it is ground to a surface other than the surface that contacts corrosive gas when attached to a semiconductor manufacturing device. It is also possible to correct the deformation at a temperature of 1000 ° C. or lower while applying a load to the deformation site.

このようにして製造された本発明の耐食性部材は、半導体製造装置用部材として、特にプラズマCVDによるエッチング加工を実施しながら半導体ウエハ上に窒化膜や酸化膜等のCVD膜を成膜する装置において、ハロゲン系腐食性ガスまたはそれらのプラズマに接する部位に用いることが可能である。   The corrosion-resistant member of the present invention thus manufactured is a member for a semiconductor manufacturing apparatus, particularly in an apparatus for forming a CVD film such as a nitride film or an oxide film on a semiconductor wafer while performing an etching process by plasma CVD. Further, it can be used for a halogen-based corrosive gas or a site in contact with the plasma thereof.

以上、本発明の実施の形態の例について説明したが、本発明の耐食性部材は、上述の内容に限定されるものでなく、その要旨を逸脱しない範囲内であれば種々変更をしてもよいことは言うまでもない。例えば、以上の例では特に酸化物セラミック焼結体からなる耐食性部材について詳細を述べたが、ハロゲン系腐食性ガスに曝される表面が本発明の範囲内の表面状態となっていれば、各種基材の表面に酸化物セラミック膜を形成した耐食性部材についても同様の効果が得られる。   As mentioned above, although the example of embodiment of this invention was demonstrated, the corrosion-resistant member of this invention is not limited to the above-mentioned content, You may change variously, if it is in the range which does not deviate from the summary. Needless to say. For example, in the above example, the details of the corrosion-resistant member made of an oxide ceramic sintered body have been described in detail. However, if the surface exposed to the halogen-based corrosive gas is in the surface state within the scope of the present invention, various The same effect can be obtained with a corrosion-resistant member having an oxide ceramic film formed on the surface of the substrate.

以下、本発明の実施例について詳細を説明する。   Details of the embodiments of the present invention will be described below.

(実施例1)
従来の耐食性部材と、本発明の耐食性部材をRIE(リアクティブ・イオン・エッチング)装置のチャンバー外壁部に設置し、CF,CHF,Arの混合ガス雰囲気中にて装置電極に高周波出力140Wを印加してプラズマを発生させ、シリコンウエハ表面をエッチングする試験を実施した。
(Example 1)
The conventional corrosion-resistant member and the corrosion-resistant member of the present invention are installed on the outer wall of the chamber of the RIE (reactive ion etching) apparatus, and a high-frequency output of 140 W is applied to the apparatus electrode in a mixed gas atmosphere of CF 4 , CHF 3 , and Ar. Was applied to generate plasma and etch the silicon wafer surface.

まず、市販のアルミナ1次原料(純度99.5%,平均粒径1μm)100kgと、バインダとして市販のPVA(ポリビニールアルコール)をこのアルミナ原料100質量部に対して2質量部の2kgと、水をアルミナ1次原料100質量部に対して100質量部の100kgとを秤量し、それらを混合攪拌機に投入して数時間混合した後、さらにボールミルにて数時間混合し、造粒用スラリーを得た。その後、このスラリーをスプレードライヤー装置に投入して造粒し、2次原料であるアルミナ造粒粉体を得た。そして、2次原料を充填する内面を算術平均高さ(Ra)が1μm,スキューネス(Rsk)が−0.05に機械加工した金型に2次原料を充填した後、金型プレス成形機にて単位面積当たりにかかる圧力が100MPaとなる成形圧力にて成形し、成形体を得た。しかる後、この成形体を1600℃の最高温度で2時間保持し、1600℃〜1000℃までを10℃/時間、1000℃〜500℃までを30℃/時間、500℃〜常温(室温)までを80℃/時間の速度で降温し、本発明の酸化物セラミック焼結体からなる耐食性部材を得た。   First, 100 kg of a commercially available primary alumina material (purity 99.5%, average particle size 1 μm), 2 parts of commercial PVA (polyvinyl alcohol) as a binder for 2 parts by mass of 100 parts by mass of this alumina raw material, and water. 100 kg of 100 parts by mass of 100 parts by mass of the primary alumina raw material was weighed, put into a mixing stirrer and mixed for several hours, and then mixed for several hours by a ball mill to obtain a slurry for granulation. . Thereafter, this slurry was put into a spray dryer apparatus and granulated to obtain alumina granulated powder as a secondary raw material. Then, after filling the secondary material with a mold in which the inner surface filled with the secondary material is machined to an arithmetic average height (Ra) of 1 μm and a skewness (Rsk) of −0.05, the unit is formed by a die press molding machine. Molding was performed at a molding pressure at which the pressure per area was 100 MPa to obtain a molded body. Thereafter, the compact is held at a maximum temperature of 1600 ° C for 2 hours, from 1600 ° C to 1000 ° C at 10 ° C / hour, from 1000 ° C to 500 ° C at 30 ° C / hour, from 500 ° C to room temperature (room temperature). Was cooled at a rate of 80 ° C./hour to obtain a corrosion-resistant member comprising the oxide ceramic sintered body of the present invention.

一方、従来の耐食性部材については、2次原料を算術平均高さ(Ra)が1μm未満の金型に充填し、単位面積当たりにかかる圧力が100MPaとなる成形圧力で成形した後、1600℃の最高温度で焼成して、平均50℃/時間の速度で常温まで降温してアルミナ焼結体を得た後、この表面をブラスト装置にて算術平均高さ(Ra)が10μmとなるように加工して、従来の耐食性部材を得た。   On the other hand, for a conventional corrosion resistant member, a secondary material is filled in a mold having an arithmetic average height (Ra) of less than 1 μm, and molded at a molding pressure at which the pressure per unit area is 100 MPa, and then 1600 ° C. After firing at the highest temperature and cooling down to room temperature at an average rate of 50 ° C./hour to obtain an alumina sintered body, this surface is processed with a blasting apparatus so that the arithmetic average height (Ra) is 10 μm. Thus, a conventional corrosion-resistant member was obtained.

次に、これら本発明の耐食性部材と従来の耐食性部材とを純水中で1時間超音波洗浄した後、市販の非接触式の表面粗さ計を用いてその算術平均高さ(Ra),スキューネス(Rsk),クルトシス(Rku)をそれぞれ測定した。なお、測定条件は、JIS規格(JIS B 0601−2001,JIS B 0633−2001,JIS B 0031−2003 付属書G,F)に準拠して、推定される算術平均高さ(Ra)が0.1μmより大きく2μm以下のときは、評価長さが4mm,カットオフ値(基準長さ)が0.8mm、推定される算術平均高さ(Ra)が2μmより大きく10μm以下のときは、評価長さが12.5mm,カットオフ値(基準長さ)が2.5mmに設定した。   Next, the corrosion-resistant member of the present invention and the conventional corrosion-resistant member were ultrasonically cleaned in pure water for 1 hour, and then the arithmetic average height (Ra), using a commercially available non-contact type surface roughness meter, Skewness (Rsk) and kurtosis (Rku) were measured. The measurement conditions are such that the estimated arithmetic average height (Ra) is 0.1 μm in accordance with JIS standards (JIS B 0601-2001, JIS B 0633-2001, JIS B 0031-2003 appendices G and F). When the value is larger than 2 μm, the evaluation length is 4 mm, the cutoff value (reference length) is 0.8 mm, and when the estimated arithmetic average height (Ra) is larger than 2 μm and 10 μm or less, the evaluation length is The cut-off value (reference length) was set to 12.5 mm and 2.5 mm.

また、それぞれの耐食性部材の表面または表面から100μmまでの深さの平均結晶粒径を1000倍のSEM写真から算出した。   Further, the average crystal grain size at the surface of each corrosion-resistant member or the depth from the surface to 100 μm was calculated from an SEM photograph of 1000 times.

なお、平均結晶粒径の測定方法は、耐食性部材から切り出した試験片を用意し、さらに観察面を化学的または熱処理してエッチング処理を行なってアルミナ結晶の粒界組成を除去した後、1000倍の倍率にて走査型電子顕微鏡(SEM)で写真を撮影し、その写真像から任意に10個の結晶粒を選択し、各々の結晶粒の最大長を結晶粒径として10個の結晶粒の測定値の平均を平均結晶粒径として算出した。   The average crystal grain size was measured by preparing a test piece cut out from a corrosion-resistant member, and further removing the grain boundary composition of the alumina crystal by chemically or heat treating the observation surface to remove the grain boundary composition of the alumina crystal. A photograph was taken with a scanning electron microscope (SEM) at a magnification of 10 and arbitrarily selected 10 crystal grains from the photographic image, and the maximum length of each crystal grain was defined as the crystal grain size. The average of the measured values was calculated as the average crystal grain size.

さらに、それぞれの耐食性部材を用いたときのエッチングレートの変化率を確認する試験を行なった。具体的には、RIE装置のチャンバー壁面に隙間なく本発明または従来の耐食性部材を設置し、同一条件でのシリコンウエハのエッチングを1時間,9時間,10時間実施した。そして、エッチング開始前,エッチング1時間実施後,9時間実施後,10時間実施後の耐食性部材の重量を電子天秤にて測定し、エッチング開始から1時間実施後までのエッチングレートと、9時間実施後〜10時間実施後までのエッチングレートとを算出した。そして、エッチングレートの変化率を、エッチング開始から1時間実施後までのエッチングレートをE1、9時間実施後から10時間実施後までのエッチングレートをE2としたとき、(E1−E2)/E1×100(%)の計算式により算出した。以上の測定結果をまとめて表1に示す。

Figure 2008156160
Furthermore, the test which confirms the change rate of an etching rate when using each corrosion-resistant member was done. Specifically, the corrosion-resistant member of the present invention or the conventional corrosion-resistant member was installed on the chamber wall surface of the RIE apparatus, and the silicon wafer was etched for 1 hour, 9 hours, and 10 hours under the same conditions. The weight of the corrosion-resistant member was measured with an electronic balance before the start of etching, after 1 hour of etching, after 9 hours of etching, and after 10 hours of etching. The etching rate from after to 10 hours after execution was calculated. The rate of change in the etching rate is (E1−E2) / E1 ×, where E1 is the etching rate from the start of etching to 1 hour after etching, and E2 is the etching rate from 9 hours to 10 hours. It was calculated by a calculation formula of 100 (%). The above measurement results are summarized in Table 1.
Figure 2008156160

この結果、従来の耐食性部材の算術平均高さ(Ra)が5.5μm,スキューネス(Rsk)が−2.5,クルトシス(Rku)が6.5であったのに対し、本発明の耐食性部材は、算術平均高さ(Ra)が0.7μm,スキューネス(Rsk)が−0.1,クルトシス(Rku)が3.8であった。なお、平均結晶粒径については、本発明の耐食性部材が25μm、従来の耐食性部材が23μmと値に大きな差は見られなかったが、従来の耐食性部材は値のバラツキが大きかった。   As a result, the arithmetic average height (Ra) of the conventional corrosion-resistant member was 5.5 μm, the skewness (Rsk) was −2.5, and the kurtosis (Rku) was 6.5, whereas the corrosion-resistant member of the present invention had an arithmetic average height of The thickness (Ra) was 0.7 μm, the skewness (Rsk) was −0.1, and the kurtosis (Rku) was 3.8. As for the average crystal grain size, the corrosion resistant member of the present invention was 25 μm and the conventional corrosion resistant member was 23 μm, but there was no great difference in value, but the conventional corrosion resistant member had a large variation in value.

そして、従来の耐食性部材のエッチングレートの変化率は、算術平均高さ(Ra),スキューネス(Rsk),クルトシス(Rku)の値が大きいために80%となり、エッチングレートが安定しなかった。このように、スキューネス(Rsk)やクルトシス(Rku)の値の大きな表面の凹凸部を有する従来の耐食性部材では、装置内で生成させるプラズマが安定せず、エッチングレートも安定させることが困難であることが確認される結果となった。   The rate of change in the etching rate of the conventional corrosion-resistant member was 80% due to the large values of arithmetic average height (Ra), skewness (Rsk), and kurtosis (Rku), and the etching rate was not stable. As described above, in the conventional corrosion-resistant member having an uneven portion on the surface having a large skewness (Rsk) or kurtosis (Rku) value, the plasma generated in the apparatus is not stable, and it is difficult to stabilize the etching rate. The result was confirmed.

これに対し、本発明の耐食性部材によるエッチングレートの変化率は10%であり、高周波を印加してプラズマ生成する初期段階からほとんどエッチングレートは変化せず、本発明の耐食性部材を用いることによって、装置内のプラズマを安定させ、初期段階からエッチングレートを安定させることができることが確認された。   On the other hand, the rate of change of the etching rate by the corrosion-resistant member of the present invention is 10%, and the etching rate hardly changes from the initial stage of generating plasma by applying a high frequency, by using the corrosion-resistant member of the present invention, It was confirmed that the plasma in the apparatus can be stabilized and the etching rate can be stabilized from the initial stage.

(実施例2)
次に、本発明の耐食性部材を、実施例1と同様のアルミナ2次原料を用いて、内面の算術平均高さ(Ra)を種々変更した成形型により成形し、この成形体を焼成時の最高温度から1000℃までの降温速度を種々変更して焼成し製造した。そして、JIS B 0601−2001に準拠して、実施例1と同じ条件で市販の非接触式の表面粗さ計により耐食性部材の表面の算術平均高さ(Ra),スキューネス(Rsk),クルトシス(Rku)を測定した後、実施例1と同様のRIE装置のチャンバー内壁に設置し、同条件にてエッチングレートの変化率を測定する試験を実施した。
(Example 2)
Next, the corrosion-resistant member of the present invention was molded with a molding die in which the arithmetic average height (Ra) of the inner surface was variously changed using the same alumina secondary material as in Example 1, and this molded body was subjected to firing. It was fired and manufactured by changing the cooling rate from the maximum temperature to 1000 ° C. In accordance with JIS B 0601-2001, the arithmetic average height (Ra), skewness (Rsk), kurtosis (the surface of the corrosion-resistant member was measured with a commercially available non-contact surface roughness meter under the same conditions as in Example 1. After measuring Rku), it was installed on the inner wall of the chamber of the same RIE apparatus as in Example 1, and a test for measuring the change rate of the etching rate under the same conditions was performed.

また、焼成後の各焼結体からは、予めJIS R 1601−1995に準拠して、焼結体を加工し、算術平均高さ(Ra)が0.2μm以下、長さが36mm,幅が4mm,厚さが3mmで、0.2mmのC面を付けた試験片を作製し、荷重試験機を用いてこの試験片に荷重を印加し、破壊するまでの最大荷重を測定し、次式により3点曲げ強度を算出した。   Further, from each sintered body after firing, the sintered body is processed in advance in accordance with JIS R 1601-1995, and the arithmetic average height (Ra) is 0.2 μm or less, the length is 36 mm, and the width is 4 mm. , A test piece having a thickness of 3 mm and a 0.2 mm C-face was prepared, and a load tester was used to apply a load to the test piece to measure the maximum load until breakage. The point bending strength was calculated.

3点曲げ強度σ(N/mm)=3PL/2wt
ここで、Pは試験片が破壊したときの最大荷重(N)、Lは下部支点間距離(mm)、wは試験片の幅(mm)、tは試験片の厚さ(mm)である。
3-point bending strength σ 3 (N / mm 2 ) = 3PL / 2 wt 2
Here, P is the maximum load (N) when the test piece breaks, L is the distance between the lower fulcrums (mm), w is the width (mm) of the test piece, and t is the thickness (mm) of the test piece. .

以上の試験結果をまとめて表2に示す。

Figure 2008156160
The above test results are summarized in Table 2.
Figure 2008156160

表2に示す結果から、本発明の範囲外の試料No.1〜3については、成形型の表面の算術平均高さ(Ra)が4μmより大きく、焼成後の耐食性部材の表面の算術平均高さ(Ra)が3μmを超えていたため、RIE装置内で生成させたプラズマが不安定で、エッチングレートの1時間後と10時間後の変化率が30%以上と大きく、エッチングレートが安定しないことが確認された。   From the results shown in Table 2, sample No. For 1 to 3, the arithmetic average height (Ra) of the surface of the mold was larger than 4 μm, and the arithmetic average height (Ra) of the surface of the corrosion-resistant member after firing exceeded 3 μm, so it was generated in the RIE apparatus. It was confirmed that the plasma generated was unstable, the rate of change of the etching rate after 1 hour and 10 hours was as large as 30% or more, and the etching rate was not stable.

また、特に試料No.1については、スキューネス(Rsk),クルトシス(Rku)の値もそれぞれ+0.8,5.6と大きくなり、エッチングレートの変化率が大きく安定しないことが分かった。   In particular, sample No. For 1, the values of skewness (Rsk) and kurtosis (Rku) were also increased to +0.8 and 5.6, respectively, indicating that the rate of change of the etching rate was large and unstable.

また、本発明の範囲外の試料No.4,8,11,14については、焼成時の最高温度1600℃から1000℃までの降温速度が遅すぎ、焼結体の表面または表面近傍の結晶粒子径が50μmより大きくなりすぎたために、耐食性部材の強度が300MPa未満と低いものとなった。また、スキューネス(Rsk),クルトシス(Rku)の値が大きく、エッチングレートの変化率が30%以上と高くなった。   In addition, sample No. outside the scope of the present invention. For 4, 8, 11, and 14, the temperature drop rate from 1600 ° C to 1000 ° C, the maximum temperature during firing, was too slow, and the crystal grain size at or near the surface of the sintered body was too large, resulting in corrosion resistance. The strength of the member was as low as less than 300 MPa. Further, the skewness (Rsk) and kurtosis (Rku) values were large, and the rate of change of the etching rate was as high as 30% or more.

さらに、本発明の範囲外の試料No.7については、焼成時の最高温度1600℃から1000℃までの降温速度が速すぎたために、焼結体の表面に微細な亀裂が発生し、耐食性部材の強度が300MPa未満と低くなった。   Furthermore, sample nos. For No. 7, the temperature drop rate from the maximum temperature of 1600 ° C. to 1000 ° C. during firing was too high, so that fine cracks were generated on the surface of the sintered body, and the strength of the corrosion-resistant member was as low as less than 300 MPa.

これらの試料と比較して本発明の範囲内の試料No.5,6,9,10,12,13,15,16については、エッチングレートの変化率が小さく、耐食性部材の3点曲げ強度も300MPa以上で、プラズマCVD装置等の半導体製造装置用部材として好適に用いることができることが確認された。   Compared with these samples, the sample No. within the scope of the present invention. For 5, 6, 9, 10, 12, 13, 15, and 16, the change rate of the etching rate is small, and the three-point bending strength of the corrosion-resistant member is 300 MPa or more, which is suitable as a member for a semiconductor manufacturing apparatus such as a plasma CVD apparatus. It was confirmed that it can be used for.

スキューネス(Rsk)の性質の解説図であり、(a)はスキューネス(Rsk)が正の値をとる場合の粗さ曲線と確率密度関数、(b)はスキューネス(Rsk)が負の値をとる場合の粗さ曲線と確率密度関数、(c)はスキューネス(Rsk)の値が0に近づいた場合の粗さ曲線と確率密度関数である。It is explanatory drawing of the property of skewness (Rsk), (a) is a roughness curve and probability density function in case skewness (Rsk) takes a positive value, (b) is a skewness (Rsk) takes a negative value. (C) is a roughness curve and a probability density function when the skewness (Rsk) value approaches zero. クルトシス(Rku)の性質の解説図であり、(a)はクルトシス(Rku)が3より大きくなる場合の粗さ曲線と確率密度関数、(b)はクルトシス(Rku)が3より小さくなる場合の粗さ曲線と確率密度関数である。It is explanatory drawing of the property of kurtosis (Rku), (a) is a roughness curve and probability density function when kurtosis (Rku) is larger than 3, (b) is when kurtosis (Rku) is smaller than 3. Roughness curve and probability density function.

Claims (4)

酸化物セラミック焼結体からなり、ハロゲン系腐食性ガスまたはそのプラズマに曝される表面の算術平均高さ(Ra)が3μm以下の耐食性部材であって、前記酸化物セラミック焼結体の平均結晶粒径が1〜50μmであり、かつ前記表面の粗さ曲線から求められるスキューネス(Rsk)が−1.0〜+0.5の範囲内であることを特徴とする耐食性部材。 A corrosion-resistant member comprising an oxide ceramic sintered body and having an arithmetic average height (Ra) of a surface exposed to a halogen-based corrosive gas or plasma thereof of 3 μm or less, the average crystal of the oxide ceramic sintered body A corrosion-resistant member having a particle size of 1 to 50 µm and a skewness (Rsk) determined from the surface roughness curve in the range of -1.0 to +0.5. 前記酸化物セラミック焼結体の前記表面の粗さ曲線から求められるクルトシス(Rku)が3.0〜4.5であることを特徴とする請求項1に記載の耐食性部材。 2. The corrosion-resistant member according to claim 1, wherein a kurtosis (Rku) determined from a roughness curve of the surface of the oxide ceramic sintered body is 3.0 to 4.5. 前記酸化物セラミック焼結体がアルミナまたはイットリアまたはアルミナとイットリウム・アルミニウム・ガーネットとの複合材料からなることを特徴とする請求項1または2のいずれかに記載の耐食性部材。 The corrosion-resistant member according to claim 1, wherein the oxide ceramic sintered body is made of alumina, yttria, or a composite material of alumina and yttrium, aluminum, and garnet. 請求項1〜3のいずれかに記載の耐食性部材の製造方法であって、セラミック材料とバインダと溶媒とを混合して2次原料を得る工程と、前記2次原料を成形型に充填して成形し、該成形型の表面の算術平均高さをその表面に転写した成形体を得る工程と、大気または酸化性雰囲気にて1550〜1700℃の最高温度を2時間以上保持した後、最高温度から1000℃までを5〜20℃/時間、1000℃から500℃までを20〜50℃/時間、500℃から常温までを50〜100℃/時間の速度で降温する工程とからなることを特徴とする耐食性部材の製造方法。 It is a manufacturing method of the corrosion-resistant member in any one of Claims 1-3, Comprising: The process which mixes a ceramic material, a binder, and a solvent, and obtains a secondary raw material, The said secondary raw material is filled in a shaping | molding die. Forming a molded body in which the arithmetic average height of the surface of the mold is transferred to the surface, and holding the maximum temperature of 1550 to 1700 ° C. for 2 hours or more in the air or in an oxidizing atmosphere; From 1000 ° C. to 1000 ° C. at 5 to 20 ° C./hour, from 1000 ° C. to 500 ° C. at 20 to 50 ° C./hour, and from 500 ° C. to room temperature at a rate of 50 to 100 ° C./hour. A method for producing a corrosion-resistant member.
JP2006346992A 2006-12-25 2006-12-25 Corrosion resistant member for semiconductor manufacturing apparatus and method for manufacturing the same Active JP5004573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346992A JP5004573B2 (en) 2006-12-25 2006-12-25 Corrosion resistant member for semiconductor manufacturing apparatus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346992A JP5004573B2 (en) 2006-12-25 2006-12-25 Corrosion resistant member for semiconductor manufacturing apparatus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2008156160A true JP2008156160A (en) 2008-07-10
JP5004573B2 JP5004573B2 (en) 2012-08-22

Family

ID=39657513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346992A Active JP5004573B2 (en) 2006-12-25 2006-12-25 Corrosion resistant member for semiconductor manufacturing apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5004573B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117579A (en) * 2010-11-30 2012-06-21 Mitsuboshi Belting Ltd Pulley for continuously variable transmission and belt type continuously variable transmission
WO2012108433A1 (en) * 2011-02-07 2012-08-16 京セラ株式会社 Accessory member and accessory comprising same
JP2013215869A (en) * 2012-04-12 2013-10-24 Towa Corp Method of forming satin finished surface, resin mold, and low-adhesive material
JP2014011251A (en) * 2012-06-28 2014-01-20 Taiheiyo Cement Corp Manufacturing method of electrostatic chuck
WO2015115624A1 (en) * 2014-01-30 2015-08-06 京セラ株式会社 Cylinder, plasma device, gas laser device, and method for manufacturing cylinder
JP2017017095A (en) * 2015-06-29 2017-01-19 京セラ株式会社 Passage member and heat exchanger using the same and semiconductor manufacturing equipment
JP2018101705A (en) * 2016-12-20 2018-06-28 日本特殊陶業株式会社 Electrostatic chuck
WO2019022244A1 (en) * 2017-07-28 2019-01-31 京セラ株式会社 Member for plasma processing devices
JPWO2018079788A1 (en) * 2016-10-31 2019-09-26 京セラ株式会社 Probe card substrate, probe card, and inspection device
KR20200106531A (en) * 2018-02-15 2020-09-14 교세라 가부시키가이샤 Plasma processing apparatus member and plasma processing apparatus including same
CN112469354A (en) * 2018-08-30 2021-03-09 京瓷株式会社 Head for electric scalpel
JPWO2020032036A1 (en) * 2018-08-08 2021-08-10 京セラ株式会社 Housing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029831A (en) * 2000-07-19 2002-01-29 Toshiba Ceramics Co Ltd Plasma resistant member and method for manufacturing the same
JP2005521868A (en) * 2002-03-27 2005-07-21 アプライド マテリアルズ インコーポレイテッド Method for evaluating chamber elements with texture coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029831A (en) * 2000-07-19 2002-01-29 Toshiba Ceramics Co Ltd Plasma resistant member and method for manufacturing the same
JP2005521868A (en) * 2002-03-27 2005-07-21 アプライド マテリアルズ インコーポレイテッド Method for evaluating chamber elements with texture coating

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117579A (en) * 2010-11-30 2012-06-21 Mitsuboshi Belting Ltd Pulley for continuously variable transmission and belt type continuously variable transmission
US9358751B2 (en) 2011-02-07 2016-06-07 Kyocera Corporation Accessory member, and accessory comprising the same
WO2012108433A1 (en) * 2011-02-07 2012-08-16 京セラ株式会社 Accessory member and accessory comprising same
JP5052709B2 (en) * 2011-02-07 2012-10-17 京セラ株式会社 Decorative article and decorative article having the same
JP2013215869A (en) * 2012-04-12 2013-10-24 Towa Corp Method of forming satin finished surface, resin mold, and low-adhesive material
JP2014011251A (en) * 2012-06-28 2014-01-20 Taiheiyo Cement Corp Manufacturing method of electrostatic chuck
US10090628B2 (en) 2014-01-30 2018-10-02 Kyocera Corporation Cylinder, plasma apparatus, gas laser apparatus, and method of manufacturing cylinder
JPWO2015115624A1 (en) * 2014-01-30 2017-03-23 京セラ株式会社 Cylindrical body, plasma apparatus, gas laser apparatus, and manufacturing method of cylindrical body
WO2015115624A1 (en) * 2014-01-30 2015-08-06 京セラ株式会社 Cylinder, plasma device, gas laser device, and method for manufacturing cylinder
JP2017017095A (en) * 2015-06-29 2017-01-19 京セラ株式会社 Passage member and heat exchanger using the same and semiconductor manufacturing equipment
JPWO2018079788A1 (en) * 2016-10-31 2019-09-26 京セラ株式会社 Probe card substrate, probe card, and inspection device
JP2018101705A (en) * 2016-12-20 2018-06-28 日本特殊陶業株式会社 Electrostatic chuck
KR20200018608A (en) * 2017-07-28 2020-02-19 쿄세라 코포레이션 Member for plasma processing apparatus
WO2019022244A1 (en) * 2017-07-28 2019-01-31 京セラ株式会社 Member for plasma processing devices
CN110944962A (en) * 2017-07-28 2020-03-31 京瓷株式会社 Member for plasma processing apparatus
JPWO2019022244A1 (en) * 2017-07-28 2020-07-16 京セラ株式会社 Components for plasma processing equipment
KR102341011B1 (en) * 2017-07-28 2021-12-20 교세라 가부시키가이샤 member for plasma processing device
US11527388B2 (en) 2017-07-28 2022-12-13 Kyocera Corporation Member for plasma processing devices
KR20200106531A (en) * 2018-02-15 2020-09-14 교세라 가부시키가이샤 Plasma processing apparatus member and plasma processing apparatus including same
KR102430752B1 (en) * 2018-02-15 2022-08-09 교세라 가부시키가이샤 Member for plasma processing apparatus and plasma processing apparatus including same
JPWO2020032036A1 (en) * 2018-08-08 2021-08-10 京セラ株式会社 Housing
CN112469354A (en) * 2018-08-30 2021-03-09 京瓷株式会社 Head for electric scalpel

Also Published As

Publication number Publication date
JP5004573B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5004573B2 (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for manufacturing the same
KR101155799B1 (en) Yttria sinter and member for plasma processor
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
JPWO2005009919A1 (en) Y2O3-sintered sintered body, corrosion-resistant member, manufacturing method thereof, and member for semiconductor / liquid crystal manufacturing apparatus
US6258440B1 (en) Ceramic parts and a producing process thereof
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP2005158933A (en) Member of manufacturing apparatus of semiconductor or liquid crystal, and manufacturing method thereof
TWI791473B (en) Rare earth oxyfluoride sintered body and manufacturing method thereof
JP3618048B2 (en) Components for semiconductor manufacturing equipment
WO2021241645A1 (en) Air-permeable plug, substrate support assembly, and shower plate
JP5396176B2 (en) Wafer mounting table and manufacturing method thereof
JP3555442B2 (en) Alumina ceramic material excellent in plasma corrosion resistance and method for producing the same
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP2006199562A (en) Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
JP3126635B2 (en) Alumina ceramic sintered body
JP3706488B2 (en) Corrosion-resistant ceramic material
TWI385138B (en) Ceramic components and corrosion resistance components
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2001199762A (en) Corrosion-resisting ceramic material
JP2008007350A (en) Yttria ceramic sintered compact
Kim et al. Effect of porosity on etching rate and crater-like microstructure of sintered Al2O3, Y2O3, and YAG ceramics in plasma etching
JP2007223828A (en) Yttria ceramic sintered compact and method of manufacturing the same
JP7329610B2 (en) Member for plasma processing apparatus, manufacturing method thereof, and plasma processing apparatus
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JP2000313655A (en) High-density magnesium oxide-based sintered compact and its production, and member for plasma treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150