JP2008151374A - Vapor compression type refrigerating cycle - Google Patents

Vapor compression type refrigerating cycle Download PDF

Info

Publication number
JP2008151374A
JP2008151374A JP2006338023A JP2006338023A JP2008151374A JP 2008151374 A JP2008151374 A JP 2008151374A JP 2006338023 A JP2006338023 A JP 2006338023A JP 2006338023 A JP2006338023 A JP 2006338023A JP 2008151374 A JP2008151374 A JP 2008151374A
Authority
JP
Japan
Prior art keywords
refrigerant
accumulator
refrigeration cycle
vapor compression
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006338023A
Other languages
Japanese (ja)
Other versions
JP4897464B2 (en
Inventor
Yuichi Matsumoto
雄一 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006338023A priority Critical patent/JP4897464B2/en
Publication of JP2008151374A publication Critical patent/JP2008151374A/en
Application granted granted Critical
Publication of JP4897464B2 publication Critical patent/JP4897464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor compression type refrigerating cycle comprising an accumulator capable of preventing flowing of a liquid-phase refrigerant into a vapor outflow tube in low load, and reducing cycle variability in low load. <P>SOLUTION: In this vapor compression type refrigerating cycle comprising a compressor, a radiator, an internal heat exchanger, a pressure reducing machine, an evaporator, and the accumulator for separating the refrigerant flowing out from the evaporator and allowing the separated gas-phase refrigerant to flow out to a suction side of the compressor, a part disposed inside of the accumulator, of the vapor outflow pipe 22 of the accumulator 6 is at least partially constituted as a multitubular structure, and a plurality of pores 32 are formed on inner and outer tubular walls of the multitubular structural part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸気圧縮式冷凍サイクルに関し、とくに、改良を加えたアキュームレータを備えた、二酸化炭素冷媒を使用する冷凍サイクルとして好適な蒸気圧縮式冷凍サイクルに関する。   The present invention relates to a vapor compression refrigeration cycle, and more particularly to a vapor compression refrigeration cycle having an improved accumulator and suitable as a refrigeration cycle using a carbon dioxide refrigerant.

環境問題配慮の側面から、車両用空調装置においても、代替冷媒として二酸化炭素冷媒が提案されている(例えば、特許文献1)。二酸化炭素冷媒は無毒、不燃性であるが、臨界温度が低く(約31℃)、冷凍サイクルの高圧側圧力が超臨界状態(約7.4MPa)になる遷臨界サイクル(超臨界冷凍サイクル)となる。一般的に、フロンを使用したものと比較して冷凍成績係数(COP:Coefficent of Performance) が悪い為、これを向上させることが求められている。   From the viewpoint of environmental considerations, carbon dioxide refrigerant has been proposed as an alternative refrigerant in vehicle air conditioners (for example, Patent Document 1). Carbon dioxide refrigerant is non-toxic and non-flammable, but has a low critical temperature (about 31 ° C) and a transcritical cycle (supercritical refrigeration cycle) in which the high pressure side pressure of the refrigeration cycle becomes supercritical (about 7.4 MPa). Become. In general, since the coefficient of performance of refrigeration (COP: Coefficent of Performance) is worse than that using chlorofluorocarbon, it is required to improve it.

その一つの手法として、内部熱交換器を用いて放熱器出口側の高圧側冷媒と蒸発器出口側の低圧側冷媒との間で熱交換する方法がある。これによって、高圧側冷媒温度を低減することで蒸発器入口側のエンタルピーを低減し、蒸発器におけるエンタルピー差を増大させることにより、冷凍成績係数(COP)の向上を実現している。   As one of the methods, there is a method of exchanging heat between the high-pressure side refrigerant on the radiator outlet side and the low-pressure side refrigerant on the evaporator outlet side using an internal heat exchanger. As a result, the enthalpy on the evaporator inlet side is reduced by reducing the high-pressure side refrigerant temperature, and the enthalpy difference in the evaporator is increased, thereby improving the refrigeration coefficient of performance (COP).

さらに、低圧側における内部熱交換器の前にアキュームレータを設置し、外部環境変化による必要冷媒量変動に対応できるようにする構成も知られている。アキュームレータは、サイクル内冷媒の出し入れを行う液溜めタンクであり、蒸気流出管を液相冷媒の液面(気相冷媒と液相冷媒の界面)よりも上部に配置することで、気液を分離して気相冷媒を蒸気流出管より圧縮機側に向けて流出させるようにしている。
特公平7−18602号公報
Furthermore, a configuration is also known in which an accumulator is installed in front of the internal heat exchanger on the low pressure side so as to cope with fluctuations in required refrigerant amount due to changes in the external environment. The accumulator is a liquid storage tank that takes in and out the refrigerant in the cycle, and separates the gas and liquid by disposing the vapor outlet pipe above the liquid surface of the liquid phase refrigerant (interface between the gas phase refrigerant and the liquid phase refrigerant). Thus, the gas phase refrigerant is caused to flow out from the vapor outflow pipe toward the compressor side.
Japanese Patent Publication No. 7-18602

しかしながら、低負荷時においては、蒸気圧縮式冷凍サイクル内における必要冷媒量が少なくなるため、アキュームレータ内に貯留される液相冷媒量が増加する。そのため、貯留される液相冷媒の液面が上昇し、アキュームレータ入口配管より流入する気液二相冷媒がアキュームレータ内に貯留されている液相冷媒と衝突することにより、液相冷媒の液面が大きく乱変動し、アキュームレータ内に設置された蒸気流出管に液相冷媒が流入してしまうという問題がある。液相冷媒を多量に含む気相冷媒が、以降のサイクル中に、とくに圧縮機に供給されてしまうと、冷凍サイクルの性能が大きく変動し、冷凍成績係数(COP)の大幅な向上は望めない。   However, when the load is low, the amount of refrigerant necessary in the vapor compression refrigeration cycle decreases, so the amount of liquid-phase refrigerant stored in the accumulator increases. Therefore, the liquid level of the stored liquid phase refrigerant rises, and the gas-liquid two phase refrigerant flowing in from the accumulator inlet pipe collides with the liquid phase refrigerant stored in the accumulator, so that the liquid level of the liquid phase refrigerant is changed. There is a problem that the liquid phase refrigerant flows into a steam outflow pipe installed in the accumulator due to a large fluctuation. If the gas-phase refrigerant containing a large amount of liquid-phase refrigerant is supplied to the compressor during the subsequent cycles, the performance of the refrigeration cycle will fluctuate greatly, and a significant improvement in the refrigeration coefficient of performance (COP) cannot be expected. .

そこで本発明の課題は、上記のような問題点に着目し、低負荷時においても蒸気流出管へ液相冷媒が流入することを抑え、低負荷時におけるサイクル変動を低減させることが可能なアキュームレータを備えた蒸気圧縮式冷凍サイクルを提供することにある。   Accordingly, an object of the present invention is to focus on the problems as described above, and suppress an inflow of liquid-phase refrigerant into the steam outlet pipe even at low load, thereby reducing cycle fluctuations at low load. Is to provide a vapor compression refrigeration cycle.

上記課題を解決するために、本発明に係る蒸気圧縮式冷凍サイクルは、冷媒を吸入圧縮する圧縮機と、圧縮した冷媒を放熱する放熱器と、放熱した冷媒を低圧側冷媒との熱交換により更に冷却する内部熱交換器と、冷却された冷媒を減圧する減圧機と、減圧した冷媒を蒸発させる蒸発器と、蒸発器から流出した冷媒を気相冷媒と液相冷媒とに分離し分離した気相冷媒を圧縮機の吸入側へ流出させるアキュームレータを備えた蒸気圧縮式冷凍サイクルにおいて、前記アキュームレータの蒸気流出管のアキュームレータ内部に設けられる部分の少なくとも一部分を多重管構造に構成するとともに、該多重管構造部分の内側および外側の管壁にそれぞれ複数の細孔を設けたことを特徴とするものからなる。   In order to solve the above problems, a vapor compression refrigeration cycle according to the present invention includes a compressor that sucks and compresses a refrigerant, a radiator that radiates the compressed refrigerant, and heat exchange between the radiated refrigerant and the low-pressure side refrigerant. Further, the internal heat exchanger for cooling, the decompressor for decompressing the cooled refrigerant, the evaporator for evaporating the decompressed refrigerant, and the refrigerant flowing out from the evaporator are separated into a gas phase refrigerant and a liquid phase refrigerant and separated. In the vapor compression refrigeration cycle provided with an accumulator that causes the gas-phase refrigerant to flow out to the suction side of the compressor, at least a part of a portion provided in the accumulator of the vapor outflow pipe of the accumulator is configured in a multiple tube structure, and the multiple A plurality of pores are provided on the inner and outer tube walls of the tube structure portion, respectively.

アキュームレータの蒸気流出管を上記のように構成することにより、冷媒流入管よりアキュームレータ内に流入した冷媒は、従来と同様に気液分離された後、分離された気相冷媒が、多重管構造の外側の管壁に設けられた細孔を通過し、続いて内側の管壁に設けられた細孔を通過して蒸気流出管内に入り、そこからサイクル内の所定の行き先、つまり、内部熱交換器の低圧側を通して圧縮機へと送られる。たとえ多少の液相冷媒が含まれていたとしても、少なくとも2回細孔を通過されることにより、流路断面積が絞られることによる速度上昇や管壁への衝突が生じ、液相冷媒が気相冷媒から振るい落とされて適切に分離される。したがって、低負荷時等に液相冷媒がアキュームレータ内の上部まで貯留されており、冷媒流入管より勢いよく流入した気液混合冷媒によって貯留されていた液相冷媒の液面が乱変動したとしても、直接蒸気流出管へと流入することはほとんどなくなり、液相冷媒が適切に分離された気相冷媒が効率よく流出されて、サイクル変動が効果的に低減される。   By configuring the vapor outflow pipe of the accumulator as described above, the refrigerant flowing into the accumulator from the refrigerant inflow pipe is separated into gas and liquid as in the prior art, and then the separated gas-phase refrigerant has a multi-tube structure. Passes through the pores provided in the outer tube wall, then passes through the pores provided in the inner tube wall and enters the steam outflow pipe, from there a predetermined destination in the cycle, that is, internal heat exchange To the compressor through the low pressure side of the vessel. Even if some liquid phase refrigerant is included, the passage through the pores at least twice causes a speed increase and a collision with the tube wall due to the flow path cross-sectional area being reduced, and the liquid phase refrigerant It is shaken off from the gas phase refrigerant and properly separated. Therefore, even when the liquid phase refrigerant is stored up to the upper part in the accumulator at a low load or the like and the liquid level of the liquid phase refrigerant stored by the gas-liquid mixed refrigerant flowing in from the refrigerant inflow pipe vigorously fluctuates. The gas-phase refrigerant in which the liquid-phase refrigerant is appropriately separated is effectively discharged and the cycle fluctuation is effectively reduced.

上記アキュームレータの構造においては、多重管構造部分の多重管構造として、二重管構造、あるいは三重管以上の構造のいずれも可能である。ただし、あまり多くの多重管構造とすると、細孔を通過する回数が多くなりすぎて圧力損失が大きくなりすぎるおそれがあるので、高々三重管構造までとすることが好ましい。   In the structure of the accumulator, the multi-tube structure of the multi-tube structure portion can be either a double tube structure or a structure having more than a triple tube. However, if too many multi-tube structures are used, the number of times of passage through the pores may be excessive and the pressure loss may become too large.

また、細孔はアキュームレータ内に貯留される貯留液の液面よりも上部に設けられていることが好ましい。液面よりも下に配置されていると、単に液相冷媒が細孔を介して壁の内外を連通するだけになり、上述した気液分離性能が得られない。   The pores are preferably provided above the liquid level of the stored liquid stored in the accumulator. If it is disposed below the liquid level, the liquid phase refrigerant simply communicates with the inside and outside of the wall through the pores, and the above-described gas-liquid separation performance cannot be obtained.

また、上記蒸気流出管としては、上記多重管構造部分と一体に組みつけられている構造とすることもできる。このように構成すれば、多重管構造部分を含めて一つの蒸気流出管部材として、取り扱うことができ、部品点数が少なくて済み、管理や組立が容易化される。   Further, the steam outflow pipe may be structured so as to be integrated with the multiple pipe structure portion. If comprised in this way, it can handle as one steam outflow pipe member including a multiple pipe structure part, a number of parts can be reduced, and management and an assembly are facilitated.

また、上記アキュームレータは、その内部に、冷媒流入管に対向配置された衝突板を有する構造に構成することもできる。衝突板には複数の小穴が設けられていることが好ましい。このような衝突板を設ければ、上記細孔に至るまでの気液分離性能についても向上でき、アキュームレータ全体としての気液分離性能が向上する。   The accumulator may have a structure having a collision plate disposed opposite to the refrigerant inflow pipe. The collision plate is preferably provided with a plurality of small holes. If such a collision plate is provided, the gas-liquid separation performance up to the pores can be improved, and the gas-liquid separation performance of the accumulator as a whole is improved.

上記細孔には、以下のような形態を採用することが好ましい。すなわち、上記多重管構造部分の外側の管壁に設けられる細孔の断面積が、内側の管壁に設けられる細孔の断面積よりも大きいことが好ましい。また、上記多重管構造部分の外側の管壁に設けられる細孔のアキュームレータ高さ方向の位置が、内側の管壁に設けられる細孔のアキュームレータ高さ方向の位置とは異なる位置に設定されていることが好ましい。このように構成すれば、外側の管壁に設けられる細孔部分でうまく分離し切れなかった液相冷媒が含まれていたとしても、内側の管壁に設けられる細孔部分で分離することが可能になり、より確実に目標とする気液分離が行われるようになる。   It is preferable to adopt the following forms for the pores. That is, it is preferable that the cross-sectional area of the pores provided on the outer tube wall of the multiple pipe structure portion is larger than the cross-sectional area of the pores provided on the inner tube wall. Further, the position of the accumulator in the height direction of the pores provided on the outer tube wall of the multiple tube structure part is set to a position different from the position of the accumulator in the height direction of the pores provided on the inner tube wall. Preferably it is. If comprised in this way, even if the liquid phase refrigerant | coolant which was not able to be isolate | separated well in the pore part provided in an outer tube wall is contained, it can isolate | separate in the pore part provided in an inner tube wall. This makes it possible to perform target gas-liquid separation more reliably.

また、蒸気流出管は、その下部にオイル戻し孔を有することが好ましい。このようにすれば、アキュームレータ内の最下部に貯留されているオイルを、適量、気相冷媒の流出に伴って吸い上げることが可能になり、圧縮機等に対して、オイルを潤滑油として適切に供給することが可能になる。   Moreover, it is preferable that a steam outflow pipe has an oil return hole in the lower part. In this way, an appropriate amount of oil stored in the lowermost part of the accumulator can be sucked up along with the outflow of the gas-phase refrigerant, and the oil is appropriately used as a lubricating oil for the compressor. It becomes possible to supply.

このオイル戻し孔の断面積としては、多重管構造部分に設けられる細孔の断面積および冷媒流入管の断面積のいずれよりも小さいことが好ましい。戻されるオイルの量はごく少量でよく、過剰のオイルが戻されるとかえって冷凍サイクルの性能を損なうことになる。   The cross-sectional area of the oil return hole is preferably smaller than both the cross-sectional area of the pores provided in the multiple pipe structure portion and the cross-sectional area of the refrigerant inflow pipe. The amount of oil that is returned may be very small, and if the excess oil is returned, the performance of the refrigeration cycle is impaired.

また、アキュームレータ内には、冷媒流入管から流入された冷媒が、回り込んで上記多重管構造部分の細孔に至るように、隔壁を設けておくことも可能である。このような隔壁を設けておくことにより、冷媒流入管から流入された冷媒は直接的には細孔に至らないので、細孔に至るまでに適切に気液分離しておくことが可能になる。   Moreover, it is also possible to provide a partition in the accumulator so that the refrigerant flowing in from the refrigerant inflow pipe may wrap around and reach the pores of the multiple pipe structure portion. By providing such a partition wall, the refrigerant flowing from the refrigerant inflow pipe does not directly reach the pores, so that it is possible to appropriately perform gas-liquid separation before reaching the pores. .

このような本発明に係る構造は、とくに高圧領域で使用され、内部熱交換器やアキュームレータ設置の要求度が高い、二酸化炭素冷媒を使用する場合に好適なものである。また、冷凍サイクル全体の小型化や搭載性の向上が求められる車両用空調装置に好適なものである。   Such a structure according to the present invention is suitable particularly when a carbon dioxide refrigerant is used, which is used in a high pressure region and has a high degree of demand for installation of an internal heat exchanger or an accumulator. Further, the present invention is suitable for a vehicle air conditioner that requires a reduction in the size of the entire refrigeration cycle and improvement in mountability.

このように、本発明に係る蒸気圧縮式冷凍サイクルによれば、蒸気流出管のアキュームレータ内の少なくとも一部を細孔を有する多重管構造に構成することで、液相冷媒が流出される気相冷媒中に流入することを適切に抑えることができ、とくに、低負荷時において蒸気流出管へ液相冷媒が流入することを抑えることができ、低負荷時におけるサイクル変動を低減することが可能になって、サイクルの冷凍成績係数を向上することが可能になる。その結果、優れた性能の蒸気圧縮式冷凍サイクル、とくに二酸化炭素冷媒を使用する場合に優れた性能の蒸気圧縮式冷凍サイクルを実現できる。   As described above, according to the vapor compression refrigeration cycle according to the present invention, at least a part of the accumulator of the vapor outflow pipe is configured as a multi-tube structure having pores, so that the gas phase from which the liquid-phase refrigerant flows out. Inflow into the refrigerant can be appropriately suppressed, and in particular, liquid phase refrigerant can be prevented from flowing into the steam outlet pipe at low loads, and cycle fluctuations at low loads can be reduced. Thus, the cycle refrigeration coefficient of performance can be improved. As a result, it is possible to realize a vapor compression refrigeration cycle having excellent performance, particularly when a carbon dioxide refrigerant is used.

以下に、本発明について、望ましい実施の形態とともに、詳細に説明する。
まず、図1に、本発明に係る蒸気圧縮式冷凍サイクルを模式的に示した空調装置の回路構成例を示す。図1の構成において、1は冷媒を圧縮する圧縮機、2は圧縮機1にて圧縮された冷媒を外部の熱交換媒体(例えば、空気)によって放熱する放熱器(ガスクーラ)を示している。また、この蒸気圧縮式冷凍サイクルは、放熱器2にて放熱された冷媒(高圧側冷媒)を更に冷却する内部熱交換器3と、冷却された冷媒を減圧する減圧機4と、減圧した冷媒を蒸発させる蒸発器5と、蒸発器5から流出した冷媒を気相冷媒と液相冷媒とに分離し実質的に気相冷媒のみを内部熱交換器3の低圧側回路へ流出させるアキュームレータ6を備えている。アキュームレータ6で熱交換された低圧側冷媒が、再び圧縮機1に吸入され、圧縮される。これらの機器が、順次接続されて冷凍回路11(冷凍サイクル)として構成されている。なお、図1における矢印は冷媒の流れを示している。
Hereinafter, the present invention will be described in detail together with preferred embodiments.
First, FIG. 1 shows a circuit configuration example of an air conditioner schematically showing a vapor compression refrigeration cycle according to the present invention. In the configuration of FIG. 1, reference numeral 1 denotes a compressor that compresses the refrigerant, and 2 denotes a radiator (gas cooler) that radiates the refrigerant compressed by the compressor 1 using an external heat exchange medium (for example, air). The vapor compression refrigeration cycle includes an internal heat exchanger 3 that further cools the refrigerant radiated by the radiator 2 (high-pressure side refrigerant), a decompressor 4 that decompresses the cooled refrigerant, and a decompressed refrigerant. An evaporator 5 that evaporates the refrigerant, and an accumulator 6 that separates the refrigerant that has flowed out of the evaporator 5 into a gas-phase refrigerant and a liquid-phase refrigerant, and causes only the gas-phase refrigerant to flow out to the low-pressure side circuit of the internal heat exchanger 3. I have. The low-pressure side refrigerant heat-exchanged by the accumulator 6 is again sucked into the compressor 1 and compressed. These devices are sequentially connected to form a refrigeration circuit 11 (refrigeration cycle). In addition, the arrow in FIG. 1 has shown the flow of the refrigerant | coolant.

内部熱交換器3は、二酸化炭素のようなサイクル運転時の高圧側冷媒圧力が超臨界状態になる遷臨界サイクルでは、高圧側冷媒圧力を低下できる。それは、高圧側冷媒と低圧側冷媒との間で熱交換することで、高圧側冷媒の温度を低減できるからである。さらに、高圧側冷媒温度を低減できるので、蒸発器5の入口側のエンタルピーを低減でき、蒸発器5におけるエンタルピー差を増大させることで、冷凍成績係数(COP)の向上が期待できる。しかしながら、内部熱交換器3は高圧側冷媒温度を低減できるというメリットがある反面、圧縮機1の吸入側冷媒温度を上昇させてしまう。圧縮機1は理論的には等エントロピー変化するので、圧縮機1の吸入側冷媒温度が上昇すると、圧縮機1の吸入側冷媒温度が低い時と比べて圧縮機1の動力が大きくなるデメリットも併せ持つ。   The internal heat exchanger 3 can reduce the high-pressure side refrigerant pressure in a transcritical cycle in which the high-pressure side refrigerant pressure during the cycle operation such as carbon dioxide is in a supercritical state. This is because the temperature of the high-pressure side refrigerant can be reduced by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant. Furthermore, since the refrigerant temperature on the high-pressure side can be reduced, the enthalpy on the inlet side of the evaporator 5 can be reduced, and by increasing the enthalpy difference in the evaporator 5, an improvement in the refrigeration coefficient of performance (COP) can be expected. However, the internal heat exchanger 3 has an advantage that the high-pressure side refrigerant temperature can be reduced, but increases the suction-side refrigerant temperature of the compressor 1. Since the compressor 1 theoretically changes isentropically, there is a demerit that when the suction side refrigerant temperature of the compressor 1 rises, the power of the compressor 1 becomes larger than when the suction side refrigerant temperature of the compressor 1 is low. Have both.

その他、二酸化炭素のような高圧側冷媒圧力が高い冷媒を使用する場合には、耐圧性の確保等の問題から高圧側に液溜めタンクを設けることが難しい。よって、低圧側にアキュームレータ6を設置するのが一般的である。   In addition, when a refrigerant having a high pressure on the high-pressure side such as carbon dioxide is used, it is difficult to provide a liquid storage tank on the high-pressure side due to problems such as ensuring pressure resistance. Therefore, it is common to install the accumulator 6 on the low pressure side.

図2は、比較のために示した、従来の冷凍サイクルにて用いられていたアキュームレータの構造図である。アキュームレータ6は外部環境変化による必要冷媒量変動に対応できるように構成されている。アキュームレータ6はサイクル内冷媒を出し入れする液溜めタンクであり、蒸気流出管を液冷媒の液面(界面)よりも上部に配置することで、気液を分離して気相冷媒を蒸気流出管より流出させる機器である。また、アキュームレータ6内に流入する潤滑油を圧縮機1へ返油する。実際に、オイル分離器等を用いても、冷媒と潤滑油を100%分離することは難しく、冷媒とともに潤滑油が冷凍サイクル内を循環する。   FIG. 2 is a structural diagram of an accumulator used for a conventional refrigeration cycle, shown for comparison. The accumulator 6 is configured so as to cope with fluctuations in the required refrigerant amount due to changes in the external environment. The accumulator 6 is a liquid storage tank for taking in and out the refrigerant in the cycle, and by disposing the vapor outflow pipe above the liquid refrigerant liquid surface (interface), the gas-liquid is separated from the vapor outflow pipe through the vapor outflow pipe. This is a device to be drained. Further, the lubricating oil flowing into the accumulator 6 is returned to the compressor 1. Actually, even if an oil separator or the like is used, it is difficult to separate the refrigerant and the lubricating oil 100%, and the lubricating oil circulates in the refrigeration cycle together with the refrigerant.

アキュームレータ6の上面に、蒸発器5の出口冷媒配管と接続された冷媒流入管21が設けてあり、ここからアキュームレータ6内に冷媒および潤滑油(オイル)が流入する。流入した冷媒および潤滑油は、その比重の差によって比重の大きい潤滑油が底部のオイル層27へ溜まり、次に比重の大きな液相冷媒がオイル層27の上部に液冷媒層26として形成される。最も比重の小さな気相冷媒が液冷媒層26の上部に気冷媒層25として形成され、蒸気流出管22より気冷媒層25の気相冷媒が流出する。その際、オイル戻し孔24より少量の潤滑油を吸い上げ、アキュームレータ6内に溜まった潤滑油が内部熱交換器3を経て、圧縮機1に返油される。冷媒流入管21および蒸気流出管22が耐圧容器23に収容されている。   A refrigerant inflow pipe 21 connected to the outlet refrigerant pipe of the evaporator 5 is provided on the upper surface of the accumulator 6, from which refrigerant and lubricating oil (oil) flow into the accumulator 6. Due to the difference in specific gravity, the inflowing refrigerant and lubricating oil accumulate the lubricating oil having a large specific gravity in the bottom oil layer 27, and then the liquid phase refrigerant having the next large specific gravity is formed as the liquid refrigerant layer 26 on the oil layer 27. . The gas phase refrigerant having the smallest specific gravity is formed as the gas refrigerant layer 25 above the liquid refrigerant layer 26, and the gas phase refrigerant in the gas refrigerant layer 25 flows out from the vapor outlet pipe 22. At that time, a small amount of lubricating oil is sucked up from the oil return hole 24, and the lubricating oil accumulated in the accumulator 6 is returned to the compressor 1 through the internal heat exchanger 3. A refrigerant inflow pipe 21 and a steam outflow pipe 22 are accommodated in the pressure resistant container 23.

このような従来構成に対し、本発明ではアキュームレータは例えば以下のように構成される。
(実施例1)
以下、本発明の実施例1を図に基づいて説明する。図3は本発明の実施例1におけるアキュームレータの内部構造を示している。基本的には、図2で説明した通り、アキュームレータ6の上面に蒸発器5の出口冷媒配管と接続された冷媒流入管21が設けてあり、ここからアキュームレータ6内に冷媒および潤滑油が流入する。流入した冷媒および潤滑油は、その比重の差によって比重の大きい潤滑油が底部のオイル層27へ溜まり、次に比重の大きな液相冷媒がオイル層27の上部に液冷媒層26として形成される。最も比重の小さな気相冷媒が液冷媒層26の上部に気冷媒層25として形成され、蒸気流出管22より気冷媒層25の気相冷媒が流出する。その際、オイル戻し孔24より少量の潤滑油を吸い上げ、アキュームレータ6内に溜まった潤滑油が内部熱交換器3を経て、圧縮機1に返油される。冷媒流入管21および蒸気流出管22は耐圧容器23に収容されている。
In contrast to such a conventional configuration, in the present invention, the accumulator is configured as follows, for example.
(Example 1)
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 3 shows the internal structure of the accumulator according to the first embodiment of the present invention. Basically, as described with reference to FIG. 2, the refrigerant inflow pipe 21 connected to the outlet refrigerant pipe of the evaporator 5 is provided on the upper surface of the accumulator 6, from which refrigerant and lubricating oil flow into the accumulator 6. . Due to the difference in specific gravity, the inflowing refrigerant and lubricating oil accumulate the lubricating oil having a large specific gravity in the bottom oil layer 27, and then the liquid phase refrigerant having the next large specific gravity is formed as the liquid refrigerant layer 26 on the oil layer 27. . The gas phase refrigerant having the smallest specific gravity is formed as the gas refrigerant layer 25 above the liquid refrigerant layer 26, and the gas phase refrigerant in the gas refrigerant layer 25 flows out from the vapor outlet pipe 22. At that time, a small amount of lubricating oil is sucked up from the oil return hole 24, and the lubricating oil accumulated in the accumulator 6 is returned to the compressor 1 through the internal heat exchanger 3. The refrigerant inflow pipe 21 and the vapor outflow pipe 22 are accommodated in a pressure vessel 23.

本実施例1では、蒸気流出管22の一部が二重管構造に構成され、二重管構造の外側の室が気液冷媒分離室31として構成されている。さらに、蒸気流出管22および二重管構造の気液冷媒分離室31の内外の管壁(配管表面)に細孔32が設けられている。これら細孔32の位置は液冷媒層26よりも十分に高い位置に設置されている。このような構造とすることにより、低負荷時等に液冷媒層26がアキュームレータ6内の上部まで貯留されている状態で、冷媒流入管21より勢いよく流入した冷媒によって液冷媒層26の液面(界面)が乱変動したとしても、液相冷媒が直接蒸気流出管22へ流入することは少なくなり、サイクル変動を低減することができる。   In the first embodiment, a part of the steam outflow pipe 22 is configured in a double pipe structure, and the chamber outside the double pipe structure is configured as a gas-liquid refrigerant separation chamber 31. Furthermore, pores 32 are provided in the inner and outer tube walls (pipe surfaces) of the vapor outflow tube 22 and the gas-liquid refrigerant separation chamber 31 having a double tube structure. The positions of these pores 32 are installed at positions sufficiently higher than the liquid refrigerant layer 26. With such a structure, the liquid refrigerant layer 26 is liquid leveled by the refrigerant that has flowed in from the refrigerant inflow pipe 21 in a state where the liquid refrigerant layer 26 is stored up to the upper part in the accumulator 6 at a low load or the like. Even if the (interface) fluctuates, the liquid-phase refrigerant is less likely to flow directly into the vapor outlet pipe 22, and cycle fluctuations can be reduced.

また、低負荷時の冷媒状態として、アキュームレータ6内に流入する冷媒の乾き度が小さいため、比較的液相冷媒を多く含んだ冷媒が流出するが、蒸気流出管22の一部に二重管構造の気液冷媒分離室31を設け、さらに配管表面に細孔32を設けたことにより、比重の大きな液相冷媒は壁面に衝突し、気液冷媒それぞれに分離される。内側の管壁としての蒸気流出管22にも細孔32を設けたことにより、より効率的に気液の分離が可能となり、良好な気液分離によりサイクルの安定性が向上できる。   In addition, since the dryness of the refrigerant flowing into the accumulator 6 is small as a refrigerant state at the time of low load, a refrigerant containing a relatively large amount of liquid phase refrigerant flows out. By providing the gas-liquid refrigerant separation chamber 31 having the structure and the pores 32 on the pipe surface, the liquid phase refrigerant having a large specific gravity collides with the wall surface and is separated into the gas-liquid refrigerant. By providing the pores 32 in the steam outlet pipe 22 as the inner pipe wall, it becomes possible to more efficiently separate the gas and liquid, and the stability of the cycle can be improved by the good gas-liquid separation.

ここで、二重管構造の気液分離室31の表面に設けられた細孔32の断面積の方が、蒸気流出管22の表面に設けられた細孔32の断面積よりも大きいことが好ましい。また、二重管構造の気液分離室31の表面に設けられた細孔32の断面積は、冷媒流入管21の断面積以下の大きさとすることが好ましい。さらに、二重管構造の気液分離室31の表面に設けられた細孔32の断面積および蒸気流出管22の表面に設けられた細孔32の断面積、冷媒流入管21の断面積のいずれよりも、オイル戻し孔24の断面積の方が小さいように設計することが好ましい。これは、冷媒が二重管構造の気液冷媒分離室31や蒸気流出管22の表面に設けられた細孔32を通過する際の圧力損失によって、冷媒流速を上げることで、衝突度合を高め、気液分離性能を高めることを目的とした構成である。   Here, the cross-sectional area of the pores 32 provided on the surface of the gas-liquid separation chamber 31 having a double-pipe structure is larger than the cross-sectional area of the pores 32 provided on the surface of the vapor outflow pipe 22. preferable. The cross-sectional area of the pores 32 provided on the surface of the gas-liquid separation chamber 31 having a double-pipe structure is preferably set to a size equal to or smaller than the cross-sectional area of the refrigerant inflow pipe 21. Furthermore, the cross-sectional area of the pores 32 provided on the surface of the gas-liquid separation chamber 31 having a double-pipe structure, the cross-sectional area of the pores 32 provided on the surface of the vapor outflow pipe 22, and the cross-sectional area of the refrigerant inflow pipe 21. It is preferable to design so that the cross-sectional area of the oil return hole 24 is smaller than either. This increases the collision rate by increasing the refrigerant flow rate due to the pressure loss when the refrigerant passes through the pores 32 provided on the surfaces of the gas-liquid refrigerant separation chamber 31 and the vapor outflow pipe 22 having a double pipe structure. The configuration aims to improve the gas-liquid separation performance.

さらに、蒸気流出管22内の圧力とアキュームレータ6容器内圧力の圧力差によって、オイル戻し孔24から潤滑油が吸い上げられる。オイル戻し孔24は断面積が小さいので、冷凍サイクル中の不純物が詰まる恐れがあるので、図示はしないが、オイル戻し孔24部分にはフィルタを取り付けておくことが好ましい。   Further, the lubricating oil is sucked up from the oil return hole 24 due to the pressure difference between the pressure in the steam outflow pipe 22 and the pressure in the accumulator 6 container. Since the oil return hole 24 has a small sectional area, impurities in the refrigeration cycle may be clogged. Therefore, although not shown, it is preferable to attach a filter to the oil return hole 24 portion.

また、二重管構造の気液分離室31の表面に設けられた細孔32と、蒸気流出管22の表面に設けられた細孔32の位置は水平方向で一致しないことが好ましい。そのような構造とすることで、二重管構造の気液分離室31の表面に設けられた細孔32で分離しきれなかった液相冷媒を蒸気流出管22の表面に設けられた細孔32で分離できるため、より分離効率がよくなる。   Moreover, it is preferable that the positions of the fine holes 32 provided on the surface of the gas-liquid separation chamber 31 having a double-pipe structure and the fine holes 32 provided on the surface of the vapor outflow pipe 22 do not coincide with each other in the horizontal direction. By adopting such a structure, the liquid phase refrigerant that could not be separated by the pores 32 provided on the surface of the gas-liquid separation chamber 31 having a double-pipe structure was provided on the surface of the vapor outlet pipe 22. Since it can be separated at 32, the separation efficiency is improved.

因みに二重管構造の気液分離室31の構成として、上蓋としてアキュームレータ6の上面(上壁)を用いれば、下蓋のみ必要となるため、部品点数の削減に繋がる。   Incidentally, if the upper surface (upper wall) of the accumulator 6 is used as the upper lid as the configuration of the gas-liquid separation chamber 31 having a double-pipe structure, only the lower lid is required, leading to a reduction in the number of parts.

また、本発明では、二重管構造の気液分離室31と冷媒流入管21をロー付けまたは溶接等により一体化することが可能であり、一体化により、配管とアキュームレータ6本体との組付け強度を増すことが可能となり、製品の信頼性向上を期待できる。さらに、部品点数の低減も可能になり、部品管理や組立の容易化をはかることもできる。   In the present invention, the gas-liquid separation chamber 31 having a double-pipe structure and the refrigerant inflow pipe 21 can be integrated by brazing or welding. As a result, the pipe and the accumulator 6 body are assembled by integration. Strength can be increased, and improvement of product reliability can be expected. Furthermore, the number of parts can be reduced, and parts management and assembly can be facilitated.

(実施例2)
図4は本発明の実施例2におけるアキュームレータの内部構造を示している。図4に示す構造において、図3に示した構造との違いは、二重管構造の気液分離室31の構成として、下蓋を、小穴42の開いた衝突板41としたことにある。このような構造とすることにより、低負荷時等に液冷媒層26がアキュームレータ6内上部まで貯留されている状態で、冷媒流入管21より勢いよく流入した冷媒によって液冷媒層26の界面が変動することを低減できる。低負荷時には特に乾き度の小さな冷媒が流入するので、比較的比重の大きな液相冷媒が流入することとなり、アキュームレータ6の冷媒流入管21からの勢いで貯留冷媒界面が変動し易い。冷媒を衝突板41に衝突させ、小穴42より重力降下させることで冷媒界面の乱変動を低減できる。また、隔壁43を設けることで、冷媒流入管21より流入した冷媒が直接、二重管構造の気液分離室31の表面に設けられた細孔32へ流入することを防止でき、二重管構造の外壁および内壁に設けられた細孔32による優れた気液分離性能を望ましい性能に維持することができる。
(Example 2)
FIG. 4 shows the internal structure of the accumulator in Embodiment 2 of the present invention. The structure shown in FIG. 4 is different from the structure shown in FIG. 3 in that the lower lid is a collision plate 41 having a small hole 42 as a configuration of the gas-liquid separation chamber 31 having a double tube structure. By adopting such a structure, the interface of the liquid refrigerant layer 26 fluctuates due to the refrigerant that flows in vigorously from the refrigerant inflow pipe 21 in a state where the liquid refrigerant layer 26 is stored up to the upper part in the accumulator 6 at a low load or the like. Can be reduced. When the load is low, a refrigerant having a particularly low dryness flows in. Therefore, a liquid phase refrigerant having a relatively large specific gravity flows in, and the stored refrigerant interface easily changes due to the momentum from the refrigerant inflow pipe 21 of the accumulator 6. By causing the refrigerant to collide with the collision plate 41 and causing the gravity drop from the small hole 42, the turbulent fluctuation of the refrigerant interface can be reduced. Further, by providing the partition wall 43, it is possible to prevent the refrigerant flowing in from the refrigerant inflow pipe 21 from directly flowing into the pores 32 provided on the surface of the gas-liquid separation chamber 31 having a double pipe structure. The excellent gas-liquid separation performance by the pores 32 provided on the outer wall and the inner wall of the structure can be maintained at a desirable performance.

さらに、ここでは、冷媒流入管21および蒸気流出管22ともにアキュームレータ6上面にあるので、例えば、車両用空調装置の冷媒として二酸化炭素を用いた場合、装置の小型化、搭載性の向上が期待できる。   Furthermore, since the refrigerant inflow pipe 21 and the vapor outflow pipe 22 are both on the upper surface of the accumulator 6 here, for example, when carbon dioxide is used as the refrigerant of the vehicle air conditioner, it is possible to expect downsizing of the apparatus and improvement in mountability. .

このように、上記のように構成されたアキュームレータ6によれば、蒸気流出管22の一部に二重管構造の気液冷媒分離室31を設け、さらに蒸気流出管22および二重管構造の気液冷媒分離室31の配管表面に細孔32を設けた構造とし、これらの位置を液冷媒層26よりも十分に高い位置に設置することで、低負荷時等に液冷媒層26がアキュームレータ6内上部まで貯留されている状態で、冷媒流入管21より勢いよく流入した冷媒によって液冷媒層26界面が乱変動したとしても、直接蒸気流出管22へ流入することは少なくなり、サイクル変動を低減することができる。   As described above, according to the accumulator 6 configured as described above, the gas / liquid refrigerant separation chamber 31 having the double pipe structure is provided in a part of the steam outflow pipe 22, and the vapor outflow pipe 22 and the double pipe structure are further provided. The pores 32 are provided on the pipe surface of the gas-liquid refrigerant separation chamber 31, and these positions are installed at positions sufficiently higher than the liquid refrigerant layer 26, so that the liquid refrigerant layer 26 is accumulator when the load is low. 6, even if the interface of the liquid refrigerant layer 26 fluctuates and fluctuates due to the refrigerant that has flowed in vigorously from the refrigerant inflow pipe 21 in the state where it has been stored up to the upper part in the inside, the direct flow into the vapor outflow pipe 22 is lessened, and the cycle fluctuation is reduced. Can be reduced.

更に、低負荷時の冷媒状態として、アキュームレータ6内に流入する冷媒の乾き度が小さいため、比較的液相冷媒を多く含んだ冷媒が流出しようとするが、蒸気流出管22および二重管構造の気液冷媒分離室31の配管表面それぞれに細孔32を設けたことにより、比重の大きな液相冷媒は壁面に衝突し、効率的な気液冷媒の分離が可能となって、サイクル安定性を向上できる。また、二重管構造の気液分離室31の表面に設けられた細孔と、蒸気流出管22の表面に設けられた細孔の位置は水平方向で一致しないような構造とすることで、二重管構造の気液分離室31の表面に設けられた細孔で分離しきれなかった液相冷媒を蒸気流出管22の表面に設けられた細孔で分離できるため、より高い分離効率を得ることができる。   Further, as the refrigerant state at the time of low load, since the dryness of the refrigerant flowing into the accumulator 6 is small, the refrigerant containing a relatively large amount of liquid phase refrigerant tends to flow out, but the vapor outflow pipe 22 and the double pipe structure By providing the pores 32 on the pipe surfaces of the gas-liquid refrigerant separation chamber 31, the liquid-phase refrigerant having a large specific gravity collides with the wall surface, enabling efficient gas-liquid refrigerant separation, and cycle stability. Can be improved. In addition, by adopting a structure in which the positions of the pores provided on the surface of the gas-liquid separation chamber 31 having a double-pipe structure and the pores provided on the surface of the steam outflow pipe 22 do not coincide with each other in the horizontal direction, Since the liquid phase refrigerant that could not be separated by the pores provided on the surface of the gas-liquid separation chamber 31 having a double-pipe structure can be separated by the pores provided on the surface of the vapor outflow pipe 22, higher separation efficiency can be achieved. Obtainable.

さらに、低負荷時には特に乾き度の小さな冷媒が流入し、比較的比重の大きな液相冷媒が流入することとなり、アキュームレータ流入配管からの勢いで貯留冷媒界面が変動し易くなるが、流入冷媒を衝突板41に衝突させ、小穴42より重力降下させることで冷媒界面の変動を低減することができる。   In addition, when the load is low, refrigerant with a particularly low dryness flows in and liquid phase refrigerant with a relatively large specific gravity flows in, and the stored refrigerant interface tends to fluctuate due to the momentum from the accumulator inflow piping, but the inflowing refrigerant collides with it. It is possible to reduce the fluctuation of the refrigerant interface by causing the plate 41 to collide and the gravity drop from the small hole 42.

また、二重管構造の気液分離室31の構成として、上蓋としてアキュームレータ6上面を用いれば、下蓋のみ必要となるため、部品点数の削減に繋がり、二重管構造の気液分離室31と冷媒流入管21をロー付けまたは溶接等により一体化すれば、配管とアキュームレータ6本体との組付け強度が増すこととなり、製品の信頼性向上を期待できる。   Further, if the upper surface of the accumulator 6 is used as the upper lid as the configuration of the gas-liquid separation chamber 31 having a double tube structure, only the lower lid is required. If the refrigerant inlet pipe 21 and the refrigerant inflow pipe 21 are integrated by brazing or welding, the assembly strength between the pipe and the accumulator 6 body is increased, and improvement in product reliability can be expected.

さらに、冷媒流入管21および蒸気流出管22ともにアキュームレータ6上面にあるので、車両用空調装置の冷媒として二酸化炭素を用いた場合、装置の小型化、搭載性の向上が期待できる。   Furthermore, since both the refrigerant inflow pipe 21 and the vapor outflow pipe 22 are on the upper surface of the accumulator 6, when carbon dioxide is used as the refrigerant of the vehicle air conditioner, it is possible to expect downsizing of the apparatus and improvement in mountability.

本発明に係る蒸気圧縮式冷凍サイクルは、蒸発器と内部熱交換器との間にアキュームレータを備えたあらゆる蒸気圧縮式冷凍サイクルに適用でき、とくに、二酸化炭素冷媒を使用する冷凍サイクル、中でも車両用空調装置に用いられる蒸気圧縮式冷凍サイクルとして好適なものである。   The vapor compression refrigeration cycle according to the present invention can be applied to any vapor compression refrigeration cycle provided with an accumulator between an evaporator and an internal heat exchanger, and in particular, a refrigeration cycle using a carbon dioxide refrigerant, especially for vehicles. It is suitable as a vapor compression refrigeration cycle used in an air conditioner.

本発明に係る蒸気圧縮式冷凍サイクルの形態例を模式的に示した機器系統図である。It is an equipment distribution diagram showing typically a form example of a vapor compression refrigeration cycle concerning the present invention. 比較のために示した従来のアキュームレータの縦断面図(図2(B))および図2(B)のA−A線に沿う横断面図(図2(A))である。It is the longitudinal cross-sectional view (FIG.2 (B)) of the conventional accumulator shown for the comparison, and the cross-sectional view (FIG.2 (A)) which follows the AA line of FIG.2 (B). 本発明の実施例1におけるアキュームレータの縦断面図(図3(B))および図3(B)のA−A線に沿う横断面図(図3(A))である。It is the longitudinal cross-sectional view (FIG. 3 (B)) of the accumulator in Example 1 of this invention, and the cross-sectional view (FIG. 3 (A)) which follows the AA line of FIG. 3 (B). 本発明の実施例2におけるアキュームレータの縦断面図(図4(B))および図4(B)のA−A線に沿う横断面図(図4(A))である。It is the longitudinal cross-sectional view (FIG.4 (B)) of the accumulator in Example 2 of this invention, and the cross-sectional view (FIG.4 (A)) which follows the AA line of FIG.4 (B).

符号の説明Explanation of symbols

1 圧縮機
2 放熱器(ガスクーラ)
3 内部熱交換器
4 減圧機
5 蒸発器
6 アキュームレータ
11 冷凍回路(冷凍サイクル)
21 冷媒流入管
22 蒸気流出管
23 耐圧容器
24 オイル戻し孔
25 気冷媒層
26 液冷媒層
27 オイル層
31 気液冷媒分離室
32 細孔
41 衝突板
42 小穴
43 隔壁
1 Compressor 2 Radiator (gas cooler)
3 Internal heat exchanger 4 Pressure reducer 5 Evaporator 6 Accumulator 11 Refrigeration circuit (refrigeration cycle)
21 Refrigerant inflow pipe 22 Steam outflow pipe 23 Pressure vessel 24 Oil return hole 25 Gas refrigerant layer 26 Liquid refrigerant layer 27 Oil layer 31 Gas liquid refrigerant separation chamber 32 Fine hole 41 Collision plate 42 Small hole 43 Partition

Claims (13)

冷媒を吸入圧縮する圧縮機と、圧縮した冷媒を放熱する放熱器と、放熱した冷媒を低圧側冷媒との熱交換により更に冷却する内部熱交換器と、冷却された冷媒を減圧する減圧機と、減圧した冷媒を蒸発させる蒸発器と、蒸発器から流出した冷媒を気相冷媒と液相冷媒とに分離し分離した気相冷媒を圧縮機の吸入側へ流出させるアキュームレータを備えた蒸気圧縮式冷凍サイクルにおいて、前記アキュームレータの蒸気流出管のアキュームレータ内部に設けられる部分の少なくとも一部分を多重管構造に構成するとともに、該多重管構造部分の内側および外側の管壁にそれぞれ複数の細孔を設けたことを特徴とする蒸気圧縮式冷凍サイクル。   A compressor that sucks and compresses the refrigerant; a radiator that dissipates the compressed refrigerant; an internal heat exchanger that further cools the dissipated refrigerant by heat exchange with the low-pressure side refrigerant; and a decompressor that decompresses the cooled refrigerant. A vapor compression type equipped with an evaporator for evaporating the decompressed refrigerant, and an accumulator for separating the separated refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant and outflowing the separated gas-phase refrigerant to the suction side of the compressor In the refrigeration cycle, at least a part of a portion provided in the accumulator of the steam outlet pipe of the accumulator is configured in a multi-tube structure, and a plurality of pores are provided on the inner and outer tube walls of the multi-tube structure portion, respectively. A vapor compression refrigeration cycle characterized by that. 前記多重管構造部分が二重管構造に構成されている、請求項1に記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to claim 1, wherein the multi-tube structure portion is configured in a double tube structure. 前記細孔が、アキュームレータ内に貯留される貯留液の液面よりも上部に設けられている、請求項1または2に記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to claim 1 or 2, wherein the pores are provided above the liquid level of the stored liquid stored in the accumulator. 前記蒸気流出管が、その多重管構造部分と一体に組みつけられている、請求項1〜3のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 3, wherein the vapor outflow pipe is assembled integrally with the multiple pipe structure portion. 前記アキュームレータが、その内部に、冷媒流入管に対向配置された衝突板を有する、請求項1〜4のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 4, wherein the accumulator has a collision plate disposed inside the accumulator so as to face the refrigerant inflow pipe. 前記衝突板に複数の小穴が設けられている、請求項5に記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to claim 5, wherein the collision plate is provided with a plurality of small holes. 前記多重管構造部分の外側の管壁に設けられる細孔の断面積が、内側の管壁に設けられる細孔の断面積よりも大きい、請求項1〜6のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression type according to any one of claims 1 to 6, wherein a cross-sectional area of pores provided in an outer pipe wall of the multiple pipe structure portion is larger than a cross-sectional area of pores provided in an inner pipe wall. Refrigeration cycle. 前記多重管構造部分の外側の管壁に設けられる細孔のアキュームレータ高さ方向の位置が、内側の管壁に設けられる細孔のアキュームレータ高さ方向の位置とは異なる位置に設定されている、請求項1〜7のいずれかに記載の蒸気圧縮式冷凍サイクル。   The position in the accumulator height direction of the pores provided on the outer tube wall of the multiple tube structure part is set to a position different from the position in the accumulator height direction of the pores provided in the inner tube wall. The vapor compression refrigeration cycle according to any one of claims 1 to 7. 前記蒸気流出管が、その下部にオイル戻し孔を有する、請求項1〜8のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 8, wherein the vapor outflow pipe has an oil return hole in a lower portion thereof. 前記オイル戻し孔の断面積が、前記多重管構造部分に設けられる細孔の断面積および冷媒流入管の断面積のいずれよりも小さい、請求項9に記載の蒸気圧縮式冷凍サイクル。   10. The vapor compression refrigeration cycle according to claim 9, wherein a cross-sectional area of the oil return hole is smaller than any of a cross-sectional area of a pore provided in the multiple pipe structure portion and a cross-sectional area of a refrigerant inflow pipe. 前記アキュームレータ内に、冷媒流入管から流入された冷媒が、回り込んで前記多重管構造部分の細孔に至るように、隔壁が設けられている、請求項1〜10のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor according to any one of claims 1 to 10, wherein a partition wall is provided in the accumulator so that the refrigerant flowing from the refrigerant inflow pipe wraps around and reaches the pores of the multiple pipe structure portion. Compression refrigeration cycle. 使用される冷媒が二酸化炭素からなる、請求項1〜11のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 11, wherein the refrigerant used is made of carbon dioxide. 車両用空調装置に用いられる冷凍サイクルからなる、請求項1〜12のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 12, comprising a refrigeration cycle used for a vehicle air conditioner.
JP2006338023A 2006-12-15 2006-12-15 Vapor compression refrigeration cycle Expired - Fee Related JP4897464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338023A JP4897464B2 (en) 2006-12-15 2006-12-15 Vapor compression refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338023A JP4897464B2 (en) 2006-12-15 2006-12-15 Vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2008151374A true JP2008151374A (en) 2008-07-03
JP4897464B2 JP4897464B2 (en) 2012-03-14

Family

ID=39653731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338023A Expired - Fee Related JP4897464B2 (en) 2006-12-15 2006-12-15 Vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4897464B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063444A1 (en) * 2014-10-24 2016-04-28 株式会社デンソー Ejector-type refrigeration cycle
CN109682135A (en) * 2018-12-26 2019-04-26 珠海格力电器股份有限公司 Flash evaporation, heat pump system and its control method
WO2022239211A1 (en) * 2021-05-14 2022-11-17 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
WO2023007620A1 (en) * 2021-07-28 2023-02-02 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063444A1 (en) * 2014-10-24 2016-04-28 株式会社デンソー Ejector-type refrigeration cycle
JP2016084964A (en) * 2014-10-24 2016-05-19 株式会社デンソー Ejector type refrigeration cycle
CN107076471A (en) * 2014-10-24 2017-08-18 株式会社电装 Ejector-type kind of refrigeration cycle
CN107076471B (en) * 2014-10-24 2020-06-16 株式会社电装 Ejector type refrigeration cycle
CN109682135A (en) * 2018-12-26 2019-04-26 珠海格力电器股份有限公司 Flash evaporation, heat pump system and its control method
WO2022239211A1 (en) * 2021-05-14 2022-11-17 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container
JP7433522B2 (en) 2021-05-14 2024-02-19 三菱電機株式会社 Refrigerant storage container and refrigeration cycle device equipped with the refrigerant storage container
WO2023007620A1 (en) * 2021-07-28 2023-02-02 三菱電機株式会社 Refrigerant storage container, and refrigeration cycle device provided with said refrigerant storage container

Also Published As

Publication number Publication date
JP4897464B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4897298B2 (en) Gas-liquid separator module
JP5539996B2 (en) Liquid and vapor separation in a transcritical refrigerant cycle.
KR101054784B1 (en) Carbon dioxide cooling system
US8789389B2 (en) Intermediate heat exchanger
WO2009096193A1 (en) Economizer
JP2007162988A (en) Vapor compression refrigerating cycle
JP4776438B2 (en) Refrigeration cycle
JP2007057222A (en) Ejector type refrigerating cycle unit
JPH1194380A (en) Refrigeration cycle
KR20060108680A (en) Suction line heat exchanger for co2 cooling system
JP2008057807A (en) Refrigerating cycle, and air conditioner and refrigerator using the same
JP4897464B2 (en) Vapor compression refrigeration cycle
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP4770891B2 (en) Ejector type refrigeration cycle unit
JP4694365B2 (en) Pressure reducer module with oil separator
CN203671981U (en) Cooling circulating device
JP5921718B2 (en) Refrigeration cycle equipment
JP2008267718A (en) Vapor compression type refrigerating cycle
JP2007071511A (en) Accumulator structure
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
JP4842022B2 (en) Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit
JP2008133996A (en) Vehicular cooler
JP5639875B2 (en) Intermediate heat exchanger
JP4897561B2 (en) Vapor compression refrigeration cycle
JP4333556B2 (en) Gas-liquid separator for ejector cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4897464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees