JP4842022B2 - Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit - Google Patents

Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit Download PDF

Info

Publication number
JP4842022B2
JP4842022B2 JP2006164621A JP2006164621A JP4842022B2 JP 4842022 B2 JP4842022 B2 JP 4842022B2 JP 2006164621 A JP2006164621 A JP 2006164621A JP 2006164621 A JP2006164621 A JP 2006164621A JP 4842022 B2 JP4842022 B2 JP 4842022B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration circuit
accumulator
pipe
vapor compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006164621A
Other languages
Japanese (ja)
Other versions
JP2007333283A (en
Inventor
雄一 松元
政人 坪井
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006164621A priority Critical patent/JP4842022B2/en
Priority to US11/810,764 priority patent/US20080173042A1/en
Priority to EP07011480A priority patent/EP1867937A1/en
Publication of JP2007333283A publication Critical patent/JP2007333283A/en
Application granted granted Critical
Publication of JP4842022B2 publication Critical patent/JP4842022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は蒸気圧縮式冷凍回路及び当該冷凍回路を用いた車両用空調システムに関する。   The present invention relates to a vapor compression refrigeration circuit and a vehicle air conditioning system using the refrigeration circuit.

冷凍回路は、例えば車両用空調システムに用いられ、冷媒が循環する循環流路を備える。循環流路には、一般に、冷媒の流動方向でみて、圧縮機、放熱器(凝縮器又はガスクーラ)、減圧器(膨張弁)及び蒸発器が順次介挿される。
また、循環流路には、冷媒中の気相成分と液相成分とを分離する気液分離器が介挿されるが、気液分離器は放熱器の下流又は蒸発器の下流に配置される。
The refrigeration circuit is used in, for example, a vehicle air conditioning system, and includes a circulation channel through which a refrigerant circulates. In general, a compressor, a radiator (condenser or gas cooler), a decompressor (expansion valve), and an evaporator are sequentially inserted in the circulation channel in the flow direction of the refrigerant.
In addition, a gas-liquid separator that separates a gas phase component and a liquid phase component in the refrigerant is inserted in the circulation channel, and the gas-liquid separator is disposed downstream of the radiator or downstream of the evaporator. .

ところで近年、環境問題配慮の側面から、地球温暖化係数の小さい冷媒を用いた冷凍回路の開発が進められている。この種の冷媒の一例としては、無毒・不燃性である自然系のCO(二酸化炭素)が提案されている。冷媒としてCOを用いた冷凍回路は、COの臨界温度が約31℃と低いことから遷臨界サイクルであり、冷凍回路の高圧側では、冷媒が例えば約7.4MPaの圧力の超臨界状態になる。このような冷凍回路では、放熱器にてCOが凝縮しないため、気液分離器としてのアキュムレータは、循環流路の蒸発器よりも下流に介挿される。 By the way, in recent years, a refrigeration circuit using a refrigerant with a small global warming potential has been developed from the viewpoint of environmental issues. As an example of this type of refrigerant, non-toxic and non-flammable natural CO 2 (carbon dioxide) has been proposed. The refrigeration circuit using CO 2 as a refrigerant is a transcritical cycle because the critical temperature of CO 2 is as low as about 31 ° C. On the high pressure side of the refrigeration circuit, the refrigerant is in a supercritical state at a pressure of about 7.4 MPa, for example. Become. In such a refrigeration circuit, CO 2 does not condense in the radiator, so the accumulator as a gas-liquid separator is inserted downstream of the evaporator in the circulation channel.

その上、COを用いた冷凍回路では、冷凍成績係数(COP)を向上させるべく、循環流路に内部熱交換器が介挿されることもある(例えば特許文献1参照)。具体的には、内部熱交換器は、放熱器と減圧器との間を延びる循環流路の部分に介挿される高温部と、アキュムレータと圧縮機との間を延びる循環流路の部分に介挿される低温部とを有する。内部熱交換器では、高温部を流れる高圧の冷媒と低温部を流れる低圧の冷媒との間で熱交換が行われ、蒸発器の入口での冷媒のエンタルピが減少する。この結果、蒸発器における冷媒のエンタルピ変化量が増大し、冷凍回路の冷凍成績係数が向上する。
特開平11-193967号公報
In addition, in a refrigeration circuit using CO 2 , an internal heat exchanger may be interposed in the circulation channel in order to improve the refrigeration coefficient of performance (COP) (see, for example, Patent Document 1). Specifically, the internal heat exchanger is interposed between a high-temperature portion inserted in a circulation channel portion extending between the radiator and the decompressor, and a circulation channel portion extending between the accumulator and the compressor. And a low temperature part to be inserted. In the internal heat exchanger, heat exchange is performed between the high-pressure refrigerant flowing in the high-temperature part and the low-pressure refrigerant flowing in the low-temperature part, and the enthalpy of the refrigerant at the inlet of the evaporator is reduced. As a result, the enthalpy change amount of the refrigerant in the evaporator is increased, and the refrigeration performance coefficient of the refrigeration circuit is improved.
Japanese Patent Laid-Open No. 11-193967

従来の冷凍回路は、主要機器として、圧縮機、放熱器、減圧器、蒸発器及びアキュムレータを備え、また、これらの主要機器の出入口間を接続するための接続部品として、主要機器間を延びる管や、機器と管との間を接続するための継手部材を備える。
このため、冷凍回路を構成する主要機器や接続部品の点数は多数であり、冷凍回路の組立て作業、特に車両用空調システムの一部として冷凍回路を車両に搭載する作業は、エンジンルームのスペースが減少傾向にあることもあって煩雑である。
A conventional refrigeration circuit includes a compressor, a radiator, a decompressor, an evaporator, and an accumulator as main devices, and a pipe extending between the main devices as a connection part for connecting between the entrances and exits of these main devices. And a joint member for connecting the device and the pipe.
For this reason, there are a large number of main devices and connecting parts that make up the refrigeration circuit, and the assembly of the refrigeration circuit, especially the work of installing the refrigeration circuit in the vehicle as part of the vehicle air conditioning system, requires space in the engine room. It is complicated because it tends to decrease.

また、COを冷媒として用いた冷凍回路では、その高圧側の圧力が従来のHFC系冷媒を用いた場合に比べて高くなることから、継手部材周辺での冷媒漏洩が懸念される。
更に、冷凍回路に内部熱交換器を用いた場合、車両への搭載性の悪化や冷媒漏洩の懸念増大を招くのみならず、圧縮機の入口及び出口での冷媒温度が上昇してしまい、圧縮機の断熱効率(圧縮効率)が低下する。
Further, in a refrigeration circuit using CO 2 as a refrigerant, the pressure on the high pressure side is higher than that in the case of using a conventional HFC-based refrigerant, and there is a concern about refrigerant leakage around the joint member.
In addition, when an internal heat exchanger is used in the refrigeration circuit, not only worse mounting on the vehicle and increased concern about refrigerant leakage, but also the refrigerant temperature at the inlet and outlet of the compressor rises and compression occurs. The heat insulation efficiency (compression efficiency) of the machine decreases.

本発明は、上述した事情に基づいてなされたものであり、その目的とするところは、主要機器や接続部品の点数が削減されて冷媒漏洩が防止されるとともに、組立てが容易な蒸気圧縮式冷凍回路及び当該冷凍回路を用いた車両用空調システムを提供することにある。   The present invention has been made on the basis of the above-described circumstances, and the object of the present invention is to reduce the number of main devices and connecting parts to prevent refrigerant leakage and to make the vapor compression refrigeration easy to assemble. An object is to provide a vehicle and an air conditioning system for a vehicle using the refrigeration circuit.

上記の目的を達成するべく、本発明によれば、冷媒が循環する循環流路に介挿され、前記冷媒の流動方向でみて順次介挿された圧縮機、放熱器、内部熱交換器の高温部、減圧器、蒸発器、アキュムレータ及び前記内部熱交換器の低温部を備えた蒸気圧縮式冷凍回路において、前記減圧器、前記アキュムレータ及び前記内部熱交換器が互いに一体に形成されており、前記アキュムレータに貯留された前記冷媒の液相成分と前記内部熱交換器の低温部から流出した前記冷媒の気相成分との間で熱交換を行う過熱度低減手段を備え、前記過熱度低減手段は、前記内部熱交換器の低温部と前記圧縮機との間を延びる前記循環流路の部分に介挿され且つ前記アキュムレータの底部を通過するパイプを含み、前記パイプは、前記アキュムレータの内壁面に接続された入口端及び出口端を有し、前記パイプの出口端の位置は、前記入口端の位置よりも高く且つ前記アキュムレータに貯留された前記冷媒の液相成分の液面よりも高いことを特徴とする蒸気圧縮式冷凍回路が提供される(請求項1)。 In order to achieve the above object, according to the present invention, a high temperature of a compressor, a radiator, and an internal heat exchanger that are inserted in a circulation flow path through which the refrigerant circulates and sequentially inserted in the flow direction of the refrigerant. A vapor compression refrigeration circuit including a low-temperature part of the internal pressure exchanger, the decompressor, the evaporator, the accumulator, and the internal heat exchanger, wherein the decompressor, the accumulator, and the internal heat exchanger are formed integrally with each other , Superheating degree reducing means for exchanging heat between the liquid phase component of the refrigerant stored in an accumulator and the gas phase component of the refrigerant flowing out from the low temperature part of the internal heat exchanger, the superheat degree reducing means includes A pipe inserted in a portion of the circulation flow path extending between the low temperature portion of the internal heat exchanger and the compressor and passing through a bottom portion of the accumulator, and the pipe is formed on an inner wall surface of the accumulator. Has a connection to an inlet end and an outlet end, the position of the outlet end of the pipe, is higher than the liquid level of the liquid phase component of the refrigerant stored in the high and the accumulator than the position of the inlet end A vapor compression refrigeration circuit is provided (claim 1).

好ましくは、前記減圧器及び前記アキュムレータが互いに隣接している(請求項2) Preferably, the decompressor and the accumulator are adjacent to each other (Claim 2) .

好ましくは、前記過熱度低減手段は、前記パイプの内周面及び外周面のうち少なくとも一方に形成された凹凸部を更に含む(請求項)。
好ましくは、前記パイプは、前記アキュムレータに貯留された潤滑油を吸入するための油戻し孔を有する(請求項
Preferably, the degree of superheat reduction further includes a concavo-convex portion formed on at least one of an inner peripheral surface and an outer peripheral surface of the pipe (claim 3 ).
Preferably, the pipe has an oil return hole for sucking lubricating oil stored in the accumulator (claim 4).

好ましくは、前記冷媒はCOである(請求項)。
また、本発明によれば、請求項1乃至の何れかに記載の蒸気圧縮式冷凍回路を備えたことを特徴とする車両用空調システムが提供される(請求項)。
Preferably, the refrigerant is CO 2 (Claim 5 ).
According to the present invention, there is provided a vehicle air-conditioning system comprising the vapor compression refrigeration circuit according to any one of claims 1 to 5 (claim 6 ).

本発明の請求項1の蒸気圧縮式冷凍回路では、減圧器、アキュムレータ及び内部熱交換器が互いに一体に形成される。つまり、減圧器、アキュムレータ及び内部熱交換器が一つのモジュールを構成する。このため、冷凍回路を構成する主要機器の点数が削減されるとともに、減圧器及びアキュムレータと内部熱交換器との間をそれぞれ接続するための管及び当該管に付随する継手部材が削減され、接続部品の点数削減が図られる。この結果として、この蒸気圧縮式冷凍回路は、その組立が容易であるのみならず、小型化が図られる。   In the vapor compression refrigeration circuit according to the first aspect of the present invention, the decompressor, the accumulator and the internal heat exchanger are integrally formed with each other. That is, the decompressor, the accumulator, and the internal heat exchanger constitute one module. For this reason, the number of main equipments constituting the refrigeration circuit is reduced, and the pipes for connecting between the pressure reducer and the accumulator and the internal heat exchanger and the joint members attached to the pipes are reduced and connected. The number of parts can be reduced. As a result, the vapor compression refrigeration circuit is not only easy to assemble, but also can be miniaturized.

また、この蒸気圧縮式冷凍回路では、継手部材が削減されることで、継手部材周辺からの冷媒漏洩の虞が少なくなる。
過熱度低減手段は、アキュムレータに貯留された冷媒の液相成分と、内部熱交換器の低温部から流出した冷媒の気相成分との間で熱交換を行う。これにより、圧縮機の入口での冷媒の温度が低下し、圧縮機の断熱効率(圧縮効率)が向上する。その上、圧縮機の入口での冷媒の過熱度の低下によって、冷媒の圧縮に要する動力が減少する。この結果として、この冷凍回路ではCOPが向上する。
また、過熱度低減手段はパイプを含み、パイプは、内部熱交換器の低温部と圧縮機との間を延びる循環流路の部分に介挿され、且つ、アキュムレータの底部を通過する。この冷凍回路では、アキュムレータの底部を通過するパイプという簡単な構成によって、アキュムレータに貯留された冷媒の液相成分と、内部熱交換器の低温部から流出した冷媒の気相成分との間での熱交換が確実に行われる。
さらに、過熱度低減手段のパイプの出口端が入口端よりも高い位置にあることで、パイプがアキュムレータ内を上下方向にも延び、アキュムレータに貯留された冷媒の液相成分とパイプとの接触面積が大きくなる。この結果として、パイプを介した熱交換が効率的に行われ、冷凍回路のCOPが更に向上する。
また、パイプの出口端が入口端よりも高い位置にあることで、アキュムレータから液冷媒が流出するのが防止され、圧縮機での液圧縮の発生が防止される。
請求項2の蒸気圧縮式冷凍回路では、減圧器とアキュムレータとが隣接しているため、更なる小型化が図られる。
また、この蒸気圧縮式冷凍回路では、減圧器とアキュムレータとの間で熱交換が行われるため、内部熱交換器での熱交換量が少なくてもよい。この結果として、内部熱交換器の小型化が図られ、冷凍回路自体の更なる小型化が図られる。
Moreover, in this vapor compression refrigeration circuit, the risk of refrigerant leakage from the periphery of the joint member is reduced by reducing the number of joint members.
The superheat reduction means performs heat exchange between the liquid phase component of the refrigerant stored in the accumulator and the gas phase component of the refrigerant flowing out from the low temperature portion of the internal heat exchanger. Thereby, the temperature of the refrigerant | coolant in the inlet_port | entrance of a compressor falls, and the heat insulation efficiency (compression efficiency) of a compressor improves. In addition, the power required to compress the refrigerant decreases due to a decrease in the degree of superheat of the refrigerant at the inlet of the compressor. As a result, COP is improved in this refrigeration circuit.
The superheat reduction means includes a pipe, and the pipe is inserted into a portion of the circulation flow path extending between the low temperature portion of the internal heat exchanger and the compressor, and passes through the bottom of the accumulator. In this refrigeration circuit, a simple configuration of a pipe passing through the bottom of the accumulator allows a liquid phase component of the refrigerant stored in the accumulator and a gas phase component of the refrigerant flowing out from the low temperature part of the internal heat exchanger. Heat exchange is ensured.
Furthermore, since the outlet end of the pipe of the superheat reduction means is higher than the inlet end, the pipe also extends in the vertical direction in the accumulator, and the contact area between the liquid phase component of the refrigerant stored in the accumulator and the pipe Becomes larger. As a result, heat exchange through the pipe is efficiently performed, and the COP of the refrigeration circuit is further improved.
Further, since the outlet end of the pipe is positioned higher than the inlet end, the liquid refrigerant is prevented from flowing out from the accumulator, and the occurrence of liquid compression in the compressor is prevented.
In the vapor compression refrigeration circuit according to the second aspect, since the pressure reducer and the accumulator are adjacent to each other, further miniaturization can be achieved.
Further, in this vapor compression refrigeration circuit, heat exchange is performed between the decompressor and the accumulator, so that the amount of heat exchange in the internal heat exchanger may be small. As a result, the internal heat exchanger can be downsized, and the refrigeration circuit itself can be further downsized.

請求項の蒸気圧縮式冷凍回路では、過熱度低減手段がパイプの内周面及び外周面のうち少なくとも一方に形成された凹凸部を更に含む。この凹凸部によってパイプの表面積が増大されることで、パイプを介した熱交換が効率的に行われ、冷凍回路のCOPが更に向上する。
請求項の蒸気圧縮式冷凍回路では、過熱度低減手段のパイプがアキュムレータに貯留された潤滑油を吸入するための油戻し孔を有する。この結果として、圧縮機に潤滑油が確実に返戻され、圧縮機の耐久性が確保される。
In the vapor compression refrigeration circuit according to the third aspect, the superheat degree reducing means further includes an uneven portion formed on at least one of the inner peripheral surface and the outer peripheral surface of the pipe. The surface area of the pipe is increased by the uneven portion, whereby heat exchange through the pipe is efficiently performed, and the COP of the refrigeration circuit is further improved.
In the vapor compression refrigeration circuit according to the fourth aspect , the pipe of the superheat reduction means has an oil return hole for sucking the lubricating oil stored in the accumulator. As a result, the lubricating oil is reliably returned to the compressor, and the durability of the compressor is ensured.

請求項の蒸気圧縮式冷凍回路では、冷媒としてCOを用いているので、地球環境に優しい。また、この冷凍回路では、継手部材が削減されているので、圧力が高くなるCOを冷媒として用いても、冷媒の漏洩が防止される。
請求項の車両用空調システムは、請求項1乃至の蒸気圧縮式冷凍回路を用いているので、車両への搭載が容易である。
In the vapor compression refrigeration circuit of claim 5 , since CO 2 is used as the refrigerant, it is friendly to the global environment. Further, in this refrigeration circuit, since the number of joint members is reduced, leakage of the refrigerant is prevented even when CO 2 whose pressure is increased is used as the refrigerant.
Since the vehicular air conditioning system according to the sixth aspect uses the vapor compression refrigeration circuit according to the first to fifth aspects, it can be easily mounted on the vehicle.

図1は、一実施形態に係る車両用空調システムの冷凍回路の概略を示し、冷凍回路は蒸気圧縮式であり、車室2へ送られる空気流の冷却又は除湿に利用される。
冷凍回路は循環流路4を有し、自然系冷媒であるCO冷媒(R-744)が、冷凍機油としての潤滑油を少量含んだ状態で循環流路4を循環する。循環流路4は、エンジンルーム6から隔壁8を貫通して車室2の前方部分に渡り、車室2の前方部分は、インストルメントパネル10によって機器スペース12として区画されている。
FIG. 1 shows an outline of a refrigeration circuit of a vehicle air conditioning system according to an embodiment. The refrigeration circuit is a vapor compression type and is used for cooling or dehumidifying an air flow sent to a passenger compartment 2.
The refrigeration circuit has a circulation flow path 4, and CO 2 refrigerant (R-744), which is a natural refrigerant, circulates in the circulation flow path 4 with a small amount of lubricating oil as refrigerating machine oil included. The circulation channel 4 passes from the engine room 6 through the partition wall 8 to the front part of the vehicle compartment 2, and the front part of the vehicle compartment 2 is partitioned as an instrument space 12 by the instrument panel 10.

循環流路4には、圧縮機14、放熱器16及び蒸発器18が介挿され、更に、内部熱交換器モジュール20が介挿されている。モジュール20は、減圧器(膨張弁)、アキュムレータ(気液分離器)及び内部熱交換器を互いに一体に形成して構成されている。このため循環流路4には、実質的に、圧縮機14、放熱器(ガスクーラ)16、内部熱交換器の高温部(高圧部)、減圧器、蒸発器18、アキュムレータ及び内部熱交換器の低温部が順次介挿されている。   In the circulation channel 4, a compressor 14, a radiator 16 and an evaporator 18 are inserted, and an internal heat exchanger module 20 is further inserted. The module 20 is configured by integrally forming a decompressor (expansion valve), an accumulator (gas-liquid separator), and an internal heat exchanger. For this reason, the circulation flow path 4 substantially includes a compressor 14, a radiator (gas cooler) 16, a high temperature part (high pressure part) of an internal heat exchanger, a decompressor, an evaporator 18, an accumulator, and an internal heat exchanger. The low temperature part is inserted sequentially.

以下、モジュール20について説明する。
図2及び図3に示したように、モジュール20は、直方体形状のブロック22及び箱状のケーシング24を有する。ブロック22及びケーシング24は、ろう付けによって互いに接合されており、これらブロック22及びケーシング24の接合体は、一つの直方体形状をなす。すなわち、ブロック22及びケーシング24の正面及び背面は、それぞれ面一に位置付けられている。
Hereinafter, the module 20 will be described.
As shown in FIGS. 2 and 3, the module 20 includes a rectangular parallelepiped block 22 and a box-shaped casing 24. The block 22 and the casing 24 are joined to each other by brazing, and the joined body of the block 22 and the casing 24 forms one rectangular parallelepiped shape. That is, the front and back surfaces of the block 22 and the casing 24 are positioned flush with each other.

ブロック22及びケーシング24の接合体の背面には、2つのアダプタ26,26がろう付けによって接合され、各アダプタ26は、所定の厚さを有した長円形状を有する。これらアダプタ26の各外面には、U字形状の熱交換チューブ28の両端部が、ろう付けによって接合されている。
接合体の正面には、4つのポート30,32,34,36が開口しており、これらのうち2つのポート30,32が、ブロック22に上下に離間して形成され、残りの2つのポート34,36がケーシング24に上下に離間して形成されている。ブロック22に形成された2つのポート30,32のうち、下側のポート32には、図示しないけれども、放熱器16の出口から延びる管が継手部材を介して接続され、上側のポート30には、蒸発器18の入口から延びる管が継手部材を介して接続される。
Two adapters 26 and 26 are joined to the back surface of the joined body of the block 22 and the casing 24 by brazing, and each adapter 26 has an oval shape having a predetermined thickness. Both ends of a U-shaped heat exchange tube 28 are joined to each outer surface of the adapter 26 by brazing.
Four ports 30, 32, 34, and 36 are opened on the front surface of the joined body. Of these, two ports 30, 32 are formed on the block 22 so as to be spaced apart from each other, and the remaining two ports. 34 and 36 are formed in the casing 24 so as to be spaced apart from each other in the vertical direction. Of the two ports 30 and 32 formed in the block 22, although not shown, a pipe extending from the outlet of the radiator 16 is connected to the lower port 32 via a joint member, and the upper port 30 is connected to the upper port 30. A pipe extending from the inlet of the evaporator 18 is connected via a joint member.

また、ケーシング24に形成されたポート34,36のうち、下側のポート36には、圧縮機14の入口から延びる管が継手部材を介して接続され、上側のポート34には、蒸発器18の出口から延びる管が継手部材を介して接続される。なお、ブロック22及びケーシング24の上側のポート30,34は、上下方向での位置が同じであり、これらのポート30,34には、一つの継手部材によって、蒸発器18から延びる2つの管が接続される。   Of the ports 34 and 36 formed in the casing 24, a pipe extending from the inlet of the compressor 14 is connected to the lower port 36 via a joint member, and the evaporator 18 is connected to the upper port 34. A pipe extending from the outlet is connected via a joint member. The ports 30 and 34 on the upper side of the block 22 and the casing 24 have the same vertical position, and these ports 30 and 34 have two pipes extending from the evaporator 18 by one joint member. Connected.

図4に示したように、ブロック22には、下側のポート32から背面まで真っ直ぐに延びる第1の内部流路38が形成されている。第1の内部流路38は、ブロック22の背面に開口した開口端を有し、第1の内部流路38の開口端には、下側のアダプタ26におけるブロック22側の面(内面)に形成された溝(中央溝)40の一端部が連なっている。中央溝40は、アダプタ26の長手方向に延び、中央溝40の他端部は、アダプタ26の中央を厚さ方向に貫通する中央孔42に連通している。中央孔42は、ブロック22とは反対側のアダプタ26の面(外面)に開口した開口端を有する。   As shown in FIG. 4, the block 22 is formed with a first internal flow path 38 that extends straight from the lower port 32 to the back surface. The first internal flow path 38 has an open end that opens to the back surface of the block 22, and the open end of the first internal flow path 38 is on the surface (inner surface) on the block 22 side of the lower adapter 26. One end of the formed groove (central groove) 40 is continuous. The central groove 40 extends in the longitudinal direction of the adapter 26, and the other end of the central groove 40 communicates with a central hole 42 that penetrates the center of the adapter 26 in the thickness direction. The central hole 42 has an open end that opens to the surface (outer surface) of the adapter 26 opposite to the block 22.

ここで、図5に示したように、熱交換チューブ28は同軸の二重管構造を有し、内部熱交換器として機能する。即ち、熱交換チューブ28は小径管44を含み、小径管44は同軸の大径管46によって囲まれている。熱交換チューブ28にあっては、小径管44の内部が流路(高温部)48として確保され、この内部流路48と上下のアダプタ26の中央孔42とが連通している。   Here, as shown in FIG. 5, the heat exchange tube 28 has a coaxial double tube structure and functions as an internal heat exchanger. That is, the heat exchange tube 28 includes a small diameter tube 44, and the small diameter tube 44 is surrounded by a coaxial large diameter tube 46. In the heat exchange tube 28, the inside of the small diameter tube 44 is secured as a flow path (high temperature part) 48, and the internal flow path 48 and the central hole 42 of the upper and lower adapters 26 communicate with each other.

また、熱交換チューブ28にあっては、小径管44と大径管46との間に、これら小径管44及び大径管46とを一体に連結する柱状部50によって、略円筒状の筒状流路(低温部)52が確保されている。アダプタ26には、中央孔42の上下に位置して上孔54及び下孔56が形成され、これら上孔54及び下孔56もアダプタ26を厚さ方向に貫通している。上下のアダプタ26の外面に開口する上孔54及び下孔56の開口端は、熱交換チューブ28の筒状流路52に接続されている。そして、アダプタ26の内面には上溝58及び下溝60が形成され、これら上溝58及び下溝60は、上孔54及び下孔56から、アダプタ26の長手方向でみて中央溝40とは反対側に向けて延びている。   Further, in the heat exchange tube 28, a substantially cylindrical tubular shape is provided between the small-diameter pipe 44 and the large-diameter pipe 46 by the columnar portion 50 that integrally connects the small-diameter pipe 44 and the large-diameter pipe 46. A flow path (low temperature part) 52 is secured. An upper hole 54 and a lower hole 56 are formed in the adapter 26 above and below the central hole 42, and the upper hole 54 and the lower hole 56 also penetrate the adapter 26 in the thickness direction. The open ends of the upper hole 54 and the lower hole 56 that open to the outer surfaces of the upper and lower adapters 26 are connected to the cylindrical flow path 52 of the heat exchange tube 28. An upper groove 58 and a lower groove 60 are formed on the inner surface of the adapter 26. The upper groove 58 and the lower groove 60 are directed from the upper hole 54 and the lower hole 56 toward the side opposite to the central groove 40 in the longitudinal direction of the adapter 26. It extends.

上側のアダプタ26の内面に形成された中央溝40の一端部には、ブロック22に形成された第2の内部流路62が連なっている。第2の内部流路62は、ブロック22の背面から正面に向かって途中まで水平に延び、第2の内部流路62の内端は、ブロック22内を上下に延びる弁孔64の下端に連なっている。弁孔64の上端は、ブロック22の上側のポート30から背面に向かって途中まで延びる第3の内部流路66の内端に連なっている。   A second internal channel 62 formed in the block 22 is connected to one end of the central groove 40 formed in the inner surface of the upper adapter 26. The second internal flow path 62 extends horizontally from the back surface of the block 22 toward the front, and the inner end of the second internal flow path 62 is connected to the lower end of the valve hole 64 extending vertically in the block 22. ing. The upper end of the valve hole 64 is connected to the inner end of the third internal flow channel 66 extending partway from the upper port 30 of the block 22 toward the back.

弁孔64の上端部は、球面座として形成され、球面座には上方から球状の弁体68が座っている。球面座及び弁体68は減圧器を構成している。弁体68の上側には、圧縮コイルばね70が配置され、圧縮コイルばね70は、弁体68を下方に向けて常に付勢している。一方、弁体68の下側には、ブロック22内を上下に延びるロッド72が接続され、ロッド72の下端部は第1の内部流路38内に位置付けられている。ロッド72は、その下端部(感温部)の温度に応じて伸縮する。従って、ロッド72及び圧縮コイルばね70の付勢力がバランスするように、球面座からの弁体68のリフト量即ち減圧器の弁開度が決定される。   The upper end portion of the valve hole 64 is formed as a spherical seat, and a spherical valve body 68 sits on the spherical seat from above. The spherical seat and the valve body 68 constitute a pressure reducer. A compression coil spring 70 is disposed above the valve body 68, and the compression coil spring 70 always urges the valve body 68 downward. On the other hand, a rod 72 extending vertically in the block 22 is connected to the lower side of the valve body 68, and a lower end portion of the rod 72 is positioned in the first internal flow path 38. The rod 72 expands and contracts according to the temperature of its lower end (temperature sensing part). Therefore, the lift amount of the valve body 68 from the spherical seat, that is, the valve opening of the decompressor is determined so that the urging forces of the rod 72 and the compression coil spring 70 are balanced.

一方、ケーシング24は、図6及び図7に示したように、ブロック22側の側面が開口した箱状をなし、ケーシング24の開口縁は、ブロック22の側面の周縁にろう付けによって接合されている。
ケーシング24の後壁には、互いに上下に離間した4つの接続孔72,74,76,78が形成され、接続孔72,74,76,78はケーシング24の後壁をその幅方向中央にて貫通している。接続孔72,74,76,78は2つで1組をなし、ケーシング24の背面に開口した一組の接続孔72,74,76,78の開口端には、各アダプタ26の内面に形成された上溝58又は下溝60の一端部が連なっている。従って、接続孔72,74,76,78は、アダプタ26を通じて、熱交換チューブ28の筒状流路52に連なっている。
On the other hand, as shown in FIGS. 6 and 7, the casing 24 has a box shape in which the side surface on the block 22 side is open, and the opening edge of the casing 24 is joined to the peripheral edge of the side surface of the block 22 by brazing. Yes.
Four connecting holes 72, 74, 76, and 78 that are spaced apart from each other are formed in the rear wall of the casing 24, and the connecting holes 72, 74, 76, and 78 are located at the center in the width direction of the casing 24. It penetrates. The connection holes 72, 74, 76, and 78 form a pair, and the opening ends of the pair of connection holes 72, 74, 76, and 78 that are opened on the back surface of the casing 24 are formed on the inner surface of each adapter 26. One end of the upper groove 58 or the lower groove 60 is continuous. Accordingly, the connection holes 72, 74, 76, 78 are connected to the cylindrical flow path 52 of the heat exchange tube 28 through the adapter 26.

ケーシング24の内部には、ローフィンチューブとも称される熱交換のためのパイプ(伝熱管)80が配置され、図8に詳細に示したように、パイプ80の外周面には、放熱フィンとして、螺旋状に延びる突条82が一体に形成されている。パイプ80の出口端は、ケーシング24の前壁の内面にろう付けによって接合され、この出口端によって囲まれた前壁の領域に、下側のポート36が開口している。また、パイプ80の入口端は、ケーシング24の後壁の内面にろう付けによって接合され、この入口端に囲まれた後壁の領域に、下側の一組の接続孔76,78が開口している。   Inside the casing 24, a pipe (heat transfer tube) 80 for heat exchange, also referred to as a low fin tube, is arranged. As shown in detail in FIG. A spirally extending protrusion 82 is integrally formed. The outlet end of the pipe 80 is joined to the inner surface of the front wall of the casing 24 by brazing, and the lower port 36 is opened in the area of the front wall surrounded by the outlet end. The inlet end of the pipe 80 is joined to the inner surface of the rear wall of the casing 24 by brazing, and a pair of lower connection holes 76 and 78 are opened in the region of the rear wall surrounded by the inlet end. ing.

ここで、パイプ80は、ケーシング24によって囲まれた直方体形状の空間84の底部を延びているけれども、上下方向でみて、パイプ80の入口端の位置は、出口端の位置よりも低い。このため、パイプ80は水平に延びるだけでなく、上下方向にも延びている。そして、この空間84の底部には、潤滑油及び冷媒の液相成分が貯留されるけれども、パイプ80の出口端は、液相成分の液面86よりも高い位置に位置付けられている。   Here, although the pipe 80 extends in the bottom of the rectangular space 84 surrounded by the casing 24, the position of the inlet end of the pipe 80 is lower than the position of the outlet end in the vertical direction. For this reason, the pipe 80 extends not only horizontally but also vertically. Although the liquid phase components of the lubricating oil and the refrigerant are stored at the bottom of the space 84, the outlet end of the pipe 80 is positioned higher than the liquid surface 86 of the liquid phase component.

なお、パイプ80には、その周壁の底部を貫通して油戻し孔88が形成されている。
以下、図9のモリエール線図(p-h線図)を参照しながら、上述した冷凍回路の動作について説明する。
この冷凍回路では、エンジンから動力供給を受けた圧縮機14が、モジュール20のポート36から流出する低温低圧の気相の冷媒を吸入する。圧縮機14の入口での冷媒の状態は、図9中、点aにて示される。
Note that an oil return hole 88 is formed in the pipe 80 so as to penetrate the bottom of the peripheral wall.
Hereinafter, the operation of the above-described refrigeration circuit will be described with reference to the Moliere diagram (ph diagram) of FIG.
In this refrigeration circuit, the compressor 14 supplied with power from the engine sucks the low-temperature and low-pressure gas-phase refrigerant flowing out from the port 36 of the module 20. The state of the refrigerant at the inlet of the compressor 14 is indicated by a point a in FIG.

圧縮機14は、吸入した冷媒を圧縮して高温高圧の超臨界状態にしてから、放熱器16に向けて吐出する。すなわち、圧縮機14は、冷媒の吸入、圧縮、吐出工程を実行し、これにより冷媒は、循環流路4内を循環させられる。圧縮機14の出口での冷媒の状態は、点bにて示される。
圧縮機14から流出した冷媒は、放熱器16を通過する際、車両前方又はファンからの風によって空冷され、その温度が低下する。放熱器16の出口での冷媒の状態は、点cにて示される。
The compressor 14 compresses the sucked refrigerant to a supercritical state of high temperature and pressure, and then discharges it toward the radiator 16. In other words, the compressor 14 executes the refrigerant suction, compression, and discharge steps, whereby the refrigerant is circulated in the circulation flow path 4. The state of the refrigerant at the outlet of the compressor 14 is indicated by a point b.
When the refrigerant flowing out of the compressor 14 passes through the radiator 16, it is air-cooled by the wind from the front of the vehicle or from the fan, and its temperature decreases. The state of the refrigerant at the outlet of the radiator 16 is indicated by a point c.

放熱器16から流出した冷媒は、ポート32を通じてモジュール20に流入する。モジュール20に流入した冷媒は、ブロック22の第1の内部流路38、下側のアダプタ26の中央溝40及び中央孔42を順次流れ、そして、熱交換チューブ28の内部流路48に流入する。熱交換チューブ28では、内部流路48を流れる冷媒と筒状流路52を流れる冷媒との間での熱交換が行われる。このため、内部流路48から流出した冷媒のエンタルピは、内部流路48に流入する前よりもΔh2だけ低下しており、内部流路48から流出した冷媒の状態は、点dにて示される。   The refrigerant flowing out of the radiator 16 flows into the module 20 through the port 32. The refrigerant flowing into the module 20 sequentially flows through the first internal flow path 38 of the block 22, the central groove 40 and the central hole 42 of the lower adapter 26, and then flows into the internal flow path 48 of the heat exchange tube 28. . In the heat exchange tube 28, heat exchange is performed between the refrigerant flowing through the internal flow path 48 and the refrigerant flowing through the cylindrical flow path 52. For this reason, the enthalpy of the refrigerant that has flowed out of the internal flow path 48 is lower by Δh2 than before flowing into the internal flow path 48, and the state of the refrigerant that has flowed out of the internal flow path 48 is indicated by a point d. .

熱交換チューブ28の内部流路48を通過した冷媒は、上側のアダプタ26の中央孔42及び中央溝40を通じてブロック22の第2の内部流路62に流入する。そして、冷媒は、弁孔64及び第3の内部流路66を流れ、ポート30を通じてモジュール20から一旦流出する。ここで弁孔64の上端部における流路断面積は、減圧器を構成する球面座及び弁体68によって縮小されており、冷媒は、弁孔64の上端部を通過するときに膨張する。この膨張に伴い、冷媒の圧力は低下して臨界圧力以下になる。ポート30での冷媒の状態は、気液混合状態であり、点eにて表される。   The refrigerant that has passed through the internal flow path 48 of the heat exchange tube 28 flows into the second internal flow path 62 of the block 22 through the central hole 42 and the central groove 40 of the upper adapter 26. Then, the refrigerant flows through the valve hole 64 and the third internal flow channel 66 and once flows out of the module 20 through the port 30. Here, the cross-sectional area of the flow path at the upper end portion of the valve hole 64 is reduced by the spherical seat and the valve body 68 constituting the decompressor, and the refrigerant expands when passing through the upper end portion of the valve hole 64. Along with this expansion, the pressure of the refrigerant decreases and becomes below the critical pressure. The state of the refrigerant at the port 30 is a gas-liquid mixed state and is represented by a point e.

気液混合状態の冷媒に含まれる液相成分は、蒸発器18を通過する際、蒸発して周囲から気化熱を奪い、これにより、蒸発器18の外側を流れる空気流が冷風になる。この冷風が、車室2に流入することで、車室2が冷房又は除湿される。蒸発器18の出口での冷媒の状態は、点fにて表される。
蒸発器18で液相成分がほとんど蒸発した冷媒は、ポート34を通じてモジュール20のケーシング24に流入する。ケーシング24に流入した冷媒は、空間84を流れてから、接続孔72,74に流入するが、冷媒中に僅かに残存する液相成分は、接続孔72,74に流入せずにケーシング24の内面に衝突して付着する。付着した冷媒の液相成分は、そのまま内面を伝って流下し、空間84の底部に貯留される。
When the liquid phase component contained in the refrigerant in the gas-liquid mixed state passes through the evaporator 18, it evaporates and takes heat of vaporization from the surroundings, whereby the air flow flowing outside the evaporator 18 becomes cold air. The cold air flows into the passenger compartment 2 so that the passenger compartment 2 is cooled or dehumidified. The state of the refrigerant at the outlet of the evaporator 18 is represented by a point f.
The refrigerant in which the liquid phase component is almost evaporated in the evaporator 18 flows into the casing 24 of the module 20 through the port 34. The refrigerant flowing into the casing 24 flows through the space 84 and then flows into the connection holes 72 and 74. However, the liquid phase component slightly remaining in the refrigerant does not flow into the connection holes 72 and 74 but flows into the connection holes 72 and 74. It collides with and adheres to the inner surface. The liquid phase component of the adhering refrigerant flows down the inner surface as it is and is stored at the bottom of the space 84.

一方、空間84を通過した冷媒の気相成分は、上側のアダプタ26の上溝58及び下溝60、上孔54及び下孔56を通じて、熱交換チューブ28の筒状流路52に流入する。前述したように、筒状流路52を流れる冷媒は、内部流路48を流れる冷媒との熱交換によって加熱され、エンタルピがΔh1だけ増大する。筒状流路52を通過した冷媒のパイプ80の入口での状態は、点gにて示される。なお、熱力学第一法則より、Δh1≒Δh2である。   On the other hand, the gas phase component of the refrigerant that has passed through the space 84 flows into the cylindrical flow path 52 of the heat exchange tube 28 through the upper groove 58 and the lower groove 60, the upper hole 54, and the lower hole 56 of the upper adapter 26. As described above, the refrigerant flowing through the cylindrical flow path 52 is heated by heat exchange with the refrigerant flowing through the internal flow path 48, and the enthalpy increases by Δh1. The state of the refrigerant that has passed through the cylindrical flow path 52 at the inlet of the pipe 80 is indicated by a point g. From the first law of thermodynamics, Δh1≈Δh2.

この後、筒状流路52を通過した冷媒は、下側のアダプタ26の上孔54及び下孔56、上溝58及び下溝60、並びに接続孔76,78を通じて、パイプ80内に流入する。パイプ80内を通過する冷媒と、パイプ80の外周面に接触する冷媒の液相成分との間でも熱交換が行われ、冷媒のエンタルピがΔh3だけ低下する。パイプ80を通過した冷媒のポート36での状態は、点aにて示される。   Thereafter, the refrigerant that has passed through the cylindrical flow channel 52 flows into the pipe 80 through the upper hole 54 and the lower hole 56, the upper groove 58 and the lower groove 60, and the connection holes 76 and 78 of the lower adapter 26. Heat exchange is also performed between the refrigerant passing through the pipe 80 and the liquid phase component of the refrigerant in contact with the outer peripheral surface of the pipe 80, and the enthalpy of the refrigerant is reduced by Δh3. The state of the refrigerant passing through the pipe 80 at the port 36 is indicated by a point a.

そして、パイプ80を通過した冷媒は、ポート36を通じてモジュール20から流出し、再び圧縮機14に吸入される。なお、パイプ80内での冷媒の流動によって、空間84の底に溜まった潤滑油が、油戻し孔88を通じてパイプ80内に吸入される。このため、冷媒とともに、潤滑油も圧縮機14に返戻される。
上述した冷凍回路では、減圧器、アキュムレータ及び内部熱交換器が一体に形成され、相互に分離不能の一つのモジュール20を構成している。このため、冷凍回路を構成する主要機器の点数が削減されるとともに、減圧器及びアキュムレータと内部熱交換器との間をそれぞれ接続するための管及び当該管に付随する継手部材が削減され、接続部品の点数削減が図られる。この結果として、この冷凍回路は、その組立が容易であるのみならず、小型化が図られ、この冷凍回路を用いた車両用空調システムは、車両への搭載が容易である。
Then, the refrigerant that has passed through the pipe 80 flows out of the module 20 through the port 36 and is sucked into the compressor 14 again. Note that the lubricating oil accumulated at the bottom of the space 84 due to the flow of the refrigerant in the pipe 80 is sucked into the pipe 80 through the oil return hole 88. For this reason, the lubricating oil is also returned to the compressor 14 together with the refrigerant.
In the above-described refrigeration circuit, the decompressor, the accumulator, and the internal heat exchanger are integrally formed to constitute one module 20 that cannot be separated from each other. For this reason, the number of main equipments constituting the refrigeration circuit is reduced, and the pipes for connecting between the pressure reducer and the accumulator and the internal heat exchanger and the joint members attached to the pipes are reduced and connected. The number of parts can be reduced. As a result, the refrigeration circuit is not only easy to assemble but also downsized, and the vehicle air conditioning system using the refrigeration circuit can be easily mounted on a vehicle.

また、この冷凍回路では、継手部材が削減されることで、継手部材周辺からの冷媒漏洩の虞が少なくなる。
更に、この冷凍回路に用いたモジュール20では、減圧器を内蔵したブロック22とアキュムレータを構成するケーシング24とが側面を境にして隣接(面接触)し、左右2層構造であるため、更なる小型化が図られる。
Moreover, in this refrigeration circuit, the risk of refrigerant leakage from the vicinity of the joint member is reduced by reducing the number of joint members.
Further, in the module 20 used in this refrigeration circuit, the block 22 incorporating the pressure reducer and the casing 24 constituting the accumulator are adjacent (surface contact) with the side surface as a boundary, and have a left and right two-layer structure. Miniaturization is achieved.

また、この冷凍回路に用いたモジュール20によれば、減圧器とアキュムレータとの間で熱交換が行われるため、内部熱交換器での熱交換量が少なくてもよい。この結果として、内部熱交換器としての熱交換チューブ28の小型化が図られ、冷凍回路自体の更なる小型化が図られる。なお、熱交換チューブ28では、内部流路48での冷媒の流動方向と、筒状流路52での冷媒の流動方向とが互いに逆向きであるのが好ましい。これによって、内部流路48と筒状流路52との間で冷媒の温度差を大きくすることができ、熱交換の効率を高めることができるからである。   Further, according to the module 20 used in this refrigeration circuit, heat exchange is performed between the pressure reducer and the accumulator, so that the amount of heat exchange in the internal heat exchanger may be small. As a result, the heat exchange tube 28 as an internal heat exchanger can be downsized, and the refrigeration circuit itself can be further downsized. In the heat exchange tube 28, the flow direction of the refrigerant in the internal flow path 48 and the flow direction of the refrigerant in the cylindrical flow path 52 are preferably opposite to each other. This is because the temperature difference of the refrigerant can be increased between the internal channel 48 and the cylindrical channel 52, and the efficiency of heat exchange can be increased.

その上、この冷凍回路に用いたモジュール20は、過熱度低減手段としてパイプ80を有する。このパイプ80を介して、アキュムレータに貯留された冷媒の液相成分と、内部熱交換器の低温部から流出した冷媒の気相成分との間で熱交換が行なわれることにより、圧縮機14の入口での冷媒の温度が低下し、圧縮機14の断熱効率(圧縮効率)が向上し、冷媒の圧縮に要する動力が減少する。即ち、圧縮機での等エントロピ変化の場合、冷媒の過熱度が小さいほど、モリエール線図における傾きが小さくなり、圧縮機の動力が減少する。これらの結果としても、この冷凍回路ではCOPが向上する。   In addition, the module 20 used in this refrigeration circuit has a pipe 80 as superheat reduction means. Through this pipe 80, heat exchange is performed between the liquid phase component of the refrigerant stored in the accumulator and the gas phase component of the refrigerant flowing out from the low temperature portion of the internal heat exchanger, so that the compressor 14 The temperature of the refrigerant at the inlet is lowered, the heat insulation efficiency (compression efficiency) of the compressor 14 is improved, and the power required for refrigerant compression is reduced. That is, in the case of an isentropic change in the compressor, the smaller the refrigerant superheat, the smaller the inclination in the Moliere diagram, and the compressor power decreases. As a result of these, the COP is improved in this refrigeration circuit.

なお、過熱度低減手段の構成は特に限定されないが、パイプ80を用いるのが好ましい。パイプ80という簡単な構成によって、アキュムレータに貯留された冷媒の液相成分と、内部熱交換器の低温部から流出した冷媒の気相成分との間での熱交換が確実に行われるからである。
また、過熱度低減手段は、パイプ80の内周面及び外周面のうち少なくとも一方に、突条82のような凹凸を有するのが好ましい。表面積が増大することで、パイプ80を介した熱交換が効率的に行われ、冷凍回路のCOPが更に向上するからである。
The configuration of the superheat degree reducing means is not particularly limited, but the pipe 80 is preferably used. This is because the simple configuration of the pipe 80 ensures the heat exchange between the liquid phase component of the refrigerant stored in the accumulator and the gas phase component of the refrigerant flowing out from the low temperature portion of the internal heat exchanger. .
Further, it is preferable that the superheat degree reducing means has irregularities such as protrusions 82 on at least one of the inner peripheral surface and the outer peripheral surface of the pipe 80. This is because the heat exchange through the pipe 80 is efficiently performed by increasing the surface area, and the COP of the refrigeration circuit is further improved.

更に、パイプ80は油戻し孔88を有するのが好ましく、この場合、圧縮機14に潤滑油が確実に返戻され、圧縮機14の耐久性が確保される。
その上、パイプ80の出口端は、入口端よりも高い位置にあるのが好ましい。これにより、パイプ80がアキュムレータ内を上下方向にも延び、アキュムレータに貯留された冷媒の液相成分とパイプとの接触面積が大きくなる。この結果として、パイプ80を介した熱交換が効率的に行われ、冷凍回路のCOPが更に向上する。
Further, the pipe 80 preferably has an oil return hole 88. In this case, the lubricating oil is reliably returned to the compressor 14, and the durability of the compressor 14 is ensured.
Moreover, the outlet end of the pipe 80 is preferably higher than the inlet end. As a result, the pipe 80 also extends in the vertical direction in the accumulator, and the contact area between the liquid phase component of the refrigerant stored in the accumulator and the pipe increases. As a result, heat exchange through the pipe 80 is efficiently performed, and the COP of the refrigeration circuit is further improved.

また、パイプ80の出口端が入口端よりも高い位置にあることで、アキュムレータから液冷媒が流出するのが防止され、圧縮機14での液圧縮の発生が防止される。
一方、この冷凍回路は、冷媒としてCOを用いているので、地球環境に優しい。また、この冷凍回路では、継手部材が削減されているので、圧力が高くなるCOを冷媒として用いても、冷媒の漏洩が防止される。
Further, since the outlet end of the pipe 80 is positioned higher than the inlet end, the liquid refrigerant is prevented from flowing out from the accumulator, and the occurrence of liquid compression in the compressor 14 is prevented.
On the other hand, since this refrigeration circuit uses CO 2 as a refrigerant, it is friendly to the global environment. Further, in this refrigeration circuit, since the number of joint members is reduced, leakage of the refrigerant is prevented even when CO 2 whose pressure is increased is used as the refrigerant.

本発明は、上記した一実施形態に限定されることはなく、種々変形が可能であり、例えば冷媒はCOに限定されることはない。
上記した一実施形態では、モジュール20を構成する各部品の材質は特に限定はされないけれども、減圧器とアキュムレータとの間の熱交換効率を高めるため、例えば銅やアルミニウム等の熱伝導率に優れた金属を用いるのが好ましい。
The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the refrigerant is not limited to CO 2 .
In the above-described embodiment, although the material of each component constituting the module 20 is not particularly limited, in order to increase the heat exchange efficiency between the pressure reducer and the accumulator, for example, it has excellent thermal conductivity such as copper and aluminum. It is preferable to use a metal.

上記した一実施形態では、二重管構造の熱交換チューブ28を使用したけれども、図9に示したように、複数の細孔90をそれぞれ有する例えば3つの扁平チューブ92を積層して形成した熱交換チューブ94を用いてもよい。熱交換チューブ94によれば、高圧側と低圧側を交互に積層することで、熱交換効率を向上させることができる。
上記した一実施形態では、モジュール20の減圧器は、弁開度が温度によって変化する温度式膨張弁であったけれども、冷媒の流量によって弁開度が変化する可変オリフィスであってもよい。
In the above-described embodiment, the heat exchange tube 28 having a double tube structure is used. However, as shown in FIG. 9, for example, the heat formed by laminating, for example, three flat tubes 92 each having a plurality of pores 90. An exchange tube 94 may be used. According to the heat exchange tube 94, heat exchange efficiency can be improved by alternately laminating the high pressure side and the low pressure side.
In the above-described embodiment, the decompressor of the module 20 is a temperature type expansion valve in which the valve opening degree varies depending on the temperature, but may be a variable orifice in which the valve opening degree varies depending on the flow rate of the refrigerant.

本発明の一実施形態に係る車両用空調システムの冷凍回路の概略構成図である。It is a schematic block diagram of the refrigerating circuit of the vehicle air conditioning system which concerns on one Embodiment of this invention. 図1の冷凍回路に適用されたモジュールの概略を示す斜視図である。It is a perspective view which shows the outline of the module applied to the refrigeration circuit of FIG. 図2のモジュールの平面図であり、(a)は上面図、(b)は正面図、(c)は側面図そして、(d)は背面図である。FIG. 3 is a plan view of the module of FIG. 2, where (a) is a top view, (b) is a front view, (c) is a side view, and (d) is a rear view. 図3(a)のIV-IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of Fig.3 (a). 図2のモジュールに用いられた熱交換チューブに、一つのアダプタを接合した状態を示す図である。It is a figure which shows the state which joined one adapter to the heat exchange tube used for the module of FIG. 図3(a)のVI-VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of Fig.3 (a). 図3(c)のVII-VII線に沿う断面図である。It is sectional drawing which follows the VII-VII line of FIG.3 (c). 図2のモジュールに用いられたパイプを伸ばした状態で詳細に示す部分断面図である。It is a fragmentary sectional view shown in detail in the state which extended the pipe used for the module of FIG. 図1の冷凍回路の動作を説明するためのモリエール線図である。FIG. 2 is a Mollier chart for explaining the operation of the refrigeration circuit of FIG. 1. 変形例の熱交換チューブを示す斜視図である。It is a perspective view which shows the heat exchange tube of a modification.

符号の説明Explanation of symbols

4 循環流路
14 圧縮機
16 放熱器
18 蒸発器
20 モジュール
4 Circulation channel
14 Compressor
16 Heatsink
18 Evaporator
20 modules

Claims (6)

冷媒が循環する循環流路に介挿され、前記冷媒の流動方向でみて順次介挿された圧縮機、放熱器、内部熱交換器の高温部、減圧器、蒸発器、アキュムレータ及び前記内部熱交換器の低温部を備えた蒸気圧縮式冷凍回路において、
前記減圧器、前記アキュムレータ及び前記内部熱交換器が互いに一体に形成されており、
前記アキュムレータに貯留された前記冷媒の液相成分と前記内部熱交換器の低温部から流出した前記冷媒の気相成分との間で熱交換を行う過熱度低減手段を備え、
前記過熱度低減手段は、前記内部熱交換器の低温部と前記圧縮機との間を延びる前記循環流路の部分に介挿され且つ前記アキュムレータの底部を通過するパイプを含み、
前記パイプは、前記アキュムレータの内壁面に接続された入口端及び出口端を有し、前記パイプの出口端の位置は、前記入口端の位置よりも高く且つ前記アキュムレータに貯留された前記冷媒の液相成分の液面よりも高いことを特徴とする蒸気圧縮式冷凍回路。
A compressor, a radiator, a high-temperature part of an internal heat exchanger, a decompressor, an evaporator, an accumulator, and the internal heat exchange inserted in a circulation flow path through which the refrigerant circulates and sequentially inserted in the flow direction of the refrigerant In the vapor compression refrigeration circuit with the low temperature part of the vessel,
The decompressor, the accumulator and the internal heat exchanger are formed integrally with each other ,
Comprising a superheat degree reducing means for exchanging heat between a liquid phase component of the refrigerant stored in the accumulator and a gas phase component of the refrigerant flowing out from a low temperature portion of the internal heat exchanger;
The degree of superheat reduction includes a pipe that is inserted into a portion of the circulation flow path that extends between a low temperature portion of the internal heat exchanger and the compressor and passes through a bottom portion of the accumulator,
The pipe has an inlet end and an outlet end connected to an inner wall surface of the accumulator, and a position of the outlet end of the pipe is higher than a position of the inlet end and a liquid of the refrigerant stored in the accumulator. A vapor compression refrigeration circuit characterized by being higher than the liquid level of the phase component .
前記減圧器及び前記アキュムレータが互いに隣接していることを特徴とする請求項1に記載の蒸気圧縮式冷凍回路。   The vapor compression refrigeration circuit according to claim 1, wherein the decompressor and the accumulator are adjacent to each other. 前記過熱度低減手段は、前記パイプの内周面及び外周面のうち少なくとも一方に形成された凹凸部を更に含むことを特徴とする請求項1または2に記載の蒸気圧縮式冷凍回路。 3. The vapor compression refrigeration circuit according to claim 1, wherein the degree of superheat reduction further includes a concavo-convex portion formed on at least one of an inner peripheral surface and an outer peripheral surface of the pipe. 前記パイプは、前記アキュムレータに貯留された潤滑油を吸入するための油戻し孔を有することを特徴とする請求項1乃至3のいずれかに記載の蒸気圧縮式冷凍回路。 The vapor compression refrigeration circuit according to any one of claims 1 to 3, wherein the pipe has an oil return hole for sucking lubricating oil stored in the accumulator. 前記冷媒はCOであることを特徴とする請求項1乃至の何れかに記載の蒸気圧縮式冷凍回路。 Vapor compression refrigeration circuit according to any one of claims 1 to 4, wherein the refrigerant is CO 2. 請求項1乃至の何れかに記載の蒸気圧縮式冷凍回路を備えたことを特徴とする車両用空調システム。 A vehicular air conditioning system comprising the vapor compression refrigeration circuit according to any one of claims 1 to 5 .
JP2006164621A 2006-06-14 2006-06-14 Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit Expired - Fee Related JP4842022B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006164621A JP4842022B2 (en) 2006-06-14 2006-06-14 Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit
US11/810,764 US20080173042A1 (en) 2006-06-14 2007-06-07 Vapor compression refrigeration circuit and automotive air-conditioning system using same
EP07011480A EP1867937A1 (en) 2006-06-14 2007-06-12 Vapor compression refrigeration circuit and automotive air-conditioning system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164621A JP4842022B2 (en) 2006-06-14 2006-06-14 Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit

Publications (2)

Publication Number Publication Date
JP2007333283A JP2007333283A (en) 2007-12-27
JP4842022B2 true JP4842022B2 (en) 2011-12-21

Family

ID=38535648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164621A Expired - Fee Related JP4842022B2 (en) 2006-06-14 2006-06-14 Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit

Country Status (3)

Country Link
US (1) US20080173042A1 (en)
EP (1) EP1867937A1 (en)
JP (1) JP4842022B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052550A1 (en) * 2008-10-21 2010-04-22 Otto Egelhof Gmbh & Co. Kg Connection device for an internal heat exchanger
JP5377943B2 (en) * 2008-11-28 2013-12-25 株式会社不二工機 Refrigeration cycle and expansion valve used therefor
FR2995389B1 (en) * 2012-09-13 2017-10-20 Alstom Transport Sa AIR CONDITIONING DEVICE, IN PARTICULAR FOR A RAILWAY VEHICLE
CN113939415A (en) * 2019-06-03 2022-01-14 翰昂汽车零部件有限公司 Thermal management system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955375A (en) * 1974-08-14 1976-05-11 Virginia Chemicals Inc. Combination liquid trapping suction accumulator and evaporator pressure regulator device including a capillary cartridge and heat exchanger
JPH11310032A (en) * 1998-04-27 1999-11-09 Calsonic Corp Air conditioner for automobile
JP4182148B2 (en) * 1999-10-20 2008-11-19 株式会社ヴァレオサーマルシステムズ accumulator
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
JP4492017B2 (en) * 2000-11-09 2010-06-30 株式会社デンソー Accumulator module
JP3903851B2 (en) * 2002-06-11 2007-04-11 株式会社デンソー Heat exchanger
JP2004028525A (en) * 2002-06-28 2004-01-29 Zexel Valeo Climate Control Corp Accumulator and refrigeration cycle using the same
US6681597B1 (en) * 2002-11-04 2004-01-27 Modine Manufacturing Company Integrated suction line heat exchanger and accumulator
US6904770B2 (en) * 2003-09-03 2005-06-14 Delphi Technologies, Inc. Multi-function condenser
EP1782000A4 (en) * 2004-07-09 2007-10-10 Junjie Gu Refrigeration system
JP2006105491A (en) * 2004-10-06 2006-04-20 Valeo Thermal Systems Japan Corp Integrated structure of accumulator and internal heat exchanger
JP4897298B2 (en) * 2006-01-17 2012-03-14 サンデン株式会社 Gas-liquid separator module

Also Published As

Publication number Publication date
EP1867937A1 (en) 2007-12-19
US20080173042A1 (en) 2008-07-24
JP2007333283A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
US7654108B2 (en) Unit for refrigerant cycle device
JP4897298B2 (en) Gas-liquid separator module
US8099978B2 (en) Evaporator unit
US7520142B2 (en) Ejector type refrigerating cycle
US20120291478A1 (en) Condenser for vehicle and air conditioning system for vehicle
EP1870648A1 (en) Ejector type refrigerating cycle unit
JP2000097504A (en) Air conditioner
MXPA00008667A (en) Combined evaporator/accumulator/suction line heat exchanger.
JP2006273049A (en) Vehicular air conditioner
JP3617083B2 (en) Receiver integrated refrigerant condenser
KR20170109462A (en) Dual pipe structure for internal heat exchanger
JP4842022B2 (en) Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit
JP4179092B2 (en) Heat exchanger
JP2009058221A (en) Ejector type refrigerating cycle unit
JP2001174103A (en) Refrigerant condenser
JP5540816B2 (en) Evaporator unit
JP2007071511A (en) Accumulator structure
JP4897464B2 (en) Vapor compression refrigeration cycle
JP4577291B2 (en) Refrigerant evaporator
JP4912757B2 (en) Vehicle air conditioning system
JP6780516B2 (en) Liquid reservoir
JP6599056B1 (en) Gas header, heat exchanger and refrigeration cycle apparatus
JP2000074527A (en) Liquid receiver integrated refrigerant condenser
JPH0953866A (en) Condenser
JP4335428B2 (en) Accumulator and refrigeration cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4842022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees