JP2008148506A - 電源装置、電源装置を有する画像形成装置 - Google Patents

電源装置、電源装置を有する画像形成装置 Download PDF

Info

Publication number
JP2008148506A
JP2008148506A JP2006335074A JP2006335074A JP2008148506A JP 2008148506 A JP2008148506 A JP 2008148506A JP 2006335074 A JP2006335074 A JP 2006335074A JP 2006335074 A JP2006335074 A JP 2006335074A JP 2008148506 A JP2008148506 A JP 2008148506A
Authority
JP
Japan
Prior art keywords
power supply
piezoelectric transformer
circuit
voltage
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006335074A
Other languages
English (en)
Inventor
Koji Yasukawa
航司 安川
Atsuhiko Yamaguchi
敦彦 山口
Osamu Nagasaki
修 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006335074A priority Critical patent/JP2008148506A/ja
Publication of JP2008148506A publication Critical patent/JP2008148506A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】 圧電トランスにおける駆動周波数相互の干渉を抑え、小型化と高画質化を可能にする圧電トランスを用いた電源装置を提供する。
【解決手段】 電源装置は、画像を形成するための第1制御信号に基づいて第1圧電トランスを駆動するための第1駆動周波数を発生させて、第1圧電トランスの駆動により生成した電圧を第1画像形成部に供給する第1電源回路と、画像を形成するための第2制御信号に基づいて第2圧電トランスを駆動するための第2駆動周波数を発生させて、第2圧電トランスの駆動により生成した電圧を第2画像形成部に供給する第2電源回路と、第1圧電トランスと第2圧電トランスとの間で電界を発生させて、第1駆動周波数と第2駆動周波数との差分による干渉周波数の発生を抑制する干渉抑制素子とを備える。
【選択図】 図6A

Description

本発明は、電子写真プロセスにより画像を形成する画像形成装置に好適な電源装置に関し、特に圧電トランスを用いる電源装置とその電源装置を有する画像形成装置に関するものである。
電子写真プロセスにより画像を形成する画像形成装置において、感光体に転写部材を当接させて転写を行う直接転写方式を採る場合、転写部材には導電体の回転軸を持つローラ状の導電性ゴムが用いられる。転写部材の駆動は感光体のプロセススピードに合わせて制御される。
そして、転写部材に印加する電圧として、直流バイアス電圧を用いている。この時、直流バイアス電圧の極性は、通常のコロナ放電式の転写電圧と同じ極性である。しかし、こういった転写ローラを用いて良好な転写を行うためには、通常3kV以上の電圧(所要電流は数μA)を転写ローラに印加する必要がある。上述の画像形成処理に必要とされる高電圧を生成するために、従来は巻線式の電磁トランスが使用されていた。しかし、電磁トランスは、銅線、ボビン、磁芯で構成されており、上記のような、3kV以上の電圧を印加して用いる場合は、出力電流値が数μAという微小な電流のために各部に於いて漏れ電流を最小限にしなければならなかった。そのため、トランスの巻線を絶縁物によりモールドする必要が有り、しかも供給電力に比較して大きなトランスを必要としたため、高圧電源装置の小型化・軽量化の妨げとなっていた。
そこで、これらの欠点を補うために、薄型で軽量の高出力の圧電トランスを用いて高電圧を発生させることが検討されている。すなわち、セラミックを素材とした圧電トランスを用いることにより、電磁トランス以上の効率で高電圧を生成する事が可能となる。しかも、一次側および二次側間の結合に関係なく一次側と二次側の電極間の距離を離すことが可能になるので特別に絶縁のためにモールド加工をする必要がない。そのため高圧発生装置を小型・軽量にできるという優れた特性が得られる。
圧電トランスを用いている高圧電源装置の例を図10の参照により説明する。圧電トランス1001を例にすると、参照番号1002はGND端子であり、参照番号1003は一次入力端子であり、参照番号1004は二次出力端子である。GND端子1002、一次入力端子1003、二次出力端子1004は回路基板1000に実装され、電気的に接続されているものとする。圧電トランス1021、1041、1061も同様に、GND端子1022、1042、1062、一次入力端子1023、1043、1063、二次出力端子1024、1044、1064は回路基板1000に実装され、電気的に接続されているものとする。
図10に示す高圧電源装置には、4つの圧電トランス1001、1021、1041、1061が用いられ、それぞれの圧電トランスに対応して4系統の高圧電圧を出力コネクタ1114、1134、1154、1174から出力する構成になっている。
第1の系統として、不図示のDCコントローラから入力コネクタ1010に高圧電源の制御信号が入力される。制御信号に基づいて、圧電トランス1001を駆動するための回路構成である制御回路1011、駆動回路1012、整流回路1113、高圧出力検出回路1115が駆動され、出力コネクタ1114から高圧電圧が出力される構成になっている。
第2の系統として、不図示のDCコントローラから入力コネクタ1030に高圧電源の制御信号が入力される。制御信号に基づいて、圧電トランス1021を駆動するための回路構成である制御回路1031、駆動回路1032、整流回路1133、高圧出力検出回路1135が駆動され、出力コネクタ1134から高圧電圧が出力される構成になっている。
第3の系統として、不図示のDCコントローラから入力コネクタ1050に高圧電源の制御信号が入力される。制御信号に基づいて、圧電トランス1041を駆動するための回路構成である制御回路1051、駆動回路1052、整流回路1153、高圧出力検出回路1155が駆動され、出力コネクタ1154から高圧電圧が出力される構成になっている。
そして、第4の系統として、不図示のDCコントローラから入力コネクタ1070に高圧電源の制御信号が入力される。制御信号に基づいて、圧電トランス1061を駆動するための回路構成である制御回路1071、駆動回路1072、整流回路1173、高圧出力検出回路1175が駆動され、出力コネクタ1174から高圧電圧が出力される構成になっている。
電子写真方式の画像形成装置の高圧電源装置では、図10のように圧電トランス1001、1021、1041、1061を用いた高圧電源回路を複数系統有する。各高圧電源回路は、例えば、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の画像形成部に対応するもので、帯電、現像、転写等のバイアスを出力して画像形成処理が実行される。上述の構成を開示する従来技術として、例えば、以下の特許文献1に示されるものがある。
特開平11−206113号公報
上記の例では、高圧電源装置内に圧電トランス及び制御回路を複数個配置することにより、複数のバイアス電圧を出力して画像形成を行っている。特に、タンデム方式のカラー画像形成装置に搭載される高圧電源ユニットにおいては、帯電、現像、転写等のバイアス出力回路をシアン、マゼンダ、イエロー、ブラックの画像形成に対応して4回路(4系統)が必要となる。
このように複数の高圧バイアスを必要とする高圧電源装置(以下、「電源ユニット」ともいう)においては、電源ユニットの小型化のために圧電トランスをできる限り近づけて配置する必要がある。圧電トランスは電磁トランスのようなトランス同士の磁気結合が生じないため、素子の小型化だけでなく複数のトランスを近接配置することによる高圧電源ユニットの小型化が期待できる。
しかし、圧電トランスの出力端は高電圧で発振しており、電磁トランスの発振周波数が数百ヘルツから数十キロヘルツであるのに対し、圧電トランスの発振周波数は数十キロヘルツから二百キロヘルツ程度と高い。このため、圧電トランス同士を近接配置したときに静電的な干渉による影響を受けやすい。その結果、近接して配置された圧電トランスにおいて、静電容量結合などによって、相互干渉を起こし、高圧バイアス電圧の出力精度向上が困難になる。あるいは干渉周波数による高圧バイアス電圧の揺らぎ等の発生等を原因とする画像品質低下を招く恐れがある。
このため、特にタンデムカラー機に搭載される高圧電源ユニットにおいては、圧電トランスの間隔を十分に離して実装する必要があり、高圧電源ユニットの小型化と、画像形成の高画質化とを両立することは困難になっている。
本発明は圧電トランスにおける駆動周波数相互の干渉を抑え、小型化と高画質化を可能にする圧電トランスを用いた電源装置の提供を目的とする。
あるいは、上述の電源装置を有する画像形成装置の提供を目的する。
上記目的を達成するための本発明にかかる電源装置は、
画像を形成するための第1制御信号に基づいて第1圧電トランスを駆動するための第1駆動周波数を発生させて、前記第1圧電トランスの駆動により生成した電圧を第1画像形成部に供給する第1電源回路と、
前記画像を形成するための第2制御信号に基づいて第2圧電トランスを駆動するための第2駆動周波数を発生させて、前記第2圧電トランスの駆動により生成した電圧を第2画像形成部に供給する第2電源回路と、
前記第1圧電トランスと前記第2圧電トランスとの間で電界を発生させて、前記第1駆動周波数と前記第2駆動周波数との差分による干渉周波数の発生を抑制する干渉抑制素子 とを備えることを特徴とする。
あるいは、上記目的を達成するための本発明にかかる画像形成装置は、上記の電源装置と、
互いに異なる色のトナー画像を形成する画像形成手段とを備え、
前記画像形成手段は、前記電源装置により供給される電圧を用いることを特徴とする。
本発明によれば、圧電トランスにおける駆動周波数相互の干渉を抑え、小型化と高画質化を可能にする圧電トランスを用いた電源装置の提供が可能になる。
以下に、図面を参照して、本発明の好適な実施形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成要素はあくまで例示であり、この発明の範囲をそれらのみに限定する趣旨のものではない。
(第1実施形態)
図1は、圧電トランスを用いた高圧電源装置202を備える本実施形態に係る画像形成装置(以下、「カラーレーザプリンタ」ともいう。)の構成図である。
カラーレーザプリンタ401は記録紙32を収納するデッキ402を有し、デッキ402内の記録紙32の有無を検知するデッキ紙有無センサ403が設けられている。また、カラーレーザプリンタ401は、デッキ402から記録紙32を繰り出すピックアップローラ404、ピックアップローラ404によって繰り出された記録紙32を搬送するデッキ給紙ローラ405が設けられている。更に、カラーレーザプリンタ401はデッキ給紙ローラ405と対をなし、記録紙32の重送を防止するためのリタードローラ406が設けられている。
そして、デッキ給紙ローラ405の下流側には記録紙32を同期搬送するレジストローラ対407、レジストローラ対407への記録紙32の搬送状態を検知するレジ前センサ408が配設されている。また、レジストローラ対407の下流には静電吸着搬送転写ベルト(以下、「ETB」と記す)409が配設されている。ETB409上には4色(Y、M、C、BK)分のプロセスカートリッジ410(Y、M、C、BK)と、スキャナーユニット420(Y、M、C、BK)とからなる画像形成部によって画像が形成される。そして、形成された画像が転写ローラ430(Y、M、C、BK)によって順次重ね合わされてゆくことによりカラー画像が形成され、記録紙32上に転写搬送される。
下流側には記録紙32上に転写されたトナー像を熱定着するために内部に加熱用のヒータ432を備えた定着ローラ433と加圧ローラ434対が配設されている。更に、定着ローラからの記録紙32を搬送するための定着排紙ローラ対435、定着部からの搬送状態を検知する定着排紙センサ436が配設されている。
各スキャナーユニット420は、レーザユニット421、各レーザユニット421からのレーザ光を各感光ドラム305上に走査するためのポリゴンミラー422とスキャナモータ423、結像レンズ群424より構成されている。ここで、レーザユニット421から照射されるレーザ光は、ビデオコントローラ440から送出される各画像信号に基づいて変調されものである。
各プロセスカートリッジ410には公知の電子写真プロセスに必要な感光ドラム305、帯電ローラ303と現像ローラ302、トナー格納容器411が具備されている。各プロセスカートリッジ410は、カラーレーザプリンタ401に対して着脱可能に構成されている。
更に、ビデオコントローラ440はパーソナルコンピュータ(ホストコンピュータ)等の外部装置441から送出される画像データを受け取ると画像データをビットマップデータに展開し、画像形成用の画像信号を生成する。
また、201はレーザプリンタの制御部であるDCコントローラである。RAM207a、ROM207b、タイマ207c、デジタル入出力ポート207d、D/Aポート207eを具備したMPU(マイクロコンピュータ)207、及び各種入出力制御回路(不図示)等で構成されている。
202は高圧電源部(高圧電源装置)である。高圧電源装置202は、各プロセスカートリッジ410(Y、M、C、BK)に対応した帯電高圧電源(不図示)、現像高圧電源(不図示)と、各転写ローラ430に対応した高電圧を出力可能な圧電トランスを使用した転写高圧電源とで構成されている。
次に、本実施形態の高圧電源装置の構成を図2、図3及び図4を参照して説明する。高圧電源の構成は、帯電高圧電源、現像高圧電源、転写高圧電源のどの出力回路に対しても共通であるため、ここでは代表的に転写高圧電源について説明を行う。また、転写高圧電源は各転写ローラ430Y、430M、430C、430Bkに対応し、4回路設けられているが、回路構成は各回路とも同じであるため、図3では1回路のみを示している。
図3は、圧電トランスを用いた高圧電源装置の代表的な回路構成構成を示すブロック図である。参照番号351は高圧電源の圧電セラミックトランス(以下、「圧電トランス」という。)を示す。圧電トランス351の出力はダイオード359、370及び高圧コンデンサ371によって正電圧に整流平滑され、出力端子364から負荷である転写ローラ(不図示)に供給される。
出力電圧は抵抗372、373によって分圧され、保護用抵抗374を介してオペアンプ376の非反転入力端子(+端子)に入力される。他方オペアンプの反転入力端子(−端子)には直列抵抗375を介してDCコントローラ201からアナログ信号である高圧電源の制御信号(Vcont)が接続端子360より入力される。
オペアンプ376の出力端は電圧制御発振器(VCO)366に接続される。電圧制御発振器(VCO)366は、制御信号(Vcont)に応じて圧電トランスを駆動するための駆動周波数に対応する信号を発生することが可能である。電圧制御発振器(VCO)366の出力端は電界効果トランジスタ367のゲートに接続される。電界効果トランジスタ367のドレインはインダクタ368を介して電源(+24V:Vcc)に接続され、また、圧電トランス351の一次側電極の一方に接続される(参照番号352)。一次側電極の他方は接地される(参照番号353)。電界効果トランジスタ367のソースも接地される。
図4は、圧電トランス351の特性として、出力電圧(V)と駆動周波数(Hz)の関係を示す図である。圧電トランス351の特性は一般的に図4に示すような共振周波数f0において出力電圧が最大電圧(Emax)となる。駆動周波数fxにおいて、規定出力電圧(以下、「制御出力電圧」ともいう。)Edcを出力する。共振周波数(以下、これを「最大周波数」ともいう。)f0を中心として、出力電圧(V)の分布は裾広がりの分布形状となる。駆動周波数を変化させることにより、出力電圧の制御が可能になる。例えば、圧電トランスの出力電圧を増加させる場合は、駆動周波数を高い方から共振周波数f0に向かい低い方へ変化させることで可能となる。これ以降、共振周波数f0より高い側の周波数で制御を行う場合について説明を行うが、低い側の周波数で制御を行う場合も考え方は同様である。
図3の電圧制御発振器(VCO)366は、入力電圧が上がると出力周波数を上昇させ、入力電圧が下がると出力周波数を下げるように動作する。圧電トランス351の制御出力電圧(Edc)が上がると、抵抗372を介してオペアンプ376の非反転入力端子(+端子)の入力電圧Vsnsも上がり、オペアンプ376の出力端子の電圧は上がる。
電圧制御発振器(VCO)366の入力電圧が上昇するので、電圧制御発振器(VCO)366の出力周波数も上昇することになり、圧電トランス351の駆動周波数も上昇する。従って、駆動周波数fxより高い周波数で圧電トランス351は駆動する。駆動周波数fxが上昇すると圧電トランス351の出力電圧は下がるため、出力電圧は下がる方向に制御される。すなわち、図3の構成は、負帰還制御回路を構成している。カラーレーザプリンタにおいては、Y、M、C、Bkに対応する4系統の高圧回路として、図3に示すような回路構成が高圧電源装置202に4つ設けられる。
オペアンプ376の反転入力端子(−端子)に入力されるDCコントローラ201からの制御信号(Vcont)の電圧で決定される電圧に等しくなるよう、電圧制御発振器(VCO)366によって出力電圧が定電圧制御される。
次に、高圧電源装置202における複数系統の圧電トランスが同じタイミングで駆動する際に生じる駆動周波数相互の干渉を抑えるための構成を図5〜図7Bの参照により説明する。
圧電トランスは巻線トランスと比較してトランス自体が小型であるため、高圧電源装置202の小型化に有利である。本実施形態の高圧電源装置202では図6Aのように、近接して配置された圧電トランス351と圧電トランス121の間に、DC電源(直流電位)またはGNDに接地されたジャンパー線120を配置して、更なる小型化を実現する。
ジャンパー線120は近接して配置された複数の圧電トランス相互の駆動周波数の干渉を抑制する干渉抑制素子として機能する。
カラーレーザプリンタの画像形成動作においては、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)に対応する4系統の高圧回路が近接したタイミングで動作する。また、高圧電源装置の小型化のため、圧電トランスの駆動周波数が近い圧電トランスを近接配置した場合、圧電トランスを駆動する各回路が相互に干渉し合う。干渉周波数は、互いの圧電トランスにおける駆動周波数の差分となり、例えば、制御出力電圧(Edc)に対応する駆動周波数の差分の絶対値として与えられる。
近接して配置された圧電トランス351、121が相互に干渉する状態を例示的に図5に示す。図5は、回路基板100に実装された圧電トランス351、121を側面から見た状態を示す図であり、参照番号354は圧電トランス351の二次出力端子を示し、参照番号124は、圧電トランス121の二次出力端子を示すものとする。また、図5における矢印は電気力線を表すものとする。圧電トランス351、圧電トランス121が共に動作した場合、圧電トランス121には、圧電トランス351の駆動周波数と圧電トランス121の駆動周波数の差分にあたる周波数も重畳することになる。電気力線は圧電トランス351から圧電トランス121及ぶ。
同じサイズの圧電トランスを用いた場合、共振周波数がほぼ同じとなり、駆動周波数も互いに近いものとなる。よって両駆動周波数の差分による周波数は比較的低周波数(数10〜数100Hz)のリップルとなる。このような低周波数は整流回路があっても整流されず、出力電圧のリップルとなる。このリップルは数キロボルトといった出力電圧に対し数ボルトと小さいため、制御によって抑えることが困難である。
しかし、この低周波数は目視可能な、例えば、グラデーションが縞状になる画像形成の原因となる、バンディング周波数になりやすいため、このリップルを画像上判別できないレベルまで抑える必要がある。そこで図6AのようにDC電源(直流電位)またはGNDに接地されたジャンパー線120を用いて駆動周波数の干渉を抑制する。
圧電トランス351とジャンパー線120との間で、駆動周波数の干渉状態を低減させる(干渉周波数の発生を抑制する)ための電界を発生させる。これにより圧電トランス351の駆動周波数が圧電トランス121の駆動周波数に直接干渉するのを抑制することができる。圧電トランス351から圧電トランス121に到達する電気力線を少なくし、リップルの発生を抑えることで駆動周波数の干渉は抑制される。駆動周波数の干渉を抑制することにより、圧電トランス351と圧電トランス121が近接した回路配置が可能になり、高圧電源装置の更なる小型化が可能となる。
図6Bは、圧電トランス121の出力電圧の比較を例示的に示す図である。ジャンパー線120が設けられた場合(図6A)の圧電トランス121の出力電圧602は、ジャンパー線が無い場合(図5)の出力電圧601に比べて、干渉による周波数の重畳が抑制された分、低くなる。
圧電トランス351、121が近接した状態で同じタイミングで駆動する場合、相互に静電容量的結合するために、互いの圧電トランス駆動周波数が影響を与え、干渉を起こし、圧電トランスの出力電圧に干渉周波数のリップル電圧が現れる。ここで、圧電トランス間の静電容量を浮遊容量という。
図7Aは、圧電トランス間の浮遊容量を参照番号703、703として、圧電トランスの静電ノイズ(電気力線)の影響を例示的に説明する図である。ここで、電気力線を、微小な静電容量を持つコンデンサ内に発生する電界として近似的に考える。
簡単のため、圧電トランス351のみ動作している場合を説明する。図中において、参照番号701は圧電トランス351の出力電圧波形を例示的に示す。圧電トランス121に発生する低周波リップルの原因は圧電トランス351の動作によるもので、この影響を抑えることがリップル発生を抑えることに繋がる。一般的に圧電トランスは、巻線トランスより発振周波数が高く、浮遊容量703、704によるインピーダンス1/ωCが小さくなる。その結果、圧電トランス121に重畳する電圧702は巻線トランスの場合に比べて大きくなる。
図7BはGNDに接地したジャンパー線720を圧電トランス351と圧電トランス121の間に配置した状態を示す図である。圧電トランス351が、浮遊容量703を介在して、圧電トランス121へ及ぼす影響をGNDに接続されたジャンパー線720を用いることによって抑制することができる。浮遊容量703の影響を抑制することにより、圧電トランス121に重畳する電圧710の振幅は、図7Aに示す圧電トランス121に重畳する電圧702に比べて小さくなる。
圧電トランス351とジャンパー線720との間に新たに浮遊容量705が発生するが、ジャンパー線720は直流的に安定電位である。そのため、ジャンパー線720と圧電トランス121との間に新たに発生する浮遊容量706が圧電トランス121に及ぼす影響は無視できるほど小さい。このため、圧電トランス351は浮遊容量704を通じてのみ圧電トランス121に影響を及ぼすと考えることができる。
ジャンパー線720を実装することにより、ジャンパー線720が無い場合よりも圧電トランス351から圧電トランス121へのインピーダンスは大きくなる。圧電トランス121に重畳する電圧710の振幅は、図7Aに示す圧電トランス121に重畳する電圧702の振幅に比べて小さくなる。すなわち、干渉の影響により圧電トランス121に重畳する電圧の影響をジャンパー線720により抑制することができる。
尚、ジャンパー線720がGNDに接地していなくても直流電位として安定であれば、圧電トランス121に重畳する電圧を抑制する効果がある。
図2はイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)に対応した4系統の高圧電源回路において干渉抑制素子として、ジャンパー線120、ジャンパー線140を使用している構成例を示す図である。ジャンパー線120、ジャンパー線140は、図2に示した位置への実装に限定されるものではなく、圧電トランス121、圧電トランス141の間に更に実装するようにしてもよい。
また、ジャンパー線120、140は、整流回路133、173と回路基板100(回路基板上の接地パターン、または安定した直流電位を有する回路パターン)との接続に限定されるものではなく、電源回路を構成する他の回路素子であってもよい。例えば、ジャンパー線120、140は、整流回路113、153と回路基板100(回路基板上の接地パターン、または安定した直流電位を有する回路パターン)とを接続することより構成してもよい。
例えば、ジャンパー線120、140は、制御回路111、131、151、171と回路基板100(回路基板上の接地パターン、または安定した直流電位を有する回路パターン)とを接続することより構成してもよい。例えば、ジャンパー線120、140は、駆動回路112、132、152、172と回路基板100(回路基板上の接地パターン、または安定した直流電位を有する回路パターン)とを接続することより構成してもよい。
あるいは、ジャンパー線120、140は、高圧出力検出回路115、135、155、175と回路基板100(回路基板上の接地パターン、または安定した直流電位を有する回路パターン)とを接続することより構成してもよい。
第1の系統(第1電源回路)として、DCコントローラ201から入力コネクタ110に高圧電源の制御信号(Vcont1)が入力される。制御信号(Vcont1)に基づいて、圧電トランス351を駆動するための回路構成である制御回路111、駆動回路112、整流回路113、高圧出力検出回路115が駆動され、出力コネクタ114から高圧電圧が出力される構成になっている。
第2の系統(第2電源回路)として、DCコントローラ201から入力コネクタ130に高圧電源の制御信号(Vcont2)が入力される。制御信号(Vcont2)に基づいて、圧電トランス121を駆動するための回路構成である制御回路131、駆動回路132、整流回路133、高圧出力検出回路135が駆動され、出力コネクタ134から高圧電圧が出力される構成になっている。
第3の系統(第3電源回路)として、DCコントローラ201から入力コネクタ150に高圧電源の制御信号(Vcont3)が入力される。制御信号(Vcont3)に基づいて、圧電トランス141を駆動するための回路構成である制御回路151、駆動回路152、整流回路153、高圧出力検出回路155が駆動され、出力コネクタ154から高圧電圧が出力される構成になっている。
そして、第4の系統(第4電源回路)として、DCコントローラ201から入力コネクタ1070に高圧電源の制御信号(Vcont4)が入力される。制御信号(Vcont4)に基づいて、圧電トランス161を駆動するための回路構成である制御回路171、駆動回路172、整流回路173、高圧出力検出回路175が駆動され、出力コネクタ174から高圧電圧が出力される構成になっている。
干渉抑制素子として、ジャンパー線120、ジャンパー線140を使用することにより、近接して配置された圧電トランス351及び圧電トランス121、圧電トランス141及び圧電トランス161の駆動周波数が干渉することを抑制することが可能になる。これにより、図10の従来の高圧電源装置と比較して圧電トランス351と圧電トランス121、圧電トランス141と圧電トランス161とを近接して配置することができ、高圧電源装置202の小型化を図ることが可能になる。
本実施形態によれば、近接して配置された複数の圧電トランス間に、干渉抑制素子として、ジャンパー線を設けることで、駆動周波数相互の干渉を抑え、小型化と高画質化を可能にする圧電トランスを用いた電源装置の提供が可能になる。
本実施形態では画像形成装置の説明を、タンデム方式のカラー画像形成装置を例に説明しているが、高圧バイアスを用いた画像形成装置であれば本発明に係る電源装置を適用することは可能である。
また、本実施形態に係る画像形成装置401は、高圧電源装置202と、互いに異なる色のトナー画像を形成する画像形成部を備え、画像形成部は、高圧電源装置202により供給される電圧を用いて、トナー画像を形成することが可能である。、互いに異なる色のトナー画像としては、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(BK)画含まれる。
(第2実施形態)
次に、本発明の第2実施形態を図8の参照により説明する。本実施形態では、干渉抑制素子として、ジャンパー線ではなく、回路基板200上に設けられたパターン60を用いている点で第1実施形態と相違する。パターン60は回路基板200に設けられたGNDパターン(接地パターン)または直流電位の極性を有するパターンである。圧電トランス351とパターン60との間で、駆動周波数の干渉状態を低減させる(干渉周波数の発生を抑制する)ための電界を形成することで、圧電トランス351の駆動周波数が圧電トランス121の駆動周波数に直接干渉するのを抑制することができる。すなわち、パターン60により圧電トランス351から圧電トランス121に到達する電気力線を少なくし、リップルの発生を抑えることで駆動周波数の干渉を抑制することができる。
接地パターンまたは直流電位の極性を有するパターンを圧電トランス351と圧電トランス12の間に配置することで、圧電トランス351とパターン60との間で、駆動周波数の干渉状態を低減させる(干渉周波数の発生を抑制する)ための電界を形成する。これにより、圧電トランス351の駆動周波数が圧電トランス121の駆動周波数に直接干渉するのを抑制することができる。
近接して配置された複数の圧電トランス間に干渉抑制素子として接地パターン又は直流電位の極性を有するパターンを設けることで、駆動周波数の干渉を抑え、小型化と高画質化を可能にする圧電トランスを用いた電源装置の提供が可能になる。
(第3実施形態)
次に、本発明の第3実施形態を図9A、図9Bの参照により説明する。図9Aは、イエロー(Y)、マゼンタ(M)に対応する2系統(出力端子364Y、364M)の高圧回路の回路構成を示すブロック図であり、図9Bは回路基板300上における回路素子(電気部品)の概略的な配置を示す図である。図9Bは簡単化のため、図9Aに図示した圧電トランス351、121と高圧コンデンサ921Y、高圧板状抵抗922Y、GNDパターン(接地パターン)900Y(回路基板300の裏面側に設けられているものとする)のみを図示している。図9Aにおいて、参照番号の添え字「Y」はイエローの高圧回路に対応する要素を示し、添え字「M」はマゼンタの高圧回路の対応する要素を示している。第1、第2実施形態と同一の構成要素に関しては、同一の参照番号を付して説明を省略する。尚、本実施形態に係るイエロー(Y)、マゼンタ(M)に対応する2系統は例示的なものであり、シアン(C)、ブラック(BK)を含めた4系統の回路構成においても適用することは可能である。
本実施形態では、干渉抑制素子として、ジャンパー線や回路基板200上に設けられたパターン60ではなく、回路基板300上に実装される回路素子(電気部品)を用いている点で、第1、第2実施形態の構成と相違する。本実施形態のおいて干渉抑制素子として用いる回路素子(電気部品)は、低インピーダンスのものを低インピーダンスノードに接続することが好適である。高インピーダンスの回路素子(電気部品)では、電気力線を空間的に遮蔽できず、高インピーダンスノードへの接続では回路素子(電気部品)が電気的に浮いた状態となるためである。上記の条件を満たす回路素子(電気部品)として、抵抗値の低い抵抗や、静電容量の大きいコンデンサが好適である。以下の説明では、静電容量の大きいコンデンサとして、高圧コンデンサ(JIS C4902)を例として説明するが、本発明の趣旨はこの例に限定されるものではなく、他の回路素子(電気部品)であっても、干渉抑制素子として用いることは可能である。
高圧コンデンサ921Yは整流回路363Yの一部を構成し(図9A)、一方の端子は接地パターン900Yに接続される。接地パターン900Yと接続することにより、高圧コンデンサ921Yはノイズを遮蔽する効果を発揮し、圧電トランス351と圧電トランス121との駆動周波数との干渉を抑制する。
接地パターン900Yと接続する高圧コンデンサ921Yを圧電トランス351と圧電トランス121との間に配置することで、圧電トランス351から発生する電気力線の影響を抑制することができる。尚、高圧コンデンサ921Yは、容量を比較的大きいものを使用することが好適である。
本実施形態によれば、近接して配置される複数の圧電トランス間に、接地パターンと接続する回路素子を設けることで、駆動周波数相互の干渉を抑え、小型化と高画質化を可能にする圧電トランスを用いた電源装置の提供が可能になる。
圧電トランスを用いた高圧電源装置を備える本実施形態に係る画像形成装置の構成を示す図である。 イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)に対応した高圧電源回路において干渉抑制素子として、ジャンパー線を使用する第1実施形態の構成を示す図である。 圧電トランスを用いた高圧電源装置の代表的な回路構成構成を示すブロック図である。 圧電トランスの特性として、出力電圧(V)と駆動周波数(Hz)の関係を示す図である。 回路基板100に実装された圧電トランス351、121を側面から見た状態を示す図である。 近接して配置された圧電トランス351と圧電トランス121の間にジャンパー線120を配置して、圧電トランス351と圧電トランス121との干渉を抑制した状態を示す図である。 圧電トランス121の出力電圧の比較を例示的に示す図である。 圧電トランス間の静電ノイズ(電気力線)の影響を例示的に説明する図である。 接地したジャンパー線を圧電トランス351と圧電トランス121の間に配置した状態を示す図である。 接地パターンまたは直流電位の極性を有するパターンを圧電トランス351と圧電トランス12の間に配置した例を示す図である。 2系統(出力端子914、934)の高圧回路の回路構成を示すブロック図である。 回路基板300上における回路素子の概略的な配置を示す図である。 従来例の高圧電源装置の概略的な構成を示す図である。
符号の説明
201 DCコントローラ
351 圧電トランス
359 ダイオード
366 電圧制御発振器
367 電界効果トランジスタ
202 高圧電源装置
401 カラーレーザプリンタ

Claims (6)

  1. 画像を形成するための第1制御信号に基づいて第1圧電トランスを駆動するための第1駆動周波数を発生させて、前記第1圧電トランスの駆動により生成した電圧を第1画像形成部に供給する第1電源回路と、
    前記画像を形成するための第2制御信号に基づいて第2圧電トランスを駆動するための第2駆動周波数を発生させて、前記第2圧電トランスの駆動により生成した電圧を第2画像形成部に供給する第2電源回路と、
    前記第1圧電トランスと前記第2圧電トランスとの間で電界を発生させて、前記第1駆動周波数と前記第2駆動周波数との差分による干渉周波数の発生を抑制する干渉抑制素子と
    を備えることを特徴とする電源装置。
  2. 前記干渉抑制素子は、前記第1電源回路または前記第2電源回路を構成する回路素子と、前記第1電源回路及び前記第2電源回路が形成された回路基板と、を接続するジャンパー線として構成されることを特徴とする請求項1に記載の電源装置。
  3. 前記干渉抑制素子は、前記第1電源回路及び前記第2電源回路が形成された回路基板上の接地パターンとして構成されることを特徴とする請求項1に記載の電源装置。
  4. 前記干渉抑制素子は、前記第1電源回路及び前記第2電源回路が形成された回路基板上の直流電位の極性を有する回路パターンとして構成されることを特徴とする請求項1に記載の電源装置。
  5. 前記干渉抑制素子は、前記第1電源回路及び前記第2電源回路が形成された回路基板上の接地パターンと接続する、前記第1電源回路または前記第2電源回路を構成する回路素子により構成されることを特徴とする請求項1に記載の電源装置。
  6. 画像形成装置であって、
    請求項1乃至5のいずれか1項に記載の電源装置と、
    互いに異なる色のトナー画像を形成する画像形成手段とを備え、
    前記画像形成手段は、前記電源装置により供給される電圧を用いることを特徴とする画像形成装置。
JP2006335074A 2006-12-12 2006-12-12 電源装置、電源装置を有する画像形成装置 Withdrawn JP2008148506A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335074A JP2008148506A (ja) 2006-12-12 2006-12-12 電源装置、電源装置を有する画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335074A JP2008148506A (ja) 2006-12-12 2006-12-12 電源装置、電源装置を有する画像形成装置

Publications (1)

Publication Number Publication Date
JP2008148506A true JP2008148506A (ja) 2008-06-26

Family

ID=39608062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335074A Withdrawn JP2008148506A (ja) 2006-12-12 2006-12-12 電源装置、電源装置を有する画像形成装置

Country Status (1)

Country Link
JP (1) JP2008148506A (ja)

Similar Documents

Publication Publication Date Title
JP4332528B2 (ja) 電源装置、電源装置を有する画像形成装置
JP4721431B2 (ja) 電源、画像形成装置およびic
JP5247908B2 (ja) 電源、制御回路、画像形成装置の電源
JP4420458B2 (ja) 高圧電源装置、画像形成装置
US8549742B2 (en) High-voltage power supply device and image forming apparatus having same
US8269473B2 (en) AC high voltage power supply device, charging device, developing device, and image forming apparatus
US7579749B2 (en) Power supply device and image forming apparatus using the power supply device
JP2010158149A (ja) 電源装置及び画像形成装置
JP2007043891A (ja) 電源装置と前記電源装置を用いる画像形成装置
JP5340255B2 (ja) 電源、icおよび画像形成装置
JP2006204016A (ja) 高圧電源装置および画像形成装置
KR101238372B1 (ko) 고압전원장치
JP2009109554A (ja) 画像形成装置
CN100476607C (zh) 电源装置和具有该电源装置的成像装置
JP4944632B2 (ja) 回路基板、高圧電源装置および画像形成装置
JP2008148506A (ja) 電源装置、電源装置を有する画像形成装置
JP4981323B2 (ja) 画像形成装置の電源
JP5329933B2 (ja) 高電圧電源装置及び前記電源装置を有する画像形成装置及びその回路基板
JP2009153293A (ja) 圧電トランス高圧電源回路
JP4366343B2 (ja) 圧電トランスを用いた高圧電源装置、及びそれを使用する画像形成装置
JP2008301692A (ja) 電源装置及び画像形成装置
JP5335272B2 (ja) 高圧電源装置及びそれを用いた画像形成装置
JP2007049802A (ja) 圧電トランス高圧電源装置
JP2009136069A (ja) 高圧電源装置、画像形成装置
JP2005062608A (ja) 転写装置、電源装置及びそれを有する画像形成装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302