JP2008137850A - Ceramics metallized component and production method thereof - Google Patents

Ceramics metallized component and production method thereof Download PDF

Info

Publication number
JP2008137850A
JP2008137850A JP2006325875A JP2006325875A JP2008137850A JP 2008137850 A JP2008137850 A JP 2008137850A JP 2006325875 A JP2006325875 A JP 2006325875A JP 2006325875 A JP2006325875 A JP 2006325875A JP 2008137850 A JP2008137850 A JP 2008137850A
Authority
JP
Japan
Prior art keywords
metallized
ceramic
component
layer
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325875A
Other languages
Japanese (ja)
Inventor
Toshio Yamamoto
俊夫 山本
Koji Watanabe
浩二 渡辺
Atsushi Morita
篤 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO CERAMICS CO Ltd
Original Assignee
TOKYO CERAMICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO CERAMICS CO Ltd filed Critical TOKYO CERAMICS CO Ltd
Priority to JP2006325875A priority Critical patent/JP2008137850A/en
Priority to KR1020070121688A priority patent/KR20080050317A/en
Publication of JP2008137850A publication Critical patent/JP2008137850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5194Metallisation of multilayered ceramics, e.g. for the fabrication of multilayer ceramic capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramics metallized product in which metal and ceramics are easily adhered to each other without undergoing a plating step, and which therefore provides improved productivity, and to provide a ceramics metallized product for use in a magnetron and having excellent reliability/durability. <P>SOLUTION: A method for producing the ceramic metallized component is disclosed which is used for producing the ceramic metallized component made into an integrated component having air-tightness using a metal component and brazing and includes the steps of coating the surface of the metallized layer with paste-like nickel powder, and drying and baking the paste-like nickel powder to form a nickel layer. A ceramics metallized component and a magnetron each produced by the production method are disclosed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セラミックス封着部品に関するものである。   The present invention relates to a ceramic sealing part.

マグネトロンは、第二次世界大戦でのマイクロ波レーダー開発を目的として大きく進化したものであるが、現代においては、当初予想されなかった用途である電子レンジ用のものが大量に生産されるようになった。これは、水分を含む物質にマイクロ波をあて、その周期に従い分子が振動し摩擦熱が発生することを利用したものである   Magnetron has evolved greatly for the purpose of developing microwave radar in the Second World War, but in modern times, mass-use products for microwave ovens, which were not initially anticipated, will be produced. became. This is based on the fact that microwaves are applied to water-containing substances, and molecules vibrate according to their period and frictional heat is generated.

一般的なマグネトロンは、電力管・電子管等と同様に、絶縁性の良好なアルミナ等のセラミックス部品が使用され、係るセラミックス部品は、金属部品との気密性を確保するため、セラミックスにモリブデン−マンガン等を主成分とするメタライズ層を形成した上に、接合強度及び封着性を向上させるためのニッケル層が形成される。   In general magnetrons, ceramic parts such as alumina with good insulating properties are used like power tubes and electron tubes, and such ceramic parts are made of molybdenum-manganese as ceramics in order to ensure airtightness with metal parts. On the other hand, a nickel layer for improving the bonding strength and sealing property is formed on the metallized layer mainly composed of, for example.

前記ニッケル層を形成する方法としては、メタライズされたセラミックス部品本体をめっき液中に浸漬して、所定厚さのニッケルめっき層を、前記メタライズ層表面に形成する無電解めっき法や、セラミックス部品のメタライズ面に、金属治具等を介して電解めっきする方法が採用されている。   As the method for forming the nickel layer, an electroless plating method in which a metallized ceramic component body is immersed in a plating solution and a nickel plating layer having a predetermined thickness is formed on the surface of the metallized layer. A method of electrolytic plating on the metallized surface through a metal jig or the like is employed.

しかしながら、前記めっき法によるニッケル層形成法によると、以下のような数々の問題がある。   However, the nickel layer forming method by the plating method has the following problems.

無電解めっき法によると、使用するめっき液が、電解めっき液の5倍以上の高価格であり、また処理工程も複雑となる。   According to the electroless plating method, the plating solution used is five times more expensive than the electrolytic plating solution, and the processing steps are complicated.

他方、電解めっき法によると、一般的にはバレル式電解めっき法を採用することになるが、この方法は、電極を付設した回転容器中に通電媒体(メディア)としての多数の金属製小部品と、メタライズ処理されたセラミックス部品を数千個収容し、回転容器を電解めっき液に浸漬した状態で回転させながら電極から通電するため、セラミックス部品に周枠部のようなめっきのつきやすいメタライズ面と、周内島部のようにめっきがつきにくいメタライズ面があるような場合には、均一にめっき層を形成するために、セラミックス部品本体の孔部に補助治具としてピン電極を挿入しなければならず、膨大な手間と時間を要している。   On the other hand, according to the electrolytic plating method, a barrel type electrolytic plating method is generally adopted. However, in this method, a large number of small metal parts as a current-carrying medium (media) in a rotating container provided with electrodes. In addition, it accommodates thousands of metallized ceramic parts and energizes the electrodes while rotating the rotating vessel immersed in the electrolytic plating solution, so that the metallized surface that is easily attached to the ceramic parts, such as the peripheral frame If there is a metallized surface that is difficult to be plated, such as the perimeter island, a pin electrode must be inserted as an auxiliary jig into the hole of the ceramic component body in order to form a uniform plating layer. It requires a lot of effort and time.

さらに、前記バレル式電解めっき法では、回転させるため、セラミックス部品同士あるいは回転容器本体との衝突により、セラミックス部品にワレ、カケ等の不良が発生することがあり、著しく歩留低下の要因ともなっている。   Furthermore, since the barrel type electrolytic plating method is rotated, a defect such as cracking or chipping may occur in the ceramic parts due to a collision between the ceramic parts or the rotating container body, which causes a significant decrease in yield. Yes.

またさらに、前記ピン電極などの補助治具を使用するセラミックス部品については、当然のことながらめっき処理後、ピンを抜き取る作業が必要となる。   Furthermore, for ceramic parts that use auxiliary jigs such as the pin electrodes, it is naturally necessary to remove the pins after plating.

そこで、このような問題点を解決すべく、種々の技術が提案されている。例えば、生産性や歩留が良好なマグネトロン部品の接合方法を提供することを目的として、
マグネトロンを構成するセラミック部品と金属部品を接合する接合方法において、接合面をメタライズ処理する工程と、メタライズ処理された面に2種以上の金属を交互にそして複数回ずつめっきする工程と、加熱する工程とからなる技術が提案されている(特許文献1参照)。しかし、かかる技術はめっき工程を有するため、ニッケル層形成法による前記問題点の解決には至っていない。
Therefore, various techniques have been proposed to solve such problems. For example, for the purpose of providing a method for joining magnetron parts with good productivity and yield,
In a joining method for joining a ceramic part and a metal part constituting a magnetron, a step of metallizing the joining surface, a step of plating two or more metals alternately and multiple times on the metallized surface, and heating A technique composed of a process has been proposed (see Patent Document 1). However, since this technique has a plating step, the above problem has not been solved by the nickel layer forming method.

また、セラミックス表面に、メタライズ成分粉末のペーストを塗布し、その上に銅合金薄板を覆い、熱処理により銅合金薄板をメタライズ層を介して接合し、セラミックス表面に易加工性の銅合金層を形成させる方法、あるいは、セラミックス表面に、メタライズ成分粉末のペーストを塗布し、その上に銅合金粉末からなるペーストを塗布し、次に熱処理により、塗布した銅合金粉末ペーストを易加工性の銅合金層として、メタライズ層を介しセラミックス表面に形成させる方法等がある(特許文献2参照)。しかしながら、かかる技術は、メタライズ層の形成方法であって、本願発明とはその目的及び効果を異にするものである。
特開平8−115661号公報 特開平8−91970号公報
In addition, a paste of metallized component powder is applied to the ceramic surface, the copper alloy thin plate is covered thereon, and the copper alloy thin plate is bonded through a metallized layer by heat treatment to form an easily workable copper alloy layer on the ceramic surface. Or by applying a paste of a metallized component powder to the ceramic surface, applying a paste made of a copper alloy powder on the ceramic surface, and then applying a heat-treatable copper alloy powder paste to the easily processable copper alloy layer by heat treatment There is a method of forming on the ceramic surface through a metallized layer (see Patent Document 2). However, this technique is a method for forming a metallized layer, and has a different purpose and effect from the present invention.
JP-A-8-115661 JP-A-8-91970

本発明は、かかる問題点に鑑み、セラミックスメタライズ部品に関して、めっき工程を経ることなく、容易に金属とセラミックスとを接着し、生産性を向上させるとともに、信頼性・耐久性の優れたマグネトロン用セラミックス製品の提供を図るものである。   In view of the above problems, the present invention relates to ceramic metallized parts, easily bonding metal and ceramics without going through a plating process, improving productivity, and having excellent reliability and durability. It is intended to provide products.

前記目的を達成するため、本発明は、金属部品とろう付けにより気密性のある一体部品にするセラミックスメタライズ部品において、このメタライズ層の上にペースト状のニッケルパウダーを塗布、乾燥、焼付け処理してニッケル層を形成する工程のセラミックスメタライズ部品の製造方法である。   In order to achieve the above-mentioned object, the present invention is a ceramic metallized part which is made into an airtight integral part by brazing a metal part, and paste-like nickel powder is applied on the metallized layer, dried and baked. It is a manufacturing method of the ceramic metallized component of the process of forming a nickel layer.

また、本発明は、前記セラミックスメタライズ部品の製造方法により製造されたセラミックスメタライズ部品とすることもできる。 Moreover, this invention can also be made into the ceramic metallized component manufactured by the manufacturing method of the said ceramic metallized component.

さらに、前記セラミックスメタライズ部品において、特にマグネトロン用に使用されるセラミックスメタライズ部品とすることもできる。   Furthermore, in the ceramic metallized component, a ceramic metallized component particularly used for a magnetron can be used.

本発明にかかるセラミックスメタライズ部品及びその製法によれば、ニッケルめっきに代えてニッケルペーストを使用してニッケル層を形成することにより、めっき法によるニッケル層と同等以上の、金属部品とのろう付けによる接着強度、気密性、封着性の確保をしつつ大幅なコスト削減の達成が可能となる優れた効果を奏する。   According to the ceramic metallized component and the manufacturing method thereof according to the present invention, by forming a nickel layer using nickel paste instead of nickel plating, by brazing with a metal component equal to or more than the nickel layer by plating method There is an excellent effect that significant cost reduction can be achieved while ensuring adhesive strength, airtightness and sealing properties.

また、本発明にかかるセラミックスメタライズ部品及びその製法によれば、従来のめっき法と異なり、薬液、多量の洗浄水、電力など大掛かりな設備等を使用しないので環境に対する負荷がはるかに少ないという効果も得られる。   In addition, according to the ceramic metallized parts and the manufacturing method thereof according to the present invention, unlike conventional plating methods, there is an effect that the load on the environment is much less because large equipment such as chemicals, a large amount of washing water, and electric power are not used. can get.

さらに、本発明にかかるセラミックスメタライズ部品及びその製法によれば、バレル式電解めっき法のように回転させないため、セラミックス部品同士あるいは回転容器本体との衝突による、セラミックス部品にワレ、カケ等の不良が発生することがなく、不良数が激減するので、セラミックス屑などの産業廃棄物の発生も抑えられるという効果も発揮する。   Furthermore, according to the ceramic metallized component and the manufacturing method thereof according to the present invention, since the ceramic metallized component is not rotated as in the barrel-type electrolytic plating method, there is a defect such as cracking or chipping in the ceramic component due to a collision between the ceramic components or the rotating container body. Since it does not occur and the number of defects is drastically reduced, it is possible to suppress the generation of industrial waste such as ceramic waste.

またさらに、本発明にかかるセラミックスメタライズ部品及びその製法によれば、ピン電極などの補助治具を使用するセラミックス部品と比して、めっき処理後のピン抜き作業が不要となる点で作業効率も向上する。   Furthermore, according to the ceramic metallized part and the manufacturing method thereof according to the present invention, the work efficiency is improved in that the pinning work after the plating process is not required, compared to the ceramic part using an auxiliary jig such as a pin electrode. improves.

本発明者らは、前述した課題を解決するために、めっきに代わるニッケル層9の形成法として、ニッケルペーストに着目し、このペーストの粒度、塗布厚さ、焼付け条件等をコントロールすることにより、めっき法によるニッケル層9と同等以上の、金属部品とのろう付けによる接着強度、気密性、封着性を確保できるニッケル層9を形成したセラミックスメタライズ部品2の製造が可能であるとの知見を得た。すなわち、本発明は、セラミックス部品素体5の表面に形成されたメタライズ層8の表面に、ペースト状のニッケルパウダーを塗布し、乾燥、焼付け処理してニッケル層9を形成したことを最大の特徴とする。以下、本発明にかかるセラミックスメタライズ部品2を図面に基づいて説明する。   In order to solve the above-mentioned problems, the present inventors pay attention to nickel paste as a method for forming nickel layer 9 instead of plating, and by controlling the particle size, coating thickness, baking conditions, and the like of this paste, The knowledge that it is possible to manufacture ceramic metallized parts 2 formed with a nickel layer 9 that can secure the adhesive strength, hermeticity, and sealability by brazing with metal parts, which is equal to or better than the nickel layer 9 by plating. Obtained. That is, the present invention is characterized in that the nickel layer 9 is formed by applying paste-like nickel powder to the surface of the metallized layer 8 formed on the surface of the ceramic component body 5, drying and baking. And Hereinafter, a ceramic metallized component 2 according to the present invention will be described with reference to the drawings.

図1は、本発明にかかるセラミックスメタライズ部品2の製造工程を示す説明図である。図1(a)は、本発明にかかるセラミックスメタライズ部品2の製造工程を、図1(b)は、従来技術との対比のため、ニッケルめっきによるニッケル層9の形成法を示している。なお、図に示した※印のついた工程については、品種によって不要工程となる場合もある。   FIG. 1 is an explanatory view showing a manufacturing process of a ceramic metallized component 2 according to the present invention. FIG. 1A shows a manufacturing process of the ceramic metallized component 2 according to the present invention, and FIG. 1B shows a method for forming the nickel layer 9 by nickel plating for comparison with the prior art. Note that processes marked with an asterisk (*) in the figure may be unnecessary depending on the product type.

まず、セラミック部品素体5に、モリブデンペーストを塗布・乾燥し、メタライズ層8を焼成する。その後、該メタライズ層8の表面にニッケルペースト塗布・乾燥し、シンター(定着焼成)の後、完成検査を経る。ここで、従来技術と対比すると(図1(b)参照)、ニッケルめっき工程が省略できることが明らかである。   First, a molybdenum paste is applied to the ceramic component body 5 and dried, and the metallized layer 8 is fired. Thereafter, nickel paste is applied to the surface of the metallized layer 8 and dried. After sintering (fixing firing), a completion inspection is performed. Here, when compared with the prior art (see FIG. 1B), it is clear that the nickel plating step can be omitted.

また、ニッケルペーストに使用するパウダーの粒径は0.4〜1.0μmであることが好ましい。   Moreover, it is preferable that the particle size of the powder used for a nickel paste is 0.4-1.0 micrometer.

またさらに、焼付け処理後の塗布厚さは3〜10μmであることが好ましい。   Furthermore, the coating thickness after baking is preferably 3 to 10 μm.

さらにまた、焼付け処理は、温度が800℃以上、雰囲気として水素などの還元性ガスまたは真空中が好ましい。   Furthermore, the baking treatment is preferably performed at a temperature of 800 ° C. or higher and a reducing gas such as hydrogen or a vacuum as the atmosphere.

次に、本発明にかかるマグネトロン用セラミックスメタライズ部品2の構造を図面に基づいて説明する。   Next, the structure of the ceramic metallized component 2 for magnetron according to the present invention will be described with reference to the drawings.

図2は、本発明にかかるセラミックスメタライズ部品2の一実施例の構造を示す説明図であり、マグネトロン部品(一部分)である。このマグネトロン部品1は、マグネトロン用セラミックスメタライズ部品2に、金属部品である外囲ケース3および電極リード4がろう付けされたものである。   FIG. 2 is an explanatory view showing the structure of an embodiment of the ceramic metallized component 2 according to the present invention, which is a magnetron component (part). This magnetron component 1 is obtained by brazing an outer case 3 and electrode leads 4 which are metal components to a ceramic metallized component 2 for magnetron.

図3は、ろう付け前のニッケル層9まで形成されたマグネトロン用セラミックスメタライズ部品2の詳細構造を示す説明図である。この部品は円柱状のアルミナ焼結体から成るセラミックス部品素体5の端面に形成された周枠部6と周内島部7とを備え、この周枠部6と周内島部7の表面にはそれぞれモリブデン−マンガン法による周枠部メタライズ層8aと、周内島部メタライズ層8bが形成されており、周枠部メタライズ層8aと周内島部メタライズ層8bは、溝部10によって電気的に絶縁されている。したがって、メタライズ層8には、それぞれ周枠部ニッケル層9aおよび周内島部ニッケル層9bが形成される。   FIG. 3 is an explanatory view showing the detailed structure of the ceramic metallized component 2 for magnetron formed up to the nickel layer 9 before brazing. This component includes a peripheral frame portion 6 and a peripheral inner island portion 7 formed on an end surface of a ceramic component element body 5 made of a cylindrical alumina sintered body, and the surfaces of the peripheral frame portion 6 and the peripheral inner island portion 7. The peripheral frame metallization layer 8a and the peripheral inner island metallization layer 8b are formed respectively by the molybdenum-manganese method. The peripheral frame metallization layer 8a and the peripheral inner island metallization layer 8b are electrically connected by the groove 10. Is insulated. Accordingly, the metallized layer 8 is formed with a peripheral frame part nickel layer 9a and a peripheral inner island part nickel layer 9b, respectively.

このマグネトロン用セラミックスメタライズ部品2のニッケル層9は、粒径0.7μmのニッケルパウダーを溶剤でペースト状にしたものを、スクリーン印刷によって周枠部メタライズ層8aと周内島部メタライズ層8bに塗布し、乾燥機で乾燥した後、水素ガス雰囲気下875℃に設定した連続式焼結炉を通して焼付け形成したものである。このニッケル層9の厚さは約5μmである。   The nickel layer 9 of the ceramic metallized component 2 for magnetron 2 is obtained by applying a paste of nickel powder having a particle size of 0.7 μm to a peripheral frame metallized layer 8a and a peripheral inner island metallized layer 8b by screen printing. Then, after drying with a dryer, it is formed by baking through a continuous sintering furnace set at 875 ° C. in a hydrogen gas atmosphere. The nickel layer 9 has a thickness of about 5 μm.

図4は、従来のピン電極などの補助治具を使用するマグネトロン用セラミックスメタライズ部品2の製造方法説明図である。先行技術に対する貢献を明示するための比較例として、従来方法のサンプルを作成し対比した。すなわち、前記実施例と同様の製法によりセラミックス部品素体5にメタライズ層8を形成し、次に図に示すように、該メタライズ層8を形成したセラミックス部品素体5の周内島部7の孔部にステンレス製のピン電極11を挿し込み、バレル式電解めっき法により周枠部メタライズ層8aと周内島部メタライズ層8bの上端面に約2μmのニッケルめっき層9を作成した。なお、バレルに投入した該メタライズ層8を形成し、ピン電極11を挿入したセラミックス部品素体5の数量は3500個で、前述のピン電極11の挿し込みに要した時間は約1.3時間である。   FIG. 4 is an explanatory view of a method for manufacturing the magnetron ceramic metallized component 2 using a conventional auxiliary jig such as a pin electrode. As a comparative example to clarify the contribution to the prior art, a sample of the conventional method was created and compared. That is, the metallized layer 8 is formed on the ceramic component body 5 by the same manufacturing method as in the above embodiment, and then, as shown in the figure, the peripheral inner island portion 7 of the ceramic component body 5 on which the metalized layer 8 is formed. A pin electrode 11 made of stainless steel was inserted into the hole, and a nickel plating layer 9 of about 2 μm was formed on the upper end surfaces of the peripheral frame metallization layer 8a and the peripheral inner island metallization layer 8b by a barrel-type electrolytic plating method. The number of ceramic component bodies 5 in which the metallized layer 8 charged into the barrel is formed and the pin electrode 11 is inserted is 3500, and the time required for inserting the pin electrode 11 is about 1.3 hours. It is.

こうして作成した実施例および比較例のマグネトロン用セラミックスメタライズ部品2について、ニッケル層9と金属部品のろう付け強度比較を実施した結果、実施例によるろう付けの強度は比較例のろう付け強度と同等以上の強度を示した。   As a result of comparing the brazing strength between the nickel layer 9 and the metal part for the ceramic metallized parts 2 for magnetrons of the examples and comparative examples thus prepared, the brazing strength according to the examples is equal to or greater than the brazing strength of the comparative example. The strength of was shown.

なお、比較例で作成したサンプルはめっき後の検査において、ニッケル層形成不良、ワレ、カケ、汚れなど約7%の不良を発生していた。これに対し、実施例では約2%しか不具合は生じなかった。   In the sample prepared in the comparative example, in the inspection after plating, about 7% of defects such as defective nickel layer formation, cracking, chipping, and dirt were generated. On the other hand, only about 2% of defects occurred in the examples.

さらに、実施例による製造に係る時間は比較例のそれに比較して約1/7であった。   Furthermore, the production time according to the example was about 1/7 compared with that of the comparative example.

また、比較例ではめっき液中のニッケルの約90%が、通電媒体である金属小部品に付着されてしまい、大きな材料ロスを発生している。   In the comparative example, about 90% of nickel in the plating solution is attached to a small metal part as a current-carrying medium, resulting in a large material loss.

以上のように、本発明は、マグネトロンの製造において、金属とセラミックスとの接着を容易にして生産性の向上をはかるとともに、信頼性・耐久性の優れたセラミックスマグネトロン製品を需要者に提供できる点で、主として電子レンジ製造工程における産業上の利用可能性は極めて高いものである。また、マグネトロン以外のセラミックス封着製品においても、信頼性の高いセラミックスメタライズ部品の製造に利用可能である。   As described above, the present invention can improve the productivity by facilitating the adhesion between metal and ceramics in the manufacture of magnetrons, and can provide ceramic magnetron products with excellent reliability and durability to consumers. Therefore, industrial applicability mainly in the microwave oven manufacturing process is extremely high. In addition, ceramic sealing products other than magnetrons can be used to manufacture highly reliable ceramic metallized parts.

本発明にかかるセラミックスメタライズ部品の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the ceramic metallized components concerning this invention. 本発明にかかるセラミックスメタライズ部品の一実施例マグネトロン部品(一部分)の構造を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the structure of one Example magnetron components (part) of the ceramic metallized components concerning this invention. ろう付け前のニッケル層まで形成されたマグネトロン用セラミックスメタライズ部品の詳細構造を示す説明図。Explanatory drawing which shows the detailed structure of the ceramic metallization components for magnetrons formed to the nickel layer before brazing. 従来のピン電極などの補助治具を使用するマグネトロン用セラミックスメタライズ部品の製造方法説明図。Explanatory drawing of the manufacturing method of the ceramic metallized components for magnetrons which use auxiliary jigs, such as the conventional pin electrode.

符号の説明Explanation of symbols

1 マグネトロン部品(一部分)
2 マグネトロン用セラミックスメタライズ部品
3 外囲ケース
4 電極リード
5 セラミックス部品素体
6 周枠部
7 周内島部
8 メタライズ層
8a 周枠部メタライズ層
8b 周内島部メタライズ層
9 ニッケル層
9a 周枠部ニッケル層
9b 周内島部ニッケル層
10 溝部
11 ピン電極
1 Magnetron parts (part)
2 Ceramic metallized parts for magnetron 3 Outer case 4 Electrode lead 5 Ceramic component body 6 Peripheral frame part 7 Peripheral island part 8 Metallized layer 8a Peripheral frame part metallized layer 8b Peripheral inner part metallized layer 9 Nickel layer 9a Peripheral frame part Nickel layer 9b Nickel layer 10 on the inner periphery 10 Groove 11 Pin electrode

Claims (3)

金属部品とろう付けにより気密性のある一体部品にするセラミックスメタライズ部品において、このメタライズ層の上にペースト状のニッケルパウダーを塗布、乾燥、焼付け処理してニッケル層を形成したことを特徴とするセラミックスメタライズ部品の製造方法。   Ceramics metallized parts that are made into an airtight integrated part by brazing metal parts. Ceramics characterized in that a nickel layer is formed by applying paste-like nickel powder on this metallized layer, drying and baking treatment Manufacturing method of metallized parts. 前記セラミックスメタライズ部品の製造方法により製造されたセラミックスメタライズ部品。 A ceramic metallized part manufactured by the method for manufacturing a ceramic metallized part. 前記セラミックスメタライズ部品において特にマグネトロン用に使用されるセラミックスメタライズ部品。   Ceramic metallized parts used for magnetrons in the ceramic metallized parts.
JP2006325875A 2006-12-01 2006-12-01 Ceramics metallized component and production method thereof Pending JP2008137850A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006325875A JP2008137850A (en) 2006-12-01 2006-12-01 Ceramics metallized component and production method thereof
KR1020070121688A KR20080050317A (en) 2006-12-01 2007-11-27 A ceramic-metalized part and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325875A JP2008137850A (en) 2006-12-01 2006-12-01 Ceramics metallized component and production method thereof

Publications (1)

Publication Number Publication Date
JP2008137850A true JP2008137850A (en) 2008-06-19

Family

ID=39599718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325875A Pending JP2008137850A (en) 2006-12-01 2006-12-01 Ceramics metallized component and production method thereof

Country Status (2)

Country Link
JP (1) JP2008137850A (en)
KR (1) KR20080050317A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290305A (en) * 2011-07-22 2011-12-21 安徽华东光电技术研究所 Method for metalizing inner circle of long ceramic cylinder
CN102381886A (en) * 2011-07-17 2012-03-21 荆门市创力工业科技有限责任公司 Baking-free once screen printing process for metallization of ceramic-vacuum tube
JP2021034277A (en) * 2019-08-27 2021-03-01 株式会社東芝 Ceramic component for magnetron
JP2021044088A (en) * 2019-09-06 2021-03-18 株式会社東芝 Ceramic component for magnetron and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124787A (en) * 1988-07-20 1990-05-14 Nippon Steel Corp Method for metallizing oxidic ceramics
JPH04331779A (en) * 1991-05-08 1992-11-19 Nippon Steel Corp Method for metallizing oxide based ceramics
JP2000154081A (en) * 1998-09-16 2000-06-06 Toshiba Electronic Engineering Corp Ceramic parts and their production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124787A (en) * 1988-07-20 1990-05-14 Nippon Steel Corp Method for metallizing oxidic ceramics
JPH04331779A (en) * 1991-05-08 1992-11-19 Nippon Steel Corp Method for metallizing oxide based ceramics
JP2000154081A (en) * 1998-09-16 2000-06-06 Toshiba Electronic Engineering Corp Ceramic parts and their production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381886A (en) * 2011-07-17 2012-03-21 荆门市创力工业科技有限责任公司 Baking-free once screen printing process for metallization of ceramic-vacuum tube
CN102290305A (en) * 2011-07-22 2011-12-21 安徽华东光电技术研究所 Method for metalizing inner circle of long ceramic cylinder
CN102290305B (en) * 2011-07-22 2013-11-27 安徽华东光电技术研究所 Method for metalizing inner circle of long ceramic cylinder
JP2021034277A (en) * 2019-08-27 2021-03-01 株式会社東芝 Ceramic component for magnetron
JP7362355B2 (en) 2019-08-27 2023-10-17 株式会社東芝 Ceramic parts for magnetron
JP2021044088A (en) * 2019-09-06 2021-03-18 株式会社東芝 Ceramic component for magnetron and manufacturing method thereof
JP7293052B2 (en) 2019-09-06 2023-06-19 株式会社東芝 CERAMIC PARTS FOR MAGNETRON AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
KR20080050317A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP6480806B2 (en) Method for bonding ceramic and metal and sealing structure thereof
US3531853A (en) Method of making a ceramic-to-metal seal
JP2008137850A (en) Ceramics metallized component and production method thereof
US2835967A (en) Method of producing a solderable metallic coating on a ceramic body and of solderingto the coating
JP2008071926A (en) Ceramic electronic component
CN104928672A (en) Preparation method of electric vacuum ceramic tube surface cold spraying aluminum and copper composite coating
JP2011109057A (en) Process of manufacturing high-accuracy ceramic substrate
CN107604342B (en) Metal member, method for manufacturing the same, and processing chamber having the same
JP5071118B2 (en) Ceramic electronic components
US6689984B2 (en) Susceptor with built-in electrode and manufacturing method therefor
JP3628854B2 (en) High pressure discharge lamp and manufacturing method thereof
JP2006278103A (en) Manufacturing method of coating getter film for electron tube
CN110484877A (en) A kind of preparation method of ceramic base copper-clad plate
CN108191449B (en) Copper-aluminum oxide ceramic substrate and preparation method thereof
JP3208438B2 (en) Ceramic substrate with metal layer and method of manufacturing the same
JP4250397B2 (en) Ceramic parts for magnetron
CN107146750A (en) A kind of electron gun down-lead bracket structure and its manufacture method
JP7362355B2 (en) Ceramic parts for magnetron
JP2014224030A (en) Method for applying metallic sheet to graphite structure using brazing and soldering step
KR102201500B1 (en) Ceramic housing and plating method of ceramic material
KR100280169B1 (en) Metallized Ceramic Parts
JP2021044088A (en) Ceramic component for magnetron and manufacturing method thereof
CN107287580A (en) A kind of chemical nickel plating method of aluminum matrix composite
JP2004179224A (en) Metal core substrate and metal core wiring board
CN210420167U (en) Beryllium oxide ceramic film metallization structure and preparation device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306