JP2008135594A - Board for sealing micro electromechanical part, multi-pattern board for sealing micro electromechanical part, micro electromechanical device, and method for manufacturing micro electromechanical device - Google Patents

Board for sealing micro electromechanical part, multi-pattern board for sealing micro electromechanical part, micro electromechanical device, and method for manufacturing micro electromechanical device Download PDF

Info

Publication number
JP2008135594A
JP2008135594A JP2006321149A JP2006321149A JP2008135594A JP 2008135594 A JP2008135594 A JP 2008135594A JP 2006321149 A JP2006321149 A JP 2006321149A JP 2006321149 A JP2006321149 A JP 2006321149A JP 2008135594 A JP2008135594 A JP 2008135594A
Authority
JP
Japan
Prior art keywords
substrate
component
micro
main surface
microelectromechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321149A
Other languages
Japanese (ja)
Other versions
JP4903540B2 (en
Inventor
Katsuyuki Yoshida
克亨 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006321149A priority Critical patent/JP4903540B2/en
Publication of JP2008135594A publication Critical patent/JP2008135594A/en
Application granted granted Critical
Publication of JP4903540B2 publication Critical patent/JP4903540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a board for sealing a micro electromechanical part which can prevent an application of a strain or stress to a micro electromechanical mechanism by a residual stress by a mounting heat history of electronic parts to be mounted and heat generating from their electronic parts, and can materialize a reduction in a size. <P>SOLUTION: In the board for sealing the micro electromechanical part, the micro electromechanical mechanism of the micro electromechanical part which has a semiconductor board, the micro electromechanical mechanism formed on a main face of the semiconductor board and a first electrode connected electrically to the micro electromechanical mechanism is airtightly sealed, and also an electronic part having a second electrode connected electrically to the first electrode is mounted thereon. A first main face of an insulating board has a first region jointed to the main face of the semiconductor board and a second region to which the electronic parts are mounted, and a wiring conductor formed within the insulating board comprises: one end led to the first region on the first main face and connected electrically to the first electrode and another end led to the second region on the first main face and connected electrically to the second electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、微小電子機械部品を気密封止するとともに、その微小電子機械部品に電気的に接続された電子部品を搭載する微小電子機械部品封止用基板、及び複数個取り形態の微小電子機械部品封止用基板、並びにそのような微小電子機械部品封止用基板と微小電子機械部品とを備える微小電子機械装置とその製造方法に関するものである。   The present invention relates to a micro electro mechanical component sealing substrate on which a micro electro mechanical component is hermetically sealed, and an electronic component electrically connected to the micro electro mechanical component is mounted. The present invention relates to a component sealing substrate, a micro electromechanical device including such a micro electro mechanical component sealing substrate and a micro electro mechanical component, and a manufacturing method thereof.

近年、シリコンウェーハ等の半導体基板の主面に、半導体集積回路素子等の微細配線を形成する加工技術を応用して、極めて微小な電子機械機構、いわゆるMEMS(Micro Electromechanical System)を形成した微小電子機械部品が注目され、実用化に向けて開発が進められている。   2. Description of the Related Art In recent years, microelectronics in which a very small electromechanical mechanism, so-called MEMS (Micro Electromechanical System), is formed by applying a processing technology for forming fine wiring such as a semiconductor integrated circuit element on the main surface of a semiconductor substrate such as a silicon wafer. Machine parts are attracting attention, and development is progressing toward practical application.

このような微小電子機械機構としては、加速度計、圧力センサ、アクチュエータ等のセンサや、微細な鏡面体を可動式に形成したマイクロミラーデバイス、光デバイス、あるいはマイクロポンプ等を組み込んだマイクロ化学システム等、非常に広い分野にわたるものが試作、開発されている。   Such microelectromechanical mechanisms include sensors such as accelerometers, pressure sensors, and actuators, micromirror devices with movable micromirrors, optical devices, microchemical systems incorporating micropumps, etc. Prototypes have been developed and developed over a very wide field.

そのような微小電子機械機構を形成した微小電子機械部品を用いて微小電子機械装置を構成するための従来の微小電子機械部品封止用基板及びそれを用いて成る微小電子機械装置の一例を図5に断面図で示す。   An example of a conventional micro-electromechanical component sealing substrate for configuring a microelectromechanical device using the microelectromechanical component having such a microelectromechanical mechanism and a microelectromechanical device formed using the same 5 shows a sectional view.

図5に示す例では、微小電子機械機構122が形成された半導体基板121の主面には、微小電子機械機構122に電力を供給したり、微小電子機械機構122から外部の電気回路に電気信号を送り出したりするための電極123が微小電子機械機構122と電気的に接続されて形成されており、これら半導体基板121、微小電子機械機構122及び電極123により、1つの微小電子機械部品124が構成される。 In the example illustrated in FIG. 5, power is supplied to the main surface of the semiconductor substrate 121 on which the micro electro mechanical mechanism 122 is formed, or an electric signal is transmitted from the micro electro mechanical mechanism 122 to an external electric circuit. Is formed by being electrically connected to the micro electro mechanical mechanism 122, and the semiconductor substrate 121, the micro electro mechanical mechanism 122 and the electrode 123 constitute one micro electro mechanical component 124. Is done.

なお、このような微小電子機械部品124は、通常、後述するように、半導体基板121の主面に多数個が縦横に配列形成された多数個取りの形態で形成した後、個々の半導体基板121に切断することにより製作されるので、この切断の際に切削粉等の異物が微小電子機械機構122に付着して作動の妨げになることを防止するために、ガラス板125等で覆われて保護されている。   Note that such micro-electromechanical components 124 are usually formed in a multi-cavity form in which a large number are arranged on the main surface of the semiconductor substrate 121 in the vertical and horizontal directions, as will be described later, and then the individual semiconductor substrates 121 are formed. In order to prevent foreign matter such as cutting powder from adhering to the microelectromechanical mechanism 122 during this cutting, it is covered with a glass plate 125 or the like. Protected.

そして、この微小電子機械部品124を、微小電子機械部品収納用の凹部Aを有するパッケージ131の凹部A内に収納するとともに、微小電子機械部品124の電極123をパッケージ131の電極パッド132にボンディングワイヤ133等の導電性接続材を介して接続した後、パッケージ131の凹部Aを蓋体134で覆って微小電子機械部品124を凹部A内に気密封止することにより、微小電子機械装置として完成する。この場合、微小電子機械部品124は、微小電子機械機構122の動作を妨げないようにするため、中空状態で気密封止する必要がある。   Then, the micro electro mechanical component 124 is accommodated in the recess A of the package 131 having the micro electro mechanical component accommodating recess A, and the electrode 123 of the micro electro mechanical component 124 is bonded to the electrode pad 132 of the package 131. After connecting via a conductive connecting material such as 133, the recess A of the package 131 is covered with a lid 134, and the micro electromechanical component 124 is hermetically sealed in the recess A, thereby completing the micro electro mechanical device. . In this case, the microelectromechanical component 124 needs to be hermetically sealed in a hollow state so as not to hinder the operation of the microelectromechanical mechanism 122.

この微小電子機械装置について、あらかじめパッケージ131の電極パッド132から外表面に導出するようにして形成しておいた配線導体135の導出部分を外部電気回路に接続することにより、気密封止された微小電子機械機構122が、電極123、ボンディングワイヤ133、電極パッド132及び配線導体135を介して外部の電気回路と電気的に接続される。   In this microelectromechanical device, the lead-out portion of the wiring conductor 135 formed so as to lead out from the electrode pad 132 of the package 131 to the outer surface in advance is connected to an external electric circuit, whereby the micro-mechanical device is hermetically sealed. The electromechanical mechanism 122 is electrically connected to an external electric circuit through the electrode 123, the bonding wire 133, the electrode pad 132, and the wiring conductor 135.

また、このような微小電子機械部品124は、通常、広面積の半導体基板の主面に多数個を縦横に配列形成させることにより製作されており、この場合の微小電子機械装置の製造方法は、従来、以下のようなものであった。   In addition, such micro-electromechanical components 124 are usually manufactured by arranging a large number of elements on a main surface of a large-area semiconductor substrate vertically and horizontally, and a manufacturing method of the micro-electromechanical device in this case is as follows. Conventionally, it has been as follows.

すなわち、
1、半導体基板の主面に、微小電子機械機構122及びこれに電気的に接続された電極123が形成されて成る微小電子機械部品領域を多数個、縦横に配列形成した微小電子機械部品を準備する工程と、
2、各微小電子機械部品の微小電子機械機構122を、その周囲が中空状態となるようにして、ガラス板125等で覆って封止する工程と、
3、半導体基板にダイシング加工等の切断加工を施して、個々の微小電子機械部品124に分割する工程と、
4、個々の微小電子機械部品124を、微小電子機械部品収納用パッケージ131内に気密封止する工程と、により製作される。
That is,
1. Prepare a micro electro mechanical component having a plurality of micro electro mechanical component regions formed by forming a micro electro mechanical mechanism 122 and an electrode 123 electrically connected to the micro electro mechanical mechanism 122 on the main surface of the semiconductor substrate. And a process of
2. a step of encapsulating the micro electro mechanical mechanism 122 of each micro electro mechanical component with a glass plate 125 or the like so that the periphery thereof is in a hollow state; and
3. A semiconductor substrate is subjected to a cutting process such as a dicing process and divided into individual micro-electromechanical components 124;
4. It is manufactured by hermetically sealing individual micro-electromechanical components 124 in a micro-electromechanical component housing package 131.

このような従来の製造方法においては、半導体基板の主面に配列形成された多数の微小電子機械部品領域の1個ずつをガラス板125等で封止して保護しておく必要があること、また、一旦ガラス板125で封止した微小電子機械部品を、個片の微小電子機械部品124に分割した後、改めてパッケージ131内に気密封止するとともに、その電極123をパッケージ131の電極パッド132等に接続して外部接続させる必要があること、等のため、生産性が悪く、実用化が難しいという問題があった。   In such a conventional manufacturing method, it is necessary to seal and protect one by one with a glass plate 125 or the like one by one in a number of micro-electromechanical component regions arranged on the main surface of the semiconductor substrate, Further, after the micro electromechanical component once sealed with the glass plate 125 is divided into individual micro electro mechanical components 124, the micro electro mechanical component is hermetically sealed in the package 131, and the electrode 123 is connected to the electrode pad 132 of the package 131. There is a problem that productivity is poor and it is difficult to put into practical use because it is necessary to connect to the outside and the like.

この問題に対し、半導体基板の主面に配列形成された多数個の微小電子機械機構122を一括して覆い、封止するような基板が提案されている。   In order to solve this problem, a substrate has been proposed in which a large number of microelectromechanical mechanisms 122 arranged on the main surface of a semiconductor substrate are collectively covered and sealed.

このような封止用の基板としては、半導体基板を材料とするものや導電性の金属板等を材料にするもの等が知られている。 As such a sealing substrate, a substrate made of a semiconductor substrate, a substrate made of a conductive metal plate, or the like is known.

封止用の基板が半導体基板から成る場合、例えば、主面に多数個の微小電子機械部品領域が配列形成された第1の半導体基板とは別に、この微小電子機械部品領域の配列に対応させて多数の凹部を配列形成した封止用の第2の半導体基板を準備し、第1の半導体基板の主面上に第2の半導体基板を、第2の半導体基板の凹部が第1の半導体基板の微小電子機械部品領域を覆うようにして接合し、第2の半導体基板の内側に第1の半導体基板の微小電子機械部品領域(特に微小電子機械機構)を封止するようにした技術が提案されている(例えば、特許文献1参照)。   In the case where the sealing substrate is made of a semiconductor substrate, for example, in addition to the first semiconductor substrate in which a large number of microelectromechanical component regions are arranged and formed on the main surface, it is made to correspond to the arrangement of the microelectromechanical component regions. And preparing a second semiconductor substrate for sealing in which a large number of recesses are arrayed, the second semiconductor substrate on the main surface of the first semiconductor substrate, and the recesses in the second semiconductor substrate being the first semiconductor There is a technology in which the micro electro mechanical component region of the substrate is joined so as to cover the micro electro mechanical component region (particularly, the micro electro mechanical mechanism) of the first semiconductor substrate inside the second semiconductor substrate. It has been proposed (see, for example, Patent Document 1).

また、封止用の基板が導電性を有する金属板から成る場合、導電性を有するカバー用の金属板に所定パターンの溝を形成するとともに、この溝をガラスやセラミック材料で充填して平坦化させた後、その上にボンディング用の導体パターン(電極パッド等)を形成し、この導体パターンに微小電子機械部品の電極を接続するとともに金属板を半導体基板の主面に接合し、その後、微小電子機械部品領域をセラミックやガラス等で封着するとともに、導体パターンを外部に導出するための外部配線用電極パターンを形成するようにした技術が提案されている(例えば、特許文献2参照。)。   In addition, when the sealing substrate is made of a conductive metal plate, a groove having a predetermined pattern is formed in the conductive metal plate for the cover, and the groove is filled with glass or a ceramic material to be flattened. After that, a conductor pattern for bonding (electrode pad, etc.) is formed thereon, the electrodes of the micro electromechanical parts are connected to the conductor pattern, and a metal plate is joined to the main surface of the semiconductor substrate. A technique has been proposed in which an electromechanical component region is sealed with ceramic, glass, or the like, and an external wiring electrode pattern for leading a conductor pattern to the outside is formed (for example, see Patent Document 2). .

また、微小電子機械機構、いわゆるMEMSを成した電子デバイスにおいては、MEMS素子と電気的に接続された端子と、半導体回路やキャパシタ、レジスタ等の受動素子とを接続するようにした技術が提案されている(例えば、特許文献3参照。)。
特開2001−144117号公報 特開2002−43463号公報 特開2004−209585号公報
In addition, in an electronic device having a microelectromechanical mechanism, so-called MEMS, a technique has been proposed in which a terminal electrically connected to a MEMS element and a passive element such as a semiconductor circuit, a capacitor, or a resistor are connected. (For example, refer to Patent Document 3).
JP 2001-144117 A JP 2002-43463 A JP 2004-209585 A

しかしながら、このような従来の技術においては、近年、センサ用途等で使用される微小電子機械機構等において次のような不具合を十分に抑制しきれない可能性が生じてきた。   However, in such a conventional technique, in recent years, there has been a possibility that the following problems cannot be sufficiently suppressed in a microelectromechanical mechanism or the like used for sensor applications or the like.

すなわち、センサ用途等で使用される微小電子機械機構は、近年、微小電子機械機構の応答精度の高精度化、長時間駆動などが行われることから、微小電子機械機構の電力応答性の向上、低消費電力化が求められてきている。   That is, the micro-electromechanical mechanism used for sensor applications and the like has recently been improved in response accuracy of the micro-electromechanical mechanism and driven for a long time. Low power consumption has been demanded.

また、センサ用途等で使用される微小電子機械機構は民生機器や携帯機器への適用が期待されており、微小電子機械機構でセンシングした信号を高速に信号処理するICやインダクタ、キャパシタ等の微小電子機械部品と合わせてより一層の薄型化が求められている。   In addition, micro-electromechanical mechanisms used in sensor applications are expected to be applied to consumer devices and portable devices. ICs, inductors, capacitors, etc. that process signals sensed by micro-electromechanical mechanisms at high speed are expected. A further reduction in thickness is required in combination with electronic mechanical parts.

これに対し、上記特許文献3に記載のMEMS素子搭載電子デバイスにおいては、MEMS素子と電気的に接続された端子と、半導体回路やキャパシタ、レジスタ等の受動素子とを縦方向に接続実装する構成が開示されている(段落0096及び図15参照)。このようにMEMS素子と半導体回路や受動素子とを縦方向に実装した場合、電子デバイスの薄型化が難しいという問題があった。   On the other hand, in the MEMS element-mounted electronic device described in Patent Document 3, a configuration in which a terminal electrically connected to the MEMS element and a passive element such as a semiconductor circuit, a capacitor, and a register are connected in the vertical direction is mounted. (See paragraph 0096 and FIG. 15). Thus, when the MEMS element and the semiconductor circuit or passive element are mounted in the vertical direction, there is a problem that it is difficult to reduce the thickness of the electronic device.

また、微小電子機械部品封止用基板の他方主面(特許文献3の図15では、蓋体2の上面)にIC等の電子素子やインダクタ、キャパシタ等の電気素子が実装されているため、実装熱履歴による残留応力の影響で、微小電子機械機構に歪や応力が発生し、センサ応答精度の劣化や微小電子機械機構の誤動作が発生するという問題があった。   In addition, since an electronic element such as an IC or an electric element such as an inductor or a capacitor is mounted on the other main surface of the substrate for encapsulating micro-electromechanical components (in FIG. 15 of Patent Document 3, the upper surface of the lid body 2), Due to the influence of the residual stress due to the mounting thermal history, there is a problem that strain and stress are generated in the microelectromechanical mechanism, causing deterioration of sensor response accuracy and malfunctioning of the microelectromechanical mechanism.

さらには、微小電子機械機構でセンシングした信号を高速に信号処理する電子素子やインダクタ、キャパシタ等の電気素子から発生する熱が、微小電子機械機構に歪や応力を与えることにより、センサ応答精度の劣化や微小電子機械機構の誤動作が発生するという問題もあった。   Furthermore, the heat generated from electronic elements that perform high-speed signal processing on signals sensed by the micro-electromechanical mechanism, and electrical elements such as inductors and capacitors gives strain and stress to the micro-electromechanical mechanism, thereby improving the sensor response accuracy. There was also a problem that deterioration and malfunction of the microelectromechanical mechanism occurred.

本発明は、上記従来の技術における諸問題に鑑みて完成されたものであり、その目的は、搭載される電子部品の実装熱履歴による残留応力、及びそれらの電子部品から発生する熱により微小電子機械機構に歪や応力が加わることを防止することができるとともに、薄型化を実現することができる微小電子機械部品封止用基板、及び複数個取り形態の微小電子機械部品封止用基板、並びにそのような微小電子機械部品封止用基板を有する微小電子機械装置、及びそのような微小電子機械装置の製造方法を提供することにある。ここで、電子部品とは、電気素子も電気素子も含むものとする。   The present invention has been completed in view of the above-described problems in the prior art, and its purpose is to make a microelectron by the residual stress due to the mounting heat history of the mounted electronic component and the heat generated from the electronic component. A substrate for encapsulating a micro-electromechanical component capable of preventing strain and stress from being applied to the mechanical mechanism and realizing a reduction in thickness, a substrate for encapsulating a micro-electromechanical component in a plurality of forms, and It is an object of the present invention to provide a microelectromechanical device having such a microelectromechanical component sealing substrate and a method of manufacturing such a microelectronic mechanical device. Here, the electronic component includes both an electric element and an electric element.

本発明の微小電子機械部品封止用基板は、半導体基板と該半導体基板の主面に形成される微小電子機械機構と該微小電子機械機構に電気的に接続される第1電極とを有する微小電子機械部品の前記の微小電子機械機構を気密封止するとともに、前記の第1電極に電気的に接続される第2電極を有する電子部品を搭載する微小電子機械部品封止用基板であって、前記の微小機械機構を気密封止するように前記の半導体基板の前記の主面に接合される第1主面を備えた絶縁基板と、前記の絶縁基板の内部に形成された配線導体とを備え、前記の第1主面は、前記の半導体基板の前記の主面に接合される第1領域と前記の電子部品が搭載される第2領域とを有し、前記の配線導体は、前記の第1主面における前記の第1領域に導出され前記の第1電極に電気的に接続される一端と、前記の第1主面における前記の第2領域に導出され前記の第2電極に電気的に接続される他端とを備えることを特徴とするものである。この微小電子機械部品封止用基板を、「第1の微小電子機械部品封止用基板」という。   A substrate for encapsulating a micro electro mechanical component of the present invention includes a micro substrate having a semiconductor substrate, a micro electro mechanical mechanism formed on a main surface of the semiconductor substrate, and a first electrode electrically connected to the micro electro mechanical mechanism. A substrate for encapsulating a micro-electromechanical component on which the micro-electromechanical mechanism of the electro-mechanical component is hermetically sealed and mounted with an electronic component having a second electrode electrically connected to the first electrode. An insulating substrate having a first main surface joined to the main surface of the semiconductor substrate so as to hermetically seal the micro mechanical mechanism, and a wiring conductor formed inside the insulating substrate; The first main surface has a first region bonded to the main surface of the semiconductor substrate and a second region on which the electronic component is mounted, and the wiring conductor is The first electric power derived to the first region on the first main surface; And one end electrically connected to the second electrode and led to the second region on the first main surface. . This substrate for encapsulating a micro electro mechanical component is referred to as a “first micro electro mechanical component encapsulating substrate”.

また、第1の微小電子機械部品封止用基板において、好ましくは、前記の第1及び第2の電極がそれぞれ複数存在し、前記の配線導体は、それぞれ複数配置されており、前記絶縁基板を平面透視して、前記の配線導体は、前記の微小電子機械部品と前記の電子部品の中心を通る直線に関して線対称に配置されていることを特徴とするものである。この微小電子機械部品封止用基板を、「第2の微小電子機械部品封止用基板」という。   In the first microelectronic mechanical component sealing substrate, preferably, there are a plurality of the first and second electrodes, and a plurality of the wiring conductors are arranged, and the insulating substrate Seen in a plan view, the wiring conductor is arranged symmetrically with respect to a straight line passing through the center of the micro-electromechanical component and the electronic component. This micro electro mechanical component sealing substrate is referred to as a “second micro electro mechanical component sealing substrate”.

また、第2の微小電子機械部品封止用基板において、好ましくは、前記絶縁基板を平面透視して、複数の前記の配線導体うち前記の直線に最も近い位置に配置された少なくとも1つの配線は、該複数の前記の配線導体のうち最も長さが短いことを特徴とするものである。この微小電子機械部品封止用基板を、「第3の微小電子機械部品封止用基板」という。   Further, in the second substrate for encapsulating a micro-electromechanical component, preferably, at least one wiring arranged at a position closest to the straight line among the plurality of wiring conductors when the insulating substrate is seen through a plane is preferably The length of the plurality of wiring conductors is the shortest. This micro electro mechanical component sealing substrate is referred to as a “third micro electro mechanical component sealing substrate”.

また、第1から第3のいずれかの微小電子機械部品封止用基板において、好ましくは、前記の第1電極及び第2電極はそれぞれ複数存在し、前記の絶縁基板の内部に形成された接地用導体を備え、前記の接地用導体は、前記の第1主面における前記の第1領域に導出され前記の第1電極の少なくとも1つに電気的に接続される第1端部と、前記の第1主面における前記の第2領域に導出され前記の第2電極の少なくとも1つに電気的に接続される第2端部とを備えることを特徴とするものである。この微小電子機械部品封止用基板を、「第4の微小電子機械部品封止用基板」という。   In any one of the first to third micro-electromechanical component sealing substrates, preferably, there are a plurality of the first electrodes and the second electrodes, respectively, and a ground formed inside the insulating substrate. A first conductor that is led out to the first region on the first main surface and is electrically connected to at least one of the first electrodes; and And a second end led to the second region on the first main surface and electrically connected to at least one of the second electrodes. This micro electro mechanical component sealing substrate is referred to as a “fourth micro electro mechanical component sealing substrate”.

また、第4の微小電子機械部品封止用基板において、好ましくは、前記の接地用導体は、前記の絶縁基板の前記の第1主面に対向する第2主面又は前記の絶縁基板の側面に導出される第3端部を備えることを特徴とするものである。この微小電子機械部品封止用基板を、「第5の微小電子機械部品封止用基板」という。   In the fourth microelectronic mechanical component sealing substrate, preferably, the grounding conductor is a second main surface or a side surface of the insulating substrate facing the first main surface of the insulating substrate. And a third end portion derived from the second end portion. This micro electro mechanical component sealing substrate is referred to as “fifth micro electro mechanical component sealing substrate”.

また、第5の微小電子機械部品封止用基板において、好ましくは、前記の半導体基板の前記の主面と前記の絶縁基板の前記の第1主面における前記の第1領域とは、導電性接合材を介して接合されており、前記の接地用導体は、前記の絶縁基板の前記の一方主面における前記の第1領域と前記の半導体基板の主面との接合部位に導出される第4端部を備えることを特徴とするものである。   In the fifth substrate for micro-electromechanical component sealing, preferably, the main surface of the semiconductor substrate and the first region of the first main surface of the insulating substrate are electrically conductive. The grounding conductor is joined via a joining material, and the grounding conductor is led out to a joining portion between the first region on the one principal surface of the insulating substrate and the principal surface of the semiconductor substrate. 4 ends are provided.

また、本発明の複数個取り形態の微小電子機械部品封止用基板は、微小電子機械部品封止用基板を構成する封止領域を複数有してなることを特徴とするものである。   The substrate for encapsulating a micro electro mechanical component of the present invention having a plurality of shapes is characterized in that it has a plurality of sealing regions constituting the micro electro mechanical component encapsulating substrate.

また、本発明の微小電子機械装置は、前記の微小電子機械部品封止用基板と、前記の微小電子機械部品と、前記の電子部品とを備えることを特徴とするものである。   According to another aspect of the present invention, there is provided a microelectromechanical device comprising the microelectronic mechanical component sealing substrate, the microelectronic mechanical component, and the electronic component.

また、本発明の微小電子機械装置の製造方法は、微小電子機械機構と該微小電子機械機構に電気的に接続された第1電極とが形成されている複数の微小電子機械部品領域が半導体基板上において少なくとも一方向に配列形成されてなり、前記の微小電子機械部品領域は、該一方向に一定の間隔で配列されている複数個取り形態の微小電子機械部品基板を準備する工程と、複数個取り形態の微小電子機械部品封止用基板を準備する工程と、対応する前記の第1電極に接続される第2電極をそれぞれ有する複数の電子部品を準備する工程と、前記の微小電子機械部品基板の前記の各第1電極と対応する前記の第1配線導体の一端とを電気的に接続するとともに、前記の複数個取り形態の微小電子機械部品基板と前記の複数個取り形態の微小電子機械部品封止用基板とを接合して前記の各微小電子機械機構をそれぞれ気密封止する工程と、前記の複数個取り形態の微小電子機械部品基板における前記の微小電子機械部品領域以外の領域を除去する工程と、前記の除去により露出した前記の複数個取り形態の微小電子機械部品封止用基板の前記の一方主面に前記の複数の電子部品を搭載する工程と、前記の複数個取り携帯の微小電子機械部品封止用基板を、前記の封止領域毎に分割する工程とを備えることを特徴とするものである。   According to another aspect of the present invention, there is provided a method of manufacturing a microelectromechanical device in which a plurality of microelectromechanical component regions in which a microelectromechanical mechanism and a first electrode electrically connected to the microelectromechanical mechanism are formed are formed on a semiconductor substrate. A step of preparing a plurality of micro-electromechanical component substrates arranged in a fixed direction in the one direction, wherein the micro-electromechanical component region is arranged in at least one direction on the top; A step of preparing a substrate for encapsulating a micro-electromechanical component in a single-piece form, a step of preparing a plurality of electronic components each having a second electrode connected to the corresponding first electrode, and the micro-electromechanical device The first electrodes of the component board are electrically connected to one end of the first wiring conductor corresponding to the first electrodes, and the plurality of micro-electromechanical component boards and the plurality of micro-patterns are minute. Electronic machine Bonding the component sealing substrate to hermetically seal each of the microelectromechanical mechanisms, and a region other than the microelectromechanical component region in the plurality of microelectromechanical component substrates A step of removing, a step of mounting the plurality of electronic components on the one main surface of the substrate for encapsulating micro-electromechanical components in the plurality of forms exposed by the removal, and the plurality of steps And a step of dividing a portable substrate for micro-electromechanical component sealing into each of the sealing regions.

本発明の微小電子機械部品封止用基板によれば、半導体基板と該半導体基板の主面に形成される微小電子機械機構と該微小電子機械機構に電気的に接続される第1電極とを有する微小電子機械部品の前記の微小電子機械機構を気密封止するとともに、前記の第1電極に電気的に接続される第2電極を有する電子部品を搭載する微小電子機械部品封止用基板であって、前記の微小機械機構を気密封止するように前記の半導体基板の前記の主面に接合される第1主面を備えた絶縁基板と、前記の絶縁基板の内部に形成された配線導体とを備え、前記の第1主面は、前記の半導体基板の前記の主面に接合される第1領域と前記の電子部品が搭載される第2領域とを有し、前記の配線導体は、前記の第1主面における前記の第1領域に導出され前記の第1電極に電気的に接続される一端と、前記の第1主面における前記の第2領域に導出され前記の第2電極に電気的に接続される他端とを備えるようにしたことから、搭載される電子部品の実装熱履歴による残留応力、及びそれらの電子部品から発生する熱により微小電子機械機構に歪や応力が加わることを防止することができるとともに、薄型化を実現することができる。   According to the substrate for encapsulating a microelectromechanical component of the present invention, a semiconductor substrate, a microelectromechanical mechanism formed on the main surface of the semiconductor substrate, and a first electrode electrically connected to the microelectromechanical mechanism are provided. A substrate for sealing a micro-electromechanical component on which the micro-electro-mechanical mechanism of the micro-electromechanical component has a hermetic seal and mounts an electronic component having a second electrode electrically connected to the first electrode. An insulating substrate having a first main surface bonded to the main surface of the semiconductor substrate so as to hermetically seal the micromechanical mechanism, and wiring formed inside the insulating substrate And the first main surface has a first region bonded to the main surface of the semiconductor substrate and a second region on which the electronic component is mounted, and the wiring conductor Is derived in the first region on the first main surface and is Since one end electrically connected to one electrode and the other end led to the second region on the first main surface and electrically connected to the second electrode, It is possible to prevent strain and stress from being applied to the microelectromechanical mechanism due to the residual stress due to the mounting heat history of the electronic components to be mounted and the heat generated from those electronic components, and to realize a reduction in thickness. .

また、本発明の複数個取り形態の微小電子機械部品封止用基板は、微小電子機械部品封止用基板を構成する封止領域を複数有してなることから、半導体基板の主面に形成された微小電子機械機構を一括して封止することができるため、搭載される電子部品の実装熱履歴による残留応力、及びそれらの電子部品から発生する熱により微小電子機械機構に歪や応力が加わることを防止することができるとともに、薄型化を実現することができる微小電子機械装置を、容易かつ確実に、多数個製造することができる。   In addition, the multiple-electron mechanical component sealing substrate of the present invention is formed on the main surface of the semiconductor substrate because it has a plurality of sealing regions constituting the micro-electromechanical component sealing substrate. The microelectromechanical mechanisms that have been mounted can be collectively sealed, so that the residual stress due to the mounting heat history of the electronic components to be mounted and the heat generated from those electronic components can cause strain and stress on the microelectromechanical mechanisms. It is possible to easily and surely manufacture a large number of microelectromechanical devices that can be prevented from being added and can be thinned.

また、本発明の微小電子機械装置は、前記の微小電子機械部品封止用基板と、前記の微小電子機械部品と、前記の電子部品とを備えることを特徴とすることから、半導体基板の主面に形成された微小電子機械機構を容易かつ確実に封止することができるとともに、この微小電子機械機構と接続された電極を容易かつ確実に、例えば表面実装が可能な形態で外部接続でき、電子部品と合わせてより一層の薄型化が可能な微小電子機械部品封止用基板を提供することができる。   In addition, a microelectromechanical device of the present invention comprises the above-described microelectromechanical component sealing substrate, the microelectromechanical component, and the electronic component. The microelectromechanical mechanism formed on the surface can be easily and reliably sealed, and the electrode connected to the microelectromechanical mechanism can be externally connected in a form that allows surface mounting, for example, It is possible to provide a substrate for encapsulating a microelectromechanical component that can be further reduced in thickness in combination with an electronic component.

また、搭載される電子部品の実装熱履歴による残留応力、及びそれらの電子部品から発生する熱により微小電子機械機構に歪や応力が加わることを防止することができる。   In addition, it is possible to prevent strain and stress from being applied to the microelectromechanical mechanism due to the residual stress due to the mounting heat history of the electronic components to be mounted and the heat generated from those electronic components.

また、本発明の微小電子機械装置の製造方法は、微小電子機械機構と該微小電子機械機構に電気的に接続された第1電極とが形成されている複数の微小電子機械部品領域が半導体基板上において少なくとも一方向に配列形成されてなり、前記の微小電子機械部品領域は、該一方向に一定の間隔で配列されている複数個取り形態の微小電子機械部品基板を準備する工程と、複数個取り形態の微小電子機械部品封止用基板を準備する工程と、対応する前記の第1電極に接続される第2電極をそれぞれ有する複数の電子部品を準備する工程と、前記の微小電子機械部品基板の前記の各第1電極と対応する前記の第1配線導体の一端とを電気的に接続するとともに、前記の複数個取り形態の微小電子機械部品基板と前記の複数個取り形態の微小電子機械部品封止用基板とを接合して前記の各微小電子機械機構をそれぞれ気密封止する工程と、前記の複数個取り形態の微小電子機械部品基板における前記の微小電子機械部品領域以外の領域を除去する工程と、前記の除去により露出した前記の複数個取り形態の微小電子機械部品封止用基板の前記の一方主面に前記の複数の電子部品を搭載する工程と、前記の複数個取り形態の微小電子機械部品封止用基板を、前記の封止領域毎に分割する工程とを備えることから、複数の微小電子機械部品領域において、複数の微小電子機械機構を同時に気密封止することができるので、微小電子機械機構に歪や応力が加わることが防止されるとともに、互いに接合された微小電子機械部品及び微小電子機械部品封止用基板からなる薄型の微小電子機械装置を、容易かつ確実に、多数個製造することができる。   According to another aspect of the present invention, there is provided a method of manufacturing a microelectromechanical device in which a plurality of microelectromechanical component regions in which a microelectromechanical mechanism and a first electrode electrically connected to the microelectromechanical mechanism are formed are formed on a semiconductor substrate. A step of preparing a plurality of micro-electromechanical component substrates arranged in a fixed direction in the one direction, wherein the micro-electromechanical component region is arranged in at least one direction on the top; A step of preparing a substrate for encapsulating a micro-electromechanical component in a single-piece form, a step of preparing a plurality of electronic components each having a second electrode connected to the corresponding first electrode, and the micro-electromechanical device The first electrodes of the component board are electrically connected to one end of the first wiring conductor corresponding to the first electrodes, and the plurality of micro-electromechanical component boards and the plurality of micro-patterns are minute. Electronic machine Bonding the component sealing substrate to hermetically seal each of the microelectromechanical mechanisms, and a region other than the microelectromechanical component region in the plurality of microelectromechanical component substrates A step of removing, a step of mounting the plurality of electronic components on the one main surface of the substrate for encapsulating micro-electromechanical components in the plurality of forms exposed by the removal, and the plurality of steps And a step of dividing the microelectromechanical component sealing substrate in the form into each of the sealing regions, so that a plurality of microelectromechanical mechanisms are simultaneously hermetically sealed in the plurality of microelectromechanical component regions. Therefore, it is possible to prevent a strain and stress from being applied to the microelectromechanical mechanism, and to form a thin microelectromechanical device comprising a microelectromechanical component and a microelectronic mechanical component sealing substrate bonded to each other. Easily and reliably, it can be a large number produced.

以下に、添付の図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(実施の形態1)
図1は、本発明の実施の形態1による微小電子機械部品封止用基板を有する微小電子機械装置の構成例を示す断面図である。図1に示されるように、微小電子機械装置1は、微小電子機械部品2と微小電子機械部品封止用基板3と電子部品4とを備える。微小電子機械部品2は、半導体基板5と、該半導体基板5の一方主面(図1では、半導体基板5の下面)に形成される微小電子機械機構6と、該微小電子機械機構6に電気的に接続される電極(以下、「第1電極」という。)7とを有する。一方、微小電子機械部品封止用基板3は、絶縁基板8と、第1配線導体9と、第2配線導体10と、第3配線導体11とを備える。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration example of a micro electro mechanical device having a micro electro mechanical component sealing substrate according to Embodiment 1 of the present invention. As shown in FIG. 1, the micro electro mechanical device 1 includes a micro electro mechanical component 2, a micro electro mechanical component sealing substrate 3, and an electronic component 4. The microelectromechanical component 2 includes a semiconductor substrate 5, a microelectromechanical mechanism 6 formed on one main surface of the semiconductor substrate 5 (the lower surface of the semiconductor substrate 5 in FIG. 1), and an electrical connection to the microelectromechanical mechanism 6. Connected electrode 7 (hereinafter referred to as “first electrode”). On the other hand, the microelectronic mechanical component sealing substrate 3 includes an insulating substrate 8, a first wiring conductor 9, a second wiring conductor 10, and a third wiring conductor 11.

ここで、電子部品4は、微小電子機械機構6でセンシングした信号を信号処理する、例えばASIC(Application SpecificIntegrated Circuit)等の電子素子であってよい。   Here, the electronic component 4 may be an electronic element such as an ASIC (Application Specific Integrated Circuit) that processes a signal sensed by the micro electro mechanical mechanism 6.

この微小電子機械部品封止用基板6を用いて、半導体基板5の主面(図1では、半導体基板5の下面)に設けられた微小電子機械機構6を封止するとともに、微小電子機械部品封止用基板6上に、第1電極7に電気的に接続される電極(以下、「第2電極」という。)12を有する電子部品4が搭載され、微小電子機械機構6が外部接続可能な状態で封止されてなる微小電子機械装置1が形成される。   The micro electro mechanical component sealing substrate 6 is used to seal the micro electro mechanical mechanism 6 provided on the main surface of the semiconductor substrate 5 (the lower surface of the semiconductor substrate 5 in FIG. 1), and the micro electro mechanical component. An electronic component 4 having an electrode (hereinafter referred to as a “second electrode”) 12 electrically connected to the first electrode 7 is mounted on the sealing substrate 6, and the microelectromechanical mechanism 6 can be externally connected. Thus, the microelectromechanical device 1 that is sealed in such a state is formed.

絶縁基板8の一方主面(以下、「第1主面」という。)は、半導体基板5の微小電子機械機構6が形成された主面に接合される第1領域と、電子部品4が搭載される第2領域とを有する。また、第1配線導体9は、絶縁基板8の内部に形成され、一端は第2配線導体10に接続される一方、他端は第3配線導体11に接続される。第2配線導体10は、絶縁基板8を貫通する貫通導体であり、その一端は絶縁基板8の第1主面における第1領域に導出され、その他端は絶縁基板8の他方主面、すなわち第1主面に対向する主面(以下、「第2主面」という。)に導出される。第3配線導体11は、絶縁基板8の内部に形成され、一端が絶縁基板8の第1主面における第2領域に導出される一方、他端は第1配線導体9に接続される。   One main surface (hereinafter referred to as “first main surface”) of the insulating substrate 8 is mounted with the first region bonded to the main surface of the semiconductor substrate 5 on which the microelectromechanical mechanism 6 is formed and the electronic component 4. Second region. The first wiring conductor 9 is formed inside the insulating substrate 8, and one end is connected to the second wiring conductor 10 and the other end is connected to the third wiring conductor 11. The second wiring conductor 10 is a through conductor that penetrates the insulating substrate 8, and one end thereof is led out to the first region on the first main surface of the insulating substrate 8, and the other end is the other main surface of the insulating substrate 8, that is, the first main surface. The first main surface is derived to a main surface (hereinafter referred to as “second main surface”). The third wiring conductor 11 is formed inside the insulating substrate 8, and one end is led to the second region on the first main surface of the insulating substrate 8, while the other end is connected to the first wiring conductor 9.

絶縁基板8の第2主面に導出された第2配線導体10の他端は、外部端子13に接続され、その外部端子13を介して、外部の電気回路に接続される。   The other end of the second wiring conductor 10 led out to the second main surface of the insulating substrate 8 is connected to the external terminal 13 and is connected to an external electric circuit via the external terminal 13.

微小電子機械機構6は、例えば電気スイッチ、インダクタ、キャパシタ、共振器、アンテナ、マイクロリレー、光スイッチ、ハードディスク用磁気ヘッド、マイク、バイオセンサー、DNAチップ、マイクロリアクタ、プリントヘッド、加速度センサ、圧力センサなどの各種センサ、ディスプレイデバイスなどの機能を有する微小電子機械部品であり、半導体微細加工技術を基本とした、いわゆるマイクロマシニングで作る部品であり、1素子あたり10μm〜数100μm程度の寸法を有する。   The micro electro mechanical mechanism 6 includes, for example, an electric switch, an inductor, a capacitor, a resonator, an antenna, a micro relay, an optical switch, a hard disk magnetic head, a microphone, a biosensor, a DNA chip, a microreactor, a print head, an acceleration sensor, a pressure sensor, and the like. These are microelectromechanical components having functions of various sensors, display devices, etc., and are components made by so-called micromachining based on semiconductor micromachining technology, and have a size of about 10 μm to several hundreds of μm per element.

絶縁基板8は、微小電子機械機構6を封止するための蓋体として機能するとともに、第1配線導体9、第2配線導体10、及び第3配線導体11を形成するための基体として機能する。   The insulating substrate 8 functions as a lid for sealing the micro electro mechanical mechanism 6 and also functions as a base for forming the first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11. .

絶縁基板8の第1主面は、半導体基板5の一方主面に、例えば接合材14によって接合されている。ここで、接合材14は、絶縁基板8の第1主面上に、微小電子機械機構6を気密封止するように微小電子機械機構6を取り囲んで配置されている。また、絶縁基板8の第1主面に、微小電子機械部品2の微小電子機械機構6を内側に収めるような凹部を形成しておいてもよい。凹部内に微小電子機械機構6の一部を収めるようにしておくと、微小電子機械機構6を取り囲む接合材14の高さを低く抑えることができ、微小電子機械装置1の低背化に有利なものとなる。   The first main surface of the insulating substrate 8 is bonded to one main surface of the semiconductor substrate 5 by, for example, a bonding material 14. Here, the bonding material 14 is disposed on the first main surface of the insulating substrate 8 so as to surround the micro electro mechanical mechanism 6 so as to hermetically seal the micro electro mechanical mechanism 6. In addition, a recess may be formed on the first main surface of the insulating substrate 8 so as to accommodate the micro electro mechanical mechanism 6 of the micro electro mechanical component 2 inside. If a part of the micro electro mechanical mechanism 6 is accommodated in the recess, the height of the bonding material 14 surrounding the micro electro mechanical mechanism 6 can be suppressed low, which is advantageous for reducing the height of the micro electro mechanical apparatus 1. It will be something.

この絶縁基板8は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化珪素質焼結体、ガラスセラミックス焼結体等のセラミックス材料や、ポリイミド、ガラスエポキシ樹脂等の有機樹脂材料、セラミックスやガラス等の無機粉末をエポキシ樹脂等の有機樹脂で結合して成る複合材等により形成される。   This insulating substrate 8 is made of a ceramic material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, or a glass ceramic sintered body. It is formed of an organic resin material such as polyimide or glass epoxy resin, or a composite material formed by bonding inorganic powder such as ceramics or glass with an organic resin such as epoxy resin.

絶縁基板8は、例えば、酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウムとガラス粉末等の原料粉末をシート上に成形して成るグリーンシートを積層し、焼成することにより形成される。   If the insulating substrate 8 is made of, for example, an aluminum oxide sintered body, the insulating substrate 8 is formed by laminating and firing a green sheet formed by forming aluminum oxide and a raw material powder such as glass powder on the sheet. .

なお、絶縁基板8は、酸化アルミニウム質焼結体で形成するものに限らず、用途や気密封止する微小電子機械機構6の特性等に応じて適したものを選択することが好ましい。   The insulating substrate 8 is not limited to the one formed of an aluminum oxide sintered body, and it is preferable to select a substrate that is suitable for the application and the characteristics of the microelectromechanical mechanism 6 to be hermetically sealed.

例えば、絶縁基板8は、半導体基板5と機械的に接合されるので、半導体基板5との接合の信頼性、つまり微小電子機械機構6の封止の気密性を高くするためには、ムライト質焼結体や、例えばガラス成分の種類や添加量を調整することにより熱膨張係数を半導体基板5に近似させるようにした酸化アルミニウム−ホウ珪酸ガラス系等のガラスセラミックス焼結体等のような半導体基板5との熱膨張係数の差が小さい材料で形成することが好ましい。   For example, since the insulating substrate 8 is mechanically bonded to the semiconductor substrate 5, in order to increase the reliability of bonding with the semiconductor substrate 5, that is, the hermeticity of sealing of the micro electro mechanical mechanism 6, the mullite quality. Semiconductors such as sintered ceramics and glass ceramics sintered bodies such as aluminum oxide-borosilicate glass systems in which the coefficient of thermal expansion is approximated to the semiconductor substrate 5 by adjusting the type and amount of glass components, for example. It is preferable to form the substrate 5 with a material having a small difference in thermal expansion coefficient.

また、絶縁基板8は、第1配線導体9、第2配線導体10、及び第3配線導体11により伝送される電気信号の遅延を防止するような場合には、ポリイミド、ガラスエポキシ樹脂等の有機樹脂材料、セラミックスやガラス等の無機粉末をエポキシ樹脂等の有機樹脂で結合して成る複合材、または、酸化アルミニウム−ホウ珪酸ガラス系や酸化リチウム系等のガラスセラミックス焼結体等のような比誘電率の小さい材料で形成することが好ましい。   The insulating substrate 8 is made of an organic material such as polyimide or glass epoxy resin in order to prevent delay of electrical signals transmitted by the first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11. Ratios such as resin materials, composites made by bonding inorganic powders such as ceramics and glass with organic resins such as epoxy resins, or sintered glass ceramics such as aluminum oxide-borosilicate glass or lithium oxide It is preferable to form with a material with a low dielectric constant.

絶縁基板8は、封止する微小電子機械機構6の発熱量が大きく、この熱の外部への放散性を良好とするような場合には、窒化アルミニウム質焼結体等のような熱伝導率の大きな材料で形成することが好ましい。   When the insulating substrate 8 generates a large amount of heat from the micro-electromechanical mechanism 6 to be sealed and the heat dissipating property is good, the thermal conductivity of an aluminum nitride sintered body or the like is used. It is preferable to form with a large material.

これらの第1配線導体9、第2配線導体10、及び第3配線導体11は、絶縁基板8内部に形成されており、絶縁基板8における第1領域に導出された第2配線導体10の一端は、第1電極7を介して、微小電子機械機構6に電気的に接続される。また、絶縁基板8における第2領域に導出された第3配線導体11の一端は、第2電極12を介して電子部品4に電気的に接続される。   The first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11 are formed inside the insulating substrate 8, and one end of the second wiring conductor 10 led out to the first region in the insulating substrate 8. Are electrically connected to the microelectromechanical mechanism 6 through the first electrode 7. One end of the third wiring conductor 11 led to the second region of the insulating substrate 8 is electrically connected to the electronic component 4 through the second electrode 12.

これらの第1配線導体9、第2配線導体10、及び第3配線導体11は、銅、銀、金、パラジウム、タングステン、モリブデン、マンガン等の金属材料により形成される。   The first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11 are made of a metal material such as copper, silver, gold, palladium, tungsten, molybdenum, and manganese.

この形成の手段としては、メタライズ、めっき、蒸着等の金属を薄膜層として被着させる手段を用いることができる。   As a means for the formation, a means for depositing a metal such as metallization, plating, vapor deposition or the like as a thin film layer can be used.

例えば、絶縁基板8内の配線導体がタングステンから成る場合であれば、タングステンのペーストを絶縁基板8となるグリーンシートに印刷してこれをグリーンシートとともに焼成することにより形成されてよい。   For example, if the wiring conductor in the insulating substrate 8 is made of tungsten, the wiring paste may be formed by printing a tungsten paste on a green sheet to be the insulating substrate 8 and baking it together with the green sheet.

第1電極7及び第2電極12は、銅、銀、金、パラジウム、タングステン、銅、アルミニウムなどの金属材料により形成され、錫−銀系、錫−銀−銅系等の半田、金−錫ろう等の低融点ろう材、銀−ゲルマニウム系等の高融点ろう材、導電性有機樹脂、あるいはシーム溶接、電子ビーム溶接等の溶接法による接合を可能とするような金属材料等により、対応する微小電子機械部品2及び電子部品4とそれぞれ接続される。   The first electrode 7 and the second electrode 12 are formed of a metal material such as copper, silver, gold, palladium, tungsten, copper, or aluminum, and tin-silver, tin-silver-copper, or the like, gold-tin Corresponding to low melting point brazing materials such as brazing, high melting point brazing materials such as silver-germanium, conductive organic resins, or metal materials that enable joining by welding methods such as seam welding and electron beam welding They are connected to the microelectromechanical component 2 and the electronic component 4, respectively.

また、絶縁基板8の第1主面と半導体基板5の主面は接合されて、微小電子機械機構6を気密封止している。絶縁基板8の第1主面と半導体基板5の主面とを接合する接合材14としては、錫−銀系,錫−銀−銅系等の半田、金−錫ろう等の低融点ろう材、銀−ゲルマニウム系等の高融点ろう材のような接合部材として知られる金属材料、金属粉末を含有したエポキシ樹脂等の導電性接着材、あるいはエポキシ樹脂接着材等の樹脂材料等が挙げられる。   In addition, the first main surface of the insulating substrate 8 and the main surface of the semiconductor substrate 5 are bonded to hermetically seal the micro electromechanical mechanism 6. As the bonding material 14 for bonding the first main surface of the insulating substrate 8 and the main surface of the semiconductor substrate 5, solder such as tin-silver, tin-silver-copper, or a low melting point brazing material such as gold-tin brazing Metal materials known as joining members such as high melting point brazing materials such as silver-germanium-based materials, conductive adhesive materials such as epoxy resins containing metal powder, or resin materials such as epoxy resin adhesive materials.

また、上記接合材14として、さらに、鉄−ニッケル−コバルト合金や鉄−ニッケル合金等の鉄−ニッケル系合金,無酸素銅,アルミニウム,ステンレス鋼,銅−タングステン合金,銅−モリブデン合金等の金属材料、あるいは酸化アルミニウム質焼結体,ガラスセラミックス焼結体等の無機系材料にAu,Ag,Cu,Al,Pt,Pd等の金属層をめっき法等で形成した導電性被膜等を形成したものに、錫−銀系,錫−銀−銅系等の半田を塗布したものを使用することができる。   Further, as the bonding material 14, metals such as iron-nickel alloys such as iron-nickel-cobalt alloy and iron-nickel alloy, oxygen-free copper, aluminum, stainless steel, copper-tungsten alloy, copper-molybdenum alloy, etc. A conductive film or the like formed by plating a metal layer such as Au, Ag, Cu, Al, Pt, Pd on an inorganic material such as a material or an aluminum oxide sintered body or a glass ceramic sintered body was formed. The thing which apply | coated solder, such as a tin-silver type and a tin-silver-copper type, can be used for a thing.

絶縁基板8の主面に半導体基板5を接合する方法としては、錫−銀系等の半田,金−錫ろう等の低融点ろう材,銀−ゲルマニウム系等の高融点ろう材,導電性有機樹脂等の接合材を介して接合する方法、あるいはシーム溶接、電子ビーム溶接等の溶接法を用いることができる。   As a method of joining the semiconductor substrate 5 to the main surface of the insulating substrate 8, solder such as tin-silver solder, low melting point solder such as gold-tin solder, high melting point solder such as silver-germanium, conductive organic A method of joining via a joining material such as resin, or a welding method such as seam welding or electron beam welding can be used.

この微小電子機械装置1のうち第2配線導体10の導出部分を、半田ボール等の外部端子13を介して外部の電気回路に接続することにより、微小電子機械機構6を含む微小電子機械部品2、及び電子部品4が外部電気回路にそれぞれ電気的に接続される。   By connecting the lead-out portion of the second wiring conductor 10 of the micro electromechanical device 1 to an external electric circuit via an external terminal 13 such as a solder ball, the micro electromechanical component 2 including the micro electromechanical mechanism 6 is connected. , And the electronic component 4 are electrically connected to an external electric circuit, respectively.

本実施の形態による微小電子機械部品封止用基板によれば、半導体基板の主面に形成された微小電子機械機構を容易かつ確実に封止することができるとともに、この微小電子機械機構と接続された半導体基板の主面に形成されている第1電極を容易かつ確実に、例えば表面実装が可能な形態で外部接続でき、微小電子機械装置の生産性を高くすることができる。   According to the substrate for encapsulating a micro electro mechanical component according to the present embodiment, the micro electro mechanical mechanism formed on the main surface of the semiconductor substrate can be easily and surely sealed and connected to the micro electro mechanical mechanism. The first electrode formed on the main surface of the formed semiconductor substrate can be easily and surely connected, for example, in a form that can be surface-mounted, and the productivity of the microelectromechanical device can be increased.

また、本実施の形態による微小電子機械部品封止用基板によれば、微小電子機械部品の半導体基板に接合される面と同一平面上に電子部品が搭載されるので、微小電子機械部品の微小電子機械機構を封止するとともに電子部品を搭載することができる、より薄型化された微小電子機械部品封止用基板を実現することができる。また、絶縁基板において、微小電子機械機構に対向する第1領域と、電子部品が搭載される第2領域とは対向せず、隣り合っていることから、電子部品を微小電子機械部品封止用基板に実装する際に、微小電子機械機構に歪や応力を与えないので、微小電子機械機構の誤動作を防止し、センサ応答精度が高い微小電子機械部品封止用基板及び微小電子機械装置を得ることができる。   In addition, according to the micro electro mechanical component sealing substrate according to the present embodiment, since the electronic component is mounted on the same plane as the surface of the micro electro mechanical component to be bonded to the semiconductor substrate, the micro electro mechanical component micro It is possible to realize a thinner substrate for encapsulating a minute electromechanical component that can seal the electromechanical mechanism and mount an electronic component. Further, in the insulating substrate, the first region facing the micro-electromechanical mechanism and the second region where the electronic component is mounted are not opposed to each other, and are adjacent to each other. When mounting on a substrate, no strain or stress is applied to the microelectromechanical mechanism, so that the microelectromechanical mechanism is prevented from malfunctioning, and a microelectromechanical component sealing substrate and microelectromechanical device with high sensor response accuracy are obtained. be able to.

また、微小電子機械機構6でセンシングした信号を高速に信号処理する電子素子やインダクタ、キャパシタ等の電気素子から発生する熱が、微小電子機械機構6に歪や応力などの悪影響を与えることがないので、センサ応答精度が高い微小電子機械部品封止用基板6及び微小電子機械装置1を得ることができる。   In addition, heat generated from an electronic element that performs high-speed signal processing on a signal sensed by the micro electro mechanical mechanism 6 or an electric element such as an inductor or a capacitor does not adversely affect the micro electro mechanical mechanism 6 such as strain or stress. Therefore, the micro electro mechanical component sealing substrate 6 and the micro electro mechanical device 1 having high sensor response accuracy can be obtained.

なお、微小電子機械部品2の第1電極7及び電子部品4の第2電極12はそれぞれ複数存在してもよい。また、微小電子機械部品封止用基板3の内部には、図1に示されるように、第1配線導体9、第2配線導体10、及び第3配線導体11の他に、別の配線導体が形成されていてもよい。そのような配線導体は、例えば貫通導体であってもよく、一端が微小電子機械部品2の第1電極7又は電子部品4の第2電極12に接続されると共に、他端が外部端子13に接続されてもよい。   A plurality of first electrodes 7 of the microelectronic mechanical component 2 and a plurality of second electrodes 12 of the electronic component 4 may exist. In addition to the first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11, another wiring conductor is provided inside the microelectronic mechanical component sealing substrate 3 as shown in FIG. 1. May be formed. Such a wiring conductor may be, for example, a through conductor, and one end is connected to the first electrode 7 of the microelectronic mechanical component 2 or the second electrode 12 of the electronic component 4 and the other end is connected to the external terminal 13. It may be connected.

さらに、第1電極7及び第2電極9がそれぞれ複数存在し、一端が第1電極7に接続されるとともに、他端が第2電極9に接続される配線導体が複数配置されている場合、配線導体は、絶縁基板8を平面透視して、微小電子機械部品2と電子部品4との配列方向に平行な、微小電子機械部品2と電子部品4の中心を通る直線に関して線対称に配置されていることが好ましい。このように配線導体が線対称に配置されていると、多数の端子を有する微小電子機械部品2及び電子部品4を実装、搭載することができ、さらに微小電子機械部品2及び電子部品4を実装した際に発生する応力分布が、微小電子機械部品2と電子部品4との配列方向に平行な、微小電子機械部品2と電子部品4の中心を通る直線に関して線対称になることから、局所的な応力集中が緩和できるので、微小電子機械機構6の誤動作を防止し、センサ応答精度が高い微小電子機械部品封止用基板及び微小電子機械装置を得ることができる。   Furthermore, when there are a plurality of first electrodes 7 and a plurality of second electrodes 9, respectively, one end is connected to the first electrode 7 and the other end is connected to the second electrode 9, a plurality of wiring conductors are arranged. The wiring conductor is arranged in line symmetry with respect to a straight line passing through the center of the micro electro mechanical component 2 and the electronic component 4 parallel to the arrangement direction of the micro electro mechanical component 2 and the electronic component 4 when the insulating substrate 8 is seen through the plane. It is preferable. When the wiring conductors are arranged symmetrically in this way, the micro electromechanical component 2 and the electronic component 4 having a large number of terminals can be mounted and mounted, and further the micro electro mechanical component 2 and the electronic component 4 are mounted. Since the stress distribution generated in this process is symmetric with respect to a straight line passing through the centers of the microelectromechanical component 2 and the electronic component 4 parallel to the arrangement direction of the microelectronic mechanical component 2 and the electronic component 4, Since the stress concentration can be alleviated, it is possible to prevent a malfunction of the micro electro mechanical mechanism 6 and obtain a micro electro mechanical component sealing substrate and a micro electro mechanical apparatus with high sensor response accuracy.

また、絶縁基板8を平面透視した場合に、複数の配線導体うち、微小電子機械部品2と電子部品4の中心を通る上記直線に最も近い位置に配置された少なくとも1つの配線は、該複数の配線導体のうち長さが最も短いことが好ましい。例えば、微小電子機械部品2でセンシングした信号を電子部品4へ伝送するための配線導体は、通常、微小電子機械部品2と電子部品4の中心を通る上記直線に最も近い位置に配置される。よって、微小電子機械部品2でセンシングした信号を電子部品4へ伝送するための配線導体において、配線長を極力短く形成することができ、伝送ロスを極力小さくすることが可能になるので、微小電子機械機構6や微小電子機械部品2を作動させるための電源の省電力化が図れるため、長時間駆動及び、電源部品の小型化、小規模化が実現できる。また、微小電子機械機構6で検知した信号を素早く正確に電子部品4へ伝送することができるので、センサ応答特性が向上する。よって、近年、センサモジュールなどで問題になっている電源部品の大型化によるモジュールサイズの大型化、高コスト化、高発熱化を防ぐことができ、微小電子機械装置の小型化、薄型化、高性能化が実現できる。なお、絶縁基板8の内部に形成された複数の配線導体は、絶縁基板8を平面透視して、微小電子機械部品2と電子部品4の中心を通る上記直線に平行に配置されることが好ましい。この際、配線導体の長さとは、上記直線に平行な方向における長さである。   Further, when the insulating substrate 8 is seen through the plane, at least one wiring arranged at a position closest to the straight line passing through the centers of the microelectromechanical component 2 and the electronic component 4 among the plurality of wiring conductors is the plurality of wiring conductors. It is preferable that the length of the wiring conductor is the shortest. For example, a wiring conductor for transmitting a signal sensed by the microelectromechanical component 2 to the electronic component 4 is usually disposed at a position closest to the straight line passing through the centers of the microelectronic mechanical component 2 and the electronic component 4. Therefore, in the wiring conductor for transmitting the signal sensed by the microelectromechanical component 2 to the electronic component 4, the wiring length can be formed as short as possible, and the transmission loss can be minimized. Since power saving of the power source for operating the mechanical mechanism 6 and the micro-electromechanical component 2 can be achieved, it is possible to realize long-time driving and downsizing and downsizing of the power source component. In addition, since the signal detected by the micro electro mechanical mechanism 6 can be transmitted to the electronic component 4 quickly and accurately, the sensor response characteristics are improved. Therefore, it is possible to prevent the increase in module size, cost, and heat generation due to the increase in the size of power supply components, which has become a problem in recent years for sensor modules, etc. Performance can be realized. The plurality of wiring conductors formed inside the insulating substrate 8 are preferably arranged in parallel to the straight line passing through the centers of the microelectronic mechanical component 2 and the electronic component 4 when the insulating substrate 8 is seen through the plane. . At this time, the length of the wiring conductor is a length in a direction parallel to the straight line.

(実施の形態2)
次に、本発明の第2の実施の形態による微小電子機械部品封止用基板、及びその微小電子機械部品封止用基板を用いた微小電子機械装置について説明する。
(Embodiment 2)
Next, a micro electro mechanical component sealing substrate according to a second embodiment of the present invention and a micro electro mechanical device using the micro electro mechanical component sealing substrate will be described.

図2は、本実施の形態による微小電子機械部品封止用基板を有する微小電子機械装置の構成例を示す断面図である。図2において、図1に示された微小電子機械装置と同一の構成には同じ符号を付し、説明を省略する。図2に示された微小電子機械装置21が、図1に示された微小電子機械装置1と異なる点は、絶縁基板8の内部に接地用導体22が配置されている点、及び絶縁基板8の第1主面に導出された接地用導体22の端部上に接続パッド23,24が設けられている点である。なお、ここでいう接地用導体22とは、必ずしも接地電位が供給される導体に限らず、基準電位が供給される導体をいう。   FIG. 2 is a cross-sectional view showing a configuration example of a micro electro mechanical device having a micro electro mechanical component sealing substrate according to the present embodiment. In FIG. 2, the same components as those of the micro electromechanical device shown in FIG. The microelectromechanical device 21 shown in FIG. 2 is different from the microelectromechanical device 1 shown in FIG. 1 in that a grounding conductor 22 is disposed inside the insulating substrate 8 and the insulating substrate 8. The connection pads 23 and 24 are provided on the end portion of the grounding conductor 22 led out to the first main surface. Here, the grounding conductor 22 is not necessarily a conductor to which a ground potential is supplied, but a conductor to which a reference potential is supplied.

接地用導体22は、先述の第1配線導体9、第2配線導体10、及び第3配線導体11と同様に、銅、銀、金、パラジウム、タングステン、モリブデン、マンガン等の金属材料により形成される。   The grounding conductor 22 is formed of a metal material such as copper, silver, gold, palladium, tungsten, molybdenum, manganese, etc., like the first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11 described above. The

この形成の手段としては、メタライズ、めっき、蒸着等の金属を薄膜層として被着させる手段を用いることができる。   As a means for the formation, a means for depositing a metal such as metallization, plating, vapor deposition or the like as a thin film layer can be used.

例えば、接地用導体22が、タングステンから成る場合であれば、タングステンのペーストを絶縁基板8となるグリーンシートに印刷してこれをグリーンシートとともに焼成することにより形成されてもよい。   For example, if the grounding conductor 22 is made of tungsten, it may be formed by printing a tungsten paste on a green sheet to be the insulating substrate 8 and firing it together with the green sheet.

第1接続パッド23及び第2接続パッド24は、先述の第1電極7及び第2電極12と同様に、銅、銀、金、パラジウム、タングステン、銅、アルミニウムなどの金属材料により形成され、錫−銀系、錫−銀−銅系等の半田、金−錫ろう等の低融点ろう材、銀−ゲルマニウム系等の高融点ろう材、導電性有機樹脂、あるいはシーム溶接、電子ビーム溶接等の溶接法による接合を可能とするような金属材料等により成る。   The first connection pad 23 and the second connection pad 24 are formed of a metal material such as copper, silver, gold, palladium, tungsten, copper, aluminum, and the like, similar to the first electrode 7 and the second electrode 12 described above. -Silver-based, tin-silver-copper-based solder, gold-tin solder, etc., low melting solder, silver-germanium, etc., high-melting solder, conductive organic resin, seam welding, electron beam welding, etc. It is made of a metal material that can be joined by a welding method.

本実施の形態による微小電子機械部品封止用基板3は、第1電極7及び第2電極12が、それぞれ複数存在し、絶縁基板8の内部に形成された接地用導体22を備え、接地用導体22は、絶縁基板8の第1主面における第1領域に導出され第1電極7の少なくとも1つに電気的に接続される第1端部31と、絶縁基板8の第1主面における第2領域に導出され第2電極12の少なくとも1つに電気的に接続される第2端部32とを備える。そして、第1端部31上に第1接続パッド23が設けられ、第2端部32上に第2接続パッド24が設けられる。このような構成において、接地用導体22に接地電位を供給すると、微小電子機械機構6を有する微小電子機械部品2と電子部品4との接地状態を安定化することができるので、微小電子機械機構6の外部から第1配線導体9、第2配線導体10、及び第3配線導体11を伝わり外部より伝播してきた高周波ノイズによる電気特性の変化や微小電子機械機構6の破壊などが起こりにくく、微小電子機械装置21をより一層正常かつ安定的に作動させることができる。   The microelectronic mechanical component sealing substrate 3 according to this embodiment includes a plurality of first electrodes 7 and a plurality of second electrodes 12, and includes a grounding conductor 22 formed inside the insulating substrate 8. The conductor 22 is led to the first region on the first main surface of the insulating substrate 8 and electrically connected to at least one of the first electrodes 7, and the conductor 22 on the first main surface of the insulating substrate 8. And a second end portion 32 led to the second region and electrically connected to at least one of the second electrodes 12. A first connection pad 23 is provided on the first end portion 31, and a second connection pad 24 is provided on the second end portion 32. In such a configuration, when a ground potential is supplied to the grounding conductor 22, the ground state between the microelectromechanical component 2 having the microelectromechanical mechanism 6 and the electronic component 4 can be stabilized. 6, the electrical characteristics change due to high frequency noise propagated from the outside through the first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11 from the outside and the destruction of the microelectromechanical mechanism 6 are unlikely to occur. The electronic mechanical device 21 can be operated more normally and stably.

また、本実施の形態による微小電子機械部品封止用基板3において、接地用導体22は、絶縁基板8の第1主面に対向する第2主面又は絶縁基板8の側面に導出される第3端部33を備えることが好ましい。このような構成にすれば、第3端部を介して、接地用導体22に接地電位を供給することができるため、高周波グランドの不安定性から誘発される伝播モードのミスマッチが軽減される。よって、微小電子機械機構6を形成した微小電子機械装置の外部から侵入する高調波ノイズを有効に除去することができ、微小電子機械装置を正常かつ安定に作動させるとともに、微小電子機械装置を伝播する信号に含まれる高調波ノイズが微小電子機械装置の外部に対して放出されにくい微小電子機械装置を提供することができる。   In the micro electro mechanical component sealing substrate 3 according to the present embodiment, the grounding conductor 22 is led out to the second main surface facing the first main surface of the insulating substrate 8 or the side surface of the insulating substrate 8. It is preferable to provide the three end portions 33. With such a configuration, since the ground potential can be supplied to the grounding conductor 22 via the third end portion, the propagation mode mismatch induced by the instability of the high-frequency ground is reduced. Therefore, it is possible to effectively remove harmonic noise that enters from the outside of the microelectromechanical device in which the microelectromechanical mechanism 6 is formed, to operate the microelectromechanical device normally and stably, and to propagate through the microelectromechanical device. Therefore, it is possible to provide a microelectromechanical device in which harmonic noise included in a signal to be transmitted is hardly emitted to the outside of the microelectromechanical device.

また、本実施の形態による微小電子機械部品封止用基板3は、絶縁基板8の内部に形成された接地用貫通導体34を備える。接地用貫通導体34は、絶縁基板8の第1主面における第1領域と半導体基板5の主面との接合部位に導出される第1端部35と、絶縁基板8の第1主面に対向する第2主面又は絶縁基板8の側面に導出される第2端部36とを備える。なお、ここでいう接地用貫通導体34とは、必ずしも接地電位が供給される貫通導体に限らず、基準電位が供給される貫通導体をいう。ここで、半導体基板5の主面と絶縁基板8の第1主面における第1領域とを接合する接合材14は、導電性から成る。また、接地用導体22は、接地用貫通導体34に電気的に接続されることが好ましい。このような構成により、例えば、第2端部36に外部端子13を介して接地電位が供給されると、安定したグランドネットワークが形成できるので、良好なシールド性を得ることができる。また、グランドネットワーク経路が短くなり、インダクタンス成分の増大を防ぐことができるので、安定して接地状態を構成することができ、良好な電磁シールド性を保持することができる。よって、微小電子機械機構6を形成した微小電子機械装置の外部から侵入する高調波ノイズの影響を受けにくいと同時に、微小電子機械装置を伝播する信号に含まれる高調波ノイズが微小電子機械装置の外部に対して放出されにくい微小電子機械装置を提供することができる。   Further, the substrate 3 for sealing micro-electromechanical components according to the present embodiment includes a grounding through conductor 34 formed inside the insulating substrate 8. The grounding through conductor 34 is provided on the first main surface of the insulating substrate 8 and the first end portion 35 led out to the joining portion between the first region of the first main surface of the insulating substrate 8 and the main surface of the semiconductor substrate 5. And a second end portion 36 led out to the opposing second main surface or the side surface of the insulating substrate 8. Here, the grounding through conductor 34 is not necessarily a through conductor to which a ground potential is supplied, but a through conductor to which a reference potential is supplied. Here, the bonding material 14 for bonding the main surface of the semiconductor substrate 5 and the first region of the first main surface of the insulating substrate 8 is made of a conductive material. The grounding conductor 22 is preferably electrically connected to the grounding through conductor 34. With such a configuration, for example, when a ground potential is supplied to the second end portion 36 via the external terminal 13, a stable ground network can be formed, so that a good shielding property can be obtained. In addition, since the ground network path is shortened and an increase in inductance component can be prevented, a grounded state can be stably formed, and good electromagnetic shielding properties can be maintained. Therefore, it is difficult to be influenced by the harmonic noise that enters from the outside of the microelectromechanical device in which the microelectromechanical mechanism 6 is formed, and at the same time, the harmonic noise included in the signal propagating through the microelectromechanical device is It is possible to provide a microelectromechanical device that is hardly released to the outside.

なお、絶縁基板8内に接地用導体22のみ、又は接地用貫通導体34のみを設けてもよいが、接地用導体22と接地用貫通導体34とを共に設けると、半導体基板5の主面と絶縁基板8の第1主面とを接合する導電性接合材をも加えたグランドネットワークが形成されるため、良好なシールド性を得ることができる。ここで、接地用貫通導体34を接地用導体22と区別して説明したが、接地用貫通導体34は、接地用導体22の一部とみなすこともできる。この場合、接地用導体22が、絶縁基板8の第1主面における第1領域と半導体基板5の主面との接合部位に導出される第4端部36を有するとみなすことができる。   Although only the grounding conductor 22 or only the grounding through conductor 34 may be provided in the insulating substrate 8, if both the grounding conductor 22 and the grounding through conductor 34 are provided, the main surface of the semiconductor substrate 5 Since a ground network including a conductive bonding material for bonding the first main surface of the insulating substrate 8 is formed, good shielding properties can be obtained. Here, the grounding through conductor 34 has been described separately from the grounding conductor 22, but the grounding through conductor 34 can also be regarded as a part of the grounding conductor 22. In this case, it can be considered that the grounding conductor 22 has a fourth end portion 36 led out to a joint portion between the first region of the first main surface of the insulating substrate 8 and the main surface of the semiconductor substrate 5.

図3は、本発明の複数個取り形態の微小電子機械部品封止用基板の実施の形態の一例を示す断面図であり、図3において図1と同じ構成には同じ符号を付している。   FIG. 3 is a cross-sectional view showing an example of an embodiment of a substrate for encapsulating a microelectromechanical component having a plurality of shapes according to the present invention. In FIG. 3, the same components as those in FIG. .

図3に示された複数個取り形態の微小電子機械部品封止用基板41は、微小電子機械部品封止用基板6を構成する封止領域42を複数有してなる。この複数個取り形態の微小電子機械部品封止用基板41は、半導体母基板の主面に形成される複数個縦横に配列形成された微小電子機械機構6と微小電子機械機構6に電気的に接続される複数個縦横に配列形成された第1電極7とを有する複数個取り形態の微小電子機械部品基板における各微小電子機械機構6を気密封止することができる。   A plurality of micro electro mechanical component sealing substrates 41 shown in FIG. 3 have a plurality of sealing regions 42 constituting the micro electro mechanical component sealing substrate 6. The plurality of microelectromechanical component sealing substrates 41 having a plurality of shapes are electrically connected to a plurality of microelectromechanical mechanisms 6 and microelectromechanical mechanisms 6 that are formed on the main surface of the semiconductor mother board and arranged in rows and columns. It is possible to hermetically seal each microelectromechanical mechanism 6 in a microelectromechanical component substrate having a plurality of shapes having a plurality of first electrodes 7 arranged in rows and columns.

この複数個取り形態の微小電子機械部品封止用基板41によれば、複数個取り形態の微小電子機械部品基板の主面に形成された微小電子機械機構6を一括して封止することができるため、微小電子機械部品封止用基板6を有する微小電子機械装置を、容易かつ確実に、多数個製造することができ、生産性を優れたものとすることができる。   According to the substrate 41 for sealing a plurality of microelectromechanical components, the microelectromechanical mechanisms 6 formed on the main surface of the microelectromechanical component substrate having a plurality of caps can be collectively sealed. Therefore, a large number of micro electro mechanical devices having the micro electro mechanical component sealing substrate 6 can be manufactured easily and reliably, and the productivity can be improved.

次に、上述の微小電子機械装置の製造方法について、図4(a)〜(f)に基づいて説明する。   Next, a method for manufacturing the above-described microelectromechanical device will be described with reference to FIGS.

図4は、実施の形態1による微小電子機械装置1の製造方法の一例を工程順に示した図であり、図4において図1及び図2と同じ構成には同じ符号を付してある。   4 is a diagram showing an example of a manufacturing method of the micro electro mechanical device 1 according to the first embodiment in the order of steps. In FIG. 4, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals.

まず、図4(a)に示すように、複数個取り形態の微小電子機械部品基板51を準備する。複数個取り形態の微小電子機械部品基板51は、半導体基板5の主面に、微小電子機械機構6及びこれに電気的に接続された第1電極7が形成されて成る微小電子機械部品領域52を複数個、縦横に配列形成されて成る。   First, as shown in FIG. 4A, a plurality of microelectromechanical component substrates 51 are prepared. A micro-electromechanical component substrate 51 in a multi-cavity form includes a micro-electromechanical component region 52 in which a micro-electromechanical mechanism 6 and a first electrode 7 electrically connected thereto are formed on the main surface of a semiconductor substrate 5. Are arranged in rows and columns.

半導体基板5は、例えば単結晶や多結晶等のシリコン基板から成る。このシリコン基板の表面に酸化シリコン層を形成するとともに、フォトリソグラフィ等の微細配線加工技術を応用して、微小な振動体等の微小電子機械機構6及び円形状パターン等の導体から成る第1電極7が形成された微小電子機械部品領域52を複数個配列形成することにより複数個取り形態の微小電子機械部品基板51が形成される。   The semiconductor substrate 5 is made of a silicon substrate such as single crystal or polycrystal. A silicon oxide layer is formed on the surface of the silicon substrate, and a micro-electromechanical mechanism 6 such as a micro vibrating body and a conductor such as a circular pattern are applied by applying a micro wiring processing technique such as photolithography. A plurality of micro electro mechanical component substrates 51 are formed by arranging a plurality of micro electro mechanical component regions 52 in which 7 is formed.

なお、この例においては、微小電子機械機構6と第1電極7とは、それぞれ半導体基板5の主面に形成された微細配線(図示せず)を介して電気的に接続されている。   In this example, the microelectromechanical mechanism 6 and the first electrode 7 are electrically connected to each other through fine wiring (not shown) formed on the main surface of the semiconductor substrate 5.

次に、図4(b)に示すように、絶縁母基板の一方主面に複数個縦横に配列形成された、
複数個取り形態の微小電子機械部品封止用基板53を準備する。
Next, as shown in FIG. 4B, a plurality of vertical and horizontal arrays are formed on one main surface of the insulating mother substrate.
A substrate 53 for encapsulating micro-electromechanical components in a plurality of forms is prepared.

例えば、絶縁母基板が酸化アルミニウム質焼結体から成り、第1配線導体9、第2配線導体10及び第3配線導体11がタングステンから成る場合であれば、酸化アルミニウム、酸化珪素、酸化カルシウム等の原料粉末を、有機樹脂、バインダとともに混練してスラリーを得て、このスラリーをドクターブレード法やリップコータ法等によりシート状に成形して複数のグリーンシートを形成し、このグリーンシートの表面に、及び必要に応じてグリーンシートにあらかじめ形成しておいた貫通孔内に、タングステンのメタライズペーストを印刷塗布、充填し、その後、これらのグリーンシートを積層して焼成することにより形成することができる。   For example, if the insulating mother substrate is made of an aluminum oxide sintered body and the first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11 are made of tungsten, aluminum oxide, silicon oxide, calcium oxide, etc. The raw material powder is kneaded with an organic resin and a binder to obtain a slurry, and the slurry is formed into a sheet shape by a doctor blade method or a lip coater method to form a plurality of green sheets, on the surface of the green sheet, And if necessary, it can be formed by printing and filling a metallized paste of tungsten into a through-hole previously formed in the green sheet, and then laminating and firing these green sheets.

なお、これらのグリーンシートのうち、一部のものに打ち抜き加工を施して四角形状等の開口部を縦横に配列形成しておき、これを絶縁母基板の一方主面側の最表層に配置し、または最表層から内部に向かって数層積層するようにして、焼成後の絶縁母基板の一方主面にそれぞれ凹部が形成されていてもよい。この凹部内に微小電子機械機構6の一部を収めるようにしておくと、微小電子機械機構6を取り囲むための接合材11の高さを低く抑えることができ、微小電子機械装置1の低背化に有利なものとなる。   Of these green sheets, some of them are punched to form square-shaped openings vertically and horizontally, which are arranged on the outermost layer on the one main surface side of the insulating mother board. Alternatively, several layers may be laminated from the outermost layer toward the inside, and a recess may be formed on one main surface of the fired insulating mother substrate. If a part of the micro electro mechanical mechanism 6 is accommodated in the recess, the height of the bonding material 11 for surrounding the micro electro mechanical mechanism 6 can be kept low, and the low height of the micro electro mechanical apparatus 1 can be reduced. This is advantageous for the conversion.

次に、図4(c)に示すように、対応する第1電極7に接続される第2電極12をそれぞれ有する複数の電子部品4と、微小電子機械部品基板51の各第1電極7と対応する配線導体の一端とを電気的に接続するとともに、複数個取り形態の微小電子機械部品基板51と複数個取り形態の微小電子機械部品封止用基板53とを接合して各微小電子機械機構6をそれぞれ気密封止する。   Next, as shown in FIG. 4C, a plurality of electronic components 4 each having a second electrode 12 connected to the corresponding first electrode 7, and each first electrode 7 of the micro-electromechanical component substrate 51, While electrically connecting one end of the corresponding wiring conductor, a plurality of micro electro mechanical component substrates 51 and a plurality of micro electro mechanical component sealing substrates 53 are joined to each micro electro machine. Each mechanism 6 is hermetically sealed.

複数個取り形態の微小電子機械部品封止用基板53と複数個取り形態の微小電子機械部品基板51との接合は、錫−銀系等の半田,金−錫ろう等の低融点ろう材や銀−ゲルマニウム系等の高融点ろう材,導電性有機樹脂等の接合材を介して接合する方法、あるいはシーム溶接、電子ビーム溶接等の溶接法により行なうことができる。   The joining of the substrate 53 for encapsulating a plurality of microelectromechanical components and the microelectromechanical component substrate 51 having a plurality of configurations is performed by soldering tin-silver or the like, a low melting point solder such as gold-tin solder, It can be performed by a method of bonding via a bonding material such as a high melting point brazing material such as silver-germanium, a conductive organic resin, or a welding method such as seam welding or electron beam welding.

次に、図4(d)に示すように、複数個取り形態の微小電子機械部品基板51における微小電子機械部品領域52以外の領域をダイシング加工等の切断加工を施すことにより除去する。   Next, as shown in FIG. 4D, regions other than the micro-electromechanical component region 52 in the micro-electromechanical component substrate 51 having a plurality of shapes are removed by cutting such as dicing.

次に、図4(e)に示すように、除去により露出した複数個取り形態の微小電子機械部品封止用基板53の一方主面に電子部品4を搭載する。電子部品4は、信号処理回路を形成した半導体素子や、コンデンサ、インダクタなどの部品にて構成される。電子部品4の搭載方法は、例えば、錫−銀系半田から成る場合であれば、これらを約250℃〜300℃程度の温度のリフロー炉中で熱処理すること等により行なわれる。   Next, as shown in FIG. 4E, the electronic component 4 is mounted on one main surface of the micro-electromechanical component sealing substrate 53 in the form of multiple pieces exposed by removal. The electronic component 4 includes a semiconductor element in which a signal processing circuit is formed, and components such as a capacitor and an inductor. The electronic component 4 is mounted by, for example, heat-treating them in a reflow furnace at a temperature of about 250 ° C. to 300 ° C., for example, when made of tin-silver solder.

次に、図4(f)に示すように、複数個取り形態の微小電子機械部品封止用基板53を、封止領域54毎にダイシング加工等の切断加工を施すことにより分割する。   Next, as shown in FIG. 4F, the micro electro mechanical component sealing substrate 53 having a plurality of shapes is divided by performing a cutting process such as a dicing process for each sealing region 54.

本発明の微小電子機械装置の製造方法によれば、複数の微小電子機械部品領域において、複数の微小電子機械機構を同時に気密封止することができるので、互いに接合された微小電子機械部品及び微小電子機械部品封止用基板からなる微小電子機械装置を、容易かつ確実に、多数個製造することができる。   According to the method of manufacturing a microelectromechanical device of the present invention, a plurality of microelectromechanical mechanisms can be hermetically sealed simultaneously in a plurality of microelectromechanical component regions. A large number of microelectromechanical devices each including an electronic mechanical component sealing substrate can be manufactured easily and reliably.

また、この分割の際、微小電子機械機構6は、複数個取り形態の微小電子機械部品封止用基板41により封止されているので、ダイシング加工等による分割で発生するシリコン等の半導体基板5の切削屑が微小電子機械機構6に付着するようなことはなく、分割後の微小電子機械装置において微小電子機械機構6を確実に作動することができる。   In addition, since the micro electro mechanical mechanism 6 is sealed by a plurality of micro electro mechanical component sealing substrates 41 at the time of the division, the semiconductor substrate 5 such as silicon generated by the division by dicing or the like is used. The cutting scraps do not adhere to the micro electro mechanical mechanism 6, and the micro electro mechanical mechanism 6 can be reliably operated in the micro electro mechanical device after the division.

また、このようにして製造された微小電子機械装置は、すでに気密封止されているとともに、その電極が第1配線導体9、第2配線導体10及び第3配線導体11を介して外部に導出された状態であるので、これを別途パッケージ内に実装するような工程を追加する必要はなく、外部の電気回路に半田ボールや金属バンプ等を介して接続するだけで、外部電気回路基板に実装して使用することができる。   The microelectromechanical device thus manufactured is already hermetically sealed, and its electrodes are led out through the first wiring conductor 9, the second wiring conductor 10, and the third wiring conductor 11. Since it is in a state of being mounted, it is not necessary to add a process for mounting it in a separate package, and it can be mounted on an external electric circuit board simply by connecting to an external electric circuit via a solder ball or a metal bump. Can be used.

なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨の範囲内であれば、種々の変形は可能である。   In addition, this invention is not limited to the example of above-mentioned embodiment, A various deformation | transformation is possible if it is in the range of the summary of this invention.

例えば、上述の実施の形態の例では一つの微小電子機械装置内に一つの微小電子機械機構を気密封止したが、一つの微小電子機械装置内に複数の微小電子機械機構を気密封止してもよい。   For example, in the above-described embodiments, one microelectromechanical mechanism is hermetically sealed in one microelectromechanical apparatus. However, a plurality of microelectromechanical mechanisms are hermetically sealed in one microelectromechanical apparatus. May be.

また、図1に示した例では、配線導体は絶縁基板8の他方主面側に導出しているが、これを、側面に導出したり、側面及び他方主面の両方に導出したりしてもよい。   In the example shown in FIG. 1, the wiring conductor is led out to the other main surface side of the insulating substrate 8, but this is led out to the side surface or led to both the side surface and the other main surface. Also good.

また、この導出された部分の外部電気回路への電気的な接続は、外部端子として半田ボールを介して行なうものに限らず、リード端子や導電性接着剤等を介して行なってもよい。   Further, the electrical connection of the derived portion to an external electric circuit is not limited to being performed via a solder ball as an external terminal, and may be performed via a lead terminal, a conductive adhesive, or the like.

本発明の微小電子機械部品封止用基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the board | substrate for micro electro mechanical component sealing of this invention. 本発明の微小電子機械部品封止用基板の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the board | substrate for micro electro mechanical component sealing of this invention. 本発明の複数個取り形態の微小電子機械部品封止用基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the board | substrate for microelectromechanical component sealing of the multiple picking form of this invention. (a)〜(f)は、本発明の微小電子機械装置の製造方法の一例をそれぞれ工程順に示した図である。(A)-(f) is the figure which showed an example of the manufacturing method of the micro electromechanical device of this invention in order of a process, respectively. 従来の微小電子機械部品封止用基板及びそれを用いて成る微小電子機械装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional board | substrate for micro electro mechanical parts sealing, and the micro electro mechanical apparatus which uses it.

符号の説明Explanation of symbols

1:微小電子機械装置
2:微小電子機械部品
3:微小電子機械部品封止用基板
4:電子部品
5:半導体基板
6:微小電子機械機構
7:第1電極
8:絶縁基板
9:第1配線導体
10:第2配線導体
11:第3配線導体
12:第2電極
22:接地用導体
23:第1接続パッド
24:第2接続パッド
34:接地用貫通導体
1: Micro-electromechanical device 2: Micro-electro-mechanical component 3: Substrate for micro-electro-mechanical component sealing 4: Electronic component 5: Semiconductor substrate 6: Micro-electromechanical mechanism 7: First electrode 8: Insulating substrate 9: First wiring Conductor 10: Second wiring conductor 11: Third wiring conductor 12: Second electrode 22: Grounding conductor 23: First connection pad 24: Second connection pad 34: Grounding through conductor

Claims (9)

半導体基板と該半導体基板の主面に形成される微小電子機械機構と該微小電子機械機構に電気的に接続される第1電極とを有する微小電子機械部品の前記微小電子機械機構を気密封止するとともに、前記第1電極に電気的に接続される第2電極を有する電子部品を搭載する微小電子機械部品封止用基板であって、
前記微小機械機構を気密封止するように前記半導体基板の前記主面に接合される第1主面を備えた絶縁基板と、
前記絶縁基板の内部に形成された配線導体と
を備え、
前記第1主面は、前記半導体基板の前記主面に接合される第1領域と前記電子部品が搭載される第2領域とを有し、
前記配線導体は、前記第1主面における前記第1領域に導出され前記第1電極に電気的に接続される一端と、前記第1主面における前記第2領域に導出され前記第2電極に電気的に接続される他端とを備えることを特徴とする微小電子機械部品封止用基板。
Airtight sealing of the microelectromechanical mechanism of a microelectromechanical component having a semiconductor substrate, a microelectromechanical mechanism formed on a main surface of the semiconductor substrate, and a first electrode electrically connected to the microelectromechanical mechanism And a substrate for encapsulating a micro-electromechanical component on which an electronic component having a second electrode electrically connected to the first electrode is mounted,
An insulating substrate having a first main surface bonded to the main surface of the semiconductor substrate so as to hermetically seal the micromechanical mechanism;
A wiring conductor formed inside the insulating substrate;
The first main surface has a first region bonded to the main surface of the semiconductor substrate and a second region on which the electronic component is mounted,
The wiring conductor is led to the first region on the first main surface and electrically connected to the first electrode, and is led to the second region on the first main surface and connected to the second electrode. A substrate for sealing a micro-electromechanical component, comprising: the other end electrically connected.
前記第1及び第2の電極がそれぞれ複数存在し、前記配線導体は複数配置されており、前記絶縁基板を平面透視して、前記配線導体は、該微小電子機械部品と前記電子部品の中心を通る直線に関して線対称に配置されていることを特徴とする請求項1記載の微小電子機械部品封止用基板。 A plurality of the first and second electrodes are present, a plurality of wiring conductors are arranged, and the wiring conductor is centered between the micro-electromechanical component and the electronic component when viewed in plan through the insulating substrate. 2. The substrate for encapsulating micro-electromechanical components according to claim 1, wherein the substrate is arranged symmetrically with respect to a straight line passing therethrough. 前記絶縁基板を平面透視して、複数の前記配線導体うち前記直線に最も近い位置に配置された少なくとも1つの配線は、該複数の前記配線導体のうち最も長さが短いことを特徴とする請求項2記載の微小電子機械装置。 The at least one wiring arranged at a position closest to the straight line among the plurality of wiring conductors when viewed through the insulating substrate in a plan view has a shortest length among the plurality of wiring conductors. Item 3. The microelectromechanical device according to Item 2. 前記第1電極及び第2電極はそれぞれ複数存在し、
前記絶縁基板の内部に形成された接地用導体を備え、
前記接地用導体は、前記第1主面における前記第1領域に導出され前記第1電極の少なくとも1つに電気的に接続される第1端部と、前記第1主面における前記第2領域に導出され前記第2電極の少なくとも1つに電気的に接続される第2端部とを備えることを特徴とする請求項1から3のいずれか1つに記載の微小電子機械部品封止用基板。
A plurality of the first electrode and the second electrode, respectively;
A grounding conductor formed inside the insulating substrate;
The grounding conductor is led to the first region on the first main surface and is electrically connected to at least one of the first electrodes, and the second region on the first main surface. And a second end electrically connected to at least one of the second electrodes, and for sealing a microelectromechanical component according to any one of claims 1 to 3. substrate.
前記接地用導体は、前記絶縁基板の前記第1主面に対向する第2主面又は前記絶縁基板の側面に導出される第3端部を備えることを特徴とする請求項4に記載の微小電子機械部品封止用基板。 5. The minute electrode according to claim 4, wherein the grounding conductor includes a third end portion led out to a second main surface facing the first main surface of the insulating substrate or a side surface of the insulating substrate. Electromechanical component sealing substrate. 前記半導体基板の前記主面と前記絶縁基板の前記第1主面における前記第1領域とは、導電性接合材を介して接合されており、
前記接地用導体は、前記絶縁基板の前記一方主面における前記第1領域と前記半導体基板の主面との接合部位に導出される第4端部を備えることを特徴とする請求項5に記載の微小電子機械部品封止用基板。
The main surface of the semiconductor substrate and the first region of the first main surface of the insulating substrate are bonded via a conductive bonding material,
The said grounding conductor is provided with the 4th edge part derived | led-out by the junctional part of the said 1st area | region in the said one main surface of the said insulated substrate, and the main surface of the said semiconductor substrate, The Claim 5 characterized by the above-mentioned. Substrate for encapsulating micro electromechanical parts.
請求項1から6のいずれかに記載の微小電子機械部品封止用基板を構成する封止領域を複数有してなることを特徴とする複数個取り形態の微小電子機械部品封止用基板。 A substrate for encapsulating a micro electro mechanical component having a plurality of forms, comprising a plurality of sealing regions constituting the micro electro mechanical component encapsulating substrate according to claim 1. 請求項1から6のいずれかに記載の微小電子機械部品封止用基板と、前記微小電子機械部品と、前記電子部品とを備えることを特徴とする微小電子機械装置。 A microelectromechanical device comprising the microelectronic mechanical component sealing substrate according to claim 1, the microelectromechanical component, and the electronic component. 微小電子機械機構と該微小電子機械機構に電気的に接続された第1電極とが形成されている複数の微小電子機械部品領域が半導体基板上において少なくとも一方向に配列形成されてなり、前記微小電子機械部品領域は、該一方向に一定の間隔で配列されている複数個取り形態の微小電子機械部品基板を準備する工程と、
請求項7に記載の複数個取り形態の微小電子機械部品封止用基板を準備する工程と、
対応する前記第1電極に接続される第2電極をそれぞれ有する複数の電子部品を準備する工程と、
前記微小電子機械部品基板の前記各第1電極と対応する前記第1配線導体の一端とを電気的に接続するとともに、前記複数個取り形態の微小電子機械部品基板と前記複数個取り形態の微小電子機械部品封止用基板とを接合して前記各微小電子機械機構をそれぞれ気密封止する工程と、
前記複数個取り形態の微小電子機械部品基板における前記微小電子機械部品領域以外の領域を除去する工程と、
前記除去により露出した前記複数個取り形態の微小電子機械部品封止用基板の前記一方主面に前記複数の電子部品を搭載する工程と、
前記複数個取り形態の微小電子機械部品封止用基板を、前記封止領域毎に分割する工程と
を備えることを特徴とする微小電子機械装置の製造方法。
A plurality of microelectromechanical component regions in which a microelectromechanical mechanism and a first electrode electrically connected to the microelectromechanical mechanism are formed are arranged in at least one direction on a semiconductor substrate. The electromechanical component region is a step of preparing a plurality of microelectromechanical component substrates arranged in a fixed interval in the one direction;
A step of preparing a substrate for encapsulating a microelectromechanical component having a plurality of shapes according to claim 7;
Preparing a plurality of electronic components each having a second electrode connected to the corresponding first electrode;
The first electrodes of the micro-electromechanical component substrate and one end of the first wiring conductor corresponding to the first electrodes are electrically connected, and the plurality of micro-electromechanical component substrates and the micro-electro-mechanical component substrate A step of hermetically sealing each of the microelectromechanical mechanisms by bonding an electronic mechanical component sealing substrate;
Removing a region other than the micro-electromechanical component region in the micro-electromechanical component substrate of the multiple-capture form;
A step of mounting the plurality of electronic components on the one main surface of the substrate for encapsulating micro-electromechanical components in the plurality of forms exposed by the removal;
And a step of dividing the plurality of micro-electromechanical component sealing substrates in a plurality of forms into the sealing regions.
JP2006321149A 2006-11-29 2006-11-29 Substrate for encapsulating microelectromechanical components, substrate for encapsulating microelectromechanical components in plural shapes, microelectromechanical device, and manufacturing method of microelectronic mechanical device Expired - Fee Related JP4903540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321149A JP4903540B2 (en) 2006-11-29 2006-11-29 Substrate for encapsulating microelectromechanical components, substrate for encapsulating microelectromechanical components in plural shapes, microelectromechanical device, and manufacturing method of microelectronic mechanical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321149A JP4903540B2 (en) 2006-11-29 2006-11-29 Substrate for encapsulating microelectromechanical components, substrate for encapsulating microelectromechanical components in plural shapes, microelectromechanical device, and manufacturing method of microelectronic mechanical device

Publications (2)

Publication Number Publication Date
JP2008135594A true JP2008135594A (en) 2008-06-12
JP4903540B2 JP4903540B2 (en) 2012-03-28

Family

ID=39560233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321149A Expired - Fee Related JP4903540B2 (en) 2006-11-29 2006-11-29 Substrate for encapsulating microelectromechanical components, substrate for encapsulating microelectromechanical components in plural shapes, microelectromechanical device, and manufacturing method of microelectronic mechanical device

Country Status (1)

Country Link
JP (1) JP4903540B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285810A (en) * 2008-05-30 2009-12-10 Toshiba Corp Semiconductor device and manufacturing method for the same
WO2013024658A1 (en) 2011-08-12 2013-02-21 オムロン株式会社 Electronic component
KR20170094143A (en) * 2014-12-09 2017-08-17 스냅트랙, 인코포레이티드 Simple to produce electric component and method for producing an electric component
JP2018151223A (en) * 2017-03-13 2018-09-27 パナソニックIpマネジメント株式会社 Inertial force sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2006041312A (en) * 2004-07-29 2006-02-09 Kyocera Corp Substrate for sealing multi-pattern electronic component, electronic device and manufacturing method therefor
JP2006099101A (en) * 2004-09-27 2006-04-13 Idc Llc Method and device for providing electronic circuitry on backplate
JP2006133236A (en) * 2003-10-03 2006-05-25 Matsushita Electric Works Ltd Sensor system
JP2006211612A (en) * 2005-01-31 2006-08-10 Sony Corp Saw device, communication module and manufacturing method of saw device
JP2006251782A (en) * 2005-03-07 2006-09-21 Samsung Electro Mech Co Ltd Optical modulator module package using flip-chip mounting technology
JP2007536105A (en) * 2004-06-30 2007-12-13 インテル・コーポレーション A module in which a micro electro mechanical system (MEMS) and passive elements are integrated

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133236A (en) * 2003-10-03 2006-05-25 Matsushita Electric Works Ltd Sensor system
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2007536105A (en) * 2004-06-30 2007-12-13 インテル・コーポレーション A module in which a micro electro mechanical system (MEMS) and passive elements are integrated
JP2006041312A (en) * 2004-07-29 2006-02-09 Kyocera Corp Substrate for sealing multi-pattern electronic component, electronic device and manufacturing method therefor
JP2006099101A (en) * 2004-09-27 2006-04-13 Idc Llc Method and device for providing electronic circuitry on backplate
JP2006211612A (en) * 2005-01-31 2006-08-10 Sony Corp Saw device, communication module and manufacturing method of saw device
JP2006251782A (en) * 2005-03-07 2006-09-21 Samsung Electro Mech Co Ltd Optical modulator module package using flip-chip mounting technology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285810A (en) * 2008-05-30 2009-12-10 Toshiba Corp Semiconductor device and manufacturing method for the same
WO2013024658A1 (en) 2011-08-12 2013-02-21 オムロン株式会社 Electronic component
KR20170094143A (en) * 2014-12-09 2017-08-17 스냅트랙, 인코포레이티드 Simple to produce electric component and method for producing an electric component
US11245977B2 (en) 2014-12-09 2022-02-08 Snaptrack, Inc. Electric component with sensitive component structures and method for producing an electric component with sensitive component structures
KR102561741B1 (en) * 2014-12-09 2023-07-28 스냅트랙, 인코포레이티드 Simple to produce electric component and method for producing an electric component
JP2018151223A (en) * 2017-03-13 2018-09-27 パナソニックIpマネジメント株式会社 Inertial force sensor

Also Published As

Publication number Publication date
JP4903540B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
EP1961696B1 (en) Electronic device using electronic part sealing board and method of fabricating same
JP4938779B2 (en) Micro-electromechanical mechanism device and manufacturing method thereof
EP2121511B1 (en) Method of packaging an electronic or micromechanical component
JP4741621B2 (en) Electronic component sealing substrate, electronic device using the same, and electronic device manufacturing method
JP5318685B2 (en) Electronic component and manufacturing method thereof
WO2007074846A1 (en) Microelectronic machine and method for manufacturing same
JP5013824B2 (en) Electronic component sealing substrate, plural-shaped electronic component sealing substrate, electronic device using electronic component sealing substrate, and method of manufacturing electronic device
WO2008066087A1 (en) Fine structure device, method for manufacturing the fine structure device and substrate for sealing
JP4903540B2 (en) Substrate for encapsulating microelectromechanical components, substrate for encapsulating microelectromechanical components in plural shapes, microelectromechanical device, and manufacturing method of microelectronic mechanical device
JP4268480B2 (en) Electronic component sealing substrate and electronic device using the same
JP4126459B2 (en) Electronic component sealing substrate, electronic device using the same, and electronic device manufacturing method
JP4761713B2 (en) Electronic component sealing substrate, multi-component electronic component sealing substrate, and method of manufacturing electronic device
JP2005262382A (en) Electronic device and its manufacturing method
JP3842751B2 (en) Electronic component sealing substrate and electronic device manufacturing method using the same
JP4781098B2 (en) Electronic equipment
JP4116954B2 (en) Electronic component sealing substrate and electronic device using the same
JP2005212016A (en) Electronic part sealing substrate, electronic part sealing substrate for installing a large number and method of manufacturing electronic device
JP4731291B2 (en) Electronic component sealing substrate, electronic device using the same, and method of manufacturing electronic device
JP4434870B2 (en) Multi-cavity electronic component sealing substrate, electronic device, and method of manufacturing electronic device
JP4404647B2 (en) Electronic device and electronic component sealing substrate
US8204352B2 (en) Optical apparatus, sealing substrate, and method of manufacturing optical apparatus
JP4673670B2 (en) Method for manufacturing piezoelectric device
JP2005153067A (en) Substrate for sealing of electronic part and manufacturing method of electronic device using it
JP2006185968A (en) Electronic device
JP2006100446A (en) Composite structure and substrate for sealing electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees