JP2008133976A - Method of operating automatic ice making machine - Google Patents

Method of operating automatic ice making machine Download PDF

Info

Publication number
JP2008133976A
JP2008133976A JP2006318696A JP2006318696A JP2008133976A JP 2008133976 A JP2008133976 A JP 2008133976A JP 2006318696 A JP2006318696 A JP 2006318696A JP 2006318696 A JP2006318696 A JP 2006318696A JP 2008133976 A JP2008133976 A JP 2008133976A
Authority
JP
Japan
Prior art keywords
hot gas
ice making
temperature
deicing
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006318696A
Other languages
Japanese (ja)
Other versions
JP4954684B2 (en
Inventor
Kenji Takahashi
賢二 高橋
Yoshikazu Nishigori
由和 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2006318696A priority Critical patent/JP4954684B2/en
Publication of JP2008133976A publication Critical patent/JP2008133976A/en
Application granted granted Critical
Publication of JP4954684B2 publication Critical patent/JP4954684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently perform deicing even when an ambient temperature is in a low temperature range. <P>SOLUTION: A refrigerating mechanism 20 is constituted to open a hot gas valve HV to continuously supply hot gas to an evaporator 14 until detecting a deicing completion temperature from the start of deicing operation when the ambient temperature detected by a temperature detecting means TH exceeds a predetermined set temperature. The refrigerating mechanism 20, on the other hand, is provided with a time zone where a refrigerant is supplied to a condenser CD in the stop state of a cooling fan FM by closing the hot gas valve HV only for a closing time after opening the hot gas valve HV only for an opening time from the start of the deicing operation when the ambient temperature detected by the temperature detecting means TH is not higher than the set temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、除氷運転に際し、製氷部に配設した蒸発器に供給したホットガスにより離氷を図る自動製氷機の運転方法に関するものである。   The present invention relates to an operation method of an automatic ice making machine that performs ice removal with hot gas supplied to an evaporator disposed in an ice making unit during a deicing operation.

図8に示すように、製氷室(製氷部)12に設けた下向きに開口する多数の製氷小室12aに製氷水を下方から噴射供給して、氷塊を連続的に製造する製氷機構10を備えた自動製氷機が、喫茶店やレストラン等の施設、その他の厨房で好適に使用されている(例えば、特許文献1参照)。製氷機構10は、本体内に水平に配置した製氷室12の直下に、支軸16aを介して傾動可能に枢支した水皿16と、この水皿16の下部に一体的に設けられ、所定量の製氷水を貯留する製氷水タンク18とを備えている。また、製氷室12の上面には、圧縮機CM,凝縮器CD,膨張手段EV,冷却ファンFM等から構成される冷凍機構20の一部をなす蒸発器14が密着的に蛇行配置されている。   As shown in FIG. 8, an ice making mechanism 10 is provided that continuously produces ice blocks by spraying and supplying ice making water from below to a large number of ice making chambers 12 a that open downward in an ice making chamber (ice making section) 12. An automatic ice making machine is suitably used in facilities such as a coffee shop and a restaurant, and other kitchens (see, for example, Patent Document 1). The ice making mechanism 10 is integrally provided immediately below an ice making chamber 12 horizontally disposed in the main body, and is pivotally supported by a pivot 16a so as to be tiltable, and a lower portion of the water tray 16. And an ice making water tank 18 for storing a fixed amount of ice making water. Further, on the upper surface of the ice making chamber 12, an evaporator 14 forming a part of a refrigeration mechanism 20 including a compressor CM, a condenser CD, an expansion means EV, a cooling fan FM, and the like is closely and meandered. .

前記冷凍機構20は、圧縮機CMからの冷媒を、冷却ファンFMで冷却された凝縮器CDおよび膨張弁EVを経て蒸発器14へ供給する冷凍回路22と、バイパス管24aを介して圧縮機CMから吐出した高温・高圧の気化冷媒(ホットガス)を蒸発器14へ直接供給するバイパス回路24とを備えている。冷凍機構20には、バイパス管24aの途中に管路を開閉するホットガス弁HVが介挿され、製氷運転時にホットガス弁HVを閉成することで冷凍回路22に冷媒が循環し、凝縮器CDおよび膨張弁EVの作用下に蒸発器14を冷却する冷凍サイクルが形成される。このとき、製氷機構10では、製氷小室12aを下方から閉成する閉成位置に水皿16を保持した状態で、冷却された各製氷小室12aに対し、製氷水タンク18の製氷水を水皿16から噴射供給することで、各製氷小室12aに氷塊が生成される。   The refrigerating mechanism 20 includes a refrigerating circuit 22 that supplies the refrigerant from the compressor CM to the evaporator 14 through the condenser CD and the expansion valve EV cooled by the cooling fan FM, and the compressor CM through the bypass pipe 24a. And a bypass circuit 24 for directly supplying high-temperature and high-pressure vaporized refrigerant (hot gas) discharged from the evaporator 14 to the evaporator 14. The refrigeration mechanism 20 is provided with a hot gas valve HV that opens and closes the pipeline in the middle of the bypass pipe 24a. By closing the hot gas valve HV during the ice making operation, the refrigerant circulates in the refrigeration circuit 22, and the condenser A refrigeration cycle is formed to cool the evaporator 14 under the action of the CD and the expansion valve EV. At this time, in the ice making mechanism 10, the ice making water in the ice making water tank 18 is supplied to each cooled ice making chamber 12a in a state where the water tray 16 is held in a closed position where the ice making chamber 12a is closed from below. By injecting and supplying from 16, ice blocks are generated in each ice making chamber 12a.

前記冷凍機構20では、除氷運転時にホットガス弁HVを開放することでバイパス回路24にホットガスが循環し、このホットガスにより蒸発器14を加熱する除氷サイクルが形成される。このとき、製氷機構10では、水皿開閉機構28の開閉モータAMを駆動することで、水皿16を支軸16aを中心として斜め下方の開放位置へ傾動して、製氷小室12aを開放するよう構成される。そして、蒸発器14へのホットガスの供給により氷塊における製氷小室12aとの氷結部分が融解され、自重により製氷小室12aから離氷し、開放位置の水皿16上を滑落した氷塊がストッカ26に貯蔵される。製氷運転および除氷運転の切替は、製氷室12に配設したサーミスタ等の運転切替手段TPの温度検知に基づいて行なわれ、製氷運転において製氷完了温度を検知すると除氷運転に切替えられ、除氷運転において除氷完了温度を検知すると水皿16を上昇した後に製氷運転に切替えられる。
特開2006−52879号公報
In the refrigeration mechanism 20, hot gas is circulated through the bypass circuit 24 by opening the hot gas valve HV during the deicing operation, and a deicing cycle is formed in which the evaporator 14 is heated by the hot gas. At this time, the ice making mechanism 10 drives the opening / closing motor AM of the water tray opening / closing mechanism 28 to tilt the water tray 16 to the open position obliquely downward with the support shaft 16a as the center, thereby opening the ice making chamber 12a. Composed. Then, the supply of hot gas to the evaporator 14 melts the icing portion of the ice block with the ice making chamber 12 a, and the ice block that is detached from the ice making chamber 12 a by its own weight and slides down on the water tray 16 in the open position is stored in the stocker 26. Stored. Switching between the ice making operation and the deicing operation is performed based on the temperature detection of the operation switching means TP such as a thermistor disposed in the ice making chamber 12. When the ice making completion temperature is detected in the ice making operation, the ice making operation is switched to the deicing operation. When the deicing completion temperature is detected in the ice operation, the water tray 16 is raised and then the ice making operation is switched.
JP 2006-52879 A

ところで、除氷運転時に圧縮機CMから吐出されるホットガスは、全てがバイパス回路24を循環する訳ではなく、小量ではあるが一部のホットガスは、凝縮器CDに流入した後に液化して停滞する、所謂寝込みと云う現象が生じることがある。このように、ホットガスの一部が凝縮器CDで滞留すると、バイパス回路24におけるホットガスの循環量は、時間の経過と共に冷媒の寝込み量だけ減少するから、蒸発器14での除氷能力は次第に低下し、除氷運転に長時間を要する問題が発生する。特に、自動製氷機の周囲温度が低くなると、圧縮機CMから吐出されたホットガスの温度も低下するので、凝縮器CDだけでなく、蒸発器14においても冷媒の寝込み現象が生じることがあり、前述した問題が顕著に発現する。そして、除氷運転に際し、蒸発器14に供給されるホットガスの温度や供給量が低下すると、蒸発器14における冷媒の入口側と出口側とで温度差が顕著になり、各製氷小室12aからの離氷タイミングのばらつきが大きくなる。すなわち、製氷小室12aに氷塊が残っているのにもかかわらず、運転切替手段TPが除氷完了温度を誤検知するおそれがあり、製氷室12と水皿16との間で氷塊の噛み込み等が発生し、製氷室12、水皿16または水皿開閉機構28等の破損に繋がる。   By the way, not all of the hot gas discharged from the compressor CM during the deicing operation circulates through the bypass circuit 24. A small amount of hot gas is liquefied after flowing into the condenser CD. A so-called stagnation phenomenon may occur. As described above, when a part of the hot gas stays in the condenser CD, the circulation amount of the hot gas in the bypass circuit 24 is reduced by the amount of the refrigerant stagnation as time elapses. The problem gradually decreases and a problem that requires a long time for deicing operation occurs. In particular, when the ambient temperature of the automatic ice making machine is lowered, the temperature of the hot gas discharged from the compressor CM is also lowered, so that the refrigerant stagnation may occur not only in the condenser CD but also in the evaporator 14. The above-mentioned problems are noticeable. When the temperature and supply amount of hot gas supplied to the evaporator 14 are reduced during the deicing operation, the temperature difference between the inlet side and the outlet side of the refrigerant in the evaporator 14 becomes significant, and each ice making chamber 12a Variations in the de-icing timing will increase. That is, although the ice block remains in the ice making chamber 12a, the operation switching means TP may erroneously detect the deicing completion temperature, and the ice block is caught between the ice making chamber 12 and the water dish 16. Occurs, which leads to breakage of the ice making chamber 12, the water tray 16, the water tray opening / closing mechanism 28, or the like.

すなわち本発明は、従来の技術に係る自動製氷機の運転方法に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、周囲温度が低温域にある場合であっても、効率よく除氷を行ない得る自動製氷機の運転方法を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the operation method of the automatic ice making machine according to the prior art, and the ambient temperature is in a low temperature range. Another object of the present invention is to provide a method of operating an automatic ice making machine that can perform deicing efficiently.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の自動製氷機の運転方法は、
製氷運転時に、圧縮機から冷却ファンで冷却される凝縮器および膨張手段を介して蒸発器へ冷媒を供給すると共に、蒸発器により冷却された製氷部へ製氷水を供給して氷塊を生成し、除氷運転時に、ホットガス弁の開放により圧縮機から蒸発器にホットガスを直接供給することで、蒸発器の加熱により前記製氷部から離氷させるようにした自動製氷機の運転方法において、
除氷運転に際し、温度検知手段で検知した周囲温度が、予め設定した設定温度以下の場合は、除氷過程の間で前記ホットガス弁を所定時間だけ閉成して、前記冷却ファンを停止した状態で、前記凝縮器および膨張手段を介して前記蒸発器へホットガスを供給する時間帯を設けたことを特徴とする。
請求項1に係る発明によれば、周囲温度が設定温度以下の場合は、除氷過程の間で冷却ファンを停止した状態で凝縮器にホットガスを供給することで、凝縮器の圧力を上昇させることができる。これにより、凝縮器に滞留している液化冷媒の気化を促すことができ、滞留した液化冷媒に起因するホットガスの循環量の低下を解消することができる。
In order to overcome the above-mentioned problems and achieve the intended purpose, an operation method of the automatic ice maker according to claim 1 of the present application is as follows:
During ice making operation, the refrigerant is supplied from the compressor to the evaporator through the condenser cooled by the cooling fan and the expansion means, and the ice making water is supplied to the ice making part cooled by the evaporator to generate ice blocks. In the operation method of the automatic ice maker, the hot gas is directly supplied from the compressor to the evaporator by opening the hot gas valve during the deicing operation, so that the ice making unit is deiced by heating the evaporator.
During the deicing operation, if the ambient temperature detected by the temperature detecting means is equal to or lower than a preset temperature, the hot gas valve is closed for a predetermined time during the deicing process, and the cooling fan is stopped. In this state, a time zone for supplying hot gas to the evaporator via the condenser and expansion means is provided.
According to the first aspect of the present invention, when the ambient temperature is equal to or lower than the set temperature, the pressure of the condenser is increased by supplying hot gas to the condenser while the cooling fan is stopped during the deicing process. Can be made. Thereby, vaporization of the liquefied refrigerant staying in the condenser can be promoted, and a decrease in the circulation amount of the hot gas due to the staying liquefied refrigerant can be eliminated.

請求項2に係る発明は、前記温度検知手段で検知した周囲温度が前記設定温度以下の場合において、除氷運転開始と同時に前記ホットガス弁を開放した後、該ホットガス弁を閉成および開放する工程を所定回数繰返すように設定することを要旨とする。
請求項2に係る発明によれば、除氷運転開始と同時にホットガス弁を開放することで、蒸発器に滞留した液化冷媒の循環を促すことができる。この後、ホットガス弁を閉成することで、充分な量のホットガスを凝縮器に供給することができる。すなわち、ホットガスの供給量を多く確保することができ、凝縮器における液化冷媒の滞留状態をより円滑に解消し得る。
According to a second aspect of the present invention, when the ambient temperature detected by the temperature detecting means is equal to or lower than the set temperature, the hot gas valve is opened simultaneously with the start of the deicing operation, and then the hot gas valve is closed and opened. The gist is to set the process to repeat a predetermined number of times.
According to the second aspect of the present invention, the circulation of the liquefied refrigerant staying in the evaporator can be promoted by opening the hot gas valve simultaneously with the start of the deicing operation. Thereafter, a sufficient amount of hot gas can be supplied to the condenser by closing the hot gas valve. That is, a large supply amount of hot gas can be secured, and the liquefied refrigerant staying state in the condenser can be eliminated more smoothly.

請求項3に係る発明は、前記圧縮機の起動時における除氷運転において、前記温度検知手段で検知した周囲温度が設定温度以下の場合は、除氷運転開始から前記ホットガス弁を遅延させて開放するように設定することを要旨とする。
請求項3に係る発明によれば、圧縮機の起動時における除氷運転では、蒸発器の温度が製氷完了時と比べて高く、蒸発器における液化冷媒の滞留量が少ないから、除氷運転開始からホットガス弁を遅延させて開放するように設定することで、無駄なく凝縮器における液化冷媒の滞留状態を解消し得る。
According to a third aspect of the present invention, in the deicing operation at the time of starting the compressor, if the ambient temperature detected by the temperature detecting means is equal to or lower than a set temperature, the hot gas valve is delayed from the start of the deicing operation. The gist is to set it to open.
According to the third aspect of the invention, in the deicing operation at the time of starting the compressor, the temperature of the evaporator is higher than that at the completion of ice making, and the amount of liquefied refrigerant remaining in the evaporator is small. By setting so that the hot gas valve is opened after being delayed, the staying state of the liquefied refrigerant in the condenser can be eliminated without waste.

本発明に係る自動製氷機の運転方法によれば、周囲温度が設定温度以下の場合は、滞留した液化冷媒に起因するホットガスの循環量の低下を解消し得るから、蒸発器により製氷部を適切に加熱することができる。従って、周囲温度が何れの条件にあっても、除氷運転において製氷部からの離氷を円滑に行なうことができる。   According to the operation method of the automatic ice maker according to the present invention, when the ambient temperature is equal to or lower than the set temperature, it is possible to eliminate the decrease in the circulation amount of the hot gas caused by the accumulated liquefied refrigerant. It can be heated appropriately. Therefore, the ice removal from the ice making unit can be smoothly performed in the deicing operation regardless of the ambient temperature.

次に、本発明に係る自動製氷機の運転方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、説明の便宜上、図8に示した自動製氷機の構成要素と同様の要素については、同一の符号を使用する。   Next, the operation method of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. For convenience of explanation, the same reference numerals are used for the same elements as those of the automatic ice making machine shown in FIG.

図1は、実施例に係る自動製氷機の製氷機構10と、この製氷機構10の製氷室(製氷部)12を冷却および加熱する蒸発器14に冷媒を供給する冷凍機構20とを示す概略図である。この自動製氷機は、図2に示すように、運転切替手段TPや温度検知手段TH等のセンサや計時手段TM等の入力に基づいて、制御手段Cにより製氷機構10および冷凍機構20を構成する圧縮機CM等の機器が駆動制御されて、製氷運転および除氷運転を交互に繰返すようになっている。ここで、自動製氷機は、電源を投入して圧縮機CMを起動した際、制御手段Cや図示しない操作手段からの入力に基づいて圧縮機CMを再起動した際および異常や故障時から復帰して圧縮機CMを再起動した際に(何れも単に起動と云う)、一定の保護時間だけ遅延して除氷運転から開始するように設定されている(図6および図7参照)。すなわち、自動製氷機が製氷運転中に停電等で停止した場合に、製氷室12に氷塊が残っていることがあり、このまま製氷運転を開始すると氷噛み等の問題が生じるおそれがあるので、除氷運転から開始するようになっている。   FIG. 1 is a schematic diagram showing an ice making mechanism 10 of an automatic ice maker according to an embodiment and a refrigeration mechanism 20 that supplies a refrigerant to an evaporator 14 that cools and heats an ice making chamber (ice making part) 12 of the ice making mechanism 10. It is. In the automatic ice making machine, as shown in FIG. 2, the ice making mechanism 10 and the refrigeration mechanism 20 are configured by the control means C based on inputs from sensors such as the operation switching means TP and the temperature detecting means TH and the time measuring means TM. Devices such as the compressor CM are driven and controlled so that the ice making operation and the deicing operation are repeated alternately. Here, when the automatic ice maker starts up the compressor CM by turning on the power, it restarts the compressor CM based on the input from the control means C or the operating means (not shown), and recovers from an abnormality or failure. Then, when the compressor CM is restarted (both are simply referred to as starting), it is set to start from the deicing operation with a delay of a certain protection time (see FIGS. 6 and 7). In other words, when the automatic ice maker stops during an ice making operation due to a power failure or the like, ice blocks may remain in the ice making chamber 12, and problems such as ice biting may occur if the ice making operation is started as it is. Start with ice driving.

前記製氷機構10は、本体内部に水平に配置され、下方に開口する多数の製氷小室12aを備えた製氷室12と、製氷小室12aを開閉自在に閉成し、製氷水を貯留する製氷水タンク18を下方に一体的に備えた水皿16とから基本的に構成されている。製氷室12の上面には、冷凍機構20の一部を構成する蒸発器14が密着的に蛇行配置され、この蒸発器14により製氷運転時に各製氷小室12aを強制冷却すると共に、除氷運転時に各製氷小室12aを加熱するようになっている。水皿16は、支軸16aにより製氷室12に対して傾動可能に枢支され、水皿16および製氷水タンク18は、製氷運転に際して水平に位置して製氷室12と平行に保持されて製氷小室12aの開口を閉成するよう構成される。また水皿16は、開閉モータAMの駆動に基づく水皿開閉機構28の付勢により傾動され、除氷運転開始時に水皿開閉機構AMにより支軸16aを中心として下方へ傾動して製氷小室12aを開放するようになっている。更に水皿16は、除氷運転において、製氷小室12aから離氷したことを条件として、水皿開閉機構28により支軸16aを中心として上方へ傾動して製氷小室12aを閉成するよう構成される。そして、製氷水タンク18には、給水弁WVが介挿された給水管30から製氷水が供給されて、所定量の製氷水が貯留される。製氷運転に際し、製氷水タンク18に連通した製氷水ポンプPMを駆動することで、製氷小室12aを閉成する水皿16から製氷水が各製氷小室12aに供給される。製氷室12には、当該製氷室12の温度を検知する運転切替手段TPが配設され、この運転切替手段TPの温度検知結果に基づいて製氷運転における製氷または除氷運転における除氷の完了が判定される。   The ice making mechanism 10 is horizontally arranged inside the main body and has an ice making chamber 12 having a large number of ice making chambers 12a that open downward, and an ice making water tank that closes the ice making chambers 12a so that the ice making chambers 12a can be opened and closed and store ice making water. It is basically composed of a water dish 16 provided integrally with 18 downward. On the upper surface of the ice making chamber 12, an evaporator 14 constituting a part of the refrigeration mechanism 20 is closely and meanderingly arranged. The evaporator 14 forcibly cools each ice making chamber 12a during the ice making operation and also during the deicing operation. Each ice making chamber 12a is heated. The water tray 16 is pivotally supported by the support shaft 16a so as to be tiltable with respect to the ice making chamber 12. The water tray 16 and the ice making water tank 18 are positioned horizontally in the ice making operation and are held parallel to the ice making chamber 12 to make ice. The opening of the small chamber 12a is configured to be closed. The water tray 16 is tilted by the bias of the water tray opening / closing mechanism 28 based on the driving of the opening / closing motor AM, and is tilted downward about the support shaft 16a by the water tray opening / closing mechanism AM at the start of the deicing operation. Is to be released. Further, the water tray 16 is configured to be tilted upward about the support shaft 16a by the water tray opening / closing mechanism 28 to close the ice making chamber 12a on the condition that the ice tray 16 is deiced in the deicing operation. The And ice making water is supplied to the ice making water tank 18 from the water supply pipe 30 in which the water supply valve WV is inserted, and a predetermined amount of ice making water is stored. During the ice making operation, the ice making water pump PM communicated with the ice making water tank 18 is driven, whereby ice making water is supplied to each ice making chamber 12a from the water tray 16 that closes the ice making chamber 12a. The ice making chamber 12 is provided with operation switching means TP for detecting the temperature of the ice making chamber 12, and based on the temperature detection result of the operation switching means TP, completion of ice making in ice making operation or deicing operation in ice removing operation is completed. Determined.

前記水皿開閉機構28は、除氷運転の開始と同時に駆動される開閉モータAMにより水皿16を下方へ傾動して、水皿16の開放位置への到来を切替スイッチSWが検知すると開閉モータAMが停止されるよう構成される。また、水皿開閉機構28は、除氷運転において運転切替手段TPが除氷完了温度を検知すると、開放位置から水皿16を開閉モータAMの駆動により上方へ傾動して、水皿16の閉成位置への到来を切替スイッチSWが検知すると開閉モータAMが停止されるようになっている。   The water tray opening / closing mechanism 28 tilts the water tray 16 downward by an opening / closing motor AM driven simultaneously with the start of the deicing operation, and when the changeover switch SW detects the arrival of the water tray 16 at the open position, the opening / closing motor The AM is configured to be stopped. Further, when the operation switching means TP detects the deicing completion temperature in the deicing operation, the water dish opening / closing mechanism 28 tilts the water dish 16 upward from the open position by driving the opening / closing motor AM to close the water dish 16. The opening / closing motor AM is stopped when the change-over switch SW detects arrival at the formation position.

前記冷凍機構20では、図示しない機械室に配設された圧縮機CM、凝縮器CD、この凝縮器CDを冷却する冷却ファンFM、膨張弁(膨張手段)EVおよび製氷室12の上面に配設された蒸発器14を冷媒配管で接続して冷凍回路22が構成される。この冷凍回路22は、圧縮機CM、凝縮器CD、膨張手段EV、蒸発器14、圧縮機CMの順番で冷媒が循環するように各機器が冷媒配管23で接続されている。冷凍回路22では、製氷運転時に、圧縮機CMで圧縮した冷媒が、冷却ファンFMで冷却される凝縮器CDにおける凝縮および膨張手段EVでの減圧を経て蒸発器14に供給される。これにより冷媒は、蒸発器14で製氷室12から熱を奪って蒸発して製氷室12を氷点下にまで強制冷却し、その後、圧縮機CMに帰還する冷凍サイクルを反復するようになっている。なお、停止状態にあった圧縮機CMは、除氷運転の開始と同時に駆動され、除氷運転および製氷運転において連続して駆動される。   In the refrigeration mechanism 20, a compressor CM, a condenser CD, a cooling fan FM that cools the condenser CD, an expansion valve (expansion means) EV, and an ice making chamber 12 are disposed in a machine room (not shown). The refrigeration circuit 22 is configured by connecting the evaporators 14 with refrigerant piping. In the refrigeration circuit 22, each device is connected by a refrigerant pipe 23 so that the refrigerant circulates in the order of the compressor CM, the condenser CD, the expansion means EV, the evaporator 14, and the compressor CM. In the refrigeration circuit 22, during the ice making operation, the refrigerant compressed by the compressor CM is supplied to the evaporator 14 through condensation in the condenser CD cooled by the cooling fan FM and decompression by the expansion means EV. As a result, the refrigerant takes heat from the ice making chamber 12 by the evaporator 14 and evaporates to forcibly cool the ice making chamber 12 to below the freezing point, and then repeats the refrigeration cycle returning to the compressor CM. The compressor CM in the stopped state is driven simultaneously with the start of the deicing operation, and is continuously driven in the deicing operation and the ice making operation.

実施例の膨張弁EVとしては、温度に応じて弁の開度を調節する温度作動式のものが採用されている。膨張弁EVは、蒸発器14の出口側に配設した温度検出部TKを備え(図1参照)、この温度検出部TKで検出した温度が低くなると弁の開度が大きくなる一方、温度が高くなると弁の開度が小さくなり、所定温度に至ると管路を完全に閉成するよう構成される。すなわち、除氷運転において、ホットガス弁HVを開放することで、蒸発器14の出口側の温度が所定温度より高くなったときには、冷凍回路22における高圧側の回路(圧縮機CMから凝縮器CDを介して膨張弁EVに至る経路)を閉成するように機能する。   As the expansion valve EV of the embodiment, a temperature operation type valve that adjusts the opening degree of the valve in accordance with the temperature is adopted. The expansion valve EV includes a temperature detection unit TK disposed on the outlet side of the evaporator 14 (see FIG. 1). When the temperature detected by the temperature detection unit TK decreases, the opening degree of the valve increases while the temperature increases. When it becomes higher, the opening degree of the valve becomes smaller, and when the temperature reaches a predetermined temperature, the pipe line is completely closed. That is, in the deicing operation, when the temperature on the outlet side of the evaporator 14 becomes higher than a predetermined temperature by opening the hot gas valve HV, a circuit on the high-pressure side in the refrigeration circuit 22 (from the compressor CM to the condenser CD). The path to the expansion valve EV via is closed.

前記冷凍機構20は、前述した冷凍回路22に加えて除氷運転時に蒸発器14へホットガスを供給するバイパス回路24を備えている。バイパス回路24は、始端を圧縮機CMの吐出側から凝縮器CDの吸込み側の間で冷媒配管23に接続すると共に、終端を蒸発器14の吸込み側の冷媒配管23に接続したバイパス管24aを有している。このバイパス管24aには、制御手段Cの制御下に動作して該バイパス管24aの管路を開閉するホットガス弁HVが介挿されている。冷凍機構20では、ホットガス弁HVの開放(ON)によりバイパス回路24をホットガスが循環して、凝縮器CDおよび膨張弁EVを介さずにホットガスが蒸発器14に直接供給され、ホットガスにより製氷室12を加熱する除氷サイクルが行なわれる。これに対し、冷凍機構20では、ホットガス弁HVの閉成(OFF)により冷凍回路22を冷媒が循環される。   The refrigeration mechanism 20 includes a bypass circuit 24 that supplies hot gas to the evaporator 14 during the deicing operation in addition to the refrigeration circuit 22 described above. The bypass circuit 24 has a bypass pipe 24 a having a start end connected to the refrigerant pipe 23 between the discharge side of the compressor CM and the suction side of the condenser CD and a terminal connected to the refrigerant pipe 23 on the suction side of the evaporator 14. Have. A hot gas valve HV that operates under the control of the control means C and opens and closes the conduit of the bypass pipe 24a is inserted in the bypass pipe 24a. In the refrigeration mechanism 20, when the hot gas valve HV is opened (ON), the hot gas circulates in the bypass circuit 24, and the hot gas is directly supplied to the evaporator 14 without passing through the condenser CD and the expansion valve EV. Thus, a deicing cycle for heating the ice making chamber 12 is performed. On the other hand, in the refrigeration mechanism 20, the refrigerant is circulated through the refrigeration circuit 22 by closing (OFF) the hot gas valve HV.

前記冷却ファンFMは、ホットガス弁HVが閉成しているときに駆動し、ホットガス弁HVが開放しているときに停止するように制御手段Cで制御される。冷凍機構20では、除氷運転を開始した際に、駆動していた冷却ファンFMは停止されると共に、停止していた冷却ファンFMは停止状態が維持され、運転切替手段TPによる除氷完了温度の検知を条件として、冷却ファンFMの駆動が開始される。すなわち、冷却ファンFMは、水皿16の上方への傾動時から製氷運転に亘って連続駆動される。   The cooling fan FM is controlled by the control means C so as to be driven when the hot gas valve HV is closed and to be stopped when the hot gas valve HV is opened. In the refrigeration mechanism 20, when the deicing operation is started, the driven cooling fan FM is stopped, and the stopped cooling fan FM is maintained in the stopped state, and the deicing completion temperature by the operation switching means TP is maintained. As a condition, the cooling fan FM starts to be driven. That is, the cooling fan FM is continuously driven from the time when the water pan 16 is tilted upward to the ice making operation.

前記自動製氷機は、設置環境における周囲温度を検知する温度検知手段THを備え、この温度検知手段THの検知結果に基づいて、制御手段Cにより除氷運転における冷凍機構20の動作条件が切替えられる。すなわち、温度検知手段THの温度検知結果が制御手段Cに予め設定した設定温度(例えば、10℃程度)を上回る場合は、冷凍機構20は起動時の除氷運転で通常起動工程を行ない、その他の除氷運転でも通常除氷工程を行なうように制御される。これに対し、温度検知手段THの温度検知結果が前記設定温度以下の場合は、冷凍機構20は起動時の除氷運転で低温起動工程を行ない、その他の除氷運転でも低温除氷工程を行なうように制御される。なお、温度検知手段THは、凝縮器CDの周辺に設けられ、特に凝縮器CDにおける冷媒の流入側に配置するのがよい。なぜなら、凝縮器CDが設置される機械室の温度は、圧縮機CMの排熱により昇温されるから機外の温度と必ずしも一致するとは限らず、凝縮器CDの液化冷媒の滞留による不都合を解消する目的上、凝縮器CDの周辺の雰囲気温度を検知するのが最適である。   The automatic ice making machine includes temperature detection means TH for detecting the ambient temperature in the installation environment, and the operating condition of the refrigeration mechanism 20 in the deicing operation is switched by the control means C based on the detection result of the temperature detection means TH. . That is, when the temperature detection result of the temperature detection means TH exceeds a preset temperature (for example, about 10 ° C.) preset in the control means C, the refrigeration mechanism 20 performs a normal startup process in the deicing operation at startup, In the deicing operation, the normal deicing process is controlled. On the other hand, when the temperature detection result of the temperature detection means TH is equal to or lower than the set temperature, the refrigeration mechanism 20 performs the low temperature start process in the deicing operation at the start, and performs the low temperature deicing process in the other deicing operations. To be controlled. The temperature detection means TH is provided around the condenser CD, and is particularly preferably arranged on the refrigerant inflow side in the condenser CD. This is because the temperature of the machine room in which the condenser CD is installed is raised by the exhaust heat of the compressor CM, and therefore does not always coincide with the temperature outside the machine. For the purpose of eliminating it, it is optimal to detect the ambient temperature around the condenser CD.

通常起動工程および通常除氷工程において、冷凍機構20は、除氷運転を開始すると直ちにホットガス弁HVを開放し、除氷運転の開始から運転切替手段TPにより除氷完了温度が検知されるまでの間(除氷過程)に亘ってホットガス弁HVの開放状態を維持するように制御される。そして、運転切替手段TPで除氷完了温度が検知されると、冷凍機構20ではホットガス弁HVが閉成されると共に冷却ファンFMが駆動され、製氷機構10では切替スイッチSWによる水皿16における上方への傾動の完了検知に基づいて、除氷運転から製氷運転に切替えられる。   In the normal start-up process and the normal deicing process, the refrigeration mechanism 20 opens the hot gas valve HV immediately after starting the deicing operation until the deicing completion temperature is detected by the operation switching means TP from the start of the deicing operation. The hot gas valve HV is controlled to be kept open during the period (deicing process). When the deicing completion temperature is detected by the operation switching means TP, the hot gas valve HV is closed and the cooling fan FM is driven in the refrigeration mechanism 20, and the ice making mechanism 10 in the water dish 16 by the changeover switch SW. The deicing operation is switched to the ice making operation based on the detection of the completion of the upward tilt.

低温起動工程および低温除氷工程において、冷凍機構20では、除氷過程の間でホットガス弁HVを所定時間(閉成時間)だけ閉成して、冷却ファンFMを停止した状態で、凝縮器CDおよび膨張弁EVを介して蒸発器14へ冷媒を供給する時間帯が設けられる。これにより、凝縮器CDに対して、温度および圧力の高いホットガスを供給する圧力上昇サイクルが行なわれる。低温起動工程において、冷凍機構20は、除氷運転を開始してもホットガス弁HVを直ちに開放せず、所要時間だけ冷凍回路22における冷媒の圧力上昇サイクルを行なった後に、ホットガス弁HVを開放してホットガスの加熱による除氷が行なわれるように設定されている。実施例では、低温起動工程におけるホットガス弁HVの開放タイミングを、水皿16を傾動させる水皿開閉機構28に連動させる構成となっている。すなわち、開閉モータAMの駆動による水皿開閉機構28の付勢により水皿16が下方傾斜して切替スイッチSWにより検知されることを条件として、ホットガス弁HVが開放されて、運転切替手段TPによる除氷完了温度の検知によりホットガス弁HVが閉成される。   In the cold start process and the low temperature deicing process, the refrigeration mechanism 20 closes the hot gas valve HV for a predetermined time (closing time) during the deicing process and stops the cooling fan FM, and then the condenser. A time zone for supplying the refrigerant to the evaporator 14 via the CD and the expansion valve EV is provided. As a result, a pressure increase cycle for supplying hot gas having a high temperature and pressure to the condenser CD is performed. In the cold start process, the refrigeration mechanism 20 does not immediately open the hot gas valve HV even after the deicing operation is started, and after performing the refrigerant pressure increase cycle in the refrigeration circuit 22 for the required time, the hot gas valve HV is turned on. It is set to be opened and deiced by heating with hot gas. In the embodiment, the opening timing of the hot gas valve HV in the low temperature starting process is linked to the water tray opening / closing mechanism 28 that tilts the water tray 16. That is, the hot gas valve HV is opened and the operation switching means TP is provided on condition that the water pan 16 is tilted downward by the energization of the water pan opening / closing mechanism 28 driven by the opening / closing motor AM and is detected by the changeover switch SW. The hot gas valve HV is closed when the deicing completion temperature is detected by.

低温除氷工程において、冷凍機構20は、計時手段TMによる開放時間および閉成時間の計時に基づいて制御手段Cによりホットガス弁HVの開閉が所定回数(実施例では、開−閉−開−閉の動作)繰返し行なわれる。制御手段Cに接続された計時手段TMは、温度検知手段THの検知結果が設定温度以下である場合に起動されて、除氷運転開始当初にホットガス弁HVの開放状態を維持する開放時間および除氷過程の間にホットガス弁HVの閉成状態を維持する閉成時間を計時するよう構成される(図7参照)。計時手段TMは、除氷運転の開始時点から開放時間の計時を開始して、当該開放時間を経過すると閉成時間の計時を開始し、当該閉成時間を経過するとリセットするように設定され、開放時間と閉成時間とが1回ずつ計時される。   In the low-temperature deicing step, the refrigeration mechanism 20 is configured to open and close the hot gas valve HV a predetermined number of times (in the embodiment, open-close-open-open) by the control means C based on the time measured by the time measuring means TM. Closed operation) Repeatedly. The time measuring means TM connected to the control means C is activated when the detection result of the temperature detecting means TH is equal to or lower than the set temperature, and the opening time for maintaining the open state of the hot gas valve HV at the beginning of the deicing operation and It is configured to time the closing time for maintaining the closed state of the hot gas valve HV during the deicing process (see FIG. 7). The time measuring means TM is set to start counting the opening time from the start of the deicing operation, start the closing time when the opening time elapses, and reset when the closing time elapses, The opening time and closing time are counted once.

低温除氷工程では、除氷運転を開始すると、開放時間だけホットガス弁HVを開放してバイパス回路24にホットガスを循環させる除氷サイクルを行ない、その後、閉成時間だけホットガス弁HVを閉成して冷却ファンFMを停止したまま冷凍回路22に冷媒を循環させる圧力上昇サイクルを行なうように設定される(図7参照)。そして、再びホットガス弁HVを開放してバイパス回路24をホットガスが循環する除氷サイクルを行ない、運転切替手段TPが除氷完了温度を検知することで、ホットガス弁HVが閉成される。実施例では、水皿16が閉成位置から開放位置までに到る時間(開閉モータAMの駆動時間)と、除氷運転開始当初におけるホットガス弁HVの開放時間とが同じになるように設定されている。なお、ホットガス弁HVの閉成時間は、40秒から90秒程度に設定される。   In the low-temperature deicing process, when the deicing operation is started, the hot gas valve HV is opened for the opening time and the degassing cycle for circulating the hot gas to the bypass circuit 24 is performed, and then the hot gas valve HV is turned on for the closing time. It is set to perform a pressure increase cycle in which the refrigerant is circulated through the refrigeration circuit 22 with the cooling fan FM stopped while being closed (see FIG. 7). Then, the hot gas valve HV is opened again to perform a deicing cycle in which the hot gas circulates in the bypass circuit 24, and the operation switching means TP detects the deicing completion temperature, whereby the hot gas valve HV is closed. . In the embodiment, the time for the water pan 16 to reach from the closed position to the open position (driving time of the opening / closing motor AM) is set to be the same as the open time of the hot gas valve HV at the beginning of the deicing operation. Has been. The closing time of the hot gas valve HV is set to about 40 seconds to 90 seconds.

〔実施例の作用〕
次に、実施例に係る自動製氷機の運転方法の作用について、図3〜図5のフローチャートおよび図6および図7のタイミングチャートを参照して説明する。図3に示すように、自動製氷機を起動すると、構成機器を保護するために制御手段Cに設定した保護時間だけ遅延させて(ステップS1)、除氷運転が開始される(ステップS10)。先ず、温度検知手段THで検知した周囲温度が、設定温度以下であるか否かが判定される(ステップS11)。温度検知手段THによる周囲温度の検知結果が設定温度を上回る場合は、通常起動工程に移行し(ステップS12)、自動製氷機の設置環境が低温域にあって設定温度以下となる場合は、低温起動工程に移行する(ステップS16)。通常起動工程では、冷却ファンFM、製氷水ポンプPMは停止状態が維持され、圧縮機CMが駆動される(ステップS13)。また、ホットガス弁HVを開放して蒸発器14にバイパス管24aを介してホットガスが供給されると共に、開閉モータAMが駆動されて水皿開閉機構28の付勢により水皿16が下方へ向けて傾動される(ステップS13)。水皿16が開放位置まで到来すると、切替スイッチSWの検知により開閉モータAMが停止され(ステップS14,S15)、水皿16が製氷小室12aを開放した開放位置で停止される。バイパス回路24にホットガスを循環させることで、ホットガスによって蒸発器14が加熱されて製氷室12の温度を徐々に上昇させる。
(Effects of Example)
Next, the operation of the operation method of the automatic ice maker according to the embodiment will be described with reference to the flowcharts of FIGS. 3 to 5 and the timing charts of FIGS. 6 and 7. As shown in FIG. 3, when the automatic ice making machine is activated, the deicing operation is started (step S10) with a delay of the protection time set in the control means C to protect the components (step S1). First, it is determined whether or not the ambient temperature detected by the temperature detection means TH is equal to or lower than a set temperature (step S11). When the detection result of the ambient temperature by the temperature detection means TH exceeds the set temperature, the process proceeds to the normal startup process (step S12), and when the automatic ice maker installation environment is in the low temperature range and is below the set temperature, the temperature is low. The process proceeds to the starting process (step S16). In the normal starting process, the cooling fan FM and the ice making water pump PM are kept stopped, and the compressor CM is driven (step S13). Further, the hot gas valve HV is opened and hot gas is supplied to the evaporator 14 via the bypass pipe 24a, and the open / close motor AM is driven and the water pan 16 is moved downward by the energization of the water pan open / close mechanism 28. It is tilted toward (step S13). When the water pan 16 reaches the open position, the open / close motor AM is stopped by the detection of the changeover switch SW (steps S14 and S15), and the water tray 16 is stopped at the open position where the ice making chamber 12a is opened. By circulating the hot gas through the bypass circuit 24, the evaporator 14 is heated by the hot gas and the temperature of the ice making chamber 12 is gradually increased.

前記運転切替手段TPが除氷完了温度を検知することで(ステップS20)、除氷が完了したことを判定し(ステップS21)、ホットガス弁HVが閉成される(ステップS22)。同時に、水皿開閉機構28の開閉モータAMが駆動して開放位置の水皿16を上方へ傾動することで、製氷小室12aを閉成すると共に、冷却ファンFMが駆動されて、冷凍回路22において冷媒の冷凍サイクルが行なわれる(ステップS22)。このように、通常起動工程では、除氷運転開始から除氷完了温度の検知までの間に亘って、ホットガス弁HVが開放状態にあって、ホットガスによる除氷が連続して行なわれる(図6参照)。そして、水皿16が閉成位置まで到来したことが切替スイッチSWにより検知されると(ステップS23)、製氷運転に移行する(ステップS30)。   When the operation switching means TP detects the deicing completion temperature (step S20), it is determined that the deicing is completed (step S21), and the hot gas valve HV is closed (step S22). At the same time, the opening / closing motor AM of the water tray opening / closing mechanism 28 is driven to tilt the water tray 16 in the open position upward, thereby closing the ice making chamber 12a and driving the cooling fan FM. A refrigerant refrigeration cycle is performed (step S22). Thus, in the normal startup process, the hot gas valve HV is in an open state from the start of the deicing operation to the detection of the deicing completion temperature, and deicing with the hot gas is continuously performed ( (See FIG. 6). When the changeover switch SW detects that the water pan 16 has reached the closed position (step S23), the process proceeds to the ice making operation (step S30).

一方、低温起動工程に移行すると(ステップS16)、開閉モータAMが駆動されて水皿開閉機構28の付勢により水皿16が下方へ向けて傾動されるが、ホットガス弁HVの閉成状態および冷却ファンFMの停止状態が維持される(ステップS17)。圧縮機CMから吐出されたホットガスは、冷凍回路22を循環することになるものの、凝縮器CDは冷却ファンFMにより冷却されていないから、ホットガスが凝縮器CDにおいて凝縮液化されることはない。すなわち、冷凍回路22では、ホットガスの状態で冷媒を循環させて、凝縮器CDの圧力を上昇する圧力上昇サイクルが実施される。ここで、圧縮機CMの起動時における除氷運転では、蒸発器14の温度が製氷運転完了時と比べて高く、蒸発器14における液化冷媒の滞留量が少なく、特に通常の停止状態からの起動時は蒸発器14に液化冷媒が滞留していないから、除氷運転の開始時にホットガス弁HVを開放して蒸発器14にホットガスを供給する時間帯を設けていない。従って、除氷運転開始からホットガス弁HVを遅延させて開放するように設定することで、無駄なく凝縮器CDにおける液化冷媒の滞留状態を解消し得る。   On the other hand, when the process proceeds to the low temperature starting process (step S16), the open / close motor AM is driven and the water tray 16 is tilted downward by the bias of the water tray opening / closing mechanism 28, but the hot gas valve HV is closed. And the stop state of the cooling fan FM is maintained (step S17). Although the hot gas discharged from the compressor CM circulates in the refrigeration circuit 22, the condenser CD is not cooled by the cooling fan FM, so that the hot gas is not condensed and liquefied in the condenser CD. . That is, in the refrigeration circuit 22, a pressure increase cycle is performed in which the refrigerant is circulated in a hot gas state to increase the pressure of the condenser CD. Here, in the deicing operation at the time of starting the compressor CM, the temperature of the evaporator 14 is higher than that at the completion of the ice making operation, the amount of liquefied refrigerant remaining in the evaporator 14 is small, and starting from a normal stop state in particular. At this time, since the liquefied refrigerant does not stay in the evaporator 14, there is no time zone for opening the hot gas valve HV and supplying hot gas to the evaporator 14 at the start of the deicing operation. Therefore, by setting the hot gas valve HV to be delayed and opened from the start of the deicing operation, the liquefied refrigerant staying state in the condenser CD can be eliminated without waste.

前記水皿16が開放位置まで到来すると切替スイッチSWの検知により(ステップS18)、開閉モータAMが停止され(ステップS19)、水皿16が製氷小室12aを開放した開放位置で停止される。同時に、ホットガス弁HVを開放することで、バイパス回路24にホットガスを循環し、蒸発器14に対しホットガスを直接供給することにより、蒸発器14が更に加熱される。ここで低温起動工程において、ホットガス弁HVの開閉のタイミングを、開閉モータAMの駆動による水皿16の下方への傾動に連動するように構成してあるから、ホットガス弁HVの開閉に際してタイマ等の別の手段を設ける必要はなく、コストを低減し得る。なお、低温起動工程において、運転切替手段TPによる除氷完了温度の検知以降のステップ(ステップS20〜S23)は、前述した通常起動工程と同様である。   When the water pan 16 reaches the open position (step S18), the open / close motor AM is stopped (step S19), and the water tray 16 is stopped at the open position where the ice making chamber 12a is opened. At the same time, by opening the hot gas valve HV, the hot gas is circulated to the bypass circuit 24, and the hot gas is directly supplied to the evaporator 14, whereby the evaporator 14 is further heated. Here, in the low temperature starting process, the opening / closing timing of the hot gas valve HV is linked to the downward tilt of the water pan 16 by driving the opening / closing motor AM. It is not necessary to provide another means such as, and the cost can be reduced. In the low temperature startup process, the steps after the detection of the deicing completion temperature by the operation switching means TP (steps S20 to S23) are the same as the normal startup process described above.

製氷運転では、切替スイッチSWによる水皿16の閉成位置検知により開閉モータAMが停止されると共に、製氷水ポンプPMが駆動されて水皿16から製氷水が製氷小室12aに供給される(ステップS31)。このとき、冷却ファンFMを駆動した状態で、冷凍回路22を所定の冷凍作用のもとで循環する冷媒が蒸発器14に供給されることで、 製氷室12は蒸発器14により強制冷却されるから、製氷小室12aに氷塊Mが生成される。製氷運転は、運転切替手段TPが予め設定していた製氷完了温度を検知すると、製氷運転を完了して除氷運転に移行する(ステップS32,S33)。なお、製氷運転では、除氷運転で高温となった製氷室12が抵抗となって、圧力が一度上昇するが、製氷室12の温度が下がるにつれて圧縮機CMも冷やされることで、圧力が次第に低下する(図7参照)。   In the ice making operation, the opening / closing motor AM is stopped by detecting the closed position of the water tray 16 by the changeover switch SW, and the ice making water pump PM is driven to supply ice making water from the water tray 16 to the ice making chamber 12a (step). S31). At this time, the ice-making chamber 12 is forcibly cooled by the evaporator 14 by supplying the evaporator 14 with the refrigerant circulating in the refrigeration circuit 22 under a predetermined refrigeration action while the cooling fan FM is driven. Therefore, an ice block M is generated in the ice making chamber 12a. In the ice making operation, when the ice making completion temperature detected in advance by the operation switching means TP is detected, the ice making operation is completed and the operation proceeds to the ice removing operation (steps S32 and S33). In the ice making operation, the ice making chamber 12 that has become hot during the deicing operation becomes a resistance and the pressure rises once. However, as the temperature of the ice making chamber 12 decreases, the compressor CM is also cooled, so that the pressure gradually increases. It decreases (see FIG. 7).

除氷運転を開始すると(ステップS40)、温度検知手段THで検知した周囲温度が、設定温度以下であるか否かが判定される(ステップS41)。温度検知手段THによる周囲温度の検知結果が設定温度を上回る場合は、通常除氷工程に移行し(ステップS42)、自動製氷機の設置環境が低温域にあって設定温度以下となる場合は、低温除氷工程に移行する(ステップS46)。通常除氷工程では、製氷水を製氷小室12aに供給していた製氷水ポンプPMおよび凝縮器CDを冷却していた冷却ファンFMが停止されると共に、ホットガス弁HVを開放して蒸発器14にバイパス管42を介してホットガスが供給される(ステップS43)。また、水皿開閉機構28の開閉モータAMが駆動されることで、水皿16を下方へ向けて傾動し(ステップS43)、製氷小室12aを開放する。水皿16が開放位置まで到来すると切替スイッチSWの検知により(ステップS44)、開閉モータAMが停止され(ステップS45)、水皿16が製氷小室12aを開放した開放位置で停止される。製氷小室12aと氷塊との氷結面が融解されることで、自重で製氷小室12aから離氷する。これにより、運転切替手段TPが除氷完了温度を検知することで(ステップS20)、前述した通常起動工程と同様に、運転切替手段TPによる除氷完了温度の検知以降のステップ(ステップS20〜S23)が実施される。   When the deicing operation is started (step S40), it is determined whether or not the ambient temperature detected by the temperature detecting means TH is equal to or lower than the set temperature (step S41). When the detection result of the ambient temperature by the temperature detecting means TH exceeds the set temperature, the process moves to the normal deicing process (step S42), and when the installation environment of the automatic ice making machine is in the low temperature range and becomes lower than the set temperature, The process proceeds to a low temperature deicing process (step S46). In the normal deicing process, the ice making water pump PM that has supplied ice making water to the ice making chamber 12a and the cooling fan FM that has cooled the condenser CD are stopped, and the hot gas valve HV is opened to open the evaporator 14. Is supplied with hot gas via the bypass pipe 42 (step S43). Further, when the opening / closing motor AM of the water tray opening / closing mechanism 28 is driven, the water tray 16 is tilted downward (step S43), and the ice making chamber 12a is opened. When the water pan 16 arrives at the open position, the switch SW is detected (step S44), the open / close motor AM is stopped (step S45), and the water pan 16 is stopped at the open position where the ice making chamber 12a is opened. When the ice formation surface of the ice making chamber 12a and the ice block is melted, the ice making chamber 12a is deiced by its own weight. Thus, when the operation switching means TP detects the deicing completion temperature (step S20), the steps after the detection of the deicing completion temperature by the operation switching means TP (steps S20 to S23) are performed in the same manner as the normal activation process described above. ) Is implemented.

低温除氷工程では、製氷水を製氷小室12aに供給していた製氷水ポンプPMおよび凝縮器CDを冷却していた冷却ファンFMが停止されると共に、ホットガス弁HVを開放して蒸発器14にバイパス管42を介してホットガスが供給される(ステップS47)。また、水皿開閉機構28の開閉モータAMを駆動することで、水皿16を下方へ向けて傾動し(ステップS47)、製氷小室12aを開放する。同時に、計時手段TMによるホットガス弁HVの開放時間の計時が開始される(ステップS47)。そして、計時手段TMが開放時間を計時すると(ステップS48)、ホットガス弁HVを閉成して蒸発器14へのホットガスの供給を停止すると共に、ファンモータFMの停止状態を維持したまま冷凍回路22へホットガスを循環させる(ステップS49)。また、開放時間を計時した計時手段TMは、ホットガス弁HVの閉成時間の計時を開始する。このとき、蒸発器14および蒸発器14の出口側はホットガスにより昇温されるから、温度検出部TKによる所定温度の検出に基づいて、膨張弁EVは閉成状態にある。そして、蒸発器14に滞留した液化冷媒が蒸発して気化冷媒として、冷凍回路22における低圧側の回路(蒸発器14から圧縮機CMに至る経路)を循環するようになるから、冷凍回路22に循環させるホットガスの量を確保し得る。   In the low temperature deicing step, the ice making water pump PM that has supplied ice making water to the ice making chamber 12a and the cooling fan FM that has cooled the condenser CD are stopped, and the hot gas valve HV is opened to open the evaporator 14. Is supplied with hot gas via the bypass pipe 42 (step S47). Further, by driving the opening / closing motor AM of the water tray opening / closing mechanism 28, the water tray 16 is tilted downward (step S47), and the ice making chamber 12a is opened. At the same time, the timing of the opening time of the hot gas valve HV by the timing means TM is started (step S47). When the timing means TM measures the opening time (step S48), the hot gas valve HV is closed to stop the supply of hot gas to the evaporator 14, and the refrigeration is performed while the fan motor FM is kept stopped. Hot gas is circulated to the circuit 22 (step S49). Further, the time measuring means TM that measures the opening time starts measuring the closing time of the hot gas valve HV. At this time, since the temperature of the evaporator 14 and the outlet side of the evaporator 14 is increased by the hot gas, the expansion valve EV is in a closed state based on detection of a predetermined temperature by the temperature detection unit TK. Then, the liquefied refrigerant staying in the evaporator 14 evaporates and circulates as a vaporized refrigerant in the low-pressure side circuit (path from the evaporator 14 to the compressor CM) in the refrigeration circuit 22. The amount of hot gas to be circulated can be ensured.

前記ホットガス弁HVを開放してから開放時間を経過すると(計時手段TMによる開放時間の計時完了:ステップS48)、冷却ファンFMを停止した状態でホットガス弁HVが閉成され(ステップS49)、冷凍回路22における高圧側の回路にホットガスが供給される。このとき、膨張弁EVが温度検出部TKによる所定温度の検出により閉成された状態であると共に、ホットガス弁HVが閉成されているから、圧縮機CMからホットガスが押し込まれて、凝縮器CD(高圧側の回路)では、圧力が上昇する。そして、凝縮器CDの圧力の上昇に伴って凝縮器CDの温度も上昇するから、凝縮器CDに滞留していた液化冷媒を気化させることができる。この際、冷凍回路22における低圧側の回路では、圧力および温度の変化は余り起こらない。このように、冷凍機構20では、除氷運転を開始してから開放時間だけバイパス回路24にホットガスを循環させて蒸発器14にホットガスを直接供給した後、バイパス回路24へのホットガスの供給を停止して、閉成時間に亘って冷凍回路22において圧力上昇サイクルを行なう。   When the opening time elapses after the hot gas valve HV is opened (time measurement of the opening time by the time measuring means TM is completed: step S48), the hot gas valve HV is closed with the cooling fan FM stopped (step S49). The hot gas is supplied to the high-pressure circuit in the refrigeration circuit 22. At this time, the expansion valve EV is closed by detecting a predetermined temperature by the temperature detection unit TK, and the hot gas valve HV is closed, so that hot gas is pushed in from the compressor CM and condensed. In the vessel CD (high-pressure side circuit), the pressure rises. And since the temperature of the condenser CD also rises with the rise in the pressure of the condenser CD, the liquefied refrigerant staying in the condenser CD can be vaporized. At this time, in the circuit on the low pressure side in the refrigeration circuit 22, changes in pressure and temperature do not occur much. As described above, in the refrigeration mechanism 20, after the deicing operation is started, the hot gas is circulated through the bypass circuit 24 for the open time and the hot gas is directly supplied to the evaporator 14, and then the hot gas is supplied to the bypass circuit 24. Supply is stopped and a pressure rise cycle is performed in the refrigeration circuit 22 over the closing time.

前記ホットガス弁HVを閉成してから閉成時間を経過すると(計時手段TMによる閉成時間の計時完了:ステップS50)、ホットガス弁HVが開放され、運転切替手段TPが除氷完了温度を検知するまでの間に亘って、ホットガスを蒸発器14へ直接供給する(ステップS51)。すなわち、冷凍回路22における高圧側の回路は圧力が高くなっているから、ホットガス弁HVを開放すると、押し込まれていたホットガスが蒸発器14に一気に供給される。これにより、蒸発器14の出口側までホットガスを確実に到達させることができる。   When the closing time elapses after the hot gas valve HV is closed (closing time measurement by the time measuring means TM is completed: step S50), the hot gas valve HV is opened and the operation switching means TP is at the deicing completion temperature. The hot gas is supplied directly to the evaporator 14 until it is detected (step S51). That is, since the pressure of the high pressure side circuit in the refrigeration circuit 22 is high, when the hot gas valve HV is opened, the pushed hot gas is supplied to the evaporator 14 at once. Thereby, the hot gas can surely reach the outlet side of the evaporator 14.

前記水皿16が開放位置まで到来すると切替スイッチSWの検知により(ステップS52)、開閉モータAMが停止され(ステップS53)、水皿16が製氷小室12aを開放した開放位置で停止される。なお、低温除氷工程において、運転切替手段TPによる除氷完了温度の検知以降のステップ(ステップS20〜S23)は、前述した通常起動工程と同様である。   When the water pan 16 reaches the open position (step S52), the opening / closing motor AM is stopped (step S53), and the water tray 16 is stopped at the open position where the ice making chamber 12a is opened. In the low-temperature deicing process, the steps after the detection of the deicing completion temperature by the operation switching means TP (steps S20 to S23) are the same as the normal activation process described above.

実施例の自動製氷機によれば、除氷運転における除氷過程において、冷却ファンFMを停止した状態で冷凍回路22にホットガスを循環させることで、凝縮器CDの圧力の上昇に伴って凝縮器CDを昇温し得る(図7参照)。これにより、凝縮器CDに滞留していた液化冷媒を気化させることができる。そして、冷媒の循環経路をバイパス回路24に切替えたときには、凝縮器CDにおける液化冷媒の寝込み状態が解消されているから、バイパス回路24に充分な量のホットガスが循環する。すなわち、蒸発器14へのホットガスの供給が適切に行なわれ、蒸発器14の流入側と流出側との間で温度に過大な温度差が生じることを回避して、製氷室12全体をバランスよく加熱し得る。しかも、圧力上昇サイクルを終了してホットガス弁HVを開放することで、蒸発器14に対しホットガスが勢いよく供給されて出口側まで到達するから、蒸発器14全体を均等に加熱し得る。従って、特定の製氷小室12aにおいて氷塊が異常に融解することを抑制でき、異形氷の発生を防ぎ、所望の形状の氷塊を得ることが可能となる。また、各製氷小室12aから同様のタイミングで離氷し得るので、除氷時間を短縮でき、製氷能力の向上に繋がる。しかも、運転切替手段TPによる除氷完了温度の誤検知を抑制し得るから、製氷室12と水皿16との間で氷塊の噛み込み等により製氷室12、水皿16または水皿開閉機構28等の破損を防ぐことができる。   According to the automatic ice maker of the embodiment, in the deicing process in the deicing operation, the hot gas is circulated through the refrigeration circuit 22 with the cooling fan FM stopped, so that the condensation occurs as the pressure of the condenser CD increases. The vessel CD can be heated (see FIG. 7). As a result, the liquefied refrigerant staying in the condenser CD can be vaporized. When the refrigerant circulation path is switched to the bypass circuit 24, the liquefied refrigerant stagnation state in the condenser CD is eliminated, so that a sufficient amount of hot gas circulates in the bypass circuit 24. That is, the hot gas is appropriately supplied to the evaporator 14 to avoid an excessive temperature difference between the inflow side and the outflow side of the evaporator 14 and balance the ice making chamber 12 as a whole. Can be heated well. Moreover, since the hot gas valve HV is opened by ending the pressure increase cycle, hot gas is vigorously supplied to the evaporator 14 and reaches the outlet side, so that the entire evaporator 14 can be heated evenly. Therefore, it is possible to prevent the ice block from being abnormally melted in the specific ice making chamber 12a, to prevent the generation of deformed ice and to obtain an ice block having a desired shape. Further, since the ice can be removed from each ice making chamber 12a at the same timing, the deicing time can be shortened and the ice making ability is improved. Moreover, since erroneous detection of the deicing completion temperature by the operation switching means TP can be suppressed, the ice making chamber 12, the water tray 16 or the water tray opening / closing mechanism 28 is caused by the biting of ice blocks between the ice making chamber 12 and the water tray 16. Etc. can be prevented from being damaged.

前記冷凍機構20は、周囲温度が設定温度以下の場合にだけ選択的に圧力上昇サイクルを行なうように設定してあるから、特に周囲温度が低温域にあるときに発現する冷媒の寝込み現象を好適に解消し得ると共に、寝込み現象が起きにくい通常の温度域においてホットガス弁HVの開閉を繰返すことによる冷凍機構20への負荷を軽減し得る。また、自動製氷機の周囲温度が低温域にある場合でも、除氷時間を短縮でき、除氷効率を向上し得ると共に、省エネルギー化を図り得る。   Since the refrigeration mechanism 20 is set to selectively perform a pressure increase cycle only when the ambient temperature is equal to or lower than the set temperature, the refrigerant stagnation phenomenon that is manifested particularly when the ambient temperature is in the low temperature range is suitable. In addition, the load on the refrigeration mechanism 20 due to repeated opening and closing of the hot gas valve HV can be reduced in a normal temperature range where the stagnation phenomenon is unlikely to occur. Even when the ambient temperature of the automatic ice maker is in a low temperature range, the deicing time can be shortened, the deicing efficiency can be improved, and energy saving can be achieved.

(変更例)
本発明は、実施例の構成に限定されず、以下の如く変更することも可能である。
(1)実施例の製氷機構は、水皿により製氷室を開閉する所謂クローズドセル方式であるが、これに限定されず、オープンセル方式や流下式等の除氷運転においてホットガスを利用する製氷機構であれば、前述した運転方法を適用し得る。
(2)低温除氷工程におけるホットガス弁の開閉を計時手段ではなく、水皿開閉機構による水皿の開閉に連動させてもよい。
(3)ホットガス弁は、電磁弁や電動弁等が好適に採用されるが、制御手段の制御によって任意に動作(バイパス管の開閉)するものであれば特に限定されない。
(4)実施例では、計時手段が開放時間を1回計時した後に、閉成時間を1回計時する態様について説明したが、ホットガス弁を閉成した後に開放する態様であっても、開放時間と閉成時間とを複数回交互に計時する態様であってもよい。
(5)除氷運転の開始時に、毎回温度検知手段の温度検知結果を参照するステップを有する場合について説明したが、これに限定されず、除氷運転の複数回毎や月日毎等で検知する態様であってもよい。
(6)低温起動工程では、ホットガス弁の開放制御を水皿の下方傾動に連動させたが、低温除氷工程と同様に、除氷運転の開始と共に起動する計時手段による計時に基づいてホットガス弁の開閉を行なってもよい。
(7)周囲温度が設定温度を上回る場合において、バイパス回路に温度検知手段を設け、除氷運転開始時に温度検知手段の検知した温度が設定値より高い場合に、ホットガス弁を所定時間閉成すると共に、冷却ファンを駆動することで、除氷過程において蒸発器の過熱を防ぐために冷凍サイクルを行なってもよい。
(Change example)
The present invention is not limited to the configuration of the embodiment, and can be modified as follows.
(1) The ice making mechanism of the embodiment is a so-called closed cell type that opens and closes the ice making chamber with a water tray, but is not limited to this, and ice making that uses hot gas in an open cell type or a down flow type deicing operation. If it is a mechanism, the operation method mentioned above can be applied.
(2) The opening and closing of the hot gas valve in the low-temperature deicing step may be linked to the opening and closing of the water dish by the water dish opening and closing mechanism instead of the time measuring means.
(3) As the hot gas valve, an electromagnetic valve, a motor-operated valve or the like is preferably employed, but it is not particularly limited as long as it can be arbitrarily operated (opening and closing of the bypass pipe) under the control of the control means.
(4) In the embodiment, the mode in which the timing means counts the opening time once after the timing of the opening time has been described. However, even when the hot gas valve is opened, the timing is closed. A mode in which the time and the closing time are alternately measured a plurality of times may be employed.
(5) At the start of the deicing operation, the case of having a step of referring to the temperature detection result of the temperature detecting means every time has been described. However, the present invention is not limited to this. An aspect may be sufficient.
(6) In the low temperature start-up process, the hot gas valve opening control is linked to the downward tilt of the water pan. However, as in the low-temperature deicing process, The gas valve may be opened and closed.
(7) When the ambient temperature exceeds the set temperature, a temperature detection means is provided in the bypass circuit. When the temperature detected by the temperature detection means at the start of the deicing operation is higher than the set value, the hot gas valve is closed for a predetermined time. In addition, a refrigeration cycle may be performed in order to prevent the evaporator from overheating during the deicing process by driving the cooling fan.

本発明の好適な実施例に係る運転方法に用いられる自動製氷機の要部を示す概略図である。It is the schematic which shows the principal part of the automatic ice making machine used for the operating method which concerns on the suitable Example of this invention. 実施例の自動製氷機の制御ブロック図である。It is a control block diagram of the automatic ice making machine of an Example. 実施例の自動製氷機において、起動時の除氷運転を示すフローチャート図である。It is a flowchart figure which shows the deicing operation at the time of starting in the automatic ice maker of an Example. 実施例の自動製氷機の製氷運転を示すフローチャート図である。It is a flowchart figure which shows the ice making operation | movement of the automatic ice maker of an Example. 実施例の自動製氷機において、通常時の除氷運転を示すフローチャート図である。It is a flowchart figure which shows the deicing operation at the normal time in the automatic ice maker of an Example. 実施例の自動製氷機における各機器の動作状態を示すタイミングチャート図であって、周囲温度が通常の場合である。It is a timing chart figure which shows the operation state of each apparatus in the automatic ice maker of an example, and is the case where ambient temperature is normal. 実施例の自動製氷機における各機器の動作状態を示すタイミングチャート図であって、周囲温度が低温域にある場合である。It is a timing chart figure which shows the operation state of each apparatus in the automatic ice making machine of an Example, Comprising: It is a case where ambient temperature exists in a low temperature range. 従来の自動製氷機を示す概略図である。It is the schematic which shows the conventional automatic ice making machine.

符号の説明Explanation of symbols

12 製氷室(製氷部),14 蒸発器,CM 圧縮機,FM 冷却ファン,CD 凝縮器,
EV 膨張手段,HV ホットガス弁,TH 温度検知手段
12 ice making room (ice making part), 14 evaporator, CM compressor, FM cooling fan, CD condenser,
EV expansion means, HV hot gas valve, TH temperature detection means

Claims (3)

製氷運転時に、圧縮機(CM)から冷却ファン(FM)で冷却される凝縮器(CD)および膨張手段(EV)を介して蒸発器(14)へ冷媒を供給すると共に、蒸発器(14)により冷却された製氷部(12)へ製氷水を供給して氷塊を生成し、除氷運転時に、ホットガス弁(HV)の開放により圧縮機(CM)から蒸発器(14)にホットガスを直接供給することで、蒸発器(14)の加熱により前記製氷部(12)から離氷させるようにした自動製氷機の運転方法において、
除氷運転に際し、温度検知手段(TH)で検知した周囲温度が、予め設定した設定温度以下の場合は、除氷過程の間で前記ホットガス弁(HV)を所定時間だけ閉成して、前記冷却ファン(FM)を停止した状態で、前記凝縮器(CD)および膨張手段(EV)を介して前記蒸発器(14)へホットガスを供給する時間帯を設けた
ことを特徴とする自動製氷機の運転方法。
During ice making operation, refrigerant is supplied from the compressor (CM) to the evaporator (14) via the condenser (CD) and expansion means (EV) cooled by the cooling fan (FM), and the evaporator (14). Ice-making water is supplied to the ice-making unit (12) cooled by this to produce ice blocks, and during deicing operation, hot gas is sent from the compressor (CM) to the evaporator (14) by opening the hot gas valve (HV). In the operation method of the automatic ice maker that is made to deicer from the ice making part (12) by heating the evaporator (14) by supplying directly,
During the deicing operation, if the ambient temperature detected by the temperature detecting means (TH) is below a preset temperature, the hot gas valve (HV) is closed for a predetermined time during the deicing process, An automatic is provided with a time zone for supplying hot gas to the evaporator (14) via the condenser (CD) and the expansion means (EV) with the cooling fan (FM) stopped. How to operate an ice machine.
前記温度検知手段(TH)で検知した周囲温度が前記設定温度以下の場合において、除氷運転開始と同時に前記ホットガス弁(HV)を開放した後、該ホットガス弁(HV)を閉成および開放する工程を所定回数繰返すように設定した請求項1記載の自動製氷機の運転方法。   When the ambient temperature detected by the temperature detecting means (TH) is equal to or lower than the set temperature, the hot gas valve (HV) is opened simultaneously with the start of the deicing operation, and then the hot gas valve (HV) is closed and 2. The method of operating an automatic ice making machine according to claim 1, wherein the opening step is set to be repeated a predetermined number of times. 前記圧縮機(CM)の起動時における除氷運転において、前記温度検知手段(TH)で検知した周囲温度が設定温度以下の場合は、除氷運転開始から前記ホットガス弁(HV)を遅延させて開放するように設定した請求項1記載の自動製氷機の運転方法。   In the deicing operation at the start of the compressor (CM), if the ambient temperature detected by the temperature detecting means (TH) is equal to or lower than a set temperature, the hot gas valve (HV) is delayed from the start of the deicing operation. The method of operating an automatic ice maker according to claim 1, wherein the automatic ice maker is set to open.
JP2006318696A 2006-11-27 2006-11-27 How to operate an automatic ice machine Active JP4954684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318696A JP4954684B2 (en) 2006-11-27 2006-11-27 How to operate an automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318696A JP4954684B2 (en) 2006-11-27 2006-11-27 How to operate an automatic ice machine

Publications (2)

Publication Number Publication Date
JP2008133976A true JP2008133976A (en) 2008-06-12
JP4954684B2 JP4954684B2 (en) 2012-06-20

Family

ID=39558946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318696A Active JP4954684B2 (en) 2006-11-27 2006-11-27 How to operate an automatic ice machine

Country Status (1)

Country Link
JP (1) JP4954684B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142276A1 (en) 2008-05-22 2009-11-26 矢崎総業株式会社 Electronic device module
JP2013083359A (en) * 2011-10-05 2013-05-09 Hoshizaki Electric Co Ltd Operating method of automatic ice-making machine
JP2015163825A (en) * 2014-02-28 2015-09-10 ホシザキ電機株式会社 automatic ice maker
JP2018204845A (en) * 2017-06-01 2018-12-27 ホシザキ株式会社 Deicing operation method of ice maker
JP2019078469A (en) * 2017-10-25 2019-05-23 ホシザキ株式会社 Ice-maker
JP2019078470A (en) * 2017-10-25 2019-05-23 ホシザキ株式会社 Ice-maker
CN114719510A (en) * 2021-01-04 2022-07-08 合肥海尔电冰箱有限公司 Refrigerator and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138168A (en) * 1985-12-10 1987-06-20 Dowa:Kk Electrically processed sea food
JPH07151427A (en) * 1993-11-27 1995-06-16 Hoshizaki Electric Co Ltd Refrigerant circulating circuit for icemaker of the like
JPH07270002A (en) * 1994-02-10 1995-10-20 Hoshizaki Electric Co Ltd Refrigerant circulating circuit for icemaker or the like
JP2006052879A (en) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd Method of operating automatic ice making machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138168A (en) * 1985-12-10 1987-06-20 Dowa:Kk Electrically processed sea food
JPH07151427A (en) * 1993-11-27 1995-06-16 Hoshizaki Electric Co Ltd Refrigerant circulating circuit for icemaker of the like
JPH07270002A (en) * 1994-02-10 1995-10-20 Hoshizaki Electric Co Ltd Refrigerant circulating circuit for icemaker or the like
JP2006052879A (en) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd Method of operating automatic ice making machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142276A1 (en) 2008-05-22 2009-11-26 矢崎総業株式会社 Electronic device module
JP2013083359A (en) * 2011-10-05 2013-05-09 Hoshizaki Electric Co Ltd Operating method of automatic ice-making machine
JP2015163825A (en) * 2014-02-28 2015-09-10 ホシザキ電機株式会社 automatic ice maker
JP2018204845A (en) * 2017-06-01 2018-12-27 ホシザキ株式会社 Deicing operation method of ice maker
JP2019078469A (en) * 2017-10-25 2019-05-23 ホシザキ株式会社 Ice-maker
JP2019078470A (en) * 2017-10-25 2019-05-23 ホシザキ株式会社 Ice-maker
JP6993841B2 (en) 2017-10-25 2022-01-14 ホシザキ株式会社 Ice machine
JP7002281B2 (en) 2017-10-25 2022-01-20 ホシザキ株式会社 Ice machine
CN114719510A (en) * 2021-01-04 2022-07-08 合肥海尔电冰箱有限公司 Refrigerator and control method thereof
CN114719510B (en) * 2021-01-04 2023-09-29 合肥海尔电冰箱有限公司 Refrigerator and control method thereof

Also Published As

Publication number Publication date
JP4954684B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4954684B2 (en) How to operate an automatic ice machine
JP5008675B2 (en) Automatic ice maker and its operating method
JP6398324B2 (en) Heat pump water heater
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
JP2013119954A (en) Heat pump hot water heater
JP4804528B2 (en) Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
JP2017003158A (en) Heat pump device and hot water storage type water heater
JP2009121768A (en) Automatic ice making machine and control method for it
JP4532201B2 (en) How to operate an automatic ice machine
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP5027685B2 (en) How to operate a jet ice maker
JP5781836B2 (en) Method and apparatus for defrosting air refrigerant refrigeration system
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP5795930B2 (en) How to operate an automatic ice machine
JP5469935B2 (en) Ice machine
JP2008057862A (en) Ice making machine
JP2007155296A (en) Heat pump type water heater
JP2014031930A (en) Refrigeration cycle device
JP6043497B2 (en) How to operate an automatic ice machine
JP5253863B2 (en) Automatic ice machine
JP6397767B2 (en) How to operate an automatic ice machine
JP5127804B2 (en) refrigerator
JPH08327194A (en) Air conditioner
JP2004019950A (en) Refrigerator
JP5848081B2 (en) How to operate an automatic ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350