JP6397767B2 - How to operate an automatic ice machine - Google Patents

How to operate an automatic ice machine Download PDF

Info

Publication number
JP6397767B2
JP6397767B2 JP2015002372A JP2015002372A JP6397767B2 JP 6397767 B2 JP6397767 B2 JP 6397767B2 JP 2015002372 A JP2015002372 A JP 2015002372A JP 2015002372 A JP2015002372 A JP 2015002372A JP 6397767 B2 JP6397767 B2 JP 6397767B2
Authority
JP
Japan
Prior art keywords
water
temperature
ice making
ice
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015002372A
Other languages
Japanese (ja)
Other versions
JP2016125798A (en
Inventor
慎吾 西村
慎吾 西村
広樹 今岡
広樹 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIZAKI KABUSHIKI KAISHA
Original Assignee
HOSHIZAKI KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIZAKI KABUSHIKI KAISHA filed Critical HOSHIZAKI KABUSHIKI KAISHA
Priority to JP2015002372A priority Critical patent/JP6397767B2/en
Publication of JP2016125798A publication Critical patent/JP2016125798A/en
Application granted granted Critical
Publication of JP6397767B2 publication Critical patent/JP6397767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、除氷運転において製氷室を開放した水皿の表面に水を供給して、水皿表面に付着した氷を除去するようにした自動製氷機の運転方法に関するものである。   The present invention relates to a method of operating an automatic ice making machine that supplies water to the surface of a water dish whose ice making chamber is opened in a deicing operation to remove ice adhering to the surface of the water dish.

図8に示すように、氷塊Iを連続的に生成する自動製氷機としては、製氷室12に設けられた下向きに開口する多数の製氷小室12Aに製氷水を下方から噴射供給する噴射式のものがある。前記自動製氷機の製氷機構10は、本体内に水平に配設された前記製氷室12と、この製氷室12の下方に支軸16を介して傾動可能に枢支された水皿14と、この水皿14の下部に一体的に設けられ、内部に所定量の製氷水を貯留する製氷水タンク18とを備えている。製氷室12の上面には、圧縮機CM、凝縮器CD、膨張弁EV、および冷却ファンFM等から構成される冷凍機構30の一部をなす蒸発器EPが蛇行状に密着して配設されている。   As shown in FIG. 8, an automatic ice maker that continuously generates ice blocks I is an injection type that supplies ice making water from below to a large number of ice making chambers 12A that open downward in the ice making chamber 12. There is. The ice making mechanism 10 of the automatic ice making machine includes the ice making chamber 12 disposed horizontally in the main body, a water tray 14 pivotally supported via a support shaft 16 below the ice making chamber 12, An ice making water tank 18 is provided integrally with the lower part of the water tray 14 and stores a predetermined amount of ice making water therein. On the upper surface of the ice making chamber 12, an evaporator EP forming a part of a refrigeration mechanism 30 including a compressor CM, a condenser CD, an expansion valve EV, a cooling fan FM, and the like is disposed in a meandering manner. ing.

前記冷凍機構30は、圧縮機CMからの冷媒を、冷却ファンFMで冷却する凝縮器CDおよび膨張弁EVを経て蒸発器EPへ供給する冷凍回路32と、圧縮機CMからの高温冷媒(ホットガス)をバイパス管36を介して蒸発器EPへ供給するバイパス回路34とを備えている。前記バイパス管36の途中にはホットガス弁HVが設けられている。冷凍機構30は、製氷運転時にホットガス弁HVを閉成することで、冷凍回路32に冷媒が循環する。製氷運転では、圧縮機CMで圧縮された気化冷媒が、凝縮器CDで凝縮液化し、膨張弁EVで減圧され、蒸発器EPで製氷室12との間で熱交換して該製氷室12を冷却している。このとき、前記製氷機構10では、製氷小室12Aを下方から閉成する位置に水皿14を保持した状態で、冷却された製氷小室12Aに対して製氷水タンク18の製氷水を水皿14の噴射孔から噴射供給することで、各製氷小室12Aに氷塊Iが生成される。なお、製氷小室12Aで氷結しなかった製氷水は、水皿14に設けられた戻り孔から製氷水タンク18に回収されて再び製氷小室12Aに噴射供給される。   The refrigeration mechanism 30 includes a refrigeration circuit 32 that supplies the refrigerant from the compressor CM to the evaporator EP through a condenser CD and an expansion valve EV that are cooled by a cooling fan FM, and a high-temperature refrigerant (hot gas) from the compressor CM. ) Through the bypass pipe 36 to the evaporator EP. A hot gas valve HV is provided in the middle of the bypass pipe 36. The refrigeration mechanism 30 closes the hot gas valve HV during the ice making operation so that the refrigerant circulates in the refrigeration circuit 32. In the ice making operation, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD, depressurized by the expansion valve EV, and heat is exchanged with the ice making chamber 12 by the evaporator EP. It is cooling. At this time, in the ice making mechanism 10, the ice making water in the ice making water tank 18 is supplied to the cooled ice making chamber 12A while the water tray 14 is held at a position where the ice making chamber 12A is closed from below. The ice lump I is generated in each ice making chamber 12A by being supplied by injection from the injection hole. The ice making water that has not been frozen in the ice making chamber 12A is recovered from the return hole provided in the water tray 14 to the ice making water tank 18 and again supplied to the ice making chamber 12A.

前記冷凍機構30は、除氷運転時にホットガス弁HVを開放することで、バイパス回路34にホットガスが循環する。除氷運転では、圧縮機CMからのホットガスを蒸発器EPに供給して、該蒸発器EPで製氷室12との間で熱交換して該製氷室12を加熱している。このとき、製氷機構10では、開閉機構22を作動することで、支軸16を中心として水皿14を斜め下方向へ傾動して、製氷小室12Aを開放する。そして、氷塊Iにおける製氷小室12Aとの氷結部分が融解され、氷塊Iが自重により製氷小室12Aから離脱して水皿14上を滑落しストッカ38に貯蔵される。製氷運転および除氷運転の切替えは、製氷室12に配設したサーミスタ等の運転切替手段40の温度検知に基づいて行われる。   The refrigeration mechanism 30 opens the hot gas valve HV during the deicing operation so that the hot gas circulates in the bypass circuit 34. In the deicing operation, hot gas from the compressor CM is supplied to the evaporator EP, and heat is exchanged with the ice making chamber 12 by the evaporator EP to heat the ice making chamber 12. At this time, the ice making mechanism 10 operates the opening / closing mechanism 22 to tilt the water tray 14 obliquely downward about the support shaft 16 to open the ice making chamber 12A. Then, the icing portion of the ice block I with the ice making chamber 12A is melted, and the ice block I is detached from the ice making chamber 12A by its own weight, slides down on the water dish 14 and is stored in the stocker 38. Switching between the ice making operation and the deicing operation is performed based on temperature detection of the operation switching means 40 such as a thermistor disposed in the ice making chamber 12.

前記除氷運転では、水皿14を下降して製氷小室12Aを開放した際に、製氷小室12Aに生成した氷塊Iの一部が剥離して水皿14の表面(上面)に残留することがある。そこで、自動製氷機では、除氷運転において水道等の外部水源に接続した給水機構26から水皿14の表面に常温の水(以後、融氷水という場合がある)を供給(散水)することで、水皿14の表面に付着した氷片を融解して除去する洗浄工程が行われる。給水機構26は、製氷運転から除氷運転に切替わって、水皿14が開閉機構22により下降する途中で水皿14に融氷水の供給を開始するように設定され、所定時間に亘り連続して供給するようになっている。そして、自動製氷機は、前記運転切替手段40による検知温度が離氷完了の除氷完了温度となると、開閉機構22により水皿14が上昇される。   In the deicing operation, when the ice tray 14 is lowered and the ice making chamber 12A is opened, a part of the ice block I generated in the ice making chamber 12A may be peeled off and remain on the surface (upper surface) of the water tray 14. is there. Therefore, in the automatic ice making machine, normal temperature water (hereinafter sometimes referred to as melted water) is supplied (sprinkled) to the surface of the water tray 14 from the water supply mechanism 26 connected to an external water source such as a water supply in the deicing operation. A cleaning step is performed to melt and remove the ice pieces adhering to the surface of the water dish 14. The water supply mechanism 26 is set to start supplying ice melt water to the water tray 14 while the water tray 14 is lowered by the opening / closing mechanism 22 after switching from the ice making operation to the deicing operation, and continues for a predetermined time. To supply. In the automatic ice making machine, when the temperature detected by the operation switching means 40 reaches the deicing completion temperature for completion of deicing, the water tray 14 is raised by the opening / closing mechanism 22.

前記給水機構26は、外部水源から導入した水道水を特に温度調節することなく、常温のまま水皿14に融氷水として供給している。すなわち、冬季においては、給水機構26から供給される融氷水の温度が低くなるから、夏季に合わせて洗浄工程の時間を設定すると、冬季においては水皿14の表面から氷片が充分に除去されないおそれがある。この場合、水皿14を閉成した際に、製氷室12と水皿14との間に残留した氷片が噛み込み、水皿14や開閉機構22等に負荷を与えたり、異形な氷塊Iが生成される不都合が生じる。これに対し、冬季に合わせて洗浄工程の時間を設定すると、夏季において氷片が完全に除去されているのにかかわらず、給水機構26から融氷水が過剰に供給される無駄が生じてしまう。   The water supply mechanism 26 supplies tap water introduced from an external water source as melted water to the water tray 14 at room temperature without particularly adjusting the temperature. That is, since the temperature of the melted ice supplied from the water supply mechanism 26 is low in the winter, the ice pieces are not sufficiently removed from the surface of the water dish 14 in the winter when the time of the washing process is set in accordance with the summer. There is a fear. In this case, when the water dish 14 is closed, the ice pieces remaining between the ice making chamber 12 and the water dish 14 are bitten and give a load to the water dish 14, the opening / closing mechanism 22, etc. Inconvenience is generated. On the other hand, when the time for the cleaning process is set in accordance with the winter season, waste of ice melt water being excessively supplied from the water supply mechanism 26 occurs regardless of the ice pieces being completely removed in the summer season.

そこで、特許文献1の自動製氷機では、融氷水の温度に応じて融氷水を供給する時間(間欠供給回数)を変えることで、融氷水の温度が低い場合において水皿14に付着した氷片を除去することができると共に、融氷水の温度が高い場合に融氷水が過剰に供給されるのを防ぐことができるようにしている。   Therefore, in the automatic ice making machine of Patent Document 1, the ice piece adhering to the water tray 14 when the temperature of the melted water is low is changed by changing the time (number of intermittent feeds) of supplying the melted water according to the temperature of the melted water. In addition, it is possible to prevent excessive supply of the melted ice water when the temperature of the melted ice water is high.

特開2008−175463号公報JP 2008-175463 A

前記自動製氷機では、融氷水の温度に応じて融氷水を供給する時間を変えているが、特に融氷水の温度が低い場合は融氷水の供給時間が長くなり、該融氷水の供給中に製氷小室12Aから氷塊Iが離脱し、傾斜姿勢の水皿14の表面で案内される氷塊Iに融氷水が付着してしまう。すなわち、融氷水によって氷塊Iが融解されて氷塊Iが異形化したり、融氷水が付着した氷塊同士がストッカ38で氷結するブロッキングや接合した氷塊Iによってアーチング等の弊害が発生するおそれが指摘される。   In the automatic ice making machine, the time for supplying the melted water is changed in accordance with the temperature of the melted ice water. The ice lump I is detached from the ice making chamber 12A, and the melted ice water adheres to the ice lump I guided on the surface of the inclined water dish 14. That is, it is pointed out that the ice block I may be deformed by melting the ice melt water, or the ice block I may be deformed, or the ice blocks attached with the melt water may be frozen by the stocker 38, or the bonded ice block I may cause adverse effects such as arching. .

すなわち本発明は、従来の技術に係る自動製氷機の運転方法に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、除氷運転において水皿に供給する水によって製氷部から離脱する氷塊に悪影響を与えることなく、水皿に付着した氷片を除去し得る自動製氷機の運転方法を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the operation method of the automatic ice making machine according to the prior art, and is based on the water supplied to the water tray in the deicing operation. It is an object of the present invention to provide an operation method of an automatic ice making machine that can remove ice pieces adhering to a water dish without adversely affecting an ice block that separates from an ice making unit.

前記課題を克服し、所期の目的を達成するため、本願請求項1に係る自動製氷機の運転方法は、
下向きに開口する製氷室を画成した製氷部と、前記製氷室を閉成する閉成位置および該製氷室を開放する開放位置との間を傾動する水皿とを備え、前記水皿を閉成位置に保持した状態で製氷室に氷塊を生成する製氷運転を行い、運転切替手段が製氷運転完了を検知すると、前記水皿を閉成位置から開放位置に傾動させて製氷室から氷塊を離脱させる除氷運転を行うと共に、前記運転切替手段の製氷運転完了の検知に基づいて前記水皿の表面に給水機構から水を供給して水皿表面に付着する氷を除去する自動製氷機において、
前記給水機構から供給される水の温度が判定基準温度より高い場合は、前記運転切替手段の製氷運転完了の検知に基づいて前記給水機構からの水の供給を開始して、前記除氷運転の開始から氷塊が前記製氷室から離脱し始めるまでの時間より短い高温時供給時間の経過により該給水機構からの水の供給を停止し、
前記給水機構から供給される水の温度が判定基準温度より低い場合は、前記運転切替手段の製氷運転完了の検知に基づいて前記給水機構からの水の供給を開始して、前記除氷運転の開始から氷塊が前記製氷室から離し始めるまでの時間より短い第1低温時供給時間の経過により該給水機構からの水の供給を停止し、前記製氷部からの氷塊の離脱後に第2低温時供給時間に亘って給水機構から水を水皿表面に供給するようにし
前記第2低温時供給時間は、前記判定基準温度より低い温度の水を連続して供給した場合に水皿表面に付着する氷を除去し得る低温時総合供給時間から、前記第1低温時供給時間を差し引いた残りの時間に設定されるようにしたことを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, an operation method of the automatic ice making machine according to claim 1 of the present application is as follows:
An ice making section that defines an ice making chamber that opens downward; a water pan that tilts between a closed position that closes the ice making chamber and an open position that opens the ice making chamber; and the water tray is closed The ice making operation is performed to generate ice blocks in the ice making chamber while being held in the formation position, and when the operation switching means detects the completion of the ice making operation, the water pan is tilted from the closed position to the open position to remove the ice blocks from the ice making chamber. In the automatic ice making machine that performs the deicing operation and removes the ice adhering to the surface of the water dish by supplying water from the water supply mechanism to the surface of the water dish based on the detection of the completion of the ice making operation of the operation switching means ,
When the temperature of the water supplied from the water supply mechanism is higher than the determination reference temperature, the supply of water from the water supply mechanism is started based on the detection of the completion of the ice making operation by the operation switching means, and the deicing operation is started. The supply of water from the water supply mechanism is stopped by the passage of the high temperature supply time shorter than the time from the start until the ice block begins to leave the ice making chamber,
When the temperature of the water supplied from the water supply mechanism is lower than the determination reference temperature , the supply of water from the water supply mechanism is started based on detection of completion of the ice making operation by the operation switching means, and the deicing operation is started . stopping the supply of water from the water supply mechanism ice blocks from the start with the lapse of the ice compartment or et away leaving to the first low temperature feed time shorter than the time to start, the second after withdrawal of ice blocks from the ice making unit Supply water from the water supply mechanism to the surface of the water dish over the low temperature supply time ,
The second low temperature supply time is the first low temperature supply time from the low temperature total supply time that can remove ice adhering to the surface of the water dish when water having a temperature lower than the determination reference temperature is continuously supplied. The gist is that it is set to the remaining time after subtracting the time .

請求項1に係る発明によれば、給水機構から供給される水の温度の高低によって水皿表面の氷を除去する水の供給制御を切替えるので、水温の変化によって水皿表面の氷が除去されなかったり、過剰に水が供給されるのを防ぐことができる。また、判定基準温度より水温が低い場合は、製氷部から氷塊が離脱するタイミングを挟む前後に分けて水皿表面に水を供給するので、製氷部から離脱した氷塊に水が付着してブロッキングやアーチング等の弊害が発生するのを防止し得る。 According to the first aspect of the present invention, since the water supply control for removing ice on the surface of the water dish is switched depending on the temperature of the water supplied from the water supply mechanism , the ice on the surface of the water dish is removed by the change in the water temperature. It is possible to prevent the water from being supplied or excessive. In addition, when the water temperature is lower than the judgment reference temperature , water is supplied to the surface of the water tray separately before and after the timing at which the ice mass is detached from the ice making unit, so that water adheres to the ice mass detached from the ice making unit and blocking or The occurrence of harmful effects such as arching can be prevented.

請求項2に係る発明では、
前記製氷部からの氷塊の離脱後に前記給水機構から水が前記第2低温時供給時間に亘って供給された後、前記運転切替手段が除氷運転完了を検知している場合は、前記水皿を開放位置から閉成位置に向けて傾動して除氷運転から製氷運転に切替えるようにしたことを要旨とする
In the invention according to claim 2,
When the operation switching means detects completion of the deicing operation after water is supplied from the water supply mechanism for the second low temperature supply time after the ice block from the ice making part is detached, the water dish The gist of the present invention is to change the deicing operation to the ice making operation by tilting from the open position to the closed position .

請求項3に係る発明では、
前記製氷運転の初期段階において、前記水皿から水が供給される前記製氷部の温度を前記運転切替手段により測定することで、前記給水機構から供給される水の温度を間接的に取得し、この取得した水温を前記判定基準温度と比較して水温の高低を判定すると共に、
前記除氷運転によって氷塊が離脱した前記製氷部の温度に対して、前記第2低温時供給時間の間の除氷運転において製氷部が温度上昇する値である補正値を足した温度を、前記運転切替手段が除氷運転完了を検知する除氷完了温度として設定し、前記製氷部の温度が除氷完了温度となったことを前記運転切替手段が検知したことに基づいて前記水皿を開放位置から閉成位置に向けて傾動させるよう設定され、
前記製氷部から氷塊が離脱した後の前記給水機構からの水の供給は、前記製氷部の温度が、前記除氷完了温度から前記補正値を引いた供給再開温度になったことを前記運転切替手段が検知したときに開始するようにしたことを要旨とする。
請求項3に係る発明によれば、水皿から水が供給される製氷部の温度に基づいて給水機構から水皿表面に供給される水の温度を取得するので、水温を検知するための温度検知手段を設ける必要がなく、製造コストを抑えることができる。また、水温を自動製氷機の運転中に取得するので、自動製氷機の運転を自動製氷機の実状に応じて制御することができる。
In the invention according to claim 3,
In the initial stage of the ice making operation, the temperature of the ice making unit to which water is supplied from the water tray is measured by the operation switching means, thereby indirectly acquiring the temperature of the water supplied from the water supply mechanism, While comparing the acquired water temperature with the determination reference temperature to determine the level of the water temperature ,
A temperature obtained by adding a correction value, which is a value that increases the temperature of the ice making unit during the deicing operation during the second low temperature supply time, to the temperature of the ice making unit from which the ice block has been detached by the deicing operation, The operation switching means is set as the deicing completion temperature for detecting the completion of the deicing operation, and the water pan is opened based on the fact that the operation switching means detects that the temperature of the ice making part has reached the deicing completion temperature. Set to tilt from the position toward the closed position,
The supply of water from the water supply mechanism after the ice block is detached from the ice making unit is the operation switching that the temperature of the ice making unit has reached the supply restart temperature obtained by subtracting the correction value from the deicing completion temperature. The gist is that it is started when the means detects.
According to the invention which concerns on Claim 3, since the temperature of the water supplied to the surface of a water tray from a water supply mechanism is acquired based on the temperature of the ice-making part to which water is supplied from a water tray, the temperature for detecting a water temperature There is no need to provide detection means, and the manufacturing cost can be reduced. Further, since the water temperature is acquired during the operation of the automatic ice maker, the operation of the automatic ice maker can be controlled according to the actual state of the automatic ice maker.

本願には、次のような技術的思想が含まれている。
前記除氷運転において、前記製氷部の温度を測定する温度測定手段による単位時間当りの温度変化量が判定変化量以上となった場合に、前記製氷室から氷塊が離脱したと見做して、前記給水機構からの水の供給開始から氷塊が離脱したと見做されたまでの時間を、次回の除氷運転における前記第1供給時間として用いるようにしたことを要旨とする。
これによれば、製氷室の温度変化量から得られる氷塊の離脱タイミングに基づいて取得した時間を、次回の除氷運転における第1供給時間として用いるようにしたので、自動製氷機の運転を自動製氷機の実状に応じて制御することができる。
The present application includes the following technical ideas.
In the deicing operation, when the amount of temperature change per unit time by the temperature measuring means for measuring the temperature of the ice making unit is equal to or greater than the determination change amount, it is assumed that the ice block has detached from the ice making chamber, The gist is that the time from the start of water supply from the water supply mechanism to the time when it is considered that the ice block has been detached is used as the first supply time in the next deicing operation.
According to this , since the time acquired based on the ice lump detachment timing obtained from the temperature change amount of the ice making chamber is used as the first supply time in the next deicing operation, the automatic ice maker is automatically operated. It can be controlled according to the actual condition of the ice making machine.

本発明に係る自動製氷機の運転方法によれば、融氷水によって製氷部から離脱する氷塊に悪影響を与えることなく、水皿に付着した氷片を除去し得る。   According to the operation method of the automatic ice making machine according to the present invention, the ice pieces adhering to the water dish can be removed without adversely affecting the ice blocks separated from the ice making unit by the melted water.

実施例に係る運転方法に用いられる自動製氷機の一部を示す概略構成図である。It is a schematic block diagram which shows a part of automatic ice making machine used for the operating method which concerns on an Example. 実施例の自動製氷機の制御ブロック図である。It is a control block diagram of the automatic ice making machine of an Example. 実施例の自動製氷機を運転した場合の各機器の動作を示すフローチャートである。It is a flowchart which shows operation | movement of each apparatus at the time of driving | operating the automatic ice maker of an Example. 実施例の自動製氷機における開閉機構、給水弁およびホットガス弁等の動作状態を示すタイミングチャート図であって、融氷水が判定基準温度より高いと判定された場合である。It is a timing chart figure which shows operation states, such as an opening-and-closing mechanism, a water supply valve, and a hot gas valve, in an automatic ice making machine of an example, and is a case where it is judged that melting ice water is higher than judgment standard temperature. 実施例の自動製氷機における開閉機構、給水弁およびホットガス弁等の動作状態を示すタイミングチャート図であって、融氷水が判定基準温度より低いと判定された場合である。It is a timing chart figure which shows operation states, such as an opening-and-closing mechanism, a water supply valve, and a hot gas valve, in an automatic ice making machine of an example, and is a case where it is judged with melting ice water being lower than judgment standard temperature. 別実施例に係る運転方法に基づいて自動製氷機を運転した場合の各機器の動作を示すフローチャートである。It is a flowchart which shows operation | movement of each apparatus at the time of driving | operating an automatic ice maker based on the driving | operation method which concerns on another Example. 別実施例に係る運転方法における離氷判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the deicing determination process in the driving | operation method which concerns on another Example. 従来の自動製氷機における製氷機構および冷凍機構の概略構成図である。It is a schematic block diagram of the ice making mechanism and freezing mechanism in the conventional automatic ice making machine.

次に、本発明に係る自動製氷機の運転方法につき、好適な実施例を挙げて、添付図面を参照しながら以下に説明する。なお、説明の便宜上、図8に示した自動製氷機の構成要素と同じ要素については同一の符号を使用する。   Next, the operation method of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. For convenience of explanation, the same reference numerals are used for the same elements as those of the automatic ice making machine shown in FIG.

実施例に係る自動製氷機は、図1に示すように、製氷部としての製氷室12を有する製氷機構10と、製氷室12を冷却および加熱する蒸発器EPを有する冷凍機構30とを備えている。自動製氷機は、後述する運転切替手段40、計時手段42および切替スイッチ44等に基づいて、制御手段46により製氷機構10および冷凍機構30を構成する各機器が制御され、製氷運転と除氷運転とを交互に繰り返す運転サイクルを行うよう構成されている。   As shown in FIG. 1, the automatic ice maker according to the embodiment includes an ice making mechanism 10 having an ice making chamber 12 as an ice making unit, and a refrigeration mechanism 30 having an evaporator EP for cooling and heating the ice making chamber 12. Yes. In the automatic ice making machine, each device constituting the ice making mechanism 10 and the refrigeration mechanism 30 is controlled by the control means 46 on the basis of an operation switching means 40, a time measuring means 42, a changeover switch 44, and the like, which will be described later. The operation cycle is repeated alternately.

前記製氷機構10は、図1に示すように、下向きに開口する多数の製氷小室12Aが設けられ、本体内に水平に配設された製氷室12と、この製氷室12の下方に支軸16を介して傾動可能に枢支された水皿14と、水皿14の下部に一体的に設けられ、内部に所定量の製氷水を貯留する製氷水タンク18と、製氷水タンク18の下部に設けられ、製氷水を循環供給するポンプモータ20と、水皿14および製氷水タンク18を一体的に傾動させる開閉機構22等とから構成される。製氷室12の上面には、冷凍機構30の一部をなす蒸発器EPが蛇行状に密着して配設されている。製氷室12は、この蒸発器EPにより、製氷運転時に冷却されると共に除氷運転時に加熱されるようになっている。   As shown in FIG. 1, the ice making mechanism 10 is provided with a large number of ice making chambers 12 </ b> A opening downward, an ice making chamber 12 disposed horizontally in the main body, and a spindle 16 below the ice making chamber 12. A water tray 14 pivotally supported via a water tray 14, an ice making water tank 18 that is integrally provided at a lower portion of the water tray 14 and stores a predetermined amount of ice making water therein, and a lower portion of the ice making water tank 18. A pump motor 20 that circulates and supplies ice-making water and an opening / closing mechanism 22 that tilts the water tray 14 and the ice-making water tank 18 integrally are provided. An evaporator EP forming a part of the refrigeration mechanism 30 is disposed in close contact with the upper surface of the ice making chamber 12 in a meandering manner. The ice making chamber 12 is cooled by the evaporator EP during the ice making operation and heated during the deicing operation.

前記水皿14および該水皿14に固定された製氷水タンク18は、開閉機構22の開閉モータ24の駆動により、支軸16を中心として製氷室12に対して近接および離間するよう傾動される。水皿14は、製氷運転において、製氷小室12Aの開口を閉成する閉成位置となるよう保持され、除氷運転が開始されると開閉モータ24の駆動により、製氷小室12Aの開口を開放する開放位置となるよう支軸16を中心として下方に傾動するよう構成される。また、水皿14は、除氷が完了すると開閉モータ24の駆動により、支軸16を中心として上方に傾動して閉成位置となるよう構成される。開閉モータ24は、制御手段46により駆動され、水皿14の開放位置および閉成位置への到来を切替スイッチ44が検知すると停止するよう制御される。製氷水タンク18は、上方に開口し、外部水源に接続する給水機構26から水(製氷水および融氷水)が供給される。そして、製氷運転において、ポンプモータ20を駆動することで、各製氷小室12Aに対応するように設けられた水皿14の噴水孔(図示せず)から製氷小室12Aに製氷水が噴射供給される。また、製氷小室12Aで氷結しなかった製氷水は、水皿14に設けた戻り孔(図示せず)を介して製氷水タンク18に回収されて、製氷水として再び用いられる。製氷室12には、該製氷室12の温度を検知する運転切替手段40が配設され、この運転切替手段40の温度検知結果に基づいて自動製氷機における製氷運転および除氷運転が切替えられる。自動製氷機では、運転切替手段40が、製氷運転において製氷完了温度を検知すると除氷運転に切替えられ、除氷運転において除氷完了温度を検知すると製氷運転に切替えられるよう制御手段46で制御される。なお、前記給水機構26は、外部水源に接続して出口を前記水皿14の表面(上面)側に開口する給水管28と、該給水管28に設けられた給水弁WVとを備え、該給水弁WVが制御手段46で開閉制御されることで、水(製氷水や融氷水)が水皿表面に供給されるようになっている。水皿表面に供給された水は、前記噴射孔や戻り孔を介して製氷水タンク18に回収される。実施例では、運転切替手段40が、製氷室12の温度を測定する温度測定手段としての機能を有している。   The water tray 14 and the ice making water tank 18 fixed to the water tray 14 are tilted so as to approach and separate from the ice making chamber 12 around the support shaft 16 by driving the opening / closing motor 24 of the opening / closing mechanism 22. . The water tray 14 is held in the closed position for closing the opening of the ice making chamber 12A in the ice making operation. When the deicing operation is started, the opening of the ice making chamber 12A is opened by driving the opening / closing motor 24. It is configured to tilt downward about the support shaft 16 so as to be in the open position. Further, the water tray 14 is configured to be tilted upward about the support shaft 16 to be in the closed position by driving the opening / closing motor 24 when the deicing is completed. The opening / closing motor 24 is driven by the control means 46 and is controlled to stop when the changeover switch 44 detects arrival of the water tray 14 at the open position and the closed position. The ice making water tank 18 opens upward and is supplied with water (ice making water and melted ice water) from a water supply mechanism 26 connected to an external water source. In the ice making operation, by driving the pump motor 20, ice making water is jetted and supplied from the fountain hole (not shown) of the water tray 14 provided so as to correspond to each ice making chamber 12A to the ice making chamber 12A. . In addition, the ice making water that has not been frozen in the ice making chamber 12A is collected in the ice making water tank 18 through a return hole (not shown) provided in the water tray 14 and reused as ice making water. The ice making chamber 12 is provided with operation switching means 40 for detecting the temperature of the ice making chamber 12, and the ice making operation and the deicing operation in the automatic ice making machine are switched based on the temperature detection result of the operation switching means 40. In the automatic ice making machine, the operation switching means 40 is controlled by the control means 46 so as to be switched to the deicing operation when the ice making completion temperature is detected in the ice making operation, and to the ice making operation when the deicing completion temperature is detected in the ice removing operation. The The water supply mechanism 26 includes a water supply pipe 28 that is connected to an external water source and has an outlet opening on the surface (upper surface) side of the water tray 14, and a water supply valve WV provided in the water supply pipe 28. The water supply valve WV is controlled to be opened and closed by the control means 46, so that water (ice-making water or melted water) is supplied to the surface of the water dish. The water supplied to the surface of the water dish is collected in the ice making water tank 18 through the injection hole and the return hole. In the embodiment, the operation switching means 40 has a function as a temperature measuring means for measuring the temperature of the ice making chamber 12.

前記冷凍機構30は、圧縮機CM、凝縮器CD、この凝縮器CDを冷却する冷却ファンFM、膨張弁EV、および製氷室12の上面に設けられた蒸発器EPが配管で連結されて冷凍回路32が構成されている。冷凍回路32では、製氷運転時に、圧縮機CMで圧縮された冷媒が、凝縮器CDで凝縮液化し、膨張弁EVで減圧され、蒸発器EPに供給され、圧縮機CMに帰還する。この冷媒は、蒸発器EPで製氷室12との間で熱交換することで該製氷室12を冷却する。また、冷凍機構30は、除氷運転時に圧縮機CMからのホットガスを蒸発器EPに供給するバイパス回路34を備えている。バイパス回路34は、圧縮機CMの出口側と蒸発器EPの入口側とを連結するバイパス管36を有している。バイパス管36の途中には、該バイパス管36の管路を開閉するホットガス弁HVが設けられている。除氷運転では、ホットガス弁HVを開放(ON)することで、バイパス回路34に冷媒が循環され、圧縮機CMからのホットガスが、凝縮器CDおよび膨張弁EVを経ることなく、バイパス管36を介して蒸発器EPに直接供給される。このホットガスは、蒸発器EPで製氷室12との間で熱交換して該製氷室12を加熱する。ホットガス弁HVは、除氷運転時には開放状態を維持するよう設定され、製氷運転では該ホットガス弁HVを閉成(OFF)することで、冷凍回路32に冷媒が循環される。また、前記冷却ファンFMは、製氷運転の開始と同時に駆動し、除氷運転の開始と同時に停止する。   The refrigerating mechanism 30 includes a compressor CM, a condenser CD, a cooling fan FM that cools the condenser CD, an expansion valve EV, and an evaporator EP provided on the upper surface of the ice making chamber 12 connected by piping. 32 is configured. In the refrigeration circuit 32, during the ice making operation, the refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD, decompressed by the expansion valve EV, supplied to the evaporator EP, and returned to the compressor CM. This refrigerant cools the ice making chamber 12 by exchanging heat with the ice making chamber 12 in the evaporator EP. Further, the refrigeration mechanism 30 includes a bypass circuit 34 that supplies hot gas from the compressor CM to the evaporator EP during the deicing operation. The bypass circuit 34 has a bypass pipe 36 that connects the outlet side of the compressor CM and the inlet side of the evaporator EP. A hot gas valve HV that opens and closes the conduit of the bypass pipe 36 is provided in the middle of the bypass pipe 36. In the deicing operation, the hot gas valve HV is opened (ON), whereby the refrigerant is circulated in the bypass circuit 34, and the hot gas from the compressor CM does not pass through the condenser CD and the expansion valve EV, and is bypassed. 36 directly to the evaporator EP. This hot gas heats the ice making chamber 12 by exchanging heat with the ice making chamber 12 in the evaporator EP. The hot gas valve HV is set to be kept open during the deicing operation, and the refrigerant is circulated through the refrigeration circuit 32 by closing the hot gas valve HV during the ice making operation. The cooling fan FM is driven simultaneously with the start of the ice making operation, and is stopped simultaneously with the start of the deicing operation.

ここで、実施例の除氷完了温度は、除氷運転によって加熱された製氷室12から全ての氷塊Iが離脱した際の製氷室12の温度に対し、補正値αを足した温度に設定されている。言い替えると、製氷室12が除氷完了温度から補正値αを引いた温度となったときには、該製氷室12から全ての氷塊Iが離脱している。実施例では、〔除氷完了温度−補正値α〕の温度を、後述する融氷水の供給再開温度と指称する(図5参照)。なお、補正値αについては、後述する低温モードで融氷水が供給される第2低温時供給時間の間の除氷運転において製氷室12が温度上昇すると予測される値に設定される。   Here, the deicing completion temperature of the embodiment is set to a temperature obtained by adding a correction value α to the temperature of the ice making chamber 12 when all the ice blocks I are detached from the ice making chamber 12 heated by the deicing operation. ing. In other words, when the ice making chamber 12 reaches a temperature obtained by subtracting the correction value α from the deicing completion temperature, all ice blocks I are detached from the ice making chamber 12. In the embodiment, the temperature of [deicing completion temperature−correction value α] is referred to as a melted water supply resumption temperature described later (see FIG. 5). The correction value α is set to a value at which the ice making chamber 12 is expected to rise in temperature during the deicing operation during the second low temperature supply time in which the melted water is supplied in the low temperature mode to be described later.

(融氷水の供給制御について)
実施例の自動製氷機では、前記除氷運転において、給水機構26から水皿14の表面に常温の水(以後、融氷水と指称する場合もある)を供給することで、水皿14の表面に付着した氷片(氷)を融解して除去するよう構成されている。また、実施例の自動製氷機では、融氷水の温度を直接または間接的に検知(取得)し、前記制御手段46は、融氷水の温度と予め設定された判定基準温度とを比較して、除氷運転における冷凍機構30,開閉機構22,給水機構26等の各機構の動作条件を決定する制御モードを設定するようになっている。具体的には、融氷水温度が判定基準温度より高い場合(実施例では判定基準温度以上の場合)であれば、制御手段46は、融氷水が高温であると判定して高温モードで冷凍機構30,開閉機構22,給水機構26等の各機構を制御(図4参照)し、融氷水温度が判定基準温度より低い場合(実施例では判定基準温度未満の場合)であれば、制御手段46が、融氷水が低温であると判定して低温モードで冷凍機構30,開閉機構22,給水機構26等の各機構を制御(図5参照)するよう構成される。なお、実施例では、融氷水の温度を間接的に検知(測定)するよう構成されているが、該温度の測定方法については後述する。
(About supply control of melted water)
In the automatic ice making machine of the embodiment, in the deicing operation, normal temperature water (hereinafter also referred to as melted water) may be supplied from the water supply mechanism 26 to the surface of the water tray 14, so that the surface of the water tray 14. It is configured to melt and remove ice pieces (ice) adhering to. Further, in the automatic ice making machine of the embodiment, the temperature of the melted water is detected (acquired) directly or indirectly, and the control means 46 compares the melted water temperature with a preset reference temperature, In the deicing operation, a control mode for determining operating conditions of each mechanism such as the refrigeration mechanism 30, the opening / closing mechanism 22, and the water supply mechanism 26 is set. Specifically, if the melted ice water temperature is higher than the determination reference temperature (in the embodiment, when it is equal to or higher than the determination reference temperature), the control unit 46 determines that the melted water is at a high temperature and performs a refrigeration mechanism in the high temperature mode. 30, the opening / closing mechanism 22, the water supply mechanism 26, and the like (see FIG. 4). If the melted ice water temperature is lower than the determination reference temperature (in the embodiment, less than the determination reference temperature), the control means 46. However, it is determined that the melted ice water is at a low temperature and controls the refrigeration mechanism 30, the opening / closing mechanism 22, the water supply mechanism 26, and the like in the low temperature mode (see FIG. 5). In addition, in the Example, it is comprised so that the temperature of ice-melt water may be indirectly detected (measured), but the measuring method of this temperature is mentioned later.

自動製氷機は、前記運転切替手段40が製氷完了温度を検知して除氷運転が開始されてから、予め設定された待機時間(例えば20秒)の経過後に、前記給水機構26からの融氷水の供給を開始(給水弁WVの開放)するよう設定されている(図4,図5参照)。すなわち、水皿表面の氷片を融解する融氷水は、運転切替手段40による製氷運転完了の検知によって供給が開始されるよう構成される。また、除氷運転の開始初期は、前記水皿14が閉成位置または製氷室12から下方へ僅かに離間した状態であるので、運転切替手段40による製氷運転完了の検知と同時に水皿表面への融氷水の供給を開始すると、水皿14の表面に供給された融氷水が製氷室12に生成されている氷塊I(製氷室12から離脱する前の氷塊)の下面に付着してしまうおそれがある。そこで、前記待機時間を設けることで、製氷室12に生成されている氷塊Iに融氷水が付着するのを防いで、ストッカ38内で氷塊Iが再氷結するのを防止するようにしている。すなわち、前記待機時間は、閉成位置から傾動を開始した水皿14の傾斜角度が、水皿表面に供給された融氷水が製氷室12に生成されている氷塊Iに付着することのない角度となるまでに要する時間以上に設定される。なお、切替スイッチ44が水皿14の開放位置を検知することを条件として、融氷水の供給を開始するようにしてもよい。   In the automatic ice making machine, after the operation switching means 40 detects the ice making completion temperature and the deicing operation is started, the melted water from the water supply mechanism 26 is passed after a preset waiting time (for example, 20 seconds). Is set to start (the water supply valve WV is opened) (see FIGS. 4 and 5). That is, the melted water that melts the ice pieces on the surface of the water dish is configured to start supplying upon detection of completion of the ice making operation by the operation switching means 40. In addition, since the water tray 14 is in the closed position or in a state slightly spaced downward from the ice making chamber 12 at the initial stage of the deicing operation, it is returned to the surface of the water tray simultaneously with the detection of the completion of the ice making operation by the operation switching means 40. When the supply of the melted ice water is started, the melted water supplied to the surface of the water tray 14 may adhere to the lower surface of the ice block I generated in the ice making chamber 12 (the ice block before leaving the ice making chamber 12). There is. Therefore, by providing the waiting time, it is possible to prevent the melted ice from adhering to the ice block I generated in the ice making chamber 12 and to prevent the ice block I from re-freezing in the stocker 38. That is, the waiting time is an angle at which the tilt angle of the water tray 14 that starts tilting from the closed position is such that the melted ice water supplied to the surface of the water tray does not adhere to the ice block I generated in the ice making chamber 12. It is set to be longer than the time required to become. The supply of the melted water may be started on the condition that the changeover switch 44 detects the open position of the water tray 14.

(高温モードでの制御について)
前記融氷水の温度が、前記判定基準温度以上の場合に行われる高温モードの制御では、図4に示す如く、除氷運転が開始されてから前記待機時間が経過すると、制御手段46は、前記給水機構26の給水弁WVを開放制御(ON)して融氷水の供給を開始させる。そして、予め設定された高温時供給時間(例えば、30秒)が経過すると、制御手段46は、給水弁WVを閉成制御(OFF)して融氷水の供給を停止させる。すなわち、融氷水の温度が判定基準温度以上の高温の場合には、高温時供給時間の間は連続して融氷水が水皿表面に供給される。この高温時供給時間は、判定基準温度以上の高温の融氷水を水皿表面に供給した場合に、前記製氷室12から氷塊Iが離脱(最初の氷塊Iが離脱)する前に水皿表面の氷片を除去し得る時間(除氷運転の開始から氷塊Iが離脱し始めるまでの時間より短い時間)であって、該高温時供給時間は実験により求められる。すなわち、実験により求めた時間が、制御手段46に高温時供給時間として設定記憶される。また、高温モードでは、高温時供給時間の経過後に、製氷室12から全ての氷塊Iが離脱して前記運転切替手段40が除氷完了温度を検知することで、制御手段46は、除氷運転を終了して製氷運転を開始するように各機構を制御するよう設定されている。
(Control in high temperature mode)
In the high temperature mode control performed when the temperature of the melted ice water is equal to or higher than the determination reference temperature, as shown in FIG. 4, when the standby time has elapsed after the start of the deicing operation, the control means 46 The water supply valve WV of the water supply mechanism 26 is controlled to be opened (ON) to start supplying the melted water. Then, when a preset high-temperature supply time (for example, 30 seconds) elapses, the control means 46 closes the water supply valve WV (OFF) to stop the supply of the melted water. That is, when the temperature of the melted ice water is higher than the determination reference temperature, the melted ice water is continuously supplied to the surface of the water dish during the high temperature supply time. This high-temperature supply time is such that when ice melt water having a temperature higher than the judgment reference temperature is supplied to the surface of the water dish, the ice block I is removed from the ice making chamber 12 (the first ice block I is released) before It is a time during which ice pieces can be removed (a time shorter than the time from the start of the deicing operation until the ice lump I starts to be detached), and the supply time at the high temperature is obtained by experiments. That is, the time obtained by the experiment is set and stored in the control means 46 as the high temperature supply time. In the high temperature mode, after the supply time at high temperature has elapsed, all the ice blocks I are detached from the ice making chamber 12 and the operation switching means 40 detects the deicing completion temperature, so that the control means 46 performs the deicing operation. It is set to control each mechanism so as to end the process and start the ice making operation.

(低温モードでの制御について)
前記融氷水の温度が、前記判定基準温度未満の場合に行われる低温モードの制御では、図5に示す如く、除氷運転が開始されてから前記待機時間が経過すると、制御手段46は、前記給水機構26の給水弁WVを開放制御(ON)して融氷水の供給を開始させる。そして、予め設定された第1低温時供給時間(第1供給時間であって、例えば、40秒)が経過すると、制御手段46は、給水弁WVを閉成制御(OFF)して融氷水の供給を一時的に停止させる。その後、除氷運転が進行して前記運転切替手段40が、前記供給再開温度を検知すると、制御手段46は、給水弁WVを開放制御(ON)して融氷水の供給を再開し、予め設定された第2低温時供給時間(第2供給時間であって、例えば、55秒)が経過すると、制御手段46は、給水弁WVを閉成制御(OFF)して融氷水の供給を停止させる。そして、低温モードでは、第2低温時供給時間の経過後に運転切替手段40が除氷完了温度(除氷完了温度以上の温度)を検知していれば、制御手段46は、除氷運転を終了して製氷運転を開始するように各機構を制御するよう設定されている。
(Control in low temperature mode)
In the low temperature mode control performed when the temperature of the melted ice water is lower than the determination reference temperature, as shown in FIG. 5, when the standby time elapses after the deicing operation is started, the control means 46 The water supply valve WV of the water supply mechanism 26 is controlled to be opened (ON) to start supplying the melted water. When the first low temperature supply time (first supply time, for example, 40 seconds) elapses, the control means 46 closes the water supply valve WV (OFF) to turn off the melted water. The supply is temporarily stopped. Thereafter, when the deicing operation proceeds and the operation switching means 40 detects the supply resumption temperature, the control means 46 controls the opening of the water supply valve WV (ON) to resume the supply of the melted water, and is preset. When the second low temperature supply time (second supply time, for example, 55 seconds) elapses, the control means 46 closes the supply valve WV (OFF) to stop the supply of the melted water. . In the low temperature mode, if the operation switching means 40 detects the deicing completion temperature (temperature equal to or higher than the deicing completion temperature) after the second low temperature supply time has elapsed, the control means 46 ends the deicing operation. Then, each mechanism is set to be controlled so as to start the ice making operation.

ここで、前記第1低温時供給時間は、判定基準温度未満の低温の融氷水を水皿表面に供給した場合に、前記製氷室12から氷塊Iが離脱(最初の氷塊Iが離脱)するまでの時間より短い時間であり、該時間は実験により求められる。すなわち、実験により求めた時間を、制御手段46に第1低温時供給時間として設定記憶させている。そして、判定基準温度未満の低温の融氷水を水皿表面に連続して供給した場合に、水皿表面の氷片を除去し得る時間を低温時総合供給時間として実験により求め、この低温時総合供給時間から実験により求めた前記第1低温時供給時間を差し引いた残りの時間を第2低温時供給時間として、制御手段46に設定記憶させている。なお、第1低温時供給時間は、具体的には低温の融氷水が水皿表面に供給開始されてから氷塊I(最初の氷塊I)が製氷室12から離脱するまでの時間より短かい時間(数秒短かい時間)に設定される。また、除氷運転の進行によって製氷室12から全ての氷塊Iが落下した際の前記供給再開温度についても、実験によって求められる。すなわち、低温モードでは、除氷運転が開始されてから氷塊Iが製氷室12から離脱する前と、全ての氷塊Iが製氷室12から離脱した後とに分けて融氷水を水皿表面に供給するようになっている。   Here, the first low temperature supply time is the time until the ice block I is detached from the ice making chamber 12 (the first ice block I is detached) when the low-temperature melted water lower than the determination reference temperature is supplied to the surface of the water dish. This time is shorter than this time, and this time is determined by experiment. That is, the time obtained by the experiment is set and stored in the control means 46 as the first low temperature supply time. Then, when low-temperature melted ice water below the reference temperature is continuously supplied to the surface of the water dish, the time during which the ice pieces on the surface of the water dish can be removed is experimentally determined as the low-time total supply time. The remaining time obtained by subtracting the first low temperature supply time obtained by experiment from the supply time is set and stored in the control means 46 as the second low temperature supply time. The first low-temperature supply time is specifically a time shorter than the time from when ice melt I (the first ice block I) is detached from the ice making chamber 12 after supply of low-temperature melted water to the surface of the water dish is started. Set to (a few seconds shorter). Further, the supply resumption temperature when all the ice blocks I have fallen from the ice making chamber 12 due to the progress of the deicing operation can also be obtained by experiments. That is, in the low temperature mode, after the deicing operation is started, before the ice block I is detached from the ice making chamber 12 and after all the ice blocks I are separated from the ice making chamber 12, the melted water is supplied to the surface of the water dish. It is supposed to be.

(融氷水の温度測定について)
実施例の自動製氷機では、融氷水の温度を間接的に検知(測定)するよう構成されており、該温度の測定方法について説明する。自動製氷機では、除氷運転に際して前記給水機構26から供給されて製氷水タンク18に貯留された常温の水を、次回の製氷運転の製氷水として用いるよう構成されており、製氷運転の開始時(初期段階)に製氷室12に供給される常温の製氷水と熱交換する該製氷室12の温度を測定することで、融氷水(常温の水)の温度を間接的に知り得ることができる。そこで、製氷運転において前記ポンプモータ20の運転開始から所定の水温測定時間(例えば、30秒)が経過した後の、前記運転切替手段40による検知温度(測定温度)を融氷水の温度として制御手段46が記憶し、該制御手段46は、記憶した融氷水温度(測定温度)と判定基準温度とを比較して水温の高低を判定し、該判定結果に基づいて次回の除氷運転での制御モードを設定するようになっている。具体的に、融氷水の測定温度は、ポンプモータ20の運転開始から水温測定時間の経過後の運転切替手段40の検知温度と、融氷水の実際の温度との関係を予め実験により取得して、該関係をテーブル化したデータを予め制御手段46に記憶させる。そして、自動製氷機の実際の運転時においては、制御手段46に予め記憶されているデータに基づいて、制御手段46が運転切替手段40の検知温度から融氷水の測定温度を取得するようにしている。融氷水の温度は、製氷運転毎に測定しており、実施例では除氷運転毎に制御モードを高温モードにするか低温モードにするかを判定(以後、モード判定と指称する場合もある)している。なお、融氷水の温度やモード判定は、各運転サイクル毎に行うことなく、運転サイクルをカウントするカウンタを設け、該カウンタが設定された設定数(例えば、数100)をカウントしたときの運転サイクルにおいて行って、測定温度や設定した制御モードを更新するようにしてもよい。また、デイリータイマを用いて、測定温度や設定した制御モードの更新を1ケ月に1回とすることもできる。
(About temperature measurement of melted water)
The automatic ice making machine of the embodiment is configured to indirectly detect (measure) the temperature of melted water, and a method for measuring the temperature will be described. The automatic ice making machine is configured to use room-temperature water supplied from the water supply mechanism 26 and stored in the ice making water tank 18 during ice removal operation as ice making water for the next ice making operation. By measuring the temperature of the ice making chamber 12 which exchanges heat with the normal temperature ice making water supplied to the ice making chamber 12 in the (initial stage), the temperature of the melted water (normal temperature water) can be indirectly known. . Therefore, in the ice making operation, a control means that uses a temperature detected by the operation switching means 40 (measured temperature) after a predetermined water temperature measurement time (for example, 30 seconds) has elapsed from the start of operation of the pump motor 20 as the temperature of the melted ice water. 46, and the control means 46 compares the stored melted ice water temperature (measured temperature) with the determination reference temperature to determine whether the water temperature is high or low, and controls the next deicing operation based on the determination result. The mode is set. Specifically, the measured temperature of the melted ice water is obtained by conducting an experiment in advance on the relationship between the detected temperature of the operation switching means 40 after the elapse of the water temperature measurement time from the start of operation of the pump motor 20 and the actual temperature of the melted water. The control means 46 stores data in which the relationship is tabulated in advance. In actual operation of the automatic ice making machine, the control means 46 acquires the measured temperature of the melted water from the detected temperature of the operation switching means 40 based on the data stored in the control means 46 in advance. Yes. The temperature of the melted water is measured every ice making operation, and in the embodiment, it is determined whether the control mode is set to the high temperature mode or the low temperature mode for each deicing operation (hereinafter, sometimes referred to as mode determination). doing. In addition, the temperature and mode determination of melted water are not performed for each operation cycle, but a counter for counting the operation cycle is provided, and the operation cycle when the set number (for example, several hundred) set by the counter is counted. It is possible to update the measured temperature and the set control mode. In addition, the daily temperature can be used to update the measured temperature and the set control mode once a month.

ここで、実施例の自動製氷機では、製氷運転の初期段階において融氷水の温度を測定し、該測定温度に基づいて融氷水の高低を判定することで制御モードを決定するため、制御手段46は、製氷運転および除氷運転を経ていない最初の運転サイクル(電源ONにより開始される除氷運転)では融氷水の高低を判定できず、制御モードを設定できない。そこで、実施例の自動製氷機では、最初の除氷運転時には低温モードを設定するようになっている。但し、融氷水の温度が判定基準温度より高いことが予測される夏場には高温モードが設定されるようにしてもよい。   Here, in the automatic ice making machine of the embodiment, the temperature of the melted water is measured in the initial stage of the ice making operation, and the control mode is determined by determining the level of the melted water based on the measured temperature. In the first operation cycle that has not undergone the ice making operation and the deicing operation (the deicing operation started when the power is turned on), the level of the melted water cannot be determined, and the control mode cannot be set. Therefore, in the automatic ice making machine of the embodiment, the low temperature mode is set during the first deicing operation. However, the high temperature mode may be set in summer when the temperature of the melted water is predicted to be higher than the determination reference temperature.

図2に示す如く、自動製氷機は、前記給水機構26からの融氷水の供給時間を計時する計時手段42を備えている。計時手段42は、前記給水機構26の給水弁WVが開放制御されると計時を開始する。そして、制御手段46は、計時手段42が、前記高温時供給時間、第1低温時供給時間、第2低温時供給時間を計時すると、給水弁WVを閉成制御するようになっている。なお、計時手段42は、給水弁WVが閉成制御されるとリセットされる。また、計時手段42は、自動製氷機で用いられる前記待機時間や水温測定時間等の各種の時間を計時し、該計時手段42での計時時間に基づいて制御手段46が対応する各機構を制御するよう構成されている。なお、待機時間や水温測定時間等は、別の計時手段によって計時するようにしてもよい。   As shown in FIG. 2, the automatic ice making machine is provided with a time measuring means 42 for measuring the supply time of the melted water from the water supply mechanism 26. The timing means 42 starts timing when the water supply valve WV of the water supply mechanism 26 is controlled to be opened. And the control means 46 carries out closing control of the water supply valve WV, when the time measuring means 42 times the said high temperature supply time, the 1st low temperature supply time, and the 2nd low temperature supply time. The time counting means 42 is reset when the water supply valve WV is controlled to close. The time measuring means 42 measures various times such as the standby time and the water temperature measuring time used in the automatic ice making machine, and the control means 46 controls each mechanism corresponding to the time measured by the time measuring means 42. It is configured to Note that the standby time, the water temperature measurement time, and the like may be timed by another time measuring means.

次に、実施例に係る自動製氷機の運転方法について、図3のフローチャートを参照して説明する。実施例の自動製氷機は、電源を投入すると、先ず除氷運転が開始されるようになっているが、以下の説明では製氷運転が行われた後に、除氷運転が開始された時点からの流れを説明する。   Next, the operation method of the automatic ice making machine according to the embodiment will be described with reference to the flowchart of FIG. The automatic ice maker of the embodiment is configured to start the deicing operation when the power is turned on, but in the following explanation, after the ice making operation is performed, the deicing operation is started from the time when the deicing operation is started. The flow will be described.

自動製氷機は、除氷運転を開始(ステップS10)すると、圧縮機CMが駆動されると共に、ホットガス弁HVが開放されることで製氷室12が加温され、開閉モータ24が駆動して開閉機構22により水皿14が下降される。制御手段46は、除氷運転の開始から待機時間が経過すると(ステップS11)、製氷運転の初期に測定した融氷水の温度(測定温度)が判定基準温度未満であるか否かを判定する(ステップS12)。   When the automatic ice maker starts the deicing operation (step S10), the compressor CM is driven, the hot gas valve HV is opened, the ice making chamber 12 is heated, and the opening / closing motor 24 is driven. The water tray 14 is lowered by the opening / closing mechanism 22. When the standby time elapses from the start of the deicing operation (step S11), the control unit 46 determines whether or not the temperature (measured temperature) of the melted water measured in the initial stage of the ice making operation is lower than the determination reference temperature ( Step S12).

(高温モードでの制御)
前記ステップS12が否定の場合、制御手段46は、除氷運転を図4に示す高温モードで制御する。すなわち、ステップS13で給水弁WVを開放制御することで、前記水皿14の表面への融氷水の供給が開始される。高温モードでは、給水弁WVの開放制御によって計時を開始した計時手段42が高温時供給時間を計時(ステップS14)すると、制御手段46は給水弁WVを閉成制御し(ステップS15)、水皿表面への融氷水の供給は停止する。
(Control in high temperature mode)
When step S12 is negative, the control means 46 controls the deicing operation in the high temperature mode shown in FIG. That is, the supply of the melted water to the surface of the water tray 14 is started by controlling the opening of the water supply valve WV in step S13. In the high temperature mode, when the time counting means 42 that has started timing by the opening control of the water supply valve WV times the supply time at the high temperature (step S14), the control means 46 controls the water supply valve WV to close (step S15), and the water tray The supply of melted water to the surface is stopped.

融氷水が高温の場合(判定基準温度以上の場合)は、高温時供給時間の間、水皿表面に融氷水を連続して供給することで、前記製氷室12から氷塊Iが離脱(最初の氷塊Iが離脱)する前に水皿表面に付着している氷片を除去することができる。すなわち、高温モードでの融氷水の供給が停止した後に、ホットガス弁HVにより加温されている製氷室12から氷塊Iが離脱し始め、該製氷室12から全ての氷塊Iが離脱し、前記運転切替手段40が除氷完了温度を検知(ステップS16で肯定)すると、制御手段46は、除氷運転を終了し、ステップS17に移行して製氷運転を開始する。   When the melted ice water is hot (when the temperature is higher than the criterion temperature), the ice block I is detached from the ice making chamber 12 by continuously supplying the melted ice water to the surface of the water dish during the high temperature supply time (the first The ice pieces adhering to the surface of the water dish can be removed before the ice block I is detached). That is, after the supply of the melted ice water in the high temperature mode is stopped, the ice block I begins to leave the ice making chamber 12 heated by the hot gas valve HV, and all the ice blocks I leave the ice making chamber 12, When the operation switching unit 40 detects the deicing completion temperature (Yes in step S16), the control unit 46 ends the deicing operation, proceeds to step S17, and starts the ice making operation.

製氷運転では、制御手段46は、前記開閉モータ24を駆動して水皿14を上昇し、同時にホットガス弁HVを閉成すると共に、冷却ファンFMを駆動することで、製氷室12の冷却が開始される。また、水皿14の上昇中に前記給水弁WVが開放制御(ステップS18)されて給水機構26から水皿表面に常温の水が供給され、該水が前記噴水孔や戻り孔を介して製氷水タンクに貯留され、該水が次回の製氷水として用いられる。   In the ice making operation, the control means 46 drives the open / close motor 24 to raise the water tray 14 and simultaneously closes the hot gas valve HV and drives the cooling fan FM to cool the ice making chamber 12. Be started. Further, the water supply valve WV is controlled to be opened while the water tray 14 is raised (step S18), and water at room temperature is supplied from the water supply mechanism 26 to the surface of the water tray, and the water is made through the fountain hole and the return hole. The water is stored in a water tank and used as the next ice making water.

前記切替スイッチ44が水皿14の閉成位置を検知すると、ポンプモータ20が駆動(ステップS19)し、水皿14から製氷小室12Aに製氷水が噴射供給され、製氷小室12Aに氷塊Iが生成される。また、ポンプモータ20の運転開始(製氷室12への製氷水の供給開始)と同時に前記計時手段42が計時を開始する。そして、制御手段46は、計時手段42が水温測定時間を計時(ステップS20)すると、前記運転切替手段40の検知温度(測定温度)を取得し(ステップS21)、該検知温度を次回の除氷運転に際してモード判定に用いる融氷水温度として記憶する。なお、製氷水を製氷水タンク18に貯留するために開放制御された前記給水弁WVは、予め設定された製氷水給水時間の経過(ステップS22)により制御手段46により閉成制御される(ステップS23)。そして、製氷運転が進行して、前記運転切替手段40が製氷完了温度を検知すると(ステップS24で肯定)、前記制御手段46は製氷運転を終了して除氷運転に移行するべく各機構を制御する。   When the changeover switch 44 detects the closed position of the water tray 14, the pump motor 20 is driven (step S19), ice making water is jetted and supplied from the water tray 14 to the ice making chamber 12A, and ice blocks I are generated in the ice making chamber 12A. Is done. Further, simultaneously with the start of operation of the pump motor 20 (start of supply of ice making water to the ice making chamber 12), the time measuring means 42 starts measuring time. Then, when the time measuring means 42 measures the water temperature measurement time (step S20), the control means 46 acquires the detected temperature (measured temperature) of the operation switching means 40 (step S21), and uses the detected temperature for the next deicing. This is stored as the temperature of melted ice water used for mode determination during operation. Note that the water supply valve WV that is controlled to open to store the ice making water in the ice making water tank 18 is closed and controlled by the control means 46 with the passage of a preset ice making water supply time (step S22) (step S22). S23). When the ice making operation proceeds and the operation switching means 40 detects the ice making completion temperature (Yes in step S24), the control means 46 controls each mechanism to end the ice making operation and shift to the deicing operation. To do.

(低温モードでの制御)
前記ステップS12が肯定の場合、制御手段46は、除氷運転を図5に示す低温モードで制御する。すなわち、ステップS25で給水弁WVを開放制御することで、前記水皿14の表面への融氷水の供給が開始される。低温モードでは、給水弁WVの開放制御によって計時を開始した計時手段42が第1低温時供給時間を計時(ステップS26)すると、制御手段46は給水弁WVを閉成制御し(ステップS27)、水皿表面への融氷水の供給を一旦停止(中断)する。除氷運転が進行して、前記運転切替手段40が供給再開温度を検知すると(ステップS28で肯定)、制御手段46は、再び給水弁WVを開放制御(ステップS29)して水皿表面への融氷水の供給を再開する。
(Control in low temperature mode)
If step S12 is positive, the control means 46 controls the deicing operation in the low temperature mode shown in FIG. That is, the supply of the melted water to the surface of the water tray 14 is started by controlling the opening of the water supply valve WV in step S25. In the low temperature mode, when the time counting means 42 that has started timing by the opening control of the water supply valve WV times the first low temperature supply time (step S26), the control means 46 performs the closing control of the water supply valve WV (step S27). Temporarily stop (suspend) the supply of melted water to the surface of the water dish. When the deicing operation proceeds and the operation switching means 40 detects the supply resumption temperature (Yes in step S28), the control means 46 opens the water supply valve WV again (step S29) and returns to the water dish surface. Restart supply of melted water.

ステップS29での給水弁WVの開放制御によって計時を開始した計時手段42が第2低温時供給時間を計時(ステップS30)すると、制御手段46は給水弁WVを閉成制御し(ステップS31)、水皿表面への融氷水の供給を停止する。また、制御手段46は、ステップS17に移行して製氷運転を開始する。ステップS18からステップS24までの流れは、前述した通りである。なお、低温モードでは、製氷室12の温度が、該製氷室12から全ての氷塊Iが離脱したときの温度である供給再開温度となった後も除氷運転(ホットガス)によって製氷室12は加温されるが、前述したように除氷完了温度は、低温モードにおいて第2低温時供給時間の間に温度上昇する製氷室12の上昇分に対応する補正値αだけ供給再開温度より高い値に設定されているので、高温モードおよび低温モードにおいて製氷運転に切替わる際の製氷室12の温度は略同じとなる。   When the time counting means 42 that has started timing by the opening control of the water supply valve WV in step S29 measures the second low temperature supply time (step S30), the control means 46 controls the water supply valve WV to close (step S31). Stop supplying the melted water to the surface of the water dish. Moreover, the control means 46 transfers to step S17 and starts ice making operation. The flow from step S18 to step S24 is as described above. In the low temperature mode, the ice making chamber 12 is kept in the deicing operation (hot gas) even after the temperature of the ice making chamber 12 reaches the supply restarting temperature that is the temperature when all the ice blocks I are detached from the ice making chamber 12. As described above, the deicing completion temperature is higher than the supply resumption temperature by the correction value α corresponding to the rise of the ice making chamber 12 that rises during the second low temperature supply time in the low temperature mode. Therefore, the temperature of the ice making chamber 12 when switching to the ice making operation in the high temperature mode and the low temperature mode is substantially the same.

実施例の自動製氷機の運転方法によれば、融氷水の温度に応じて融氷水の制御モードを切替えているので、融氷水が何れの条件であっても、製氷室12から氷塊Iが水皿表面に落下するときに水皿表面に融氷水が供給されることはなく、氷塊Iに融氷水が付着してストッカ38で再氷結してブロッキングやアーチング等の弊害が発生するのを防ぐことができる。また、実施例の自動製氷機の運転方法によれば、製氷運転の初期段階において、常温の製氷水が供給されている製氷室12の温度を検知する運転切替手段40での検知温度から融氷水の温度を取得し、取得した融氷水の温度(測定温度)と判定基準温度とを比較して融氷水の高低を判定するので、融氷水の温度を検知するための専用の温度検知手段を設ける必要がなく、製造コストを抑えることができる。また、自動製氷機が実際に運転中に測定した融氷水の温度に基づいて融氷水温度の高低を判定するため、自動製氷機の運転を自動製氷機の実状に応じて制御できる。   According to the operation method of the automatic ice making machine of the embodiment, since the control mode of the ice melt water is switched according to the temperature of the ice melt water, the ice lump I is supplied from the ice making chamber 12 regardless of the conditions. The iced water is not supplied to the surface of the water dish when it falls on the surface of the dish, and it prevents the melted ice from adhering to the ice lump I and re-freezing with the stocker 38, thereby causing problems such as blocking and arching. Can do. Further, according to the operation method of the automatic ice making machine of the embodiment, in the initial stage of the ice making operation, the melted ice water is detected from the detected temperature in the operation switching means 40 that detects the temperature of the ice making chamber 12 to which the normal temperature ice making water is supplied. The temperature of the melted ice water is measured and the temperature of the melted ice water (measurement temperature) is compared with the judgment reference temperature to determine whether the melted ice water is high or low, so a dedicated temperature detection means is provided to detect the temperature of the melted ice water. This is not necessary and the manufacturing cost can be reduced. Moreover, since the level of the melt water is determined based on the temperature of the melt water measured during the actual operation of the automatic ice maker, the operation of the automatic ice maker can be controlled according to the actual state of the automatic ice maker.

ここで、実施例では、除氷運転から製氷運転への切替えの契機となる除氷完了温度を、製氷室12から全ての氷塊Iが離脱したときの温度に補正値αを足した温度として設定すると共に、低温モードにおいて融氷水の供給を再開する契機となる供給再開温度を、除氷完了温度から補正値αを引いた温度として設定している。これにより、高温モードおよび低温モードにおいて、製氷運転が開始されるときの製氷室12の温度が略同じとなるようにしている。従って、製氷運転の初期段階において製氷室12の温度から得られる融氷水の温度を、何れの制御モードで制御された除氷運転から製氷運転に切替わる場合であっても、実際の融氷水の温度に対応した温度とすることができ、次回の除氷運転における制御モードを適切に設定し得る。   Here, in the embodiment, the deicing completion temperature that triggers the switching from the deicing operation to the ice making operation is set as a temperature obtained by adding the correction value α to the temperature when all the ice blocks I are detached from the ice making chamber 12. In addition, the supply resumption temperature that triggers the resumption of the supply of the melted water in the low temperature mode is set as a temperature obtained by subtracting the correction value α from the deicing completion temperature. Thereby, in the high temperature mode and the low temperature mode, the temperature of the ice making chamber 12 when the ice making operation is started is made substantially the same. Therefore, even if the temperature of the ice melt obtained from the temperature of the ice making chamber 12 in the initial stage of the ice making operation is switched from the deicing operation controlled in any control mode to the ice making operation, the actual ice melting water is used. The temperature can correspond to the temperature, and the control mode in the next deicing operation can be set appropriately.

〔別実施例〕
次に、別実施例に係る自動製氷機の運転方法について説明する。別実施例では、前記製氷室12から氷塊Iが離脱し始めるタイミング(時間)を取得する離氷判定処理を自動製氷機の運転中に行い、該取得したタイミング(時間)に基づいて次回の低温モードでの第1低温時供給時間を設定するよう構成されている。なお、別実施例の運転方法については、実施例と異なる部分について主に説明するものとする。
[Another Example]
Next, an operation method of the automatic ice making machine according to another embodiment will be described. In another embodiment, the deicing determination process for acquiring the timing (time) at which the ice block I begins to leave the ice making chamber 12 is performed during the operation of the automatic ice making machine, and the next low temperature is determined based on the acquired timing (time). The first low temperature supply time in the mode is set. In addition, about the driving | running method of another Example, a different part from an Example shall mainly be demonstrated.

(離氷判定処理について)
別実施例の離氷判定処理では、低温モードにおいて、除氷運転の開始から前記待機時間が経過すると同時(給水機構26からの融氷水の供給開始と同時)に前記計時手段42での計時を開始する。また、前記運転切替手段40による製氷室12の単位時間当りの温度変化量を監視し、該温度変化量が判定変化量以上となった場合に、製氷室12から氷塊Iが離脱し始めたと見做し、製氷室12の温度変化量が判定変化量以上となるまでの前記計時手段42の計時時間を、制御手段46が第1低温時供給時間として記憶する。具体的には、水皿表面への融氷水の供給が開始されると、制御手段46は、運転切替手段40の検知温度T1を取得すると共に、単位時間後(例えば、2秒後)に運転切替手段40の検知温度T2を再び取得する。そして、制御手段46は、T2−T1の温度変化量(温度勾配)が判定変化量t以上であるか否かを判定し、製氷室12の温度変化量が判定変化量t以上となるまで単位時間当りの温度変化量と判定変化量tとを比較する処理を繰り返し、製氷室12の温度変化量が判定変化量t以上となったときの前記計時手段42の計時時間を、離氷時間βとして記憶する。なお、計測された離氷時間βは、後述するように次回の除氷運転におけるモード判定において第1低温時供給時間として用いられるものであって、該離氷時間βは、融氷水の供給開始から氷塊Iが離脱するまでの時間よりも短くなるように、計測された離氷時間βから所定の補正値(例えば、2秒)を引いた値として記憶するようにしてもよい。なお、該補正値は、実験等によって適切な値を求めるようにすればよい。
(About deicing judgment processing)
In the deicing determination process of another embodiment, in the low temperature mode, the time measuring means 42 measures the time when the standby time elapses from the start of the deicing operation (simultaneously with the start of the supply of the melted water from the water supply mechanism 26). Start. Further, the temperature change amount per unit time of the ice making chamber 12 by the operation switching means 40 is monitored, and it is considered that the ice block I starts to leave the ice making chamber 12 when the temperature change amount is equal to or larger than the determination change amount. The control means 46 stores the time measured by the time measuring means 42 until the temperature change amount of the ice making chamber 12 becomes equal to or greater than the determination change amount as the first low temperature supply time. Specifically, when the supply of melted water to the surface of the water dish is started, the control unit 46 acquires the detected temperature T1 of the operation switching unit 40 and operates after a unit time (for example, after 2 seconds). The detected temperature T2 of the switching means 40 is acquired again. And the control means 46 determines whether the temperature change amount (temperature gradient) of T2-T1 is more than the determination change amount t, and unit until the temperature change amount of the ice making chamber 12 becomes the determination change amount t or more. The process of comparing the temperature change amount per time with the determination change amount t is repeated, and the time measured by the time measuring means 42 when the temperature change amount of the ice making chamber 12 becomes equal to or greater than the determination change amount t is the de-icing time β Remember as. The measured deicing time β is used as the first low-temperature supply time in the mode determination in the next deicing operation, as will be described later, and the deicing time β is the start of supplying the melted water. Then, it may be stored as a value obtained by subtracting a predetermined correction value (for example, 2 seconds) from the measured ice-breaking time β so as to be shorter than the time until the ice lump I leaves. It should be noted that an appropriate value may be obtained as the correction value through experiments or the like.

ここで、別実施例の低温モードでは、水温が判定基準温度未満の融氷水を供給することで水皿14の表面に付着している氷片を完全に除去し得る前記低温時総合供給時間(例えば、90秒)Rを制御手段46に記憶させ、該低温時総合供給時間Rから前記離氷判定処理において計測された離氷時間β(第1低温時供給時間)を差し引した時間を第2低温時供給時間として用いるようになっている。   Here, in the low-temperature mode of another embodiment, the low-temperature total supply time in which the ice pieces adhering to the surface of the water tray 14 can be completely removed by supplying ice-melt water having a water temperature lower than the determination reference temperature ( For example, 90 seconds) R is stored in the control means 46, and the time obtained by subtracting the deicing time β (first low temperature supply time) measured in the deicing determination process from the low temperature total supply time R is the first time. 2 It is used as the supply time at low temperature.

また、別実施例では、自動製氷機の運転を開始する際には、低温モードで用いる第1低温時供給時間の適切な値が分かっていないことから、第1低温時供給時間γの初期の値として、γ=0が設定される。そして、除氷運転に際しては、第1低温時供給時間γの値がγ=0の場合と、γ≠0の場合とで異なる低温モードでの制御を行うようになっている。具体的には、γ=0の場合は、前回の除氷運転に際して製氷室12から氷塊Iが離脱するタイミングで融氷水が水皿表面に供給されていたものとして、適切な第1低温時供給時間を得るために各機構を制御する処理が行われ、γ≠0の場合は、前回の除氷運転に際して製氷室12から氷塊Iが離脱するタイミングで融氷水が水皿表面に供給されていないものとして、実状に応じた第1低温時供給時間を得るために各機構を制御する処理が行われる。なお、以後の説明において、γ=0の場合の低温モードについて第1の低温モードと指称し、γ≠0の場合の低温モードについて第2の低温モードと指称して区別する場合もある。また、第1の低温モードでは、前回の除氷運転に際して離氷判定処理が行われておらず、適切な第1低温時供給時間が分からないことから、該第1の低温モードでは、融氷水の供給を分けることなく低温時総合供給時間Rに亘って融氷水を供給する制御が行われるようになっている。   In another embodiment, when the operation of the automatic ice making machine is started, since an appropriate value of the first low temperature supply time used in the low temperature mode is not known, the initial low temperature supply time γ is the initial value. As a value, γ = 0 is set. In the deicing operation, control is performed in a low temperature mode that differs depending on whether the first low temperature supply time γ is γ = 0 and γ ≠ 0. Specifically, when γ = 0, it is assumed that the melted ice water was supplied to the surface of the water dish at the timing when the ice block I was detached from the ice making chamber 12 during the previous deicing operation, and is supplied at an appropriate first low temperature. In order to obtain time, a process for controlling each mechanism is performed. When γ ≠ 0, the melted water is not supplied to the surface of the water dish at the timing when the ice block I is detached from the ice making chamber 12 in the previous deicing operation. As a thing, the process which controls each mechanism in order to obtain the 1st low temperature supply time according to the actual condition is performed. In the following description, the low temperature mode when γ = 0 is sometimes referred to as the first low temperature mode, and the low temperature mode when γ ≠ 0 is sometimes referred to as the second low temperature mode. Further, in the first low temperature mode, the deicing determination processing is not performed in the previous deicing operation, and an appropriate supply time at the first low temperature is not known. The supply of the melted ice water is performed over the low temperature total supply time R without dividing the supply of water.

次に、別実施例に係る自動製氷機の運転方法について、図6,図7のフローチャートを参照して説明する。なお、前回の運転サイクルにおいて、第1低温時供給時間γが、γ=0であった場合で説明する(ステップC10)。   Next, an operation method of the automatic ice maker according to another embodiment will be described with reference to the flowcharts of FIGS. The case where the first low temperature supply time γ is γ = 0 in the previous operation cycle will be described (step C10).

自動製氷機は、除氷運転を開始(ステップC11)すると、圧縮機CMが駆動されると共に、ホットガス弁HVが開放されることで製氷室12が加温され、開閉モータ24が駆動して開閉機構22により水皿14が下降される。制御手段46は、除氷運転の開始から待機時間が経過すると(ステップC12)、製氷運転の初期段階において測定した融氷水の温度が判定基準温度未満であるか否かを判定する(ステップC13)。   When the automatic ice maker starts the deicing operation (step C11), the compressor CM is driven, the hot gas valve HV is opened, the ice making chamber 12 is heated, and the open / close motor 24 is driven. The water tray 14 is lowered by the opening / closing mechanism 22. When the standby time elapses from the start of the deicing operation (step C12), the control unit 46 determines whether or not the temperature of the melted ice measured in the initial stage of the ice making operation is lower than the determination reference temperature (step C13). .

(高温モードでの制御)
前記ステップC13が否定の場合、制御手段46は除氷運転を高温モードで制御する。すなわち、ステップC14で給水弁WVを開放制御することで、前記水皿14の表面への融氷水の供給が開始される。高温モードでは、給水弁WVの開放制御によって計時を開始した計時手段42が高温時供給時間を計時(ステップC15)すると、制御手段46は給水弁WVを閉成制御し(ステップC16)、水皿表面への融氷水の供給は停止する。また、制御手段46は、第1低温時供給時間γの値を、γ=0として記憶する(ステップC17)。すなわち、高温モードでは、第1低温時供給時間γは更新されない。なお、高温モードで制御される前に低温モードでの制御が行われ、第1低温時供給時間γの値がγ≠0となっている場合は、γ=0と書き換えられる。そして、前記運転切替手段40が除氷完了温度を検知(ステップC18で肯定)すると、制御手段46は、ステップC19に移行して製氷運転を開始する。なお、製氷運転での各機構の制御は前述した実施例と同じである。
(Control in high temperature mode)
If step C13 is negative, the control means 46 controls the deicing operation in the high temperature mode. That is, by controlling the opening of the water supply valve WV in step C14, the supply of the melted water to the surface of the water tray 14 is started. In the high temperature mode, when the time counting means 42 that has started timing by opening control of the water supply valve WV times the supply time at high temperature (step C15), the control means 46 controls the water supply valve WV to close (step C16), and the water tray The supply of melted water to the surface is stopped. Further, the control means 46 stores the value of the first low temperature supply time γ as γ = 0 (step C17). That is, in the high temperature mode, the first low temperature supply time γ is not updated. In addition, when the control in the low temperature mode is performed before the control in the high temperature mode and the value of the first low temperature supply time γ is γ ≠ 0, it is rewritten as γ = 0. When the operation switching means 40 detects the deicing completion temperature (Yes in Step C18), the control means 46 proceeds to Step C19 and starts the ice making operation. The control of each mechanism in the ice making operation is the same as that in the above-described embodiment.

(低温モードでの制御)
前記ステップC13が肯定の場合、制御手段46は除氷運転を低温モードで制御する。低温モードでは、ステップC20において、第1低温時供給時間γの値が、γ=0であるか否かを判定し、該ステップC20が肯定である場合は、ステップC21に移行して第1の低温モードで除氷運転が制御される。これに対し、前記ステップC20が否定の場合は、ステップC26に移行して第2の低温モードで除氷運転が制御される。
(Control in low temperature mode)
When step C13 is positive, the control means 46 controls the deicing operation in the low temperature mode. In the low temperature mode, in step C20, it is determined whether or not the value of the first low temperature supply time γ is γ = 0. If the step C20 is affirmative, the process proceeds to step C21 and the first The deicing operation is controlled in the low temperature mode. On the other hand, when the said step C20 is negative, it transfers to step C26 and deicing operation is controlled by 2nd low temperature mode.

(離氷判定処理)
ここで、第1の低温モードおよび第2の低温モードで制御される除氷運転において並行して実行される離氷判定処理について、図7を参照して説明する。該離氷判定処理では、各低温モードにおいて、後述する水皿表面への融氷水の供給が開始されると、制御手段46は、運転切替手段40の検知温度T1を取得すると共に、単位時間が経過すると再び運転切替手段40の検知温度T2を取得する(ステップD10〜D12)。そして、制御手段46は、ステップD13において、T2−T1の温度変化量が判定変化量t以上であるか否かを判定する。ステップD13が否定の場合は、ステップD10〜ステップD13を繰り返す。そして、ステップD13が肯定されると、制御手段46は、融氷水の供給開始(給水弁WVの開放)により計時を開始した前記計時手段42の、温度変化量が判定変化量t以上であると判定した時点での計時時間を、離氷時間βとして記憶する(ステップD14)。
(Ice-free judgment processing)
Here, the deicing determination process executed in parallel in the deicing operation controlled in the first low temperature mode and the second low temperature mode will be described with reference to FIG. In the deicing determination processing, when the supply of melted water to the surface of the water dish described later is started in each low temperature mode, the control means 46 acquires the detected temperature T1 of the operation switching means 40 and the unit time. When the time has elapsed, the detected temperature T2 of the operation switching means 40 is acquired again (steps D10 to D12). And the control means 46 determines whether the temperature variation | change_quantity of T2-T1 is more than the determination variation | change_quantity t in step D13. If step D13 is negative, steps D10 to D13 are repeated. And if step D13 is affirmed, the control means 46 will be that the temperature change amount of the said time measuring means 42 which started time measurement by the supply start of melted water (opening of the water supply valve WV) is more than the determination change amount t. The measured time at the time of determination is stored as the ice removal time β (step D14).

(第1の低温モードでの制御)
第1の低温モードでは、制御手段46は、ステップC21で給水弁WVを開放制御して前記水皿14の表面への融氷水の供給を開始させる。そして、制御手段46は、給水弁WVの開放制御によって計時を開始した計時手段42が低温時総合供給時間Rを計時(ステップC22)すると給水弁WVを閉成制御し(ステップC23)、水皿表面への融氷水の供給を停止する。また、制御手段46は、前記離氷判定処理において記憶した離氷時間βを、第1低温時供給時間γの値(γ=β)として記憶する(書き換える)(ステップC24)。そして、除氷運転が進行して、前記運転切替手段40が除氷完了温度を検知すると(ステップC25で肯定)、制御手段46は、ステップC19に移行して製氷運転を開始する。
(Control in the first low temperature mode)
In the first low-temperature mode, the control means 46 controls the opening of the water supply valve WV in step C21 to start the supply of melted water to the surface of the water tray 14. The control means 46 closes the water supply valve WV (step C23) when the time measuring means 42, which has started the time measurement by controlling the opening of the water supply valve WV, measures the low temperature total supply time R (step C22), and the water tray Stop supplying melted water to the surface. Further, the control means 46 stores (rewrites) the deicing time β stored in the deicing determination process as the value of the first low temperature supply time γ (γ = β) (step C24). When the deicing operation proceeds and the operation switching unit 40 detects the deicing completion temperature (Yes in step C25), the control unit 46 proceeds to step C19 and starts the ice making operation.

(第2の低温モードでの制御)
次に、前記ステップC20が否定の場合、すなわち前回の除氷運転に際して離氷判定処理によって計測された離氷時間βに第1低温時供給時間γの値が書き換えられている場合(γ=βの場合)、制御手段46は、ステップC26に移行して第2の低温モードで除氷運転を制御する。制御手段46は、ステップC26で給水弁WVを開放制御して、前記水皿14の表面への融氷水の供給を開始させる。そして、ステップC26での給水弁WVの開放制御によって計時を開始した計時手段42が、制御手段46に記憶されている前回の離氷判定処理により計測された離氷時間である第1低温時供給時間γ(=β)を計時(ステップC27)すると、制御手段46は給水弁WVを閉成制御し(ステップC28)、水皿表面への融氷水の供給を一旦停止(中断)する。除氷運転が進行して、前記運転切替手段40が除氷完了温度を検知すると(ステップC29で肯定)、制御手段46は、再び給水弁WVを開放制御(ステップC32)して水皿表面への融氷水の供給を再開する。また、第2の低温モードにおいても、除氷運転と並行して実行される前記離氷判定処理において、ステップC26での融氷水の供給開始(給水弁WVの開放)により計時を開始した前記計時手段42の、製氷室12の単位時間当りの温度変化量が判定変化量t以上であると判定された時点での計時時間を、新たな離氷時間βとして制御手段46が記憶する(ステップD14)。
(Control in the second low temperature mode)
Next, when step C20 is negative, that is, when the value of the first low temperature supply time γ is rewritten to the ice removal time β measured by the ice removal determination process in the previous ice removal operation (γ = β In this case, the control means 46 proceeds to Step C26 and controls the deicing operation in the second low temperature mode. The controller 46 controls the opening of the water supply valve WV in step C26 to start supplying the melted water to the surface of the water tray 14. Then, the time measuring means 42 that has started measuring time by the opening control of the water supply valve WV in step C26 is the first low temperature supply that is the deicing time measured by the previous deicing determination process stored in the control means 46. When the time γ (= β) is timed (step C27), the control means 46 controls to close the water supply valve WV (step C28), and temporarily stops (interrupts) the supply of the melted water to the surface of the water dish. When the deicing operation proceeds and the operation switching means 40 detects the deicing completion temperature (Yes in Step C29), the control means 46 opens the water supply valve WV again (Step C32) and returns to the surface of the water dish. Restart the supply of melted ice water. Also in the second low temperature mode, in the deicing determination process that is executed in parallel with the deicing operation, the time counting that has started to be timed by the start of supply of melted water (opening of the water supply valve WV) in step C26. The control means 46 stores the time measured when the temperature change amount per unit time of the ice making chamber 12 is determined to be equal to or greater than the determination change amount t as the new ice removal time β (step D14). ).

ステップC30での給水弁WVの開放制御によって計時を開始した計時手段42が、前記低温時総合供給時間R−第1低温時供給時間γ(=β)で得られる第2低温時供給時間(R−β)を計時(ステップC31)すると、制御手段46は給水弁WVを閉成制御し(ステップC32)、水皿表面への融氷水の供給を停止する。また、制御手段46は、第2の低温モードでの離氷判定処理によって記憶した離氷時間βを、新なた第1低温時供給時間γの値(γ=β)として更新し(ステップC33)、製氷運転を開始する(ステップC19)。そして、以後の除氷運転において、低温モードでの制御が継続する場合(ステップC13で肯定)は、ステップC20では否定されるので、ステップC26〜ステップC33の処理が行われ、第2の低温モードで制御される除氷運転が行われる毎に、第1低温時供給時間γ(=β)の値が更新される。   The time measuring means 42 that has started the time measurement by the opening control of the water supply valve WV in step C30, the second low temperature supply time (R) obtained by the low temperature total supply time R-first low temperature supply time γ (= β). When -β) is counted (step C31), the control means 46 controls the water supply valve WV to close (step C32), and stops the supply of the melted water to the surface of the water dish. Further, the control means 46 updates the deicing time β stored by the deicing determination process in the second low temperature mode as the new first low temperature supply time γ (γ = β) (step C33). ), The ice making operation is started (step C19). In the subsequent deicing operation, when the control in the low temperature mode continues (Yes in Step C13), the result in Step C20 is negative, so the processing in Step C26 to Step C33 is performed, and the second low temperature mode. The value of the first low temperature supply time γ (= β) is updated each time the deicing operation controlled in step 1 is performed.

別実施例の運転方法によれば、自動製氷機の運転中に取得した製氷室12から氷塊Iが離脱し始めるタイミング(離氷時間β)に基づいて第1低温時供給時間および第2低温時供給時間を設定するので、実機の実状に応じて低温モードにおける融氷水の供給制御を行うことができ、氷塊Iに融氷水が付着してストッカ内で氷塊Iが固化するのを防止し得る。また、低温モードでの除氷運転毎に、第1低温時供給時間γの値を、離氷判定処理において計測した離氷時間βに更新するので、融氷水の温度変化の追従性がよく、精度の高い融氷水制御を行い得る。更に、自動製氷機の運転中に、第1低温時供給時間γ(=β)を取得するので、予め実験等を行って第1低温時供給時間を取得する必要はなく、手間を省くことができる。   According to the operation method of another embodiment, the supply time at the first low temperature and the second low temperature are based on the timing (ice removal time β) at which the ice block I begins to leave the ice making chamber 12 acquired during the operation of the automatic ice making machine. Since the supply time is set, the supply control of the ice melt water in the low temperature mode can be performed according to the actual state of the actual machine, and the ice block I can be prevented from adhering to the ice block I and solidifying in the stocker. In addition, since the value of the first low temperature supply time γ is updated to the deicing time β measured in the deicing determination process for each deicing operation in the low temperature mode, the followability of the temperature change of the melted water is good. Highly accurate ice water control can be performed. Furthermore, since the first low temperature supply time γ (= β) is acquired during the operation of the automatic ice making machine, it is not necessary to perform experiments in advance to acquire the first low temperature supply time, saving labor. it can.

〔変更例〕
本発明は、前述の実施例に限定されず、以下の如く変更することも可能である。
(1) 実施例では、運転切替手段の検知温度から融氷水の温度を取得したが、凝縮器の温度を検知するセンサや外気温を検知するセンサでの検知温度から融氷水の温度を取得するようにしてもよい。また、融氷水の温度を、他のファクターの温度から取得するのではなく、該融氷水の温度を温度センサで直接検知するようにしてもよい。
(2) 低温モードにおいて、除氷運転の開始を契機として第1低温時供給時間だけ融氷水を供給した後、運転切替手段が除氷完了温度を検知するまで融氷水の供給を停止し、除氷完了温度となった後に第2低温時供給時間だけ融氷水を供給するようにしてもよい。
(3) 製氷室から最初の氷塊が離脱してから最後の氷塊が離脱するまでに要する離脱時間を実験により求め、低温モードでは、除氷運転の開始を契機として第1低温時供給時間だけ融氷水を供給した後、離脱時間の間は融氷水の供給を停止し、該離脱時間の経過により第2低温時供給時間だけ融氷水を供給するようにしてもよい。
[Example of change]
The present invention is not limited to the above-described embodiments, and can be modified as follows.
(1) In the embodiment, the temperature of the melted ice water is acquired from the detected temperature of the operation switching means, but the temperature of the melted ice water is acquired from the detected temperature of the sensor that detects the temperature of the condenser and the sensor that detects the outside air temperature. You may do it. Further, the temperature of the melted ice water may be directly detected by a temperature sensor instead of acquiring the temperature of the melted ice water from the temperature of another factor.
(2) In the low temperature mode, after supplying ice melt water for the first low temperature supply time triggered by the start of the deicing operation, the ice melting water supply is stopped until the operation switching means detects the deicing completion temperature. The melted ice water may be supplied for the second low temperature supply time after the ice completion temperature is reached.
(3) The removal time required until the last ice block is released after the first ice block is released from the ice making chamber is experimentally determined. In the low temperature mode, only the supply time at the first low temperature is melted at the start of the deicing operation. After supplying the ice water, the supply of the melted water may be stopped during the detachment time, and the melted water may be supplied for the second low temperature supply time as the detachment time elapses.

(4) 実施例では、第2低温時供給時間の融氷水の供給が停止した後に、除氷運転から製氷運転に切替えるようにしたが、水皿が開放位置から閉成位置に移動するのに要する復帰時間より、第2低温時供給時間が短かい場合は、第2低温時供給時間の融氷水の供給中に除氷運転から製氷運転に切替えることができる。
(5) 高温モードにおける高温時供給時間については、融氷水の温度と水皿表面から氷片を融解除去し得る時間との関係を予め実験により取得して、該関係をテーブル化したデータを予め制御手段46に記憶し、融氷水の温度に応じて高温時供給時間の長さを変えるようにしてもよい。
(6) 融氷水の温度は、周囲温度に影響されると共に、該周囲温度の高低によって除氷運転において除氷開始から氷塊が離脱し始めるまでの時間も異なる場合がある。そこで、低温モードにおける第1低温時供給時間について、周囲温度(融氷水の温度)と除氷開始から氷塊が離脱し始めるまでの時間との関係を予め実験により取得して、該関係をテーブル化したデータを予め制御手段46に記憶し、周囲温度(融氷水の温度)に応じて第1低温時供給時間の長さを変えるようにしてもよい。
(7) 実施例では、運転切替手段によって製氷室(製氷部)の温度を検知して製氷運転と除氷運転とを切替えるようにしたが、運転切替手段はタイマ等の計時手段を用いることができる。すなわち、予め設定された製氷完了時間や除氷完了時を計時手段(運転切替手段)が計時することで製氷運転と除氷運転とを切替えるようにすることができる。
(8) 実施例では、運転切替手段が製氷運転完了を検知(製氷完了温度の検知)してから待機時間が経過してから融氷水の供給を開始するようにしたが、運転切替手段の製氷運転完了の検知と同時に融氷水の供給を開始するようにしてもよい。
(4) In the embodiment, after the supply of the melted water during the second low temperature supply time is stopped, the deicing operation is switched to the ice making operation, but the water tray is moved from the open position to the closed position. When the supply time at the second low temperature is shorter than the required recovery time, the deicing operation can be switched to the ice making operation during the supply of the melted water at the second low temperature supply time.
(5) Regarding the high temperature supply time in the high temperature mode, the relationship between the temperature of the melted ice water and the time during which the ice pieces can be melted and removed from the surface of the water dish is obtained in advance by experiment, and the data in which the relationship is tabulated is stored in advance. You may make it memorize | store in the control means 46 and change the length of the supply time at the time of high temperature according to the temperature of melted ice water.
(6) The temperature of the melted ice is affected by the ambient temperature, and the time from the start of deicing to the start of detachment of ice blocks in the deicing operation may vary depending on the ambient temperature. Therefore, for the first low temperature supply time in the low temperature mode, the relationship between the ambient temperature (melted water temperature) and the time from the start of deicing to the time when the ice block begins to separate is obtained in advance by experiment, and the relationship is tabulated. The data may be stored in the control means 46 in advance, and the length of the first low temperature supply time may be changed according to the ambient temperature (melted water temperature).
(7) In the embodiment, the temperature of the ice making chamber (ice making section) is detected by the operation switching means to switch between the ice making operation and the deicing operation. However, the operation switching means may use a timing means such as a timer. it can. That is, the ice making operation and the deicing operation can be switched by the time measuring means (operation switching means) measuring a preset ice making completion time or deicing completion time.
(8) In the embodiment, the supply of melted water is started after the standby time has elapsed after the operation switching means detects the completion of the ice making operation (detection of the ice making completion temperature). You may make it start supply of melted water simultaneously with the detection of an operation completion.

12 製氷室(製氷部)
14 水皿
26 給水機構
40 運転切替手段(温度測定手段)
I 氷塊
12 Ice making room (ice making part)
14 Water tray 26 Water supply mechanism 40 Operation switching means (temperature measuring means)
I ice block

Claims (3)

下向きに開口する製氷室(12)を画成した製氷部(12)と、前記製氷室(12)を閉成する閉成位置および該製氷室(12)を開放する開放位置との間を傾動する水皿(14)とを備え、前記水皿(14)を閉成位置に保持した状態で製氷室(12)に氷塊(I)を生成する製氷運転を行い、運転切替手段(40)が製氷運転完了を検知すると、前記水皿(14)を閉成位置から開放位置に傾動させて製氷室(12)から氷塊(I)を離脱させる除氷運転を行うと共に、前記運転切替手段(40)の製氷運転完了の検知に基づいて前記水皿(14)の表面に給水機構(26)から水を供給して水皿表面に付着する氷を除去する自動製氷機において、
前記給水機構(26)から供給される水の温度が判定基準温度より高い場合は、前記運転切替手段(40)の製氷運転完了の検知に基づいて前記給水機構(26)からの水の供給を開始して、前記除氷運転の開始から氷塊(I)が前記製氷室(12)から離脱し始めるまでの時間より短い高温時供給時間の経過により該給水機構(26)からの水の供給を停止し、
前記給水機構(26)から供給される水の温度が判定基準温度より低い場合は、前記運転切替手段(40)の製氷運転完了の検知に基づいて前記給水機構(26)からの水の供給を開始して、前記除氷運転の開始から氷塊(I)が前記製氷室(12)から離し始めるまでの時間より短い第1低温時供給時間の経過により該給水機構(26)からの水の供給を停止し、前記製氷部(12)からの氷塊(I)の離脱後に第2低温時供給時間に亘って給水機構(26)から水を水皿表面に供給するようにし
前記第2低温時供給時間は、前記判定基準温度より低い温度の水を連続して供給した場合に水皿表面に付着する氷を除去し得る低温時総合供給時間から、前記第1低温時供給時間を差し引いた残りの時間に設定される
ことを特徴とする自動製氷機の運転方法。
Tilt between an ice making section (12) that defines an ice making chamber (12) that opens downward, a closed position that closes the ice making chamber (12), and an open position that opens the ice making chamber (12) An ice making operation for generating ice blocks (I) in the ice making chamber (12) in a state where the water tray (14) is held in the closed position, and an operation switching means (40) is provided. When the completion of the ice making operation is detected, the water tray (14) is tilted from the closed position to the open position to perform the deicing operation for detaching the ice block (I) from the ice making chamber (12), and the operation switching means (40 In the automatic ice making machine that removes ice adhering to the surface of the water dish by supplying water from the water supply mechanism (26) to the surface of the water dish (14) based on detection of completion of the ice making operation of
When the temperature of the water supplied from the water supply mechanism (26) is higher than the determination reference temperature, the water supply mechanism (26) supplies water based on the detection of the completion of the ice making operation by the operation switching means (40). The supply of water from the water supply mechanism (26) is started when the high temperature supply time is shorter than the time from the start of the deicing operation until the ice block (I) starts to separate from the ice making chamber (12). Stop,
When the temperature of the water supplied from the water supply mechanism (26) is lower than the determination reference temperature, the water supply mechanism (26) supplies water based on the detection of the completion of the ice making operation by the operation switching means (40). starting from the start of the deicing operation ice blocks (I) is the ice-making chamber (12) with the passage of the short first low temperature feed time than the time until either et away starts to de from the water supply mechanism (26) Water supply is stopped, and water is supplied from the water supply mechanism (26) to the surface of the water dish over the second low temperature supply time after the ice block (I) is detached from the ice making section (12) .
The second low temperature supply time is the first low temperature supply time from the low temperature total supply time that can remove ice adhering to the surface of the water dish when water having a temperature lower than the determination reference temperature is continuously supplied. A method for operating an automatic ice maker, characterized in that the time is set to the remaining time minus time .
前記製氷部(12)からの氷塊(I)の離脱後に前記給水機構(26)から水が前記第2低温時供給時間に亘って供給された後、前記運転切替手段(40)が除氷運転完了を検知している場合は、前記水皿(14)を開放位置から閉成位置に向けて傾動して除氷運転から製氷運転に切替えるようにした請求項1記載の自動製氷機の運転方法。 After water is supplied from the water supply mechanism (26) over the second low temperature supply time after the ice block (I) is detached from the ice making section (12), the operation switching means (40) is deiced. The method of operating an automatic ice maker according to claim 1 , wherein when completion is detected, the water tray (14) is tilted from the open position toward the closed position to switch from the deicing operation to the ice making operation. . 前記製氷運転の初期段階において、前記水皿(14)から水が供給される前記製氷部(12)の温度を前記運転切替手段(40)により測定することで、前記給水機構(26)から供給される水の温度を間接的に取得し、この取得した水温を前記判定基準温度と比較して水温の高低を判定すると共に、
前記除氷運転によって氷塊(I)が離脱した前記製氷部(12)の温度に対して、前記第2低温時供給時間の間の除氷運転において製氷部(12)が温度上昇する値である補正値(α)を足した温度を、前記運転切替手段(40)が除氷運転完了を検知する除氷完了温度として設定し、前記製氷部(12)の温度が除氷完了温度となったことを前記運転切替手段(40)が検知したことに基づいて前記水皿(14)を開放位置から閉成位置に向けて傾動させるよう設定され、
前記製氷部(12)から氷塊(I)が離脱した後の前記給水機構(26)からの水の供給は、前記製氷部(12)の温度が、前記除氷完了温度から前記補正値(α)を引いた供給再開温度になったことを前記運転切替手段(40)が検知したときに開始するようにした請求項2記載の自動製氷機の運転方法。
In the initial stage of the ice making operation, the temperature is supplied from the water supply mechanism (26) by measuring the temperature of the ice making unit (12) to which water is supplied from the water tray (14) by the operation switching means (40). The temperature of the water to be obtained is indirectly acquired, and the acquired water temperature is compared with the determination reference temperature to determine whether the water temperature is high or low ,
The temperature of the ice making section (12) rises in the deicing operation during the second low temperature supply time with respect to the temperature of the ice making section (12) from which the ice block (I) has been detached by the deicing operation. The temperature obtained by adding the correction value (α) is set as the deicing completion temperature at which the operation switching means (40) detects the completion of the deicing operation, and the temperature of the ice making part (12) becomes the deicing completion temperature. Based on the fact that the operation switching means (40) has detected that is set to tilt the water pan (14) from the open position toward the closed position,
The supply of water from the water supply mechanism (26) after the ice block (I) is detached from the ice making unit (12) is such that the temperature of the ice making unit (12) is changed from the deicing completion temperature to the correction value (α The operation method of the automatic ice maker according to claim 2 , wherein the operation is started when the operation switching means (40) detects that the supply resumption temperature is reduced .
JP2015002372A 2015-01-08 2015-01-08 How to operate an automatic ice machine Active JP6397767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015002372A JP6397767B2 (en) 2015-01-08 2015-01-08 How to operate an automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015002372A JP6397767B2 (en) 2015-01-08 2015-01-08 How to operate an automatic ice machine

Publications (2)

Publication Number Publication Date
JP2016125798A JP2016125798A (en) 2016-07-11
JP6397767B2 true JP6397767B2 (en) 2018-09-26

Family

ID=56357723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015002372A Active JP6397767B2 (en) 2015-01-08 2015-01-08 How to operate an automatic ice machine

Country Status (1)

Country Link
JP (1) JP6397767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988872A4 (en) * 2019-06-19 2022-11-23 Haier Smart Home Co., Ltd. Sealing system for improving efficiency of ice-making assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754538Y2 (en) * 1979-07-16 1982-11-25
JPH0541326Y2 (en) * 1986-03-14 1993-10-19
JP5052240B2 (en) * 2007-07-17 2012-10-17 ホシザキ電機株式会社 How to operate an ice machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988872A4 (en) * 2019-06-19 2022-11-23 Haier Smart Home Co., Ltd. Sealing system for improving efficiency of ice-making assembly

Also Published As

Publication number Publication date
JP2016125798A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP5008675B2 (en) Automatic ice maker and its operating method
JP2009002607A (en) Operating method of ice making machine
JP4954684B2 (en) How to operate an automatic ice machine
JP4994087B2 (en) How to operate an automatic ice machine
JP2009121768A (en) Automatic ice making machine and control method for it
JP5052240B2 (en) How to operate an ice machine
JP2008064322A (en) Automatic ice making machine
JP6397767B2 (en) How to operate an automatic ice machine
JP5346722B2 (en) Automatic ice making equipment, refrigerator
KR20190068107A (en) Ice maker control system and control method of the same
JP4532201B2 (en) How to operate an automatic ice machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP5027685B2 (en) How to operate a jet ice maker
JP2007033010A (en) Control method of automatic ice making machine
JP6934326B2 (en) Ice machine
JP2000258009A (en) Automatic ice maker
JP5469935B2 (en) Ice machine
JP2002098453A (en) Method for dealing with abnormality of automatic ice maker
JP2831497B2 (en) Fountain type automatic ice machine
JP4518875B2 (en) Deicing operation method of automatic ice maker
JP6954808B2 (en) De-icing control method for ice makers
JP7161946B2 (en) automatic ice machine
JP5848081B2 (en) How to operate an automatic ice machine
JPS5813250Y2 (en) automatic ice maker
JP2008298414A (en) Operation method of automatic ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150