JPH0541326Y2 - - Google Patents

Info

Publication number
JPH0541326Y2
JPH0541326Y2 JP1986036132U JP3613286U JPH0541326Y2 JP H0541326 Y2 JPH0541326 Y2 JP H0541326Y2 JP 1986036132 U JP1986036132 U JP 1986036132U JP 3613286 U JP3613286 U JP 3613286U JP H0541326 Y2 JPH0541326 Y2 JP H0541326Y2
Authority
JP
Japan
Prior art keywords
water
ice
making
cooling water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986036132U
Other languages
Japanese (ja)
Other versions
JPS62149771U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986036132U priority Critical patent/JPH0541326Y2/ja
Publication of JPS62149771U publication Critical patent/JPS62149771U/ja
Application granted granted Critical
Publication of JPH0541326Y2 publication Critical patent/JPH0541326Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

本考案は、製氷機に関し、特に、製氷サイクル
中、下方に開口した多数の製氷小室を有する製氷
部材の該製氷小室を閉塞した回動可能な水皿に、
貯水タンクの水をポンプにより循環せしめて、製
氷小室に散水し、製氷終了後の除氷サイクル時に
水皿及び貯水タンクを製氷部材から離間傾動せし
めて貯水タンクの排水を行う製氷機に関するもの
である。
The present invention relates to an ice-making machine, and more particularly, during an ice-making cycle, an ice-making member having a plurality of ice-making chambers opening downwardly has a rotatable water tray that closes the ice-making chambers.
This ice maker relates to an ice maker that circulates water in a water storage tank using a pump, sprinkles water into the ice making chamber, and drains the water tank by tilting the water tray and water storage tank away from the ice making member during the deicing cycle after ice making is completed. .

【従来の技術】[Conventional technology]

第1図及び第2図は、従来の代表的な製氷機の
製氷機構部を示すもので、同図において、下方に
開口した製氷小室1を有する製氷部材2には、上
面に冷媒蒸発パイプ3が取り付けられており、製
氷小室1は、第1図に示すように、製氷サイクル
中、水皿4との間に若干の間隙を有しつつ同水皿
4により閉塞可能となつている。この水皿4の下
面に設けられた製氷水送水路5は、製氷水循環ポ
ンプ6の吐出口に連通している。 水皿4には、製氷水送水路5の水を製氷小室1
に噴出せしめる噴出孔7と、製氷小室1の未凍結
の水を下方の貯水タンク8へ流下せしめる流出口
9とが形成されている。水皿4と一体化された貯
水タンク8は、第2図に示すように、除氷サイク
ル時、軸10を中心として回動可能であり、この
回動即ち貯水タンク8及び水皿4の傾動は、図示
しない電動機構によつて緩やかに行われる。 11は、除氷サイクル時に水皿4上へ散水する
ための給水管であり、水源に接続されたこの給水
管11は給水弁12を備えている。給水弁12
は、除氷サイクル中ある一定時間開弁するよう
に、図示しない制御回路に組み合わされている。
排水皿13は貯水タンク8からの排水を受ける容
器である。 上述した製氷機において、製氷完了時に水皿4
と貯水タンク8が軸10を中心として第2図に示
すように傾動すると、貯水タンク8の側面に設け
られた排水口8Aが低い位置へ移動し、製氷完了
時に第1図において線b−b′の水位まであつた貯
水タンク8内の水は、排水口8Aを経て、線a−
a′の水位までの分を残し、排水皿13へ排水され
る。 次の製氷サイクル中は、貯水タンク8の水は製
氷水循環ポンプ6により製氷水送水路5から水皿
4の噴出孔7を通して製氷小室1へ噴射せしめる
循環を行つているが、製氷が終了すると製氷水循
環ポンプ6は停止する。 製氷終了後、除氷サイクルに入り、水皿4が傾
動されると共に、冷凍回路のホツトガスが冷媒蒸
発パイプ3に流されて製氷部材2を加熱し、製氷
小室1の壁面に対する氷の付着面を融解して、角
氷を製氷小室1から離脱せしめると、角氷は、傾
動した水皿4上を滑落して、貯氷庫(図示せず)
内に導入される。 傾動後の水皿4の上面には、屑氷が付着してお
り、これを放置しておくと、水皿4上の角氷の上
述した滑落が円滑に行われないため、また、噴出
孔7及び流水口9の氷詰まりを無くすため、給水
弁12を開いて、水皿4の上面に放水する。放水
された水は、水皿4の上面を流下し、水皿の端部
と貯水タンク8の縁部との間に画成された水受け
口14から貯水タンク8の内部へと導かれ、そし
て排水口8Aによつて排水される。 上述したように製氷小室1の角氷が離脱して、
貯氷庫に導入され、且つ水皿4に形成された噴出
孔7及び流出口9に詰まつていた氷が融解し終え
るのに十分な一定時間を過ぎた後、水皿4は製氷
小室1を閉塞する方向に再び回動し、次の製氷サ
イクルに入る。尚、この回動中にも給水管11か
らの給水は続けられ、貯水タンク8内に次の製氷
サイクルで使用する製氷水として貯水され、所定
水に至つた時に給水を終える。
1 and 2 show the ice-making mechanism of a typical conventional ice-making machine. In the figures, an ice-making member 2 having an ice-making chamber 1 opened downward has a refrigerant evaporation pipe 3 on the top surface. As shown in FIG. 1, the ice making chamber 1 can be closed by the water tray 4 with a slight gap between the ice making chamber 1 and the water tray 4 during the ice making cycle. An ice-making water conduit 5 provided on the lower surface of the water tray 4 communicates with a discharge port of an ice-making water circulation pump 6. Water from the ice-making water conduit 5 is poured into the ice-making chamber 1 into the water tray 4.
A spout hole 7 through which water is jetted out, and an outflow port 9 through which unfrozen water in the ice making chamber 1 flows down to a water storage tank 8 below are formed. As shown in FIG. 2, the water storage tank 8 integrated with the water pan 4 is rotatable about a shaft 10 during the deicing cycle, and this rotation, that is, the tilting of the water storage tank 8 and the water pan 4 This is performed slowly by an electric mechanism (not shown). Reference numeral 11 denotes a water supply pipe for sprinkling water onto the water tray 4 during the deicing cycle, and this water supply pipe 11 connected to a water source is equipped with a water supply valve 12. Water supply valve 12
is combined with a control circuit (not shown) to open the valve for a certain period of time during the deicing cycle.
Drainage pan 13 is a container that receives drainage from water storage tank 8. In the ice maker mentioned above, when the ice making is completed, the water tray 4
When the water storage tank 8 is tilted about the shaft 10 as shown in FIG. 2, the drain port 8A provided on the side of the water storage tank 8 moves to a lower position, and when the ice making is completed, the water tank 8 is tilted as shown in FIG. The water in the water storage tank 8 that has reached the water level of
The water is drained into the drain tray 13, leaving only the water up to the water level a'. During the next ice-making cycle, the water in the water storage tank 8 is circulated by the ice-making water circulation pump 6 so that it is injected from the ice-making water supply channel 5 to the ice-making chamber 1 through the spout hole 7 of the water tray 4. The water circulation pump 6 stops. After the ice making is completed, the deicing cycle begins, and the water tray 4 is tilted, and the hot gas from the refrigeration circuit is passed through the refrigerant evaporation pipe 3 to heat the ice making member 2, and the ice adhering surface to the wall of the ice making chamber 1 is heated. When the ice cubes are melted and removed from the ice making compartment 1, they slide down onto the tilted water tray 4 and into the ice storage (not shown).
be introduced within. After tilting, there is ice cubes attached to the top surface of the water tray 4. If this is left unattended, the ice cubes on the water tray 4 will not slide down smoothly as described above, and the spout hole will be damaged. 7 and water outlet 9, the water supply valve 12 is opened and water is discharged onto the upper surface of the water tray 4. The discharged water flows down the upper surface of the water tray 4, is guided into the interior of the water storage tank 8 from the water receptacle 14 defined between the edge of the water tray and the edge of the water storage tank 8, and The water is drained through the drain port 8A. As mentioned above, the ice cubes in the ice making compartment 1 are detached,
After a certain period of time that is sufficient for the ice that has been introduced into the ice storage and that has clogged the spout hole 7 and outlet 9 formed in the water tray 4 to finish melting, the water tray 4 leaves the ice making chamber 1. It rotates again in the direction of closing and enters the next ice making cycle. During this rotation, water continues to be supplied from the water supply pipe 11, and water is stored in the water storage tank 8 as ice-making water to be used in the next ice-making cycle, and the water supply ends when a predetermined amount of water is reached.

【課題を解決するための手段】 除氷サイクルにおいて、給水管11から放出さ
れた水量の大部分は、水皿4の上面の屑氷や、噴
出孔7及び流出口9の目詰まり氷のような付着氷
を融解するために用いられるが、それはほぼ排水
されてしまうため水の非常な無駄使いとなつてい
た。 また、給水温度が低い場合は、水皿4の上述し
た付着氷の融解が完全に行われないうちに製氷小
室1から角氷が離脱することがあり、その時に
は、水皿上を滑落する角氷が付着氷に引つ掛かつ
て水皿上にとどまつてしまうので、水皿4を上動
させて製氷小室1を閉塞する際、水皿と製氷小室
との間に角氷を挟み込んでしまうことがあり、そ
のため、電動機構に過負荷がかかり、電動機構や
その周辺部の故障の原因となつていた。 更に、水皿上の付着氷が完全に融解されず噴出
孔7及び流出口9が目詰まりしたままで製氷サイ
クルに入ると、白濁した不良氷を形成してしまう
という問題をも有していた。 従つて、本考案の目的は、可及的に少ない水の
使用量でありながら、水皿上の付着氷を好適に除
去しうると共に、製氷効率も良好な製氷機を提供
することである。
[Means for Solving the Problems] In the deicing cycle, most of the water discharged from the water supply pipe 11 is crushed by waste ice on the upper surface of the water tray 4 and ice clogging the spout 7 and outlet 9. It is used to melt ice that has adhered to water, but most of it is drained away, resulting in a huge waste of water. Furthermore, if the water supply temperature is low, the ice cubes may fall off from the ice making chamber 1 before the ice cubes adhering to the water tray 4 are completely melted, and at that time, the ice cubes may slide off the water tray. Since the ice gets caught on the adhering ice and remains on the water tray, when the water tray 4 is moved upward to close the ice making chamber 1, the ice cubes may be caught between the water tray and the ice making chamber. As a result, the electric mechanism was overloaded, causing failure of the electric mechanism and its surrounding parts. Furthermore, if the ice making cycle is started with the ice adhering to the water tray not completely melted and the nozzle 7 and outlet 9 remaining clogged, cloudy and defective ice will be formed. . Therefore, an object of the present invention is to provide an ice maker that can remove adhering ice on a water tray in a suitable manner while using as little water as possible, and has good ice making efficiency.

【課題を解決するための手段】[Means to solve the problem]

上述の目的を達成するため、本考案は、製氷サ
イクル中に冷却用水管路を通る冷却用水により冷
却される水冷凝縮器を有する冷凍回路と、下方に
開口した多数の製氷小室を有する製氷部材と、製
氷サイクル中に前記開口を閉塞するよう回動可能
な水皿と、製氷サイクル中に貯水タンクの製氷水
を前記水皿を介して前記製氷小室に循環せしめる
製氷水循環ポンプと、水源に接続され、除氷サイ
クル中に、次の製氷サイクルのために前記貯水タ
ンクに貯水される水を前記水皿に散水する、給水
弁を有する給水管とを備えた製氷機において、前
記凝縮器により加熱された冷却用水を前記水皿に
散水すべく、前記冷却用水管路の冷却用水出口側
に導管を介して連通する散水用管と、前記導管及
び前記冷却用水管路に設けられ、製氷サイクル時
に前記凝縮器を経て加熱された冷却用水を前記冷
却用水管路の冷却用水出口側から排水し、除氷サ
イクル時に前記凝縮器を経た冷却用水を前記散水
用管に供給するように開閉可能な弁装置とを備え
ることを特徴とするものである。
To achieve the above object, the present invention comprises a refrigeration circuit having a water-cooled condenser that is cooled by cooling water passing through a cooling water pipe during the ice-making cycle, and an ice-making member having a number of ice-making chambers opening downward. a water tray rotatable to close said opening during an ice-making cycle; an ice-making water circulation pump connected to a water source for circulating ice-making water from a water storage tank through said water tray and into said ice-making compartment during an ice-making cycle; , a water supply pipe having a water supply valve that sprinkles water stored in the water storage tank for the next ice-making cycle into the water tray during a deicing cycle; A water sprinkling pipe is provided in communication with the cooling water outlet side of the cooling water pipe through a conduit in order to sprinkle the cooled water on the water tray, and the water dispensing pipe is provided in the conduit and the cooling water pipe, and the cooling water is connected to the cooling water outlet side of the cooling water pipe. A valve device that can be opened and closed so as to drain the cooling water heated through the condenser from the cooling water outlet side of the cooling water pipe and supply the cooling water that has passed through the condenser to the watering pipe during a deicing cycle. It is characterized by comprising the following.

【作用】[Effect]

製氷サイクル中、水冷式凝縮器により熱交換さ
れた冷却用水は、冷媒ガスの凝縮温度に近い温度
まで加熱され、水源からの冷却用水よりもかなり
高い温度で同凝縮器の冷却用水出口側から排出さ
れる。 除氷サイクル時、弁装置の開閉操作により、凝
縮器を出た冷却用水は、前記冷却用水出口側から
は排出されずに、散水用管に供給され、そこから
水皿上に散水される。
During the ice-making cycle, the cooling water exchanged by the water-cooled condenser is heated to a temperature close to the condensation temperature of the refrigerant gas, and is discharged from the cooling water outlet side of the condenser at a temperature significantly higher than that of the cooling water from the water source. be done. During the deicing cycle, by opening and closing the valve device, the cooling water that has exited the condenser is not discharged from the cooling water outlet side, but is supplied to the watering pipe, from which it is sprayed onto the water tray.

【実施例】【Example】

次に、本考案の好適な実施例について添付図面
を参照して詳細に説明するが、図中、同一符号は
同一又は対応部分を示すものとする。 第3図は、本考案による製氷機を概略的に示す
断面図、第4図は、その製氷機の冷凍回路を概略
的に示す図である。 第3図に示した本考案の実施例において、第1
図の従来例のものと異なる点は、給水管11の入
口側に、凝縮器冷却用水を冷却用水出口側から排
出することなく散水弁15(弁装置)を介してバ
イパスするための導管15Aを接続し、給水管1
1を散水用管としても用いている点にある。しか
し、勿論、この導管15Aを給水管11に接続し
なければならない必要はなく、導管15Aは給水
管11とは別の散水用管に接続しうる。 第4図の冷凍回路において、凝縮器18内を通
つた冷却用水管路16Aは、自動給水弁(弁装
置)16を経て排水口に接続されており、散水弁
15は、凝縮器18及び自動給水弁16の間で冷
却用水管路16Aから分岐して第3図の給水管1
1の入口側に延びる導管15Aの途中に接続され
ている。この実施例の自動給水弁16は凝縮器1
8の冷媒ガスの圧力を検出して冷却用水の流量を
制御しうる。また、冷凍回路の主要部品として、
圧縮機17、凝縮器18、膨張弁19、蒸発器2
0、ホツトガス弁21等が周知のごとく接続され
ている。 再び第4図において、製氷サイクル中、散水弁
15は閉じたままに保持されるが、自動給水弁1
6は開いている。冷却用水源から冷却用水管路1
6Aに供給される冷却用水は、製氷サイクル中、
凝縮器18にて凝縮作用を行うよう使用され、凝
縮器18において、管路18A内を流れる高圧冷
媒ガスと熱交換されて凝縮温度に近い比較的高い
温度で凝縮器18から排出され、自動給水弁16
へと向かう。自動給水弁16は、凝縮器18の出
口側の管路18Aの高圧圧力を検知することによ
り、同管路16Aの冷却用水の通過量を変化させ
るフイードバツク制御を行い、管路18A内の圧
力をほぼ一定の高圧圧力に保つ。 このように凝縮器18にて冷却用水により冷却
された冷媒ガスは、膨張弁19を経て蒸発器20
の冷媒蒸発パイプ3(第3図)に至り、そこで製
氷小室1内の製氷用水と熱交換されて製氷を行う
こととなる。 除氷サイクルに移行した時、ホツトガス弁21
が開弁して蒸発器20に高温ガスを供給し、この
高温ガスが、製氷された角氷の製氷小室壁面に対
する付着面を融解して、角氷を製氷小室から離脱
させる。一方、ホツトガス弁21が開弁すること
により管路18Aの高圧圧力の低下が起こるた
め、自動給水弁16が閉弁される。この時点で
は、散水弁15も閉弁されたままの状態であるの
で、加熱された冷却用水は凝縮器18にとどまつ
ている。 従つて、第3図において、除氷サイクルに移行
した後、製氷小室からの角氷の離脱前の任意の時
点、即ち水皿4及び貯水タンク8が傾動し始めた
時、又は傾動中、又は傾動終了後の任意の時点
で、散水弁15を開弁すると加熱された冷却用水
即ち温水が給水管11から放出されて水皿4上を
流れ、水受け口14から貯水タンク8へと導か
れ、排水口8Aから排水されるが、この水皿4上
を流れる加熱された冷却用水が水皿4上の付着氷
を融解するのに充分な熱量を持つているため、付
着氷の除去は極めて速やかに行われる。 その後、散水弁15は、従来排水していた量の
何分の一かを水皿上に放出供給した後、閉弁す
る。この散水弁15の閉弁時期は、水皿上の付着
氷を除去できるなら、除氷サイクル中の任意の時
点に設定し得る。 このような散水弁15の制御は、例えば、除氷
サイクルに入つた後にタイマを作動させ、このタ
イマに付着氷を融解するのに充分な時間を予め設
定し、この設定時間中、前記散水弁を開弁するこ
とにより行うことができる。また、製氷部材の温
度検知や、付着氷の融解検知、水位検知、又は他
の種々の信号に応答して、該散水弁15の開閉制
御を行うようにすることもできる。 散水弁15を閉弁し、その後、製氷小室1から
の角氷の離脱があつた後、温度検知或はタイマに
よる制御下に、水皿4及び貯水タンク8が回動を
始め、製氷小室1を閉塞する。 散水弁15が閉弁してから水皿4が製氷小室2
を閉塞するまでの間のある一定時間、給水弁12
を開弁し、貯水タンク8内に残存する加熱された
冷却用水を排除すると共に、貯水タンク8内に製
氷するのに必要な基準水位まで製氷水の補給を行
い、その後再び製氷サイクルに入ることとなる。
このような制御の一例としては、貯水タンク8及
び水皿4を製氷小室閉塞位置に戻すために電動機
構を付勢する回路スイツチに応動させて給水弁1
1を開弁し、上位水位にて閉弁するようにするこ
とができる。 尚、温水を凝縮器冷却用水管路に停留している
温水源から得るようにした実施例を示したが、こ
のような温水源としては別にヒータで加熱される
加熱槽等のようなものとすることもできる。
Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in which the same reference numerals indicate the same or corresponding parts. FIG. 3 is a sectional view schematically showing an ice maker according to the present invention, and FIG. 4 is a diagram schematically showing a refrigeration circuit of the ice maker. In the embodiment of the present invention shown in FIG.
The difference from the conventional example shown in the figure is that a conduit 15A is provided on the inlet side of the water supply pipe 11 to bypass the condenser cooling water via the water sprinkler valve 15 (valve device) without discharging it from the cooling water outlet side. Connect and water supply pipe 1
1 is also used as a watering pipe. However, it is of course not necessary to connect this conduit 15A to the water supply pipe 11, and the conduit 15A can be connected to a watering pipe separate from the water supply pipe 11. In the refrigeration circuit shown in FIG. 4, a cooling water pipe 16A passing through the condenser 18 is connected to a drain port via an automatic water supply valve (valve device) 16, and a water sprinkler valve 15 is connected to the condenser 18 and the automatic water supply valve 16. The water supply pipe 1 in FIG. 3 is branched from the cooling water pipe 16A between the water supply valves 16.
It is connected to the middle of a conduit 15A extending to the inlet side of the pipe 1. The automatic water supply valve 16 in this embodiment is connected to the condenser 1.
The flow rate of cooling water can be controlled by detecting the pressure of the refrigerant gas No. 8. In addition, as a main component of the refrigeration circuit,
Compressor 17, condenser 18, expansion valve 19, evaporator 2
0, a hot gas valve 21, etc. are connected in a well-known manner. Referring again to FIG. 4, during the ice-making cycle, watering valve 15 is held closed, but automatic watering valve 1
6 is open. Cooling water pipe line 1 from cooling water source
During the ice making cycle, the cooling water supplied to 6A is
It is used to perform a condensing action in the condenser 18, and in the condenser 18, heat is exchanged with the high-pressure refrigerant gas flowing in the conduit 18A, and the gas is discharged from the condenser 18 at a relatively high temperature close to the condensing temperature, and the automatic water supply is performed. valve 16
heading towards. The automatic water supply valve 16 performs feedback control to change the amount of cooling water passing through the conduit 16A by detecting the high pressure in the conduit 18A on the outlet side of the condenser 18, thereby reducing the pressure in the conduit 18A. Maintain a nearly constant high pressure. The refrigerant gas cooled by the cooling water in the condenser 18 passes through the expansion valve 19 to the evaporator 20.
The refrigerant reaches the refrigerant evaporation pipe 3 (FIG. 3), where heat is exchanged with the ice-making water in the ice-making chamber 1 to make ice. When transitioning to the deicing cycle, the hot gas valve 21
The valve is opened to supply high-temperature gas to the evaporator 20, and this high-temperature gas melts the surface of the ice cubes adhering to the wall of the ice-making chamber, causing the ice cubes to separate from the ice-making chamber. On the other hand, since the hot gas valve 21 opens, the high pressure in the pipe line 18A decreases, so the automatic water supply valve 16 is closed. At this point, the sprinkler valve 15 also remains closed, so the heated cooling water remains in the condenser 18. Therefore, in FIG. 3, at any time after entering the de-icing cycle and before the ice cubes are removed from the ice-making compartment, i.e., when the water tray 4 and the water storage tank 8 begin to tilt, or during tilting, or When the water sprinkler valve 15 is opened at an arbitrary point after the end of the tilting, heated cooling water, that is, hot water is released from the water supply pipe 11, flows over the water tray 4, is guided from the water socket 14 to the water storage tank 8, The water is drained from the drain port 8A, but since the heated cooling water flowing over the water tray 4 has sufficient heat to melt the ice that has adhered to the water tray 4, the ice that has adhered to the water tray 4 can be removed extremely quickly. It will be held on. Thereafter, the sprinkler valve 15 closes after discharging and supplying a fraction of the amount that was previously drained onto the water tray. The closing timing of the water sprinkler valve 15 can be set at any time during the deicing cycle as long as the ice on the water tray can be removed. Such control of the water sprinkler valve 15 can be carried out, for example, by activating a timer after entering the deicing cycle, presetting a time sufficient for melting the adhering ice in this timer, and during this set time, the water sprinkler valve 15 is activated. This can be done by opening the valve. Further, the opening and closing of the water sprinkler valve 15 may be controlled in response to temperature detection of the ice making member, melting of adhering ice, water level detection, or other various signals. After the water sprinkler valve 15 is closed and the ice cubes are removed from the ice-making compartment 1, the water tray 4 and water storage tank 8 begin to rotate under the control of temperature detection or a timer, and the ice-making compartment 1 occlude. After the water sprinkler valve 15 closes, the water tray 4 enters the ice making compartment 2.
for a certain period of time until the water supply valve 12 is closed.
Opening the valve, removing the heated cooling water remaining in the water storage tank 8, and replenishing the water storage tank 8 with ice-making water up to the standard water level required for making ice, and then entering the ice-making cycle again. becomes.
As an example of such control, the water supply valve 1 is activated in response to a circuit switch that energizes an electric mechanism to return the water storage tank 8 and water tray 4 to the ice-making chamber closed position.
1 can be opened and closed at the upper water level. Although an embodiment has been shown in which hot water is obtained from a hot water source stored in the condenser cooling water pipe, such a hot water source may also be a heating tank heated by a heater or the like. You can also.

【考案の効果】[Effect of the idea]

以上のような構成及び作用を有する本考案によ
れば、次のような効果が得られる。 1 消費電力が少なくてすむ。 即ち、従来は、製氷に用いるべき水を水皿上
の付着氷を融解するためにも用いていたので、
多量の水を必要としていたが、本考案によれ
ば、除氷サイクル時に、水冷式凝縮器で加熱さ
れた温水を水皿上に散水するようにしたので、
給水弁12からの製氷用水の供給量は貯水タン
クを満水にする程度でよく、しかも、従来は単
に排水されていた凝縮器の加熱された冷却用水
を用いて水皿上の付着氷を融解するので、非常
に節水になる。 2 水皿と、製氷部材の間に氷を挟み込むこと
(氷がみ)がない。 加熱された冷却用水を用いるため、水源から
の製氷用水の温度とは無関係に、確実にしかも
速やかに水皿上の付着氷を融解することができ
る。これにより製氷小室から離脱した角氷が水
皿上にとどまることがなく、それ故、製氷部材
と水皿の間での氷がみがなくなり、ひいては電
動機構とその周辺部の破損の危険性がなくな
る。 3 白濁氷、形状不良の氷の発生がなくなる。こ
の種の製氷機では、詰まりや氷や付着氷等のた
め水皿上の噴出孔や流出口が密閉されたり半開
状態であつたりすると、製氷小室に満足な量の
製氷用水が供給できなくなり、白濁氷や形状が
整つていない不良氷を作り出してしまう現象が
起きるのが普通であつたが、本考案による製氷
機では確実に水皿上の屑氷や噴出孔及び流出口
の詰まり氷を融解するので、かかる現象を防ぐ
ことができる。 4 製氷効率が改良される。 従来では、除氷サイクル中には、凝縮器の排
水口に通じる弁が閉止されるので、加熱された
冷却用水が凝縮器に残存することになり、除氷
サイクルから製氷サイクルに切り替わつた製氷
立ち上がりの際に、水冷式凝縮器が効率よく冷
却作用を行うことができないが、本考案によれ
ば除氷サイクル中に残存冷却水が水皿上に散水
されて使用されてしまうので、製氷立ち上がり
の際に、水冷式凝縮器が効率的に作用し、高い
冷凍もしくは製氷効率が得られる。
According to the present invention having the above configuration and operation, the following effects can be obtained. 1. Less power consumption. In other words, in the past, the water that was supposed to be used for making ice was also used to melt the ice on the water tray.
However, according to the present invention, hot water heated by a water-cooled condenser is sprinkled onto the water tray during the deicing cycle.
The amount of ice-making water supplied from the water supply valve 12 is sufficient to fill the water storage tank, and the ice adhering to the water tray can be melted using the heated cooling water of the condenser, which was conventionally simply drained. Therefore, it saves a lot of water. 2. There is no chance of ice being caught between the water tray and the ice making member (ice trapping). Since heated cooling water is used, ice adhering to the water tray can be reliably and quickly melted regardless of the temperature of the ice-making water from the water source. As a result, the ice cubes that have separated from the ice-making chamber do not remain on the water tray, which prevents the ice from forming between the ice-making member and the water tray, and there is a risk of damage to the electric mechanism and its surrounding parts. It disappears. 3. No more cloudy ice or malformed ice. In this type of ice maker, if the spout or outlet on the water tray is sealed or partially open due to blockage, ice, or adhered ice, a sufficient amount of ice-making water cannot be supplied to the ice-making compartment. Normally, the phenomenon of cloudy ice or malformed ice was produced, but the ice maker of this invention reliably removes ice chips on the water tray and ice clogged in the spout and outlet. Since it melts, this phenomenon can be prevented. 4 Ice making efficiency is improved. Conventionally, during the de-icing cycle, the valve leading to the condenser drain is closed, so heated cooling water remains in the condenser, causing the ice-making cycle to switch from the de-icing cycle to the ice-making cycle. A water-cooled condenser cannot efficiently perform a cooling action during the ice making process, but according to the present invention, the remaining cooling water is sprinkled onto the water tray during the deicing cycle, so that the cooling effect is not effective during the ice making process. In this case, the water-cooled condenser works efficiently, resulting in high refrigeration or ice-making efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、従来の製氷機の製氷機構
部を異なる状態で示す簡略断面図、第3図は、本
考案による製氷機の製氷機構部を示す簡略断面
図、第4図は、本考案による製氷機の冷凍回路を
示す図である。 1……製氷小室、2……製氷部材、4……水
皿、6……製氷水循環ポンプ、8……貯水タン
ク、11……給水管(散水用管)、12……給水
弁、15……散水弁(弁装置)、15A……導管、
16……自動給水弁(弁装置)、16A……冷却
用水管路、18……水冷凝縮器。
1 and 2 are simplified sectional views showing the ice making mechanism of a conventional ice maker in different states, FIG. 3 is a simplified sectional view showing the ice making mechanism of an ice maker according to the present invention, and FIG. 4 is a simplified sectional view showing the ice making mechanism of a conventional ice maker in different states. , is a diagram showing a refrigeration circuit of an ice maker according to the present invention. DESCRIPTION OF SYMBOLS 1...Ice making chamber, 2...Ice making member, 4...Water tray, 6...Ice making water circulation pump, 8...Water storage tank, 11...Water supply pipe (sprinkling pipe), 12...Water supply valve, 15... ...Water valve (valve device), 15A... Conduit,
16...Automatic water supply valve (valve device), 16A...Cooling water pipe, 18...Water-cooled condenser.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 製氷サイクル中に冷却用水管路16Aを通る冷
却用水により冷却される水冷凝縮器18を有する
冷凍回路と、下方に開口した多数の製氷小室1を
有する製氷部材2と、製氷サイクル中に前記開口
を閉塞するよう回動可能な水皿4と、製氷サイク
ル中に貯水タンク8の製氷水を前記水皿4を介し
て前記製氷小室1に循環せしめる製氷水循環ポン
プ6と、水源に接続され、除氷サイクル中に、次
の製氷サイクルのために前記貯水タンク8に貯水
される水を前記水皿4に散水する、給水弁12を
有する給水管11とを備えた製氷機において、前
記凝縮器18により加熱された冷却用水を前記水
皿4に散水すべく、前記冷却用水管路16Aの冷
却用水出口側に導管15Aを介して連通する散水
用管と、前記導管15A及び前記冷却用水管路1
6Aに設けられ、製氷サイクル中には前記凝縮器
18を経て加熱された冷却用水を前記冷却用水管
路16Aの冷却用水出口側から排水し、除氷サイ
クル中には前記凝縮器18を経た冷却用水を前記
散水用管に供給するように開閉操作可能な弁装置
15,16とを備えることを特徴とする製氷機。
A refrigeration circuit having a water-cooled condenser 18 that is cooled by cooling water passing through the cooling water pipe 16A during the ice-making cycle, an ice-making member 2 having a large number of ice-making chambers 1 opened downward, and an ice-making member 2 having a plurality of small ice-making chambers 1 opened downwardly, the openings being closed during the ice-making cycle. a water tray 4 rotatable to close the ice-making chamber; an ice-making water circulation pump 6 for circulating ice-making water from a water storage tank 8 into the ice-making compartment 1 through the water tray 4 during the ice-making cycle; In an ice maker equipped with a water supply pipe 11 having a water supply valve 12 that sprinkles water stored in the water storage tank 8 into the water tray 4 during the next ice-making cycle, the condenser 18 A water sprinkling pipe communicating with the cooling water outlet side of the cooling water pipe 16A via a conduit 15A in order to sprinkle heated cooling water onto the water tray 4, and the conduit 15A and the cooling water pipe 1.
6A, during the ice-making cycle, the cooling water heated through the condenser 18 is drained from the cooling water outlet side of the cooling water pipe 16A, and during the de-icing cycle, the cooling water is heated through the condenser 18. An ice maker comprising valve devices 15 and 16 that can be opened and closed so as to supply water to the watering pipe.
JP1986036132U 1986-03-14 1986-03-14 Expired - Lifetime JPH0541326Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986036132U JPH0541326Y2 (en) 1986-03-14 1986-03-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986036132U JPH0541326Y2 (en) 1986-03-14 1986-03-14

Publications (2)

Publication Number Publication Date
JPS62149771U JPS62149771U (en) 1987-09-22
JPH0541326Y2 true JPH0541326Y2 (en) 1993-10-19

Family

ID=30846252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986036132U Expired - Lifetime JPH0541326Y2 (en) 1986-03-14 1986-03-14

Country Status (1)

Country Link
JP (1) JPH0541326Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052240B2 (en) * 2007-07-17 2012-10-17 ホシザキ電機株式会社 How to operate an ice machine
JP6397767B2 (en) * 2015-01-08 2018-09-26 ホシザキ株式会社 How to operate an automatic ice machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977278A (en) * 1982-10-25 1984-05-02 星崎電機株式会社 Method of controlling feedwater of ice machine
JPS6027892U (en) * 1983-07-30 1985-02-25 長 照彰 Vertical adjustable clothes drying rack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977278A (en) * 1982-10-25 1984-05-02 星崎電機株式会社 Method of controlling feedwater of ice machine
JPS6027892U (en) * 1983-07-30 1985-02-25 長 照彰 Vertical adjustable clothes drying rack

Also Published As

Publication number Publication date
JPS62149771U (en) 1987-09-22

Similar Documents

Publication Publication Date Title
JPH058427Y2 (en)
JPH0532668B2 (en)
US7225628B2 (en) Ice making machine
JPH0541326Y2 (en)
US6988373B2 (en) Method for operating automatic ice-making machine
JPH0419424Y2 (en)
JP2654261B2 (en) Operation control device for ice machine
JP3220248B2 (en) Downstream ice machine
JPH11248321A (en) Operation control method for automatic ice maker
JPS5813250Y2 (en) automatic ice maker
JPS5813249Y2 (en) automatic ice maker
JP2000205719A (en) Ice machine
KR102524581B1 (en) A device for opening and closing the supply of liquid raw materials in a drum-type ice maker
JPH0643657Y2 (en) Automatic ice machine
JP3412677B2 (en) How to operate an automatic ice maker
JPS6015090Y2 (en) automatic ice maker
JPH0419420Y2 (en)
JPH0512686Y2 (en)
JPS6035016Y2 (en) Ice maker with filter cleaning device
JP2595932Y2 (en) Ice machine abnormality detection device
JPH0334626Y2 (en)
JPH0416146Y2 (en)
JP2001004255A (en) Automatic ice maker and operating method thereof
JPS5938693Y2 (en) ice making device
JPH0420766A (en) Operation control device of ice making machine