JP2008130772A - Composite laminated body for manufacturing flexible wiring board and its manufacturing method - Google Patents

Composite laminated body for manufacturing flexible wiring board and its manufacturing method Download PDF

Info

Publication number
JP2008130772A
JP2008130772A JP2006313504A JP2006313504A JP2008130772A JP 2008130772 A JP2008130772 A JP 2008130772A JP 2006313504 A JP2006313504 A JP 2006313504A JP 2006313504 A JP2006313504 A JP 2006313504A JP 2008130772 A JP2008130772 A JP 2008130772A
Authority
JP
Japan
Prior art keywords
support
layer
metal layer
manufacturing
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006313504A
Other languages
Japanese (ja)
Inventor
Makoto Yamagata
誠 山縣
Noriaki Iwata
紀明 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006313504A priority Critical patent/JP2008130772A/en
Publication of JP2008130772A publication Critical patent/JP2008130772A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite laminated body for manufacturing a flexible wiring board that has resistance to an etching chemical while suppressing variations in cumulative dimension of a lead part due to moisture absorption effects within an allowable range, achieves a reduction of wasteful use of a metal material, and is provided with a support layer optimized so as to withstand repetitive bending. <P>SOLUTION: It is found out that if a film-thickness ratio of a support metal layer 1a with respect to a support resin layer 1b is almost one or more times, a humidity expansion coefficient during moisture absorption is suppressed to almost zero so as to suppress variations in cumulative dimension within an allowable range. It is also found out that if the film thickness ratio is less than or equal to seven times, it is unlikely that the support metal layer 1a is eroded by a chemical, therefore, it is possible to secure also flexibility against repetitive bending. Consequently, the support metal layer 1a and the support resin layer 1b are made to have a film thickness ratio in a range from 1:1 to 7:1 so as to form a support layer 1 with a two-layered structure of the support metal layer and the support resin layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば液晶パネル用のTAB(Tape Automated Bonding)用テープ等の可撓性配線基板製造用複合積層体およびその製造方法に関するものである。   The present invention relates to a composite laminate for producing a flexible wiring board such as a TAB (Tape Automated Bonding) tape for a liquid crystal panel, and a method for producing the same.

エレクトロニクス産業の発達に伴い、ICチップ、LSIチップなどの電子部品を実装するフレキシブルプリント配線基板の需要が急激に増加しているが、電子機器の小型化、軽量化、高機能化が要望され、これら電子部品の実装方法として、例えばTAB(Tape Automated Bonding)用テープ、あるいはTCP(Tape Carrier Package)用テープ、COF(Chip On Film)用テープなどの電子部品実装用フィルムキャリアテープ(以下、フィルムキャリアテープとも言う)あるいはFPC(Flexible Printed Circuit)を用いた実装方式が採用されている。   With the development of the electronics industry, the demand for flexible printed wiring boards for mounting electronic components such as IC chips and LSI chips is rapidly increasing, but there is a demand for downsizing, weight reduction, and higher functionality of electronic devices. As a method for mounting these electronic components, for example, a TAB (Tape Automated Bonding) tape, a TCP (Tape Carrier Package) tape, a COF (Chip On Film) tape or other electronic component mounting film carrier tape (hereinafter referred to as a film carrier). A mounting method using FPC (Flexible Printed Circuit) is also adopted.

ここで、例えば従来のフィルキャリアテープの場合、配線パターン加工時に使用するエッチング薬品に侵されにくくて耐熱性の高いポリイミド系樹脂による樹脂フィルムを支持体とし、この支持体上に接着剤を塗布し、銅箔をパターン形成用金属層としてラミネートすることで形成されている。このようなフィルムキャリアテープにレジストを塗布し、露光、現像、エッチング処理を施すことにより、銅箔に回路パターンを形成し、所要部分にソルダレジストインクを塗布し、スズメッキ等を施すことでフィルムキャリアテープを製造するようにしている。   Here, for example, in the case of a conventional fill carrier tape, a resin film made of a polyimide resin that is not easily affected by etching chemicals used during wiring pattern processing and has high heat resistance is used as a support, and an adhesive is applied onto the support. It is formed by laminating copper foil as a metal layer for pattern formation. A film carrier is formed by applying a resist to such a film carrier tape, exposing, developing, and etching to form a circuit pattern on the copper foil, applying a solder resist ink to a required portion, and applying tin plating or the like. I try to make tapes.

このようなフィルムキャリアテープにあっては、支持体を構成するポリイミド系樹脂が高価な上に、吸湿性が高くて吸湿により寸法変化を受けやすい欠点がある。これにより、例えばパターン加工工程においてポリイミド系樹脂からなる支持体が吸湿により膨張すると、配線パターンのインナリードおよびアウタリード部分の累積寸法ばらつきが大きくなってしまい、一括ボンディング方式によるドライバICや液晶パネルとの接合時に不良品が発生してしまい、支障を来たす。   Such a film carrier tape has disadvantages that the polyimide resin constituting the support is expensive and has high hygroscopicity and is susceptible to dimensional changes due to moisture absorption. As a result, for example, when the support made of polyimide resin expands due to moisture absorption in the pattern processing step, the accumulated dimensional variation of the inner lead and outer lead portions of the wiring pattern becomes large, and the driver IC or liquid crystal panel using the collective bonding method Defective products are generated at the time of joining, causing trouble.

このようなことから、ポリイミド系樹脂による支持体に代えて、例えば銅箔などの吸湿性の低い金属で支持体を構成し、寸法精度を向上させ得る金属ベースのフィルムキャリアテープが提案されている(例えば、特許文献1〜3参照)。   For this reason, a metal-based film carrier tape that can improve the dimensional accuracy by configuring the support with a metal having low hygroscopicity such as copper foil instead of the support based on polyimide resin has been proposed. (For example, see Patent Documents 1 to 3).

特開昭54−99563号公報JP-A-54-99563 特開平8−55880号公報JP-A-8-55880 特開平6−168986号公報JP-A-6-168986

しかしながら、ポリイミド系樹脂による支持体に代えて、銅箔などの金属を用いる場合であっても、支持体としての最適化は十分には検討されておらず、改善の余地がある。例えば、支持体を金属のみで形成した場合には、パターン形成用金属層のエッチング処理前に支持体裏面に樹脂を薄くコーティングしてエッチング防止を図ることとなるが、エッチング薬品に対する耐性が低下しやすく、金属製の支持体がエッチング液等の薬液で侵食される可能性がある。また、配線パターンとは関係がなく本来は絶縁性を有する樹脂で形成可能な支持体を銅箔のみで形成することは、銅箔材料の無駄遣いとなってしまう。さらには、樹脂製の支持体の場合のようなしなやかさが損なわれ、フィルムキャリアテープの繰り返し屈曲時に配線に断線を生ずる可能性がある。   However, even when a metal such as a copper foil is used instead of a support made of polyimide resin, optimization as a support has not been sufficiently studied and there is room for improvement. For example, when the support is formed of only metal, the back surface of the support is thinly coated with a resin before the pattern forming metal layer is etched to prevent etching, but the resistance to etching chemicals is reduced. The metal support is likely to be eroded by a chemical solution such as an etching solution. In addition, it is a waste of the copper foil material to form the support only with the copper foil, which has nothing to do with the wiring pattern and can be originally formed of an insulating resin. Furthermore, the flexibility as in the case of a resin support is impaired, and there is a possibility that the wiring may be disconnected during repeated bending of the film carrier tape.

本発明は、上記に鑑みてなされたものであって、吸湿の影響によるリード部分の累積寸法のばらつきを許容範囲内に抑制しつつ、エッチング薬品に対する耐性を有して金属材料の無駄遣いも減らし、かつ、繰り返し屈曲に耐え得るよう最適化された支持体層を備える可撓性配線基板製造用複合積層体およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above, and while suppressing variation in the cumulative size of the lead portion due to the influence of moisture absorption within an allowable range, it has resistance to etching chemicals and reduces waste of metal material, And it aims at providing the composite laminated body for flexible wiring board manufacture provided with the support body layer optimized so that it can endure bending repeatedly, and its manufacturing method.

上述した課題を解決し、目的を達成するために、本発明に係る可撓性配線基板製造用複合積層体は、支持体金属層と該支持体金属層の裏面に前記支持体金属層との膜厚比が1:1〜7:1となる厚さで積層されて可撓性を有する支持体樹脂層とからなる支持体層と、該支持体層の前記支持体金属層側表面に積層されて配線パターンが形成されるパターン形成用金属層と、該パターン形成用金属層と前記支持体層とを接着固定する絶縁性を有する接着剤層と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a composite laminate for manufacturing a flexible wiring board according to the present invention includes a support metal layer and a back surface of the support metal layer, the support metal layer on the back surface. A support layer composed of a flexible support resin layer that is laminated at a thickness ratio of 1: 1 to 7: 1, and is laminated on the support metal layer side surface of the support layer And a pattern forming metal layer on which a wiring pattern is formed, and an insulating adhesive layer that adheres and fixes the pattern forming metal layer and the support layer.

また、本発明に係る可撓性配線基板製造用複合積層体は、上記発明において、可撓性を有する前記支持体樹脂層は、エポキシ系樹脂からなることを特徴とする。   The composite laminate for manufacturing a flexible wiring board according to the present invention is characterized in that, in the above invention, the support resin layer having flexibility is made of an epoxy resin.

また、本発明に係る可撓性配線基板製造用複合積層体の製造方法は、支持体金属層の裏面に該支持体金属層との膜厚比が1:1〜7:1となる厚さで可撓性を有する支持体樹脂層を積層させて支持体層を形成し、前記支持体層の所定の箇所に搬送用スプロケットホール、その他の所望のホールを形成し、配線パターンが形成されるパターン形成用金属層を、前記支持体層の前記支持体金属層側表面に絶縁性を有する接着剤層を介して接着固定するようにしたことを特徴とする。   Moreover, the manufacturing method of the composite laminated body for flexible wiring board manufacture which concerns on this invention is the thickness from which the film thickness ratio with this support body metal layer is 1: 1-7: 1 on the back surface of a support metal layer. A support resin layer having flexibility is laminated to form a support layer, and a sprocket hole for transport and other desired holes are formed at predetermined positions of the support layer, thereby forming a wiring pattern. The metal layer for pattern formation is bonded and fixed to the surface of the support layer on the side of the support metal layer via an insulating adhesive layer.

本発明に係る可撓性配線基板製造用複合積層体およびその製造方法によれば、支持体層を支持体金属層と支持体樹脂層との2層構造で構成することを想定し、支持体樹脂層に対する支持体金属層の膜厚比がほぼ1倍以上であれば吸湿時の湿度膨張係数をほぼ0に抑制し、累積寸法ばらつきを許容範囲内に抑制し得ることを見出し、かつ、支持体樹脂層の厚さを所定厚さ以上としつつ支持体樹脂層に対する支持体金属層の膜厚比が7倍以下であれば支持体樹脂層に傷が生じても支持体金属層が露出することはなく、かつ、金属層単体の場合に比して繰り返し屈曲に対するしなやかさを確保できることを見出し、支持体金属層と支持体樹脂層とを膜厚比が1:1〜7:1となる厚さにして支持体層を形成するようにしたので、累積寸法ばらつきに対する要求を満足する範囲内で支持体金属層の厚さが薄くなり金属材料の無駄遣いを抑制できる一方、支持体樹脂層を所定厚さ以上に厚くしてエッチング薬品に対する支持体層の耐性を向上させることができ、かつ、繰り返し屈曲に対しても支持体樹脂層によるしなやかさにより断線の発生を極力減らすことができ、よって、ポリイミド系樹脂による支持体層に代わる支持体層の最適化を達成することができるという効果を奏する。   According to the composite laminate for manufacturing a flexible wiring board and the method for manufacturing the same according to the present invention, it is assumed that the support layer has a two-layer structure of a support metal layer and a support resin layer. It has been found that if the film thickness ratio of the support metal layer to the resin layer is about 1 or more, the humidity expansion coefficient at the time of moisture absorption can be suppressed to approximately 0, and the accumulated dimensional variation can be suppressed within an allowable range. If the thickness ratio of the support metal layer to the support resin layer is 7 times or less while the thickness of the body resin layer is set to a predetermined thickness or more, the support metal layer is exposed even if the support resin layer is damaged. In addition, it has been found that flexibility for repeated bending can be secured as compared with the case of a single metal layer, and the film thickness ratio of the support metal layer and the support resin layer is 1: 1 to 7: 1. Since the support layer was formed by increasing the thickness, the accumulated dimensional variation While the thickness of the support metal layer is reduced within the range that satisfies the requirements to be satisfied, the waste of the metal material can be suppressed, while the support resin layer is made thicker than the predetermined thickness to improve the resistance of the support layer to etching chemicals. It is possible to reduce the occurrence of disconnection as much as possible due to the flexibility of the support resin layer even against repeated bending, thus achieving the optimization of the support layer instead of the support layer made of polyimide resin There is an effect that can be done.

以下、可撓性配線基板製造用複合積層体として液晶パネルに用いるフィルムキャリアテープを例に挙げて、本発明を実施するための最良の形態である可撓性配線基板製造用複合積層体およびその製造方法について図面を参照して説明する。なお、図面は誇張して示す模式的なものであり、各部分の厚みと幅との関係等は現実のものとは異なることに留意すべきである。また、本発明は、実施の形態に限らず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。   Hereinafter, taking as an example a film carrier tape used for a liquid crystal panel as a composite laminate for manufacturing a flexible wiring board, a composite laminate for manufacturing a flexible wiring board, which is the best mode for carrying out the present invention, and its A manufacturing method will be described with reference to the drawings. It should be noted that the drawings are schematic and exaggerated, and the relationship between the thickness and width of each part is different from the actual one. The present invention is not limited to the embodiment, and various modifications can be made without departing from the spirit of the present invention.

図1は、本実施の形態のフィルムキャリアテープの製造方法を工程順に示す概略断面図である。まず、図1(a)に示すように、支持体金属層1aの裏面(図面上、下面)に可撓性を有する支持体樹脂層1bを積層させて2層構造の支持体層1を形成する。ここで、支持体金属層1aに用いられる金属は、銅箔が好ましく用いられるが、アルミニウム、アルミニウム/銅クラッドやバネ用りん青銅、洋白等の銅合金、ステンレス鋼を用いるようにしてもよい。また、支持体樹脂層1bに用いられる樹脂は、ポリイミド樹脂のような高価なものでなく、例えばエポキシ系樹脂等の可撓性を有する一般的な樹脂が用いられる。また、支持体樹脂層1bは、支持体金属層1aとの膜厚比が1:1〜7:1となるような膜厚で樹脂を塗布することにより形成される。ここで、支持体金属層1aの膜厚は12〜35μmで、支持体樹脂層1bの膜厚は5〜35μmが好ましい。   FIG. 1 is a schematic cross-sectional view showing the method of manufacturing the film carrier tape of the present embodiment in the order of steps. First, as shown in FIG. 1A, a support layer 1 having a two-layer structure is formed by laminating a support resin layer 1b having flexibility on the back surface (the bottom surface in the drawing) of the support metal layer 1a. To do. Here, the metal used for the support metal layer 1a is preferably copper foil, but aluminum, aluminum / copper clad, copper bronze for springs, copper alloys such as white and white, and stainless steel may be used. . The resin used for the support resin layer 1b is not an expensive resin such as a polyimide resin, and a general resin having flexibility such as an epoxy resin is used. Moreover, the support body resin layer 1b is formed by apply | coating resin with the film thickness ratio with which the film thickness ratio with the support body metal layer 1a is 1: 1-7: 1. Here, the thickness of the support metal layer 1a is preferably 12 to 35 μm, and the thickness of the support resin layer 1b is preferably 5 to 35 μm.

このような支持体1を所定幅に切断した後、図1(b)に示すように、支持体層1の支持体金属層1a側表面の全面(あるいはフィルムキャリアテープ長手方向両側端部に並ぶスプロケットホール間の配線パターン形成用金属箔積層領域)に接着剤を転写塗布あるいは貼り付けやコーティングすることで接着剤層2を形成する。接着剤層2に用いる接着剤としては、絶縁性を有すれば特に制限されず、例えば熱硬化型フィルム状接着剤あるいは塗布型の接着剤が用いられる。接着剤層2の厚みは、5〜20μmが好ましい。このように接着剤層2が形成された支持体層1の所定の箇所に、パンチング等によって搬送用スプロケットホール3を始めとするIC接合用のデバイスホールや配線基板を折り曲げて使用するための屈曲用のスリットといった所望のホール4を必要により形成する。   After cutting such a support 1 to a predetermined width, as shown in FIG. 1B, the entire surface of the support layer 1 on the side of the support metal layer 1a (or on both ends in the longitudinal direction of the film carrier tape) is arranged. The adhesive layer 2 is formed by transferring, applying, or coating an adhesive to the wiring pattern forming metal foil lamination region between the sprocket holes. The adhesive used for the adhesive layer 2 is not particularly limited as long as it has insulating properties. For example, a thermosetting film adhesive or a coating adhesive is used. As for the thickness of the adhesive bond layer 2, 5-20 micrometers is preferable. Bending for use by bending a device hole for IC joining such as a sprocket hole for conveyance 3 or a wiring board by punching or the like at a predetermined portion of the support layer 1 on which the adhesive layer 2 is thus formed. A desired hole 4 such as a slit for use is formed if necessary.

そして、図1(c)に示すように、配線パターンが形成されるパターン形成用金属層5を、支持体層1の支持体金属層1a側表面上のスプロケットホール間の配線パターン形成領域に接着剤層2を介して積層し、熱処理により接着剤を熱硬化させて接着固定することにより、フィルムキャリアテープ(可撓性配線基板製造用複合積層体)6を得る。ここで、パターン形成用金属層5は、厚さ5〜35μmで、例えば電解銅箔等の銅箔を連続ラミネートまたはプレス貼り付けすることにより形成される。例えば、電解銅箔を用いる場合であって、ファインピッチ品の場合であれば、そのシャイニー面側を接着剤層2側として接着固定することが好ましい。また、金属箔として、アルミニウム箔を用いるようにしてもよい。いずれにしても、パターン形成用金属層5としては、支持体金属層1aの金属材料と同じ材料を用いることが好ましい。なお、パターン形成用金属層5は、接着剤層2の全面に積層してもよい。また、接着剤層2は、図1(b)に示した如く支持体層1側に形成しておく方が好ましいが、パターン形成層金属層5側に形成して支持体層1側と接着固定するようにしてもよい。   Then, as shown in FIG. 1 (c), the pattern forming metal layer 5 on which the wiring pattern is formed is bonded to the wiring pattern forming region between the sprocket holes on the surface of the supporting metal layer 1a. A film carrier tape (composite laminate for manufacturing a flexible wiring board) 6 is obtained by laminating through the agent layer 2 and thermosetting and fixing the adhesive by heat treatment. Here, the pattern-forming metal layer 5 has a thickness of 5 to 35 μm and is formed, for example, by continuously laminating or pressing a copper foil such as an electrolytic copper foil. For example, in the case of using an electrolytic copper foil and in the case of a fine pitch product, it is preferable that the shiny surface side is bonded and fixed with the adhesive layer 2 side. Moreover, you may make it use aluminum foil as metal foil. In any case, it is preferable to use the same material as the metal material of the support metal layer 1a as the metal layer 5 for pattern formation. The pattern forming metal layer 5 may be laminated on the entire surface of the adhesive layer 2. The adhesive layer 2 is preferably formed on the support layer 1 side as shown in FIG. 1B, but is formed on the pattern forming layer metal layer 5 side and adhered to the support layer 1 side. It may be fixed.

次に、図1(d)に示すように、フィルムキャリアテープ(可撓性配線基板製造用複合積層体)6のパターン形成用金属層5の表面に、液状のフォトレジスト7を塗布し、所定のパターンを形成したフォトマスクを通して紫外線を照射してフォトレジスト7を露光(イメージング)し、水酸化カリウム水溶液等のアルカリ溶液によって現像する。デバイスホールやスリットなどのホール4を有するものは、支持体金属層1a部分のサイドエッチング防止のためにホール4を樹脂等のバックコート材8や裏面ソルダレジスト9´で埋めるバックコーティング処理を後述のエッチング処理前に施しておく。   Next, as shown in FIG. 1 (d), a liquid photoresist 7 is applied to the surface of the pattern forming metal layer 5 of the film carrier tape (composite laminate for manufacturing a flexible wiring board) 6, and predetermined The photoresist 7 is exposed (imaging) by irradiating ultraviolet rays through a photomask having the above pattern and developed with an alkaline solution such as an aqueous potassium hydroxide solution. For the device having holes 4 such as device holes and slits, a back coating process for filling the holes 4 with a back coat material 8 such as a resin or a back solder resist 9 'to prevent side etching of the support metal layer 1a will be described later. It is given before the etching process.

なお、フィルムキャリアテープ製造のための搬送用のスプロケットホール3を含むフィルムキャリアテープ6の長手方向両側端部領域は、最後に切断除去されて液晶パネル等の電子機器には実装されないので、搬送用のスプロケットホール3の内部で露出する支持体金属層1aは多少エッチングされても構わないため、バックコーティング処理を省略してもよい。なお、フィルムキャリアテープ6の搬送は、スプロケットホール3を用いて行わず、ローラを用いて行うようにしてもよい。   It should be noted that both end regions in the longitudinal direction of the film carrier tape 6 including the transport sprocket holes 3 for manufacturing the film carrier tape are cut and removed last and are not mounted on an electronic device such as a liquid crystal panel. Since the support metal layer 1a exposed inside the sprocket hole 3 may be slightly etched, the back coating process may be omitted. The film carrier tape 6 may be transported using rollers instead of using the sprocket holes 3.

つづいて、図1(e)に示すように、エッチング液、例えば塩化第2銅を含む溶液によりパターン形成用金属層5のパターンエッチングを行い、配線パターン5aを形成する。エッチング後、フォトレジスト7をアルカリ溶液で剥離し、バックコート材8を有する場合にはバックコート材8も除去する。   Subsequently, as shown in FIG. 1E, the pattern forming metal layer 5 is subjected to pattern etching with an etchant, for example, a solution containing cupric chloride, to form a wiring pattern 5a. After the etching, the photoresist 7 is peeled off with an alkaline solution, and when the backcoat material 8 is provided, the backcoat material 8 is also removed.

その後、図1(f)に示すように、配線パターン5aの必要な部分にウレタン系、ポリイミド系あるいはエポキシ系樹脂等の熱硬化性樹脂からなるソルダレジスト9を塗布した後、加熱硬化する。そして、0.2〜2.0μm厚程度のスズメッキ、金メッキ等による表面処理を行い、半導体装置製造のためのフィルムキャリアテープ搬送用のスプロケットホール3aが例えばプレスで打抜き加工される。最後に、矢印で示すスプロケットホール3の幅方向内側部分で切断することで、スプロケットホール内部およびフィルムキャリアテープ幅方向両端部側面に露出する支持体金属層1aの一部がエッチング除去された部分を除去することにより、図1(g)に示すような電子部品実装用のフィルムキャリアテープ10が得られる。なお、配線パターン全面に1段目のスズメッキを施した後、ソルダレジストを塗布し、配線の端子部に2段目のスズメッキを施すように2段メッキを行うようにしてもよい。   Thereafter, as shown in FIG. 1 (f), a solder resist 9 made of a thermosetting resin such as urethane, polyimide or epoxy resin is applied to a necessary portion of the wiring pattern 5a, and then cured by heating. Then, surface treatment is performed by tin plating, gold plating, or the like having a thickness of about 0.2 to 2.0 μm, and a sprocket hole 3a for transporting a film carrier tape for manufacturing a semiconductor device is punched by, for example, a press. Finally, by cutting at the inner part in the width direction of the sprocket hole 3 indicated by the arrow, the part of the support metal layer 1a exposed to the inside of the sprocket hole and the side surfaces at both ends in the film carrier tape width direction is removed by etching. By removing, a film carrier tape 10 for mounting an electronic component as shown in FIG. 1G is obtained. Alternatively, after the first-stage tin plating is applied to the entire surface of the wiring pattern, a solder resist may be applied, and the second-stage plating may be performed so that the second-stage tin plating is applied to the terminal portion of the wiring.

図2は、多条テープを製造する場合の工程の一例で、テープ幅方向に配線パターンを2列に形成する2条テープの例を示している。なお、図2(g)においては、2条分が繋がった状態で示しているが、実際には幅方向中央部分を切断することで、図1(g)の場合と同様に1条分ずつに分離される。   FIG. 2 shows an example of a process in the case of manufacturing a multi-strip tape, and shows an example of a 2-strip tape in which wiring patterns are formed in two rows in the tape width direction. In addition, in FIG.2 (g), although it has shown in the state to which two strips were connected, in fact, by cutting the center part of the width direction, it is one strip at a time like the case of FIG.1 (g). Separated.

ここで、本実施の形態のフィルムキャリアテープ(可撓性配線基板製造用複合積層体)6は、支持体層1を、膜厚比が1:1〜7:1となるような膜厚に形成された支持体金属層1aと支持体樹脂層1bとの2層構造として構成した点を特徴とする。   Here, the film carrier tape (a composite laminate for manufacturing a flexible wiring board) 6 of the present embodiment has a film thickness ratio such that the film thickness ratio is 1: 1 to 7: 1. It is characterized in that it is configured as a two-layer structure of the formed support metal layer 1a and support resin layer 1b.

まず、吸湿膨張係数に関する実験結果について図3を参照して説明する。湿度aにおける材料の寸法をdとし、変化した湿度a´における材料の寸法をd´とした場合、吸湿膨張係数は、(d´/d−1)/(a´−a)で定義される。そして、フィルムキャリアテープの支持体層1は、例えば70μm程度の膜厚で形成されるが、支持体樹脂層1bに対する支持体金属層1aの膜厚比を変化させたときの吸湿膨張係数の変化が図3である。   First, experimental results regarding the hygroscopic expansion coefficient will be described with reference to FIG. When the dimension of the material at humidity a is d and the dimension of the material at changed humidity a ′ is d ′, the hygroscopic expansion coefficient is defined by (d ′ / d−1) / (a′-a). . The support layer 1 of the film carrier tape is formed with a film thickness of about 70 μm, for example, but the change in the hygroscopic expansion coefficient when the film thickness ratio of the support metal layer 1a to the support resin layer 1b is changed. Is FIG.

この実験結果によれば、例えば膜厚比が0.12の場合であれば吸湿膨張係数が2ppm/%RH程度であり、膜厚比が0.5の場合であれば吸湿膨張係数が1ppm/%RH程度であるが、膜厚比が1以上であれば吸湿膨張係数をほぼ0ppm/%RHに抑制し得ることが判る。   According to this experimental result, for example, when the film thickness ratio is 0.12, the hygroscopic expansion coefficient is about 2 ppm /% RH, and when the film thickness ratio is 0.5, the hygroscopic expansion coefficient is 1 ppm /%. Although it is about% RH, it can be seen that if the film thickness ratio is 1 or more, the hygroscopic expansion coefficient can be suppressed to approximately 0 ppm /% RH.

次に、吸湿の影響を受け得るリードの累積寸法のばらつきに関する実験結果について図4を参照して説明する。パターンエッチングにより形成されるリードの累積寸法のばらつきは、同一露光マスク、同一工程で流動した製品のアウタリードもしくはインナリードの最外リード間距離(或いは、最外から2本目のリード間距離)の測定値のロット内もしくはロット間のばらつき(3σ)で定義される。このようなリードの累積寸法のばらつきは、一定時間調湿後(例えば、23℃/60%/48時間)、アウタリードもしくはインナリードの端リード間距離を市販のCNC画像測定システム装置を用いて自動で線幅測定を行うことで測定可能である。そして、図3の場合と同様に、支持体樹脂層1bに対する支持体金属層1aの膜厚比を変化させたときの累積寸法ばらつきの変化が図4である。   Next, the experimental results regarding the variation in the cumulative dimensions of the leads that may be affected by moisture absorption will be described with reference to FIG. The variation in the cumulative dimensions of leads formed by pattern etching is measured by measuring the distance between the outer leads or outer leads (or the distance between the second lead from the outermost) of the outer lead or inner lead of the product that flows in the same exposure mask and the same process. It is defined by the variation (3σ) within a lot or between lots of values. Such a variation in the cumulative dimensions of the leads is automatically determined by adjusting the distance between the end leads of the outer lead or the inner lead using a commercially available CNC image measuring system device after humidity adjustment for a certain time (for example, 23 ° C./60%/48 hours). It can be measured by measuring the line width. Then, as in the case of FIG. 3, FIG. 4 shows changes in the accumulated dimensional variation when the film thickness ratio of the support metal layer 1a to the support resin layer 1b is changed.

リードの累積寸法のばらつきは、支持体層1の吸湿による膨張に依存するので、図3に示した吸湿膨張係数の変化の特性に対応し、例えば支持体金属層1aが存在しない場合の累積寸法のばらつきは0.05%程度あり、膜厚比が0.12の場合であれば累積寸法のばらつきは0.03%程度あり、膜厚比が0.5の場合であれば累積寸法のばらつきが0.02%程度あるのに対して、膜厚比が1以上であれば累積寸法のばらつきは0.01%程度でほぼ一定となるように抑制し得ることが判る。   The variation in the cumulative dimensions of the leads depends on the expansion of the support layer 1 due to moisture absorption, and therefore corresponds to the characteristics of the change in the hygroscopic expansion coefficient shown in FIG. 3, for example, the cumulative dimension when the support metal layer 1a is not present. Variation is about 0.05%, and if the film thickness ratio is 0.12, the cumulative dimension variation is about 0.03%, and if the film thickness ratio is 0.5, the cumulative dimension variation. It can be seen that when the film thickness ratio is 1 or more, the variation in cumulative dimension can be suppressed to be substantially constant at about 0.01%.

よって、これらの実験結果によれば、支持体樹脂層1bに対する膜厚比がほぼ1倍以上となるように形成された支持体金属層1aを有する支持体層1とすれば、パターン加工工程において、支持体層1の吸湿による膨張を抑制し、リードの累積寸法のばらつきを許容範囲内(例えば、0.01%程度以下)に抑制でき、液晶パネル側との接合に支障を来たさないことが判る。逆にいえば、支持体樹脂層1bに対する膜厚比がほぼ1となるような最小限の膜厚に支持体金属層1aを形成した場合であっても、リードの累積寸法のばらつきを許容範囲内に抑制する目的を達成し得ることとなる。よって、例えば、支持体金属層1aと支持体樹脂層1bとを1:1なる膜厚比でほぼ同じ厚さに形成してなる支持体層1とすることで、支持体金属層1aを累積寸法のばらつきを許容範囲内に抑制し得る最小限の厚さで形成させることができ、銅箔等の金属材料の無駄遣いを最小限に抑えることができる。また、支持体樹脂層1b側の観点からすると、支持体金属層1aとほぼ同じ厚さになるまで厚くしても累積寸法のばらつきに関する要求を満足し得ることから、本実施の形態のように、支持体樹脂層1bを許容範囲内で最大限に厚くすることでエッチング薬品に対する支持体層1としての耐性を向上させることができる。   Therefore, according to these experimental results, if the support layer 1 has the support metal layer 1a formed so that the film thickness ratio to the support resin layer 1b is approximately 1 or more, the pattern processing step In addition, the expansion of the support layer 1 due to moisture absorption can be suppressed, the variation in the cumulative dimensions of the leads can be suppressed within an allowable range (for example, about 0.01% or less), and the bonding with the liquid crystal panel side is not hindered. I understand that. In other words, even if the support metal layer 1a is formed to a minimum film thickness ratio so that the film thickness ratio to the support resin layer 1b is approximately 1, variation in the cumulative dimensions of the leads is within an allowable range. The purpose of restraining inside can be achieved. Therefore, for example, the support metal layer 1a is accumulated by forming the support metal layer 1a and the support resin layer 1b to have the same thickness with a film thickness ratio of 1: 1. It is possible to form with a minimum thickness that can suppress variation in dimensions within an allowable range, and it is possible to minimize waste of a metal material such as a copper foil. Further, from the viewpoint of the support resin layer 1b side, even when the support metal layer 1a is thickened to the same thickness as the support metal layer 1a, it can satisfy the requirements regarding the variation in the accumulated dimensions. Further, by making the support resin layer 1b as thick as possible within an allowable range, the resistance of the support resin layer 1 against etching chemicals can be improved.

次に、支持体金属層1aと支持体樹脂層1bとの膜厚比の上限について考察する。例えば、支持体樹脂層1bの膜厚としては、5μm以上ないと、製造工程における搬送時に支持体樹脂層1bに傷がついた場合、支持体金属層1aが露出してしまい、支持体金属層1aがエッチング液等の薬液で侵食される可能性があり、エッチング薬品に対する耐性が低下してしまう。したがって、支持体金属層1aの膜厚を35μmとした場合であれば、支持体樹脂層1bの膜厚が1/7倍よりも薄くなるのは好ましくない。逆に、支持体樹脂層1bの膜厚を最低限の5μmとした場合において、支持体金属層1aの膜厚を7倍よりも厚くすると、支持体樹脂層1bが有するしなやかさが損なわれ、フィルムキャリアテープ6の繰り返し屈曲時に配線パターン5aまたは支持体金属層1aに断線や破断が生じてしまう可能性があり、好ましくない。   Next, the upper limit of the film thickness ratio between the support metal layer 1a and the support resin layer 1b will be considered. For example, if the thickness of the support resin layer 1b is not 5 μm or more, the support metal layer 1a is exposed when the support resin layer 1b is damaged during transportation in the manufacturing process, and the support metal layer There is a possibility that 1a may be eroded by a chemical such as an etching solution, and the resistance to etching chemicals is reduced. Therefore, if the thickness of the support metal layer 1a is 35 μm, it is not preferable that the thickness of the support resin layer 1b is thinner than 1/7. On the contrary, in the case where the thickness of the support resin layer 1b is 5 μm, if the thickness of the support metal layer 1a is more than 7 times, the flexibility of the support resin layer 1b is impaired, When the film carrier tape 6 is repeatedly bent, the wiring pattern 5a or the support metal layer 1a may be broken or broken, which is not preferable.

よって、本実施の形態のように、支持体金属層1aと支持体樹脂層1bとを膜厚比が1:1〜7:1となる厚さにして支持体層1を形成することが好ましい。このようにして、本実施の形態によれば、ポリイミド系樹脂による支持体層に代わって最適化された支持体層1を有するフィルムキャリアテープ6を提供できる。   Therefore, as in the present embodiment, it is preferable to form the support layer 1 by making the support metal layer 1a and the support resin layer 1b have a thickness ratio of 1: 1 to 7: 1. . Thus, according to this Embodiment, the film carrier tape 6 which has the support body layer 1 optimized instead of the support body layer by a polyimide resin can be provided.

(実施例1)
支持体金属層1aを形成する幅48mm、厚さ35μmの電解銅箔の粗化処理を施したシャイニー面に支持体樹脂層1bとなるエポキシ樹脂組成物を乾燥厚さが35μmとなるように塗布して支持体層1を形成した。次いで、支持体層1の電解銅箔(支持体金属層1a)の粗面側に絶縁性を有する接着剤層2となるエポキシ樹脂組成物を乾燥厚さが12μmとなるように全面に塗布した。このような支持体層1および接着剤層2からなる積層体に、ベーステープ搬送用のスプロケットホール3の他、IC接合用のデバイスホールや配線基板を折り曲げて使用するための屈曲部用のスリットといったホール4をパンチングにより形成し、次いで、パターン形成用金属層5となる電解銅箔(幅28mm、厚さ25μm、三井金属鉱業株式会社製FQ−VLP箔)の粗面を、スプロケットホール間の配線パターン形成領域にある接着剤層2上に配置してロールラミネートによって温度110℃、圧力0.5MPaの条件で接着し、厚さ107μmの可撓性配線基板製造用複合積層体となるフィルムキャリアテープ6を製造した。
(Example 1)
The epoxy resin composition to be the support resin layer 1b is applied to the shiny surface of the electrolytic copper foil having a width of 48 mm and a thickness of 35 μm to form the support metal layer 1a so that the dry thickness is 35 μm. Thus, the support layer 1 was formed. Subsequently, the epoxy resin composition used as the adhesive layer 2 which has insulation on the rough surface side of the electrolytic copper foil (support metal layer 1a) of the support layer 1 was apply | coated to the whole surface so that dry thickness might be set to 12 micrometers. . In addition to the sprocket hole 3 for transporting the base tape to the laminate composed of the support layer 1 and the adhesive layer 2, a slit for a bent portion for bending and using a device hole for IC bonding or a wiring board Hole 4 is formed by punching, and then the rough surface of the electrolytic copper foil (width 28 mm, thickness 25 μm, FQ-VLP foil manufactured by Mitsui Mining & Smelting Co., Ltd.) to be the pattern forming metal layer 5 is formed between the sprocket holes. A film carrier that is placed on the adhesive layer 2 in the wiring pattern forming region and bonded by roll lamination under the conditions of a temperature of 110 ° C. and a pressure of 0.5 MPa to form a 107 μm thick composite laminate for manufacturing a flexible wiring board Tape 6 was manufactured.

次いで、このフィルムキャリアテープ(可撓性配線基板製造用複合積層体)6のパターン形成用金属層5の表面にフォトレジスト7を塗布し、乾燥後、露光・現像することによりパターンを形成した。このパターンをマスキング材として、パターン形成用金属層5をエッチングした後、フォトレジスト7を剥離して配線パターン5aを形成した。なお、エッチングに際しては、デバイスホールやスリットなどのホール4による支持体金属層1aの露出部にエッチング防止用のバックコーティングを施し、スリット部のソルダレジスト材によるバックコーティング層を除き、不要なバックコーティング材はエッチング後に除去した。このように形成された配線パターン5aの上に端子部分が露出するようにソルダレジスト9を塗布し、硬化させ、半導体装置製造用スプロケットホール3aをプレスで打抜いた後、露出した部分にスズメッキを施した。そして、フィルムキャリアテープ両側端部の搬送用スプロケットホール領域を切断除去して幅35mmの電子部品実装用のフィルムキャリアテープ(TCP用テープ)10を形成した。   Next, a photoresist 7 was applied to the surface of the pattern forming metal layer 5 of the film carrier tape (composite laminate for manufacturing flexible wiring board) 6, dried, exposed and developed to form a pattern. The pattern forming metal layer 5 was etched using this pattern as a masking material, and then the photoresist 7 was peeled off to form a wiring pattern 5a. In the etching, an unnecessary back coating is applied except that a back coating layer for preventing etching is applied to the exposed portion of the support metal layer 1a by the hole 4 such as a device hole or a slit, and the back coating layer by the solder resist material of the slit portion is removed. The material was removed after etching. The solder resist 9 is applied on the wiring pattern 5a formed in this way so that the terminal portion is exposed and cured, and the sprocket hole 3a for manufacturing the semiconductor device is punched out with a press, and then the exposed portion is plated with tin. gave. And the film | membrane sprocket hole area | region of the both ends of a film carrier tape was cut and removed, and the film carrier tape (TCP tape) 10 for electronic component mounting of width 35mm was formed.

こうして得られた電子部品実装用のフィルムキャリアテープ10における支持体層1の吸湿膨張係数は0ppm/%RHであり、アウタリードの累積寸法ばらつきは0.01%以下であった。   The hygroscopic expansion coefficient of the support layer 1 in the film carrier tape 10 for electronic component mounting thus obtained was 0 ppm /% RH, and the cumulative dimensional variation of the outer leads was 0.01% or less.

ちなみに、銅層とポリイミドフィルムからなる従来のCOF用テープのベースフィルム、電解銅箔、接着剤、ポリイミドフィルムからなる従来のTCP用テープのベースフィルムであるポリイドフィルムの吸湿膨張係数は9〜15ppm/%RH程度であり、アウタリードの累積寸法のばらつきは、通常およそ0.05%である。   By the way, the hygroscopic expansion coefficient of the base film of the conventional tape for COF consisting of a copper layer and a polyimide film, the electrolytic copper foil, the adhesive, and the base film of the conventional tape for TCP consisting of a polyimide film is 9 to 15 ppm. The variation in the cumulative size of the outer lead is usually about 0.05%.

(実施例2)
厚さ35μmの支持体金属層1aに対して、支持体樹脂層1bの厚さを5μmとする以外は、実施例1の場合と同一条件で可撓性配線基板製造用複合積層体となるフィルムキャリアテープ6を製造した。本実施例2により製造されたフィルムキャリアテープ6にあっては、一部のフィルムキャリアテープ6の支持体樹脂層1bに傷の発生が確認されたが、支持体金属層1aの外部への露出は確認されなかった。
(Example 2)
A film that becomes a composite laminate for manufacturing a flexible wiring board under the same conditions as in Example 1 except that the thickness of the support resin layer 1b is 5 μm with respect to the support metal layer 1a having a thickness of 35 μm. Carrier tape 6 was manufactured. In the film carrier tape 6 manufactured according to Example 2, the occurrence of scratches on the support resin layer 1b of some film carrier tapes 6 was confirmed, but the support metal layer 1a was exposed to the outside. Was not confirmed.

(比較例1)
厚さ35μmの支持体金属層1aに対して、支持体樹脂層1bの厚さを2.5μmとする以外は、実施例1の場合と同一条件でフィルムキャリアテープ6を製造した。本比較例1により製造されたフィルムキャリアテープ6にあっては、一部のフィルムキャリアテープ6の支持体樹脂層1bに傷の発生が確認され、かつ、支持体金属層1aの外部への露出も確認された。
(Comparative Example 1)
A film carrier tape 6 was produced under the same conditions as in Example 1 except that the thickness of the support resin layer 1b was 2.5 μm with respect to the support metal layer 1a having a thickness of 35 μm. In the film carrier tape 6 produced according to the present comparative example 1, the occurrence of scratches on the support resin layer 1b of some film carrier tapes 6 was confirmed, and the support metal layer 1a was exposed to the outside. Was also confirmed.

(比較例2)
厚さ5μmの支持体樹脂層1bに対して、支持体金属層1aの厚さを40μmとする以外は、実施例2の場合と同一条件(例えば、パターン形成用金属層5の厚さは25μmで一定のまま)でフィルムキャリアテープ6を製造した。実施例2および比較例2により製造されたフィルムキャリアテープ6について、MIT耐折試験(屈曲角度±135度、屈曲速度175rpm、印加荷重100gf/10mm幅)を行ったところ、比較例2の場合、実施例2の80%の屈曲回数で25μm厚さの配線パターン5aに断線が生じた。
(Comparative Example 2)
The same conditions as in Example 2 except that the thickness of the support metal layer 1a is 40 μm with respect to the support resin layer 1b having a thickness of 5 μm (for example, the thickness of the pattern-forming metal layer 5 is 25 μm). The film carrier tape 6 was manufactured in the same manner. About the film carrier tape 6 manufactured by Example 2 and Comparative Example 2, the MIT folding resistance test (bending angle ± 135 degrees, bending speed 175 rpm, applied load 100 gf / 10 mm width) was performed. Disconnection occurred in the wiring pattern 5a having a thickness of 25 μm at the number of bendings of 80% in Example 2.

本発明の実施の形態のフィルムキャリアテープの製造方法を工程順に示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the film carrier tape of embodiment of this invention in order of a process. 2条テープの場合のフィルムキャリアテープの製造方法を工程順に示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the film carrier tape in the case of a double tape in order of a process. 支持体樹脂膜厚に対する支持体金属膜厚の比に応じた吸湿膨張係数のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the hygroscopic expansion coefficient according to the ratio of the support metal film thickness with respect to the support resin film thickness. 支持体樹脂膜厚に対する支持体金属膜厚の比に応じた累積寸法ばらつきのシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the accumulation dimension dispersion | variation according to ratio of the support body metal film thickness with respect to support body resin film thickness.

符号の説明Explanation of symbols

1 支持体層
1a 支持体金属層
1b 支持体樹脂層
2 接着剤層
3 スプロケットホール
4 ホール
5 パターン形成用金属層
6 フィルムキャリアテープ
9 ソレダレジスト
9´ 裏面ソルダレジスト
DESCRIPTION OF SYMBOLS 1 Support layer 1a Support metal layer 1b Support resin layer 2 Adhesive layer 3 Sprocket hole 4 Hole 5 Metal layer for pattern formation 6 Film carrier tape 9 Solder resist 9 'Back surface solder resist

Claims (3)

支持体金属層と該支持体金属層の裏面に前記支持体金属層との膜厚比が1:1〜7:1となる厚さで積層されて可撓性を有する支持体樹脂層とからなる支持体層と、
該支持体層の前記支持体金属層側表面に積層されて配線パターンが形成されるパターン形成用金属層と、
該パターン形成用金属層と前記支持体層とを接着固定する絶縁性を有する接着剤層と、
を備えることを特徴とする可撓性配線基板製造用複合積層体。
From the support metal layer and the flexible support resin layer laminated on the back surface of the support metal layer in a thickness ratio of 1: 1 to 7: 1 with the thickness of the support metal layer. A support layer comprising:
A metal layer for pattern formation which is laminated on the surface of the support metal layer of the support layer to form a wiring pattern;
An adhesive layer having an insulating property for bonding and fixing the metal layer for pattern formation and the support layer;
A composite laminate for producing a flexible wiring board, comprising:
可撓性を有する前記支持体樹脂層は、エポキシ系樹脂からなることを特徴とする請求項1に記載の可撓性配線基板製造用複合積層体。   The composite laminate for manufacturing a flexible wiring board according to claim 1, wherein the support resin layer having flexibility is made of an epoxy resin. 支持体金属層の裏面に該支持体金属層との膜厚比が1:1〜7:1となる厚さで可撓性を有する支持体樹脂層を積層させて支持体層を形成し、
前記支持体層の所定の箇所に搬送用スプロケットホール、その他の所望のホールを形成し、
配線パターンが形成されるパターン形成用金属層を、前記支持体層の前記支持体金属層側表面に絶縁性を有する接着剤層を介して接着固定するようにしたことを特徴とする可撓性配線基板製造用複合積層体の製造方法。
A support layer is formed by laminating a support resin layer having flexibility at a thickness of 1: 1 to 7: 1 on the back surface of the support metal layer;
Forming a sprocket hole for transportation at a predetermined position of the support layer, and other desired holes;
A flexible, characterized in that a pattern forming metal layer on which a wiring pattern is formed is bonded and fixed to the surface of the support layer on the side of the support metal layer through an adhesive layer having an insulating property. A method for manufacturing a composite laminate for manufacturing a wiring board.
JP2006313504A 2006-11-20 2006-11-20 Composite laminated body for manufacturing flexible wiring board and its manufacturing method Pending JP2008130772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313504A JP2008130772A (en) 2006-11-20 2006-11-20 Composite laminated body for manufacturing flexible wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313504A JP2008130772A (en) 2006-11-20 2006-11-20 Composite laminated body for manufacturing flexible wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008130772A true JP2008130772A (en) 2008-06-05

Family

ID=39556315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313504A Pending JP2008130772A (en) 2006-11-20 2006-11-20 Composite laminated body for manufacturing flexible wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008130772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122232A1 (en) * 2010-03-30 2011-10-06 東レ株式会社 Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
JP2013038360A (en) * 2011-08-11 2013-02-21 Toray Ind Inc Metal support flexible board, metal support carrier tape for tape automated bonding using metal support flexible board, metal support flexible circuit board for mounting led, and metal support flexible circuit board with laminated copper foil for circuit formation
WO2015188408A1 (en) * 2014-06-12 2015-12-17 深圳市华星光电技术有限公司 Chip on film substrate, manufacturing method therefor, and display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750872A (en) * 1980-09-12 1982-03-25 Kaibe Shokuhin Kk Laminated tangle flake and its production
JPS60119769A (en) * 1983-12-01 1985-06-27 Fuji Electric Co Ltd Semiconductor device
JPS6134762A (en) * 1984-07-25 1986-02-19 Hitachi Ltd Recording control circuit of optical recording and reproducing device
JPH07115169A (en) * 1993-10-15 1995-05-02 Shinko Electric Ind Co Ltd Lead frame and tab tape
JPH07221139A (en) * 1994-02-08 1995-08-18 Shinko Electric Ind Co Ltd Tab tape and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750872A (en) * 1980-09-12 1982-03-25 Kaibe Shokuhin Kk Laminated tangle flake and its production
JPS60119769A (en) * 1983-12-01 1985-06-27 Fuji Electric Co Ltd Semiconductor device
JPS6134762A (en) * 1984-07-25 1986-02-19 Hitachi Ltd Recording control circuit of optical recording and reproducing device
JPH07115169A (en) * 1993-10-15 1995-05-02 Shinko Electric Ind Co Ltd Lead frame and tab tape
JPH07221139A (en) * 1994-02-08 1995-08-18 Shinko Electric Ind Co Ltd Tab tape and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122232A1 (en) * 2010-03-30 2011-10-06 東レ株式会社 Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
CN102822953A (en) * 2010-03-30 2012-12-12 东丽株式会社 Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
JP5682554B2 (en) * 2010-03-30 2015-03-11 東レ株式会社 Metal support flexible substrate and metal support carrier tape for tape automated bonding using the same, metal support flexible circuit substrate for LED mounting, and metal support flexible circuit substrate laminated with copper foil for circuit formation
JP2013038360A (en) * 2011-08-11 2013-02-21 Toray Ind Inc Metal support flexible board, metal support carrier tape for tape automated bonding using metal support flexible board, metal support flexible circuit board for mounting led, and metal support flexible circuit board with laminated copper foil for circuit formation
WO2015188408A1 (en) * 2014-06-12 2015-12-17 深圳市华星光电技术有限公司 Chip on film substrate, manufacturing method therefor, and display panel

Similar Documents

Publication Publication Date Title
US10299373B2 (en) Method of manufacturing rigid-flexible printed circuit board
JP5461323B2 (en) Manufacturing method of semiconductor package substrate
JP2006278929A (en) Manufacturing method of flexible substrate
JP3638276B2 (en) Film carrier tape for mounting electronic components
KR100861246B1 (en) Cof film carrier tape and its manufacturing method
JP4952044B2 (en) Multilayer wiring board manufacturing method, semiconductor package, and long wiring board
JP2008130772A (en) Composite laminated body for manufacturing flexible wiring board and its manufacturing method
JP2006269495A (en) Flexible printed wiring board and semiconductor apparatus
JP2003059979A (en) Laminated film and film carrier tape for packaging electronic component
JP4403049B2 (en) Method for manufacturing printed circuit board
JP3854479B2 (en) TAB tape manufacturing method and laminated film for TAB tape
JP7002238B2 (en) Manufacturing method of tape base material for wiring board and tape base material for wiring board
JP4657689B2 (en) COF tape manufacturing method
JP2019075486A (en) Tape base material for wiring board, and manufacturing method of tape base material for wiring board
JP2008227194A (en) Tape carrier for semiconductor device and its manufacturing method
KR100771308B1 (en) Fabricating method of rigid flexible printed circuit board
JP2004031685A (en) Method for manufacturing chip on film carrier tape
JP2002289651A (en) Chip-on film base and its manufacturing method
JP4645908B2 (en) Manufacturing method of tape carrier for semiconductor device
JP4930689B2 (en) Manufacturing method of multilayer semiconductor package
JP2884265B2 (en) Method for manufacturing two-layer TAB tape
WO2002023617A1 (en) Two-metal tab tape, double-sided csp tape, bga tape, and method for manufacturing the same
JP2004281947A (en) Manufacturing method of film carrier tape for mounting electronic component and spacer tape
JPH1126632A (en) Bga type semiconductor device
JP2006041301A (en) Tape carrier for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011