JP2008130416A - Manufacturing method of membrane electrode assembly - Google Patents

Manufacturing method of membrane electrode assembly Download PDF

Info

Publication number
JP2008130416A
JP2008130416A JP2006315332A JP2006315332A JP2008130416A JP 2008130416 A JP2008130416 A JP 2008130416A JP 2006315332 A JP2006315332 A JP 2006315332A JP 2006315332 A JP2006315332 A JP 2006315332A JP 2008130416 A JP2008130416 A JP 2008130416A
Authority
JP
Japan
Prior art keywords
layer
electrolyte
catalyst
electrolyte layer
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315332A
Other languages
Japanese (ja)
Other versions
JP5181469B2 (en
Inventor
Hideyo Omori
英世 大森
Tatsuhisa Kawabata
達央 川畑
Osamu Hamanoi
修 浜野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006315332A priority Critical patent/JP5181469B2/en
Publication of JP2008130416A publication Critical patent/JP2008130416A/en
Application granted granted Critical
Publication of JP5181469B2 publication Critical patent/JP5181469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly capable of reducing contact resistance between a gas diffusion layer and a catalyst layer, and improving durability to a cross leak of an electrolyte membrane at the same time. <P>SOLUTION: The catalyst layer 12 is formed by coating catalyst ink for an anode on one surface of a carbon paper 10 as the gas diffusion layer on an anode side. The catalyst layer 22 is formed by coating catalyst ink for a cathode on one surface of a carbon paper 20 as the gas diffusion layer on a cathode side. Then, sol with solid polymer electrolyte dispersed is respectively coated on surfaces of the catalyst layers 12, 14, and is gelated to form the electrolyte layers 14, 24. The surface of the gelated electrolyte layer 24 and the surface of the gelated electrolyte layer 24 are abutted on each other and are dried. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池に用いられる膜電極接合体の製造方法に関するものである。   The present invention relates to a method for producing a membrane electrode assembly used in a fuel cell.

水素と酸素との電気化学反応によって発電する燃料電池がエネルギ源として注目されている。この燃料電池は、プロトン伝導性を有する電解質膜の両面に、それぞれアノード、および、カソードを接合してなる膜電極接合体を、セパレータによって挟持することによって構成される。そして、アノード、および、カソードは、それぞれ、上記電気化学反応を促進するための触媒層と、燃料電池の外部から供給された反応ガス(燃料ガス、および、酸化剤ガス)を拡散させつつ、触媒層に供給するためのガス拡散層とを備える。   A fuel cell that generates electricity by an electrochemical reaction between hydrogen and oxygen has attracted attention as an energy source. This fuel cell is configured by sandwiching a membrane electrode assembly formed by joining an anode and a cathode on both sides of an electrolyte membrane having proton conductivity, with a separator. The anode and the cathode are respectively a catalyst layer for promoting the electrochemical reaction and a catalyst while diffusing the reaction gas (fuel gas and oxidant gas) supplied from the outside of the fuel cell. A gas diffusion layer for supplying to the layer.

そして、膜電極接合体には、上述した各層間における接触抵抗の低減等が要求されており、従来、膜電極接合体の製造方法について、種々の技術が提案されている(下記特許文献1,2参照)。例えば、下記特許文献1には、電極(例えば、カソード)の触媒層側の面に対して高分子電解質の溶液をスクリーン印刷により塗布して乾燥させ、予め作製しておいた電極(例えば、アノード)の触媒層側の面を当接させ、ホットプレスすることによって、膜電極接合体を製造する技術が記載されている。また、下記特許文献2には、多孔性基材に電解質溶液を含浸させて電解質膜を製造し、電解質溶液が未乾燥状態の電解質膜の少なくとも一方の面に、電極触媒溶液を塗布し、ホットプレスすることによって、膜電極接合体を製造する技術が記載されている。   The membrane electrode assembly is required to reduce the contact resistance between the above-described layers, and conventionally, various techniques have been proposed for the method of manufacturing the membrane electrode assembly (Patent Document 1, below). 2). For example, in Patent Document 1 below, a polymer electrolyte solution is applied by screen printing to a surface on the catalyst layer side of an electrode (for example, a cathode) and dried, and a previously prepared electrode (for example, an anode) ), The surface on the catalyst layer side is brought into contact and hot pressed to produce a membrane electrode assembly. In Patent Document 2 below, an electrolyte membrane is produced by impregnating a porous substrate with an electrolyte solution, and an electrode catalyst solution is applied to at least one surface of the electrolyte membrane in an undried state. A technique for manufacturing a membrane electrode assembly by pressing is described.

特開平9−180740号公報JP-A-9-180740 特開2006−147257号公報JP 2006-147257 A

ところで、膜電極接合体において、ガス拡散層としては、ガス拡散性、および、導電性が要求されるため、一般に、カーボンクロスや、カーボンペーパ等が用いられる。そして、カーボンペーパは、カーボンクロスと比較して、カーボン繊維が整っており、表面が滑らかである。換言すれば、カーボンクロスは、カーボンペーパと比較して、カーボン繊維が整っておらず、表面からカーボン繊維が飛び出しており、表面がざらついている。   By the way, in the membrane electrode assembly, since the gas diffusion layer is required to have gas diffusibility and conductivity, carbon cloth, carbon paper, or the like is generally used. The carbon paper has more carbon fibers and a smoother surface than the carbon cloth. In other words, compared to carbon paper, carbon cloth is not equipped with carbon fibers, carbon fibers protrude from the surface, and the surface is rough.

このため、ガス拡散層としてカーボンクロスを用いる場合には、カーボンペーパを用いる場合と比較して、ガス拡散層(カーボンクロス)と触媒層との密着性が高くなり、ガス拡散層と触媒層との間の接触抵抗が低くなる。しかし、ガス拡散層としてカーボンクロスを用い、ホットプレスによって膜電極接合体を製造した場合には、カーボンクロスの表面から飛び出したカーボン繊維によって、電解質膜が物理的な損傷を受けやすいため、電解質膜において、クロスリークが発生しやすく、クロスリークに対する耐久性が低いという課題があった。   Therefore, when carbon cloth is used as the gas diffusion layer, the adhesion between the gas diffusion layer (carbon cloth) and the catalyst layer is higher than when carbon paper is used. The contact resistance between is reduced. However, when a membrane electrode assembly is manufactured by hot pressing using a carbon cloth as a gas diffusion layer, the electrolyte membrane is easily damaged by carbon fibers jumping out from the surface of the carbon cloth. However, there is a problem that cross leak is likely to occur and durability against cross leak is low.

一方、ガス拡散層としてカーボンペーパを用いる場合には、カーボンクロスを用いる場合と比較して、ホットプレスによって膜電極接合体を製造した場合であっても、電解質膜は、上述した損傷を受けにくいため、電解質膜において、クロスリークは発生しにくく、クロスリークに対する耐久性が高い。しかし、この場合には、ガス拡散層(カーボンペーパ)と触媒層との密着性が低くなり、ガス拡散層と触媒層との間の接触抵抗が高くなるという課題があった。   On the other hand, when carbon paper is used as the gas diffusion layer, the electrolyte membrane is not easily damaged even when a membrane electrode assembly is manufactured by hot pressing, as compared with the case of using carbon cloth. Therefore, in the electrolyte membrane, cross leak hardly occurs and durability against cross leak is high. However, in this case, there is a problem that the adhesion between the gas diffusion layer (carbon paper) and the catalyst layer is lowered, and the contact resistance between the gas diffusion layer and the catalyst layer is increased.

本発明は、上述の課題を解決するためになされたものであり、膜電極接合体において、ガス拡散層と触媒層との間の接触抵抗の低減と、電解質膜のクロスリークに対する耐久性の向上とを両立することを目的とする。   The present invention has been made to solve the above-mentioned problems, and in a membrane / electrode assembly, the contact resistance between the gas diffusion layer and the catalyst layer is reduced, and the durability against cross leak of the electrolyte membrane is improved. The purpose is to achieve both.

上述の課題の少なくとも一部を解決するため、本発明では、以下の構成を採用した。本発明の膜電極接合体の製造方法は、燃料電池に用いられる膜電極接合体の製造方法であって、第1のガス拡散層としての第1のカーボンペーパの一方の面に、第1の触媒を含む第1の液体を塗布して、第1の触媒層を形成する第1の触媒層形成工程と、前記第1の触媒層の表面に、固体電解質を含む溶液を塗布することによって、前記第1の触媒層の表面に第1の電解質層が形成された第1の積層部材を製造する第1の積層部材製造工程と、第2のガス拡散層としての第2のカーボンペーパの一方の面に、第2の触媒を含む第2の液体を塗布して、第2の触媒層を形成する第2の触媒層形成工程と、前記第2の触媒層の表面に、固体電解質を含む溶液を塗布することによって、前記第2の触媒層の表面に第2の電解質層が形成された第2の積層部材を製造する第2の積層部材製造工程と、前記第1の電解質層、および、前記第2の電解質層が未乾燥の状態で、前記第1の電解質層と、前記第2の電解質層とを対向させて、前記第1の積層部材と、前記第2の積層部材とを接合する接合工程と、前記接合された第1の電解質層、および、第2の電解質層を乾燥させて、電解質膜を形成する工程と、を備えることを要旨とする。   In order to solve at least a part of the above-described problems, the present invention employs the following configuration. The method for producing a membrane electrode assembly of the present invention is a method for producing a membrane electrode assembly used in a fuel cell, wherein a first carbon paper as a first gas diffusion layer is formed on one surface of the first carbon paper. A first catalyst layer forming step of applying a first liquid containing a catalyst to form a first catalyst layer, and applying a solution containing a solid electrolyte on the surface of the first catalyst layer; One of the first laminated member producing step for producing the first laminated member having the first electrolyte layer formed on the surface of the first catalyst layer, and one of the second carbon papers as the second gas diffusion layer A second catalyst layer forming step of forming a second catalyst layer by applying a second liquid containing a second catalyst to the surface, and a solid electrolyte is included on the surface of the second catalyst layer By applying the solution, a second electrolyte layer is formed on the surface of the second catalyst layer. A second laminated member manufacturing step for manufacturing a layer member, the first electrolyte layer, and the second electrolyte layer in a state in which the first electrolyte layer and the second electrolyte layer are undried. And bonding the first laminated member and the second laminated member, and drying the joined first electrolyte layer and second electrolyte layer, And a step of forming an electrolyte membrane.

本発明では、第1のガス拡散層(例えば、アノード側のガス拡散層)、および、第2のガス拡散層(例えば、カソード側のガス拡散層)として、カーボンペーパを用い、これらの一方の表面に、それぞれ第1の触媒(アノード用の触媒)を含む第1の液体、および、第2の触媒(カソード用の触媒)を含む第2の液体を塗布して、第1の触媒層(アノード側の触媒層)、および、第2の触媒層(カソード側の触媒層)を形成する。第1の触媒を含む第1の液体、および、第2の触媒を含む第2の液体としては、例えば、いわゆる触媒インクを用いることができる。こうすることによって、触媒インクの一部がカーボンペーパに染み込むので、ガス拡散層と触媒層との密着性を向上させることができる。   In the present invention, carbon paper is used as the first gas diffusion layer (for example, the gas diffusion layer on the anode side) and the second gas diffusion layer (for example, the gas diffusion layer on the cathode side). A first liquid containing a first catalyst (catalyst for anode) and a second liquid containing a second catalyst (catalyst for cathode) are applied to the surface, and the first catalyst layer ( An anode side catalyst layer) and a second catalyst layer (cathode side catalyst layer) are formed. As the first liquid containing the first catalyst and the second liquid containing the second catalyst, for example, so-called catalyst ink can be used. By doing so, a part of the catalyst ink soaks into the carbon paper, so that the adhesion between the gas diffusion layer and the catalyst layer can be improved.

また、本発明では、第1の触媒層、および、第2の触媒層の表面に、それぞれ固体電解質を含む溶液を塗布することによって、第1の電解質層、および、第2の電解質層を形成し、これらが未乾燥の状態で、第1の電解質層と、第2の電解質層とを対向させて接合し、乾燥させて電解質膜を形成する。ここで、「固体電解質を含む溶液」とは、固体電解質が分散した液体であってもよいし、固体電解質が溶解した液体であってもよい。こうすることによって、第1の電解質層と、第2の電解質層とを、ホットプレスすることなく、容易に密着させることができる。したがって、上述した電解質膜の損傷を抑制し、クロスリークに対する耐久性を向上させることができる。つまり、本発明によって、膜電極接合体において、電解質膜と、触媒層と、ガス拡散層との間の接触抵抗を低減と、電解質膜のクロスリークに対する耐久性の向上とを両立することができる。   In the present invention, the first electrolyte layer and the second electrolyte layer are formed by applying a solution containing a solid electrolyte to the surfaces of the first catalyst layer and the second catalyst layer, respectively. Then, in an undried state, the first electrolyte layer and the second electrolyte layer are bonded to face each other and dried to form an electrolyte membrane. Here, the “solution containing the solid electrolyte” may be a liquid in which the solid electrolyte is dispersed or a liquid in which the solid electrolyte is dissolved. By doing so, the first electrolyte layer and the second electrolyte layer can be easily adhered to each other without hot pressing. Therefore, damage to the electrolyte membrane described above can be suppressed and durability against cross leakage can be improved. That is, according to the present invention, in the membrane / electrode assembly, it is possible to reduce both the contact resistance between the electrolyte membrane, the catalyst layer, and the gas diffusion layer and to improve the durability against cross leak of the electrolyte membrane. .

上記製造方法において、前記第1の成層部材製造工程と、前記第2の積層部材製造工程と、前記接合工程とのうちの少なくとも1つは、前記第1の電解質層の内部、前記第2の電解質層の内部、前記第1の電解質層と前記第2の電解質層と間のうちの少なくとも一部に、前記電解質膜の機械的強度を向上させるための補強層を埋め込む工程を含むようにしてもよい。こうすることによって、膜電極接合体の強度を向上させることができる。   In the manufacturing method, at least one of the first layered member manufacturing step, the second laminated member manufacturing step, and the joining step is performed inside the first electrolyte layer, the second layer A step of embedding a reinforcing layer for improving the mechanical strength of the electrolyte membrane may be included in at least a part of the inside of the electrolyte layer and between the first electrolyte layer and the second electrolyte layer. . By carrying out like this, the intensity | strength of a membrane electrode assembly can be improved.

本発明は、上述の膜電極接合体の製造方法としての構成の他、燃料電池の製造方法の発明として構成することもできる。   The present invention can be configured as an invention of a method for manufacturing a fuel cell in addition to the configuration as a method for manufacturing the membrane electrode assembly described above.

以下、本発明の実施の形態について、実施例に基づき説明する。
A.第1実施例:
図1は、第1実施例の膜電極接合体100の製造工程を示す説明図である。本実施例の膜電極接合体100は、燃料電池に用いられ、電解質膜の一方の面に、アノードとして、触媒層、および、ガス拡散層が接合され、他方の面にカソードとして、触媒層、および、ガス拡散層が接合されたものである。
Hereinafter, embodiments of the present invention will be described based on examples.
A. First embodiment:
FIG. 1 is an explanatory view showing a manufacturing process of the membrane electrode assembly 100 of the first embodiment. The membrane electrode assembly 100 of this example is used in a fuel cell, and a catalyst layer and a gas diffusion layer are joined as an anode to one surface of an electrolyte membrane, and a catalyst layer as a cathode and the other surface. In addition, the gas diffusion layer is joined.

まず、図1(a),(b)に示したように、アノード側のガス拡散層としてのカーボンペーパ10と、カソード側のガス拡散層としてのカーボンペーパ20とを用意する。カーボンペーパ10、および、カーボンペーパ20は、本発明における第1のカーボンペーパ、および、第2のカーボンペーパに相当する。   First, as shown in FIGS. 1A and 1B, a carbon paper 10 as a gas diffusion layer on the anode side and a carbon paper 20 as a gas diffusion layer on the cathode side are prepared. The carbon paper 10 and the carbon paper 20 correspond to the first carbon paper and the second carbon paper in the present invention.

次に、図1(c)に示したように、カーボンペーパ10の一方の表面に、アノード用の触媒インクを塗布して乾燥させ、アノード側の触媒層12を形成する。また、図1(d)に示したように、カーボンペーパ20の一方の表面にも、カソード用の触媒インクを塗布して乾燥させ、カソード側の触媒層22を形成する。こうすることによって、各触媒インクの一部が、カーボンペーパ10,20にそれぞれ染み込み、カーボン繊維と絡み合うため、カーボンペーパ10,20と、触媒層12,22との密着性をそれぞれ向上させ、カーボンペーパ10,20と触媒層12,22との間の接触抵抗を低減することができる。アノード用の触媒インク、および、カソード用の触媒インクは、それぞれ本発明における第1の液体、および、第2の液体に相当する。また、触媒層12、および、触媒層22は、それぞれ本発明における第1の触媒層、および、第2の触媒層に相当する。なお、各触媒インクの成分、および、混合割合は、任意に設定可能である。   Next, as shown in FIG. 1C, the anode catalyst ink is applied to one surface of the carbon paper 10 and dried to form the anode-side catalyst layer 12. Also, as shown in FIG. 1D, the cathode catalyst ink is applied to one surface of the carbon paper 20 and dried to form the cathode catalyst layer 22. By doing so, a part of each catalyst ink soaks into the carbon paper 10 and 20 and entangles with the carbon fiber, thereby improving the adhesion between the carbon paper 10 and 20 and the catalyst layers 12 and 22, respectively. The contact resistance between the papers 10 and 20 and the catalyst layers 12 and 22 can be reduced. The catalyst ink for anode and the catalyst ink for cathode correspond to the first liquid and the second liquid in the present invention, respectively. The catalyst layer 12 and the catalyst layer 22 correspond to the first catalyst layer and the second catalyst layer in the present invention, respectively. In addition, the component and mixing ratio of each catalyst ink can be set arbitrarily.

次に、図1(e)に示したように、アノード側の触媒層12の表面に、固体高分子電解質が分散したゾル(例えば、ナフィオン分散溶液(ナフィオンは登録商標))を塗布し、これをゲル化して、電解質層14を形成する。また、図1(f)に示したように、カソード側の触媒層22の表面にも、電解質が分散したゾルを塗布し、これをゲル化して、電解質層24を形成する。こうすることによって、上記ゾルの一部が触媒層12,22にそれぞれ染み込むため、触媒層12,22と、電解質層14,24との密着性をそれぞれ向上させ、触媒層12,22と電解質層14,24との間の接触抵抗を低減することができる。電解質層14、および、電解質層24は、それぞれ本発明における第1の電解質層、および、第2の電解質層に相当する。また、触媒層12上に電解質層14が形成された部材、および、触媒層22上に電解質層24が形成された部材は、それぞれ本発明における第1の積層部材、および、第2の積層部材に相当する。なお、本実施例では、固体高分子電解質としてフッ素系の電解質であるナフィオン(登録商標)を用いるものとしたが、他のフッ素系の固体高分子電解質や、炭化水素系の固体高分子電解質等、他の固体高分子電解質を用いるものとしてもよい。   Next, as shown in FIG. 1E, a sol (for example, Nafion dispersion solution (Nafion is a registered trademark)) in which a solid polymer electrolyte is dispersed is applied to the surface of the catalyst layer 12 on the anode side. Is gelled to form the electrolyte layer 14. Further, as shown in FIG. 1 (f), the electrolyte layer 24 is formed by applying a sol in which the electrolyte is dispersed to the surface of the cathode-side catalyst layer 22 and gelling it. By doing so, a part of the sol soaks into the catalyst layers 12 and 22, respectively, so that the adhesion between the catalyst layers 12 and 22 and the electrolyte layers 14 and 24 is improved, and the catalyst layers 12 and 22 and the electrolyte layer are improved. The contact resistance between 14 and 24 can be reduced. The electrolyte layer 14 and the electrolyte layer 24 correspond to the first electrolyte layer and the second electrolyte layer in the present invention, respectively. Further, the member in which the electrolyte layer 14 is formed on the catalyst layer 12 and the member in which the electrolyte layer 24 is formed on the catalyst layer 22 are respectively the first laminated member and the second laminated member in the present invention. It corresponds to. In this example, Nafion (registered trademark), which is a fluorine-based electrolyte, is used as the solid polymer electrolyte. However, other fluorine-based solid polymer electrolytes, hydrocarbon-based solid polymer electrolytes, etc. Other solid polymer electrolytes may be used.

次に、図1(g)に示したように、ゲル化した電解質層14の表面と、電解質層24の表面とを当接させて乾燥させることによって、電解質層14と電解質層24とが一体化した電解質膜を形成し、膜電極接合体100が完成する。こうすることによって、物理的な損傷を与えることなく、容易に電解質膜を形成することができる。   Next, as shown in FIG. 1G, the electrolyte layer 14 and the electrolyte layer 24 are integrated by bringing the surface of the gelled electrolyte layer 14 and the surface of the electrolyte layer 24 into contact with each other and drying. The formed electrolyte membrane is formed, and the membrane electrode assembly 100 is completed. By doing so, the electrolyte membrane can be easily formed without causing physical damage.

以上説明した第1実施例の膜電極接合体100の製造工程によれば、膜電極接合体100において、電解質膜と、触媒層と、ガス拡散層との間の接触抵抗を低減と、電解質膜のクロスリークに対する耐久性の向上とを両立することができる。   According to the manufacturing process of the membrane electrode assembly 100 of the first embodiment described above, in the membrane electrode assembly 100, the contact resistance between the electrolyte membrane, the catalyst layer, and the gas diffusion layer is reduced, and the electrolyte membrane It is possible to achieve both improved durability against cross leaks.

B.第2実施例
図2は、第2実施例の膜電極接合体100Aの製造工程を示す説明図である。本実施例では、図2(a)〜(f)は、先に説明した第1実施例(図1(a)〜(f))と同じである。第2実施例の膜電極接合体100Aの製造工程では、図2(g)に示したように、電解質層14と、電解質層24との間に、プロトン伝導性を有する補強材30を介装する。この補強材30は、例えば、多孔質の基材に固体高分子電解質が溶解した溶液を含浸させて乾燥させることによって製造される。補強材30は、本発明における補強層に相当する。
B. 2nd Example FIG. 2: is explanatory drawing which shows the manufacturing process of 100 A of membrane electrode assemblies of 2nd Example. In the present embodiment, FIGS. 2A to 2F are the same as the first embodiment described above (FIGS. 1A to 1F). In the manufacturing process of the membrane electrode assembly 100A of the second embodiment, as shown in FIG. 2G, the reinforcing material 30 having proton conductivity is interposed between the electrolyte layer 14 and the electrolyte layer 24. To do. The reinforcing material 30 is manufactured, for example, by impregnating a porous base material with a solution in which a solid polymer electrolyte is dissolved and drying it. The reinforcing material 30 corresponds to the reinforcing layer in the present invention.

以上説明した第2実施例の100Aの製造工程によっても、膜電極接合体100Aにおいて、電解質膜と、触媒層と、ガス拡散層との間の接触抵抗を低減と、電解質膜のクロスリークに対する耐久性の向上とを両立することができる。また、電解質層14と、電解質層24との間に補強材30が介装されているので、膜電極接合体100Aの機械的強度を向上させることができる。   Even in the manufacturing process of 100A of the second embodiment described above, in the membrane electrode assembly 100A, the contact resistance between the electrolyte membrane, the catalyst layer, and the gas diffusion layer is reduced, and the durability against cross leak of the electrolyte membrane is reduced. It is possible to achieve both improvement in performance. Moreover, since the reinforcing material 30 is interposed between the electrolyte layer 14 and the electrolyte layer 24, the mechanical strength of the membrane electrode assembly 100A can be improved.

C.変形例:
以上、本発明のいくつかの実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、以下のような変形が可能である。
C. Variation:
As mentioned above, although several embodiment of this invention was described, this invention is not limited to such embodiment at all, and implementation in various aspects is possible within the range which does not deviate from the summary. It is. For example, the following modifications are possible.

C1.変形例1:
上記第1実施例では、図1(e)、(f)に示した工程において、触媒層12,22の表面に、それぞれ固体高分子電解質が分散したゾルを塗布し、これらをゲル化して、電解質層14,24を形成し、図1(g)に示した工程において、ゲル化した電解質層14の表面と、電解質層24の表面とを当接させて乾燥させることによって、電解質層14と電解質層24とが一体化した電解質膜を形成するものとしたが、本発明は、これに限られない。この代わりに、触媒層12,22の表面に、それぞれ固体高分子電解質が溶解した溶液を塗布し、これらが未乾燥の状態で、電解質層14の表面と、電解質層24の表面とを当接させて乾燥させるものとしてもよい。これは、上記第2実施例においても同様である。
C1. Modification 1:
In the first embodiment, in the steps shown in FIGS. 1 (e) and (f), the surfaces of the catalyst layers 12 and 22 are each coated with a sol in which a solid polymer electrolyte is dispersed, and these are gelled. The electrolyte layers 14 and 24 are formed, and in the step shown in FIG. 1G, the surface of the gelled electrolyte layer 14 and the surface of the electrolyte layer 24 are brought into contact with each other to be dried. Although the electrolyte membrane integrated with the electrolyte layer 24 is formed, the present invention is not limited to this. Instead, a solution in which the solid polymer electrolyte is dissolved is applied to the surfaces of the catalyst layers 12 and 22, respectively, and the surface of the electrolyte layer 14 and the surface of the electrolyte layer 24 are brought into contact with each other in an undried state. It is good also as what is made to dry. The same applies to the second embodiment.

C2.変形例2:
上記第2実施例では、電解質層14と、電解質層24と間に、補強材30を介装するものとしたが、本発明は、これに限られない。例えば、補強材30を電解質層14内に埋め込むようにしてもよいし、電解質層24内に埋め込むようにしてもよい。
C2. Modification 2:
In the second embodiment, the reinforcing material 30 is interposed between the electrolyte layer 14 and the electrolyte layer 24. However, the present invention is not limited to this. For example, the reinforcing material 30 may be embedded in the electrolyte layer 14 or may be embedded in the electrolyte layer 24.

C3.変形例3:
上記第2実施例では、補強材30として、プロトン伝導性を有する部材を用いるものとしたが、本発明は、これに限られない。補強材30として、例えば、金属メッシュ等、電解質膜中で、プロトンが通過可能な部材を用いるようにしてもよい。
C3. Modification 3:
In the said 2nd Example, although the member which has proton conductivity was used as the reinforcing material 30, this invention is not limited to this. As the reinforcing member 30, for example, a member that allows protons to pass through the electrolyte membrane, such as a metal mesh, may be used.

C4.変形例4:
上記第1実施例の製造工程によって製造された膜電極接合体100、または、第2実施例の製造工程によって製造された膜電極接合体100Aを、セパレータによって挟持することによって、燃料電池を製造することができる。
C4. Modification 4:
A fuel cell is manufactured by sandwiching the membrane electrode assembly 100 manufactured by the manufacturing process of the first embodiment or the membrane electrode assembly 100A manufactured by the manufacturing process of the second embodiment with a separator. be able to.

第1実施例の膜電極接合体100の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the membrane electrode assembly 100 of 1st Example. 第2実施例の膜電極接合体100Aの製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of 100 A of membrane electrode assemblies of 2nd Example.

符号の説明Explanation of symbols

100,100A...膜電極接合体
10...カーボンペーパ(アノード側)
12...触媒層(アノード側)
14...電解質層
20...カーボンペーパ(カソード側)
22...触媒層(カソード側)
24...電解質層
30...補強材
100, 100A ... Membrane electrode assembly 10 ... Carbon paper (anode side)
12 ... Catalyst layer (anode side)
14 ... Electrolyte layer 20 ... Carbon paper (cathode side)
22 ... Catalyst layer (cathode side)
24 ... electrolyte layer 30 ... reinforcing material

Claims (2)

燃料電池に用いられる膜電極接合体の製造方法であって、
第1のガス拡散層としての第1のカーボンペーパの一方の面に、第1の触媒を含む第1の液体を塗布して、第1の触媒層を形成する第1の触媒層形成工程と、
前記第1の触媒層の表面に、固体電解質を含む溶液を塗布することによって、前記第1の触媒層の表面に第1の電解質層が形成された第1の積層部材を製造する第1の積層部材製造工程と、
第2のガス拡散層としての第2のカーボンペーパの一方の面に、第2の触媒を含む第2の液体を塗布して、第2の触媒層を形成する第2の触媒層形成工程と、
前記第2の触媒層の表面に、固体電解質を含む溶液を塗布することによって、前記第2の触媒層の表面に第2の電解質層が形成された第2の積層部材を製造する第2の積層部材製造工程と、
前記第1の電解質層、および、前記第2の電解質層が未乾燥の状態で、前記第1の電解質層と、前記第2の電解質層とを対向させて、前記第1の積層部材と、前記第2の積層部材とを接合する接合工程と、
前記接合された第1の電解質層、および、第2の電解質層を乾燥させて、電解質膜を形成する工程と、
を備える製造方法。
A method for producing a membrane electrode assembly used in a fuel cell,
A first catalyst layer forming step of forming a first catalyst layer by applying a first liquid containing a first catalyst to one surface of a first carbon paper serving as a first gas diffusion layer; ,
A first laminated member having a first electrolyte layer formed on the surface of the first catalyst layer is manufactured by applying a solution containing a solid electrolyte to the surface of the first catalyst layer. A laminated member manufacturing process;
A second catalyst layer forming step of forming a second catalyst layer by applying a second liquid containing a second catalyst to one surface of the second carbon paper as the second gas diffusion layer; ,
A second laminated member in which a second electrolyte layer is formed on the surface of the second catalyst layer is manufactured by applying a solution containing a solid electrolyte to the surface of the second catalyst layer. A laminated member manufacturing process;
With the first electrolyte layer and the second electrolyte layer being undried, the first electrolyte layer and the second electrolyte layer are opposed to each other, and the first laminated member, A bonding step of bonding the second laminated member;
Drying the joined first electrolyte layer and second electrolyte layer to form an electrolyte membrane;
A manufacturing method comprising:
請求項1記載の製造方法であって、
前記第1の積層部材製造工程と、前記第2の積層部材製造工程と、前記接合工程とのうちの少なくとも1つは、前記第1の電解質層の内部、前記第2の電解質層の内部、前記第1の電解質層と前記第2の電解質層との間のうちの少なくとも一部に、前記電解質膜の機械的強度を向上させるための補強層を埋め込む工程を含む、
製造方法。
The manufacturing method according to claim 1,
At least one of the first laminated member manufacturing step, the second laminated member manufacturing step, and the joining step includes the inside of the first electrolyte layer, the inside of the second electrolyte layer, A step of embedding a reinforcing layer for improving the mechanical strength of the electrolyte membrane in at least a part of the space between the first electrolyte layer and the second electrolyte layer;
Production method.
JP2006315332A 2006-11-22 2006-11-22 Manufacturing method of membrane electrode assembly Expired - Fee Related JP5181469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315332A JP5181469B2 (en) 2006-11-22 2006-11-22 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315332A JP5181469B2 (en) 2006-11-22 2006-11-22 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2008130416A true JP2008130416A (en) 2008-06-05
JP5181469B2 JP5181469B2 (en) 2013-04-10

Family

ID=39556042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315332A Expired - Fee Related JP5181469B2 (en) 2006-11-22 2006-11-22 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP5181469B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113900A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Manufacturing method of electrolyte membrane for fuel cell
JP2011077060A (en) * 2011-01-20 2011-04-14 Toyota Motor Corp Method for manufacturing membrane electrode assembly
US8637210B2 (en) 2008-07-22 2014-01-28 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
CN104051745A (en) * 2013-03-15 2014-09-17 通用汽车环球科技运作有限责任公司 Simultaneous coating of fuel cell components
CN104051742A (en) * 2013-03-15 2014-09-17 通用汽车环球科技运作有限责任公司 Source/drain structure of semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346115A (en) * 2020-03-02 2021-09-03 上海交通大学 Enhanced integrated membrane electrode and preparation method thereof
CN113346114A (en) * 2020-03-02 2021-09-03 上海交通大学 Integrated membrane electrode and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264367A (en) * 1991-02-19 1992-09-21 Fuji Electric Co Ltd Solid macromolecule electrolyte type fuel cell
US5318863A (en) * 1991-12-17 1994-06-07 Bcs Technology, Inc. Near ambient, unhumidified solid polymer fuel cell
JPH08162132A (en) * 1994-12-07 1996-06-21 Japan Gore Tex Inc Polymer solid electrolyte-electrode joined body
JP2000285932A (en) * 1999-03-31 2000-10-13 Asahi Glass Co Ltd Manufacture of electrode/film junction for solid polymer fuel cell
JP3182265B2 (en) * 1993-10-29 2001-07-03 三洋電機株式会社 Method for producing electrode for polymer electrolyte fuel cell
JP2002208414A (en) * 2001-01-09 2002-07-26 Fuji Electric Co Ltd Method of manufacturing solid polymer electrolyte fuel cell
JP2002216789A (en) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Method of producing polymer electrolyte fuel cell
JP2002246040A (en) * 2001-02-21 2002-08-30 Matsushita Electric Ind Co Ltd Membrane-electrode joint producing method for polymer electrolyte fuel cell
JP2003229141A (en) * 2001-11-30 2003-08-15 Honda Motor Co Ltd Manufacturing method of fuel cell electrode structure
JP2004523063A (en) * 2000-11-10 2004-07-29 イオン パワー インコーポレーテッド Method of forming electrode assembly for fuel cell
JP2005285670A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Manufacturing method of film/electrode assembly for polymer electrolyte type fuel cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264367A (en) * 1991-02-19 1992-09-21 Fuji Electric Co Ltd Solid macromolecule electrolyte type fuel cell
US5318863A (en) * 1991-12-17 1994-06-07 Bcs Technology, Inc. Near ambient, unhumidified solid polymer fuel cell
JP3182265B2 (en) * 1993-10-29 2001-07-03 三洋電機株式会社 Method for producing electrode for polymer electrolyte fuel cell
JPH08162132A (en) * 1994-12-07 1996-06-21 Japan Gore Tex Inc Polymer solid electrolyte-electrode joined body
JP2000285932A (en) * 1999-03-31 2000-10-13 Asahi Glass Co Ltd Manufacture of electrode/film junction for solid polymer fuel cell
JP2004523063A (en) * 2000-11-10 2004-07-29 イオン パワー インコーポレーテッド Method of forming electrode assembly for fuel cell
JP2002208414A (en) * 2001-01-09 2002-07-26 Fuji Electric Co Ltd Method of manufacturing solid polymer electrolyte fuel cell
JP2002216789A (en) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd Method of producing polymer electrolyte fuel cell
JP2002246040A (en) * 2001-02-21 2002-08-30 Matsushita Electric Ind Co Ltd Membrane-electrode joint producing method for polymer electrolyte fuel cell
JP2003229141A (en) * 2001-11-30 2003-08-15 Honda Motor Co Ltd Manufacturing method of fuel cell electrode structure
JP2005285670A (en) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd Manufacturing method of film/electrode assembly for polymer electrolyte type fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637210B2 (en) 2008-07-22 2014-01-28 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly, method of producing the assembly, and solid polymer-type fuel cell employing the same
JP2010113900A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Manufacturing method of electrolyte membrane for fuel cell
JP2011077060A (en) * 2011-01-20 2011-04-14 Toyota Motor Corp Method for manufacturing membrane electrode assembly
CN104051745A (en) * 2013-03-15 2014-09-17 通用汽车环球科技运作有限责任公司 Simultaneous coating of fuel cell components
CN104051742A (en) * 2013-03-15 2014-09-17 通用汽车环球科技运作有限责任公司 Source/drain structure of semiconductor device
US9444106B2 (en) 2013-03-15 2016-09-13 GM Global Technology Operations LLC Simultaneous coating of fuel cell components
CN104051745B (en) * 2013-03-15 2017-06-16 通用汽车环球科技运作有限责任公司 Coated while fuel cell component
DE102014102820B4 (en) 2013-03-15 2022-04-14 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) METHOD OF MAKING A REINFORCED DIAPHRAGM ELECTRODE ASSEMBLY

Also Published As

Publication number Publication date
JP5181469B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
KR100531607B1 (en) Method for manufacturing fuel cell electrolyte film-electrode bond
JP5181469B2 (en) Manufacturing method of membrane electrode assembly
JP5326189B2 (en) Electrolyte membrane-electrode assembly and method for producing the same
JP5151063B2 (en) Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell
JP2014053118A (en) Fuel cell and manufacturing method of the same
JP2006338938A (en) Electrolyte membrane-electrode assembly, and its manufacturing method
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
JP5594021B2 (en) Membrane electrode assembly and manufacturing method thereof
KR20190037878A (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP5286887B2 (en) Membrane / electrode assembly with reinforcing sheet for polymer electrolyte fuel cell and method for producing the same
JP5742457B2 (en) Manufacturing method of electrolyte membrane for fuel cell
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
JP5849418B2 (en) Manufacturing method of membrane electrode assembly
JP2009163988A (en) Membrane electrode assembly for fuel cell, and method of manufacturing the same
JP2012190720A (en) Membrane electrode assembly in solid polymer fuel cell and method for manufacturing the same
US20080102341A1 (en) High intensity complex membrane and membrane-electrode assembly including the same
JP5645982B2 (en) Gas diffusion layer element for polymer electrolyte fuel cell, polymer electrolyte fuel cell and production method thereof
JP2007149454A (en) Gas diffusion layer, gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell
JP5614468B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
JP2013114993A (en) Fuel cell electrolyte membrane and electrode structure and manufacturing method thereof
JP2008269909A (en) Manufacturing method of membrane electrode assembly used for fuel cell, and membrane electrode assembly
JP5056141B2 (en) Manufacturing method of membrane electrode assembly
JP2006128014A (en) Manufacturing method for fiber-reinforced solid polymer electrolyte
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5181469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees