JP5849418B2 - Manufacturing method of membrane electrode assembly - Google Patents

Manufacturing method of membrane electrode assembly Download PDF

Info

Publication number
JP5849418B2
JP5849418B2 JP2011071494A JP2011071494A JP5849418B2 JP 5849418 B2 JP5849418 B2 JP 5849418B2 JP 2011071494 A JP2011071494 A JP 2011071494A JP 2011071494 A JP2011071494 A JP 2011071494A JP 5849418 B2 JP5849418 B2 JP 5849418B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
layer
gasket
catalyst layer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011071494A
Other languages
Japanese (ja)
Other versions
JP2012209019A (en
Inventor
均 栗原
均 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2011071494A priority Critical patent/JP5849418B2/en
Publication of JP2012209019A publication Critical patent/JP2012209019A/en
Application granted granted Critical
Publication of JP5849418B2 publication Critical patent/JP5849418B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、膜電極接合体の製造方法に関し、特に固体高分子形燃料電池における膜電極接合体の製造方法に関する。   The present invention relates to a method for producing a membrane electrode assembly, and more particularly to a method for producing a membrane electrode assembly in a polymer electrolyte fuel cell.

脱炭素社会の構築に向けた動きの中で、エネルギー中間キャリアとして水素が注目されている。燃料電池は、水素等の燃料ガスと空気等の酸化ガスを電気化学的に反応させて、電力を取り出す発電システムであり、水素エネルギーの利用形態の一つとして開発が進められている。特に、種々の燃料電池の中で、固体高分子形燃料電池は、高出力密度や低温作動、電池本体がコンパクトであることから、自動車用途または家庭用途の電源として早期の実用化が期待されている。   In the movement toward building a decarbonized society, hydrogen is attracting attention as an intermediate energy carrier. BACKGROUND ART A fuel cell is a power generation system that takes out electric power by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as air, and is being developed as one form of using hydrogen energy. In particular, among various fuel cells, polymer electrolyte fuel cells are expected to be put to practical use as power sources for automobiles or households because of their high power density, low temperature operation, and compact battery body. Yes.

固体高分子形燃料電池における膜電極接合体は、電解質膜と触媒層、ガス拡散層、ガスケット層より構成される。膜電極接合体の製造方法は、触媒層の電解質膜への積層工程によって分けることができる。触媒層と電解質膜の界面抵抗がもっとも少なく、発電性能が高い膜電極接合体を製造する方法は、電解質膜へ触媒インクを直接塗工することによって、触媒層を積層する方法である。しかしながら、触媒インク中の溶媒が電解質膜へ染み込むことから、電解質膜の膨潤状態を制御しながら塗工しなくてはならず、均一な厚さの触媒層を形成させることは難しい(非特許文献1)。
一方、このような課題に対し、転写法によって触媒層を電解質膜へ積層することが提案されている。あらかじめ、転写基材に触媒インクを塗工し、乾燥後、得られた触媒層付転写基材を用いて、熱および圧力によって、電解質膜へ触媒層を接着させる方法である。これにより、触媒層と電解質膜の界面抵抗が少なく、発電性能の高い膜電極接合体を製造することができる。
The membrane electrode assembly in the polymer electrolyte fuel cell includes an electrolyte membrane, a catalyst layer, a gas diffusion layer, and a gasket layer. The manufacturing method of a membrane electrode assembly can be divided according to the lamination | stacking process to the electrolyte membrane of a catalyst layer. A method of manufacturing a membrane electrode assembly having the lowest interface resistance between the catalyst layer and the electrolyte membrane and having high power generation performance is a method of laminating the catalyst layer by directly applying the catalyst ink to the electrolyte membrane. However, since the solvent in the catalyst ink soaks into the electrolyte membrane, it must be applied while controlling the swelling state of the electrolyte membrane, and it is difficult to form a catalyst layer with a uniform thickness (Non-Patent Document) 1).
On the other hand, it has been proposed to stack a catalyst layer on an electrolyte membrane by such a transfer method. This is a method in which a catalyst ink is applied to a transfer substrate in advance, dried, and then the catalyst layer is adhered to the electrolyte membrane by heat and pressure using the obtained transfer substrate with a catalyst layer. As a result, it is possible to produce a membrane / electrode assembly with low power generation performance and low interface resistance between the catalyst layer and the electrolyte membrane.

このような転写法では、触媒層とガスケット層の位置合わせにおいて、一般に、ガスケット層の開口部を触媒層の面積より大きくとることで、転写された触媒層付電解質膜の周囲にガスケット層を配置している。このことは、触媒層付電解質膜の寸法が、湿度や温度によって、大きく変化してしまうためであり、ガスケットを積層するために、ガスケットの開口部の面積にあらかじめ余裕を持たせる必要があるためである。このため、触媒層とガスケット層の間の空隙が存在し、これをできるだけ抑える必要があった。   In such a transfer method, when the catalyst layer and the gasket layer are aligned, the gasket layer is generally arranged around the transferred electrolyte membrane with the catalyst layer by making the opening of the gasket layer larger than the area of the catalyst layer. doing. This is because the dimensions of the electrolyte membrane with a catalyst layer change greatly depending on humidity and temperature, and in order to stack the gaskets, it is necessary to provide a margin in advance for the area of the gasket opening. It is. For this reason, there is a gap between the catalyst layer and the gasket layer, and it is necessary to suppress this as much as possible.

空隙は、燃料ガスと酸化ガスのクロスリークの要因として考えられ、化学的な電解質膜の劣化を促すことが報告されている。さらには、空隙は、温度や湿度の変動で生じる電解質膜の膨潤や収縮による応力が集中しやすい領域であることから、物理的な電解質膜の劣化を促すことも報告されている(非特許文献2)。   It is reported that the air gap is considered as a cause of the cross leak between the fuel gas and the oxidizing gas, and promotes the deterioration of the chemical electrolyte membrane. Furthermore, since the voids are regions where stress due to swelling and shrinkage of the electrolyte membrane that occurs due to fluctuations in temperature and humidity is likely to concentrate, it has been reported that the void promotes physical electrolyte membrane degradation (non-patent literature). 2).

触媒層とガスケット層の空隙を抑えるには、ガスケット層を触媒層の周囲に正確に配置させる位置合わせが必要である。しかしながら、正確な位置合わせを可能にする設備を製造ラインに導入することはコストの増大を招く。これに対し、特許文献1では、電解質膜にガスケット層を配置し、ガスケットを介して、ガスケット開口部よりも大きな面積で塗布された触媒層付転写基材を配置した構成のものを、熱プレス等により接合させることで、膜電極接合体を製造することを報告している。この製造方法により、簡便な方法でガスケットを触媒層の周囲に正確に配置させることができる。   In order to suppress the gap between the catalyst layer and the gasket layer, it is necessary to align the gasket layer accurately around the catalyst layer. However, introducing equipment that enables accurate alignment into the production line increases costs. On the other hand, in Patent Document 1, a gasket layer is disposed on an electrolyte membrane, and a transfer substrate with a catalyst layer coated with a larger area than the gasket opening is disposed via a gasket. It has been reported that a membrane electrode assembly is manufactured by bonding by means of, for example. By this manufacturing method, the gasket can be accurately arranged around the catalyst layer by a simple method.

特開2006−286430号公報JP 2006-286430 A

I. Park, W. Li, A. Manthiram, J. Power Sorces, 195, 7078-7082, 2010.I. Park, W. Li, A. Manthiram, J. Power Sorces, 195, 7078-7082, 2010. 岩田, 燃料電池, 6[3], 52-55, 2007Iwata, Fuel Cell, 6 [3], 52-55, 2007

しかしながら、ガスケットを介して、触媒層を電解質膜へ転写させる場合、ガスケット層と電解質膜の高さのギャップのために、ガスケット近傍まで触媒層付転写シートが追従できず、触媒層を完全に転写させることが困難であった。そこで、本発明は、ガスケット近傍での触媒層の転写不良という問題を解決するためになされたものであり、触媒層とガスケット層の空隙が50μm以下に押さえられる膜電極接合体の製造方法を提供することを目的とする。   However, when transferring the catalyst layer to the electrolyte membrane via a gasket, the transfer sheet with the catalyst layer cannot follow the gasket layer due to the gap between the gasket layer and the electrolyte membrane, and the catalyst layer is completely transferred. It was difficult to make. Therefore, the present invention has been made to solve the problem of poor transfer of the catalyst layer in the vicinity of the gasket, and provides a method for manufacturing a membrane electrode assembly in which the gap between the catalyst layer and the gasket layer is suppressed to 50 μm or less. The purpose is to do.

本発明に係る膜電極接合体の製造方法は、上記の目的を達成するために、次のように構成される。
まず、請求項1の発明は、
膜電極接合体を構成する電解質膜のアノード側及びカソード側にそれぞれ位置する両面の周縁部に第一ガスケット層を積層する工程と、
前記電解質膜の両面側において、前記第一ガスケット層の内側に露出する前記電解質膜に触媒層を積層する工程と、
前記電解質膜の両面側において、前記第一ガスケット層に跨るガス拡散層を前記触媒層に積層する工程と、
前記電解質膜の両面側において、前記ガス拡散層の周囲に露出する前記第一ガスケット層に第二ガスケット層を積層する工程とを含み、
前記電解質膜に前記触媒層を積層する前記工程は、触媒インクをゴム転写基材に塗布した触媒層転写基材を用いて前記触媒層を前記電解質膜に転写する工程を含む、
ことを特徴とする膜電極接合体の製造方法である。
In order to achieve the above object, a method for producing a membrane / electrode assembly according to the present invention is configured as follows.
First, the invention of claim 1
Laminating the first gasket layer on the peripheral portions of both surfaces located on the anode side and the cathode side of the electrolyte membrane constituting the membrane electrode assembly,
Laminating a catalyst layer on the electrolyte membrane exposed inside the first gasket layer on both sides of the electrolyte membrane;
Laminating a gas diffusion layer straddling the first gasket layer on the catalyst layer on both sides of the electrolyte membrane;
Laminating a second gasket layer on the first gasket layer exposed around the gas diffusion layer on both sides of the electrolyte membrane,
The step of laminating the catalyst layer on the electrolyte membrane includes a step of transferring the catalyst layer to the electrolyte membrane using a transfer substrate with a catalyst layer in which a catalyst ink is applied to a rubber transfer substrate.
It is a manufacturing method of the membrane electrode assembly characterized by the above-mentioned.

また、請求項の発明は、
前記電解質膜に前記触媒層を積層する前記工程において、フッ素コーディングした前記ゴム転写基材に前記触媒インクを塗布した前記触媒層付転写基材を用いて行うことを特徴とする膜電極接合体の製造方法である。
The invention of claim 2
The step of laminating the catalyst layer on the electrolyte membrane is carried out using the transfer substrate with a catalyst layer obtained by applying the catalyst ink to the fluorine-coded rubber transfer substrate. It is a manufacturing method.

また、請求項の発明は、
前記電解質膜に前記触媒層を積層する前記工程において、フッ素樹脂シートを設置した前記ゴム転写基材に前記触媒インクを塗布した前記触媒層付転写基材を用いて行うことを特徴とする膜電極接合体の製造方法である。
The invention of claim 3
In the step of laminating the catalyst layer on the electrolyte membrane, the membrane electrode is formed by using the transfer substrate with a catalyst layer in which the catalyst ink is applied to the rubber transfer substrate on which a fluororesin sheet is installed. It is a manufacturing method of a joined object.

また、請求項の発明は、
前記電解質膜に前記触媒層を積層する前記工程において、前記ゴム転写基材の前記電解質膜と反対の面側に多孔体によるシート基材を配置した状態で、該シート基材の上から熱ラミネート処理して、前記触媒層を前記電解質膜に転写する工程を含むことを特徴とする膜電極接合体の製造方法である。
The invention of claim 4
In the step of laminating the catalyst layer on the electrolyte membrane, heat lamination is performed from above the sheet substrate with a porous sheet substrate disposed on the surface of the rubber transfer substrate opposite to the electrolyte membrane. It is a manufacturing method of the membrane electrode assembly characterized by including the process and transferring the said catalyst layer to the said electrolyte membrane.

本発明によれば、触媒層の電解質膜への転写において、ゴム転写基材を使用することから、ガスケット付電解質膜のガスケット近傍まで触媒層を電解質膜へ転写させることができる。このため、触媒層とガスケット層の空隙を50μm以下に抑えることができ、電解質膜の劣化を抑制することができるので、膜電極接合体の発電性能の低下を防ぐことができる。   According to the present invention, since the rubber transfer substrate is used in transferring the catalyst layer to the electrolyte membrane, the catalyst layer can be transferred to the electrolyte membrane to the vicinity of the gasket of the electrolyte membrane with gasket. For this reason, since the space | gap of a catalyst layer and a gasket layer can be suppressed to 50 micrometers or less and deterioration of an electrolyte membrane can be suppressed, the fall of the power generation performance of a membrane electrode assembly can be prevented.

さらには、熱ラミネートによる触媒層の電解質層への転写の際に、輸送シートと転写基材の間に、多孔体によるシート基材を挿入することで、輸送シートと転写基材の間の空気かみを抑制できる。このため、ガスケット付電解質膜への触媒層の転写性を増すことができる。   Furthermore, when transferring the catalyst layer to the electrolyte layer by thermal lamination, the air between the transport sheet and the transfer substrate is inserted by inserting a porous sheet substrate between the transport sheet and the transfer substrate. Biting can be suppressed. For this reason, the transferability of the catalyst layer to the electrolyte membrane with gasket can be increased.

本発明の一実施形態に係る製造方法によって製造した膜電極接合体の説明図である。It is explanatory drawing of the membrane electrode assembly manufactured by the manufacturing method which concerns on one Embodiment of this invention. 図1に示す第一ガスケット層の詳細な構成の説明図である。It is explanatory drawing of the detailed structure of the 1st gasket layer shown in FIG. 本発明の一実施形態に係る膜電極接合体の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the membrane electrode assembly which concerns on one Embodiment of this invention.

以下に、本発明の好適な実施形態を添付図面に基づいて説明する。以下の説明において参照する各図では、他の図と同等の構成要素は同一符号によって示す。
(膜電極接合体の構造)
図1を参照して、本発明の実施形態に係る製造方法によって製造した膜電極接合体の構造を説明する。
図1に示す膜電極接合体10は、電解質膜1と、電解質膜1のアノード側となる一方の面に積層された触媒層2a、第一ガスケット層3a、第二ガスケット層4a、ガス拡散層5aと、電解質膜1のカソード側となる他方の面に積層された触媒層2c、第一ガスケット層3c、第二ガスケット層4c、ガス拡散層5cを有して構成される。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In each drawing referred to in the following description, components equivalent to those in the other drawings are denoted by the same reference numerals.
(Structure of membrane electrode assembly)
With reference to FIG. 1, the structure of the membrane electrode assembly manufactured by the manufacturing method which concerns on embodiment of this invention is demonstrated.
A membrane electrode assembly 10 shown in FIG. 1 includes an electrolyte membrane 1 and a catalyst layer 2a, a first gasket layer 3a, a second gasket layer 4a, and a gas diffusion layer laminated on one surface on the anode side of the electrolyte membrane 1. 5a and a catalyst layer 2c, a first gasket layer 3c, a second gasket layer 4c, and a gas diffusion layer 5c laminated on the other surface on the cathode side of the electrolyte membrane 1.

膜電極接合体10は、ガスケット層を第一ガスケット層3a、3cと第二ガスケット層4a、4cとに分けている。このことは、触媒層2a、2cの全体に燃料ガスまたは酸化ガスを拡散させることを目的に、ガス拡散層5a、5cの面積を触媒層2a、2cの面積より大きくしたことによって生じる、ガス拡散層5a、5cと触媒層2a、2cの空隙を埋めるためである。具体的には、ガスケット層を第一ガスケット層3a、3cと第二ガスケット層4a、4cとに分け、触媒層2a、2cの周囲を囲むように第一ガスケット層3a、3cを配置すると共に、ガス拡散層5a、5cとその周囲を囲む第二ガスケット層4a、4cとを、第一ガスケット層3a、3c上に積層する。これにより、触媒層2a、2cとガス拡散層5a、5cとの空隙を埋めて、燃料ガスおよび酸化ガスを均一に触媒層2a、2cに行き渡らせるとともに、発電によって生成した水の滞留を防止できることから、発電性能を向上させることができる。   The membrane electrode assembly 10 divides the gasket layer into first gasket layers 3a and 3c and second gasket layers 4a and 4c. This is due to the fact that the gas diffusion layers 5a and 5c are made larger in area than the catalyst layers 2a and 2c for the purpose of diffusing the fuel gas or the oxidizing gas throughout the catalyst layers 2a and 2c. This is for filling the gaps between the layers 5a and 5c and the catalyst layers 2a and 2c. Specifically, the gasket layer is divided into first gasket layers 3a and 3c and second gasket layers 4a and 4c, and the first gasket layers 3a and 3c are disposed so as to surround the catalyst layers 2a and 2c. Gas diffusion layers 5a and 5c and second gasket layers 4a and 4c surrounding the gas diffusion layers 5a and 5c are laminated on the first gasket layers 3a and 3c. As a result, the gap between the catalyst layers 2a, 2c and the gas diffusion layers 5a, 5c can be filled, and the fuel gas and the oxidizing gas can be uniformly distributed to the catalyst layers 2a, 2c, and the retention of water generated by power generation can be prevented. Therefore, the power generation performance can be improved.

このように構成した本実施形態の膜電極接合体10は、後述する製造方法により製造することで、触媒層2a、2cと第一ガスケット層3a、3cの空隙が50μm以下となる。このことにより、燃料ガスと酸化ガスのクロスリークが軽減され、化学的な電解質膜の劣化を抑制するとともに、空隙に集中にしやすい、温度や湿度の変動で生じる電解質膜1の膨潤や収縮による応力起因の物理的な電解質膜1の劣化をも抑制することができる。   The membrane electrode assembly 10 of the present embodiment configured as described above is manufactured by a manufacturing method described later, so that the gap between the catalyst layers 2a and 2c and the first gasket layers 3a and 3c is 50 μm or less. As a result, the cross leak between the fuel gas and the oxidizing gas is reduced, the deterioration of the chemical electrolyte membrane is suppressed, and the stress due to the swelling and shrinkage of the electrolyte membrane 1 caused by the temperature and humidity fluctuations is easily concentrated. Degradation of the physical electrolyte membrane 1 due to this can also be suppressed.

電解質膜1は、固体高分子形燃料電池に一般的に用いられる電解質膜であればよい。電解質膜1は、例えば、フッ素系電解質膜や炭化水素膜が好適に使用でき、特にフッ素系電解質膜が望ましい。
また、電解質膜1の面積は、アノード側およびカソード側の両触媒層2a、2cの面積より一回り大きい面積を持つことが望ましい。このことは、触媒層2a、2cと同等の面積を持つ電解質膜1を使用した場合、触媒層2a、2cの端部からのガスリークが懸念されるためである。
The electrolyte membrane 1 may be an electrolyte membrane that is generally used for solid polymer fuel cells. For example, a fluorine-based electrolyte membrane or a hydrocarbon film can be suitably used as the electrolyte membrane 1, and a fluorine-based electrolyte membrane is particularly desirable.
The area of the electrolyte membrane 1 is preferably larger than the area of both the anode-side and cathode-side catalyst layers 2a, 2c. This is because when the electrolyte membrane 1 having the same area as the catalyst layers 2a and 2c is used, there is a concern about gas leak from the end portions of the catalyst layers 2a and 2c.

触媒層2a、2cは、固体高分子形燃料電池に一般的に用いられる触媒層であればよい。例えば、白金または他の金属(例えば、Ru、Rh、Mo、Cr、Co、Fe等)と合金の微粒子(平均粒径、10nm以下が望ましい。)が、表面に担持されたカーボンブラック等の導電性炭素微粒子(平均粒径:20乃至100nm程度)と、パーフルオロスルホン酸樹脂溶液等の高分子とが適当な溶剤(エタノール等)中で均一に混合されたインクより作成されるものを使用できる。   The catalyst layers 2a and 2c may be catalyst layers that are generally used for polymer electrolyte fuel cells. For example, platinum or other metal (for example, Ru, Rh, Mo, Cr, Co, Fe, etc.) and fine particles of an alloy (an average particle size of 10 nm or less is desirable) is a conductive material such as carbon black supported on the surface. Can be used which is made from an ink in which carbonaceous fine particles (average particle size: about 20 to 100 nm) and a polymer such as a perfluorosulfonic acid resin solution are uniformly mixed in an appropriate solvent (ethanol or the like). .

第一ガスケット層3a、3cは、図2に示すように、熱可塑性樹脂層31a、31cと接着層32a、32cよりなる。例えば、熱可塑性樹脂層31a、31cは、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、SPS(シンジオタクチックポリスチレン)、PTFE(ポリテトラフルオロエチレン)、Pi(ポリイミド)等を使用することができる。特に、弾性率の高い熱可塑性樹脂が望ましく、繊維強化されたものを用いてもよい。
また、接着層32a、32cは、粘着剤や接着剤、ヒートシール剤よりなる。粘着剤または接着剤は、主骨格がポリシロキサン骨格やポリエーテル骨格、フルオロエーテル骨格、ポリオレフィン骨格等のものが使用できる。ヒートシール剤は、熱融着温度が120乃至150℃程度のものが使用できる。
第一ガスケット層3a、3cの厚さは、300μm以下であることが望ましい。このことは、触媒層2a、2cの電解質膜1への転写において、本発明の膜電極接合体10の製造方法により、第一ガスケット層3a、3cの厚さが300μm以下であれば、ガスケット付電解質膜のガスケット近傍まで触媒層2a、2cを電解質膜1へ完全に転写させることができるためである。
As shown in FIG. 2, the first gasket layers 3a and 3c include thermoplastic resin layers 31a and 31c and adhesive layers 32a and 32c. For example, the thermoplastic resin layers 31a and 31c may use PET (polyethylene terephthalate), PEN (polyethylene naphthalate), SPS (syndiotactic polystyrene), PTFE (polytetrafluoroethylene), Pi (polyimide), or the like. it can. In particular, a thermoplastic resin having a high elastic modulus is desirable, and a fiber reinforced one may be used.
The adhesive layers 32a and 32c are made of an adhesive, an adhesive, or a heat seal agent. As the pressure-sensitive adhesive or adhesive, those having a main skeleton such as a polysiloxane skeleton, a polyether skeleton, a fluoroether skeleton, and a polyolefin skeleton can be used. A heat sealing agent having a heat sealing temperature of about 120 to 150 ° C. can be used.
The thickness of the first gasket layers 3a and 3c is desirably 300 μm or less. This is because, in the transfer of the catalyst layers 2a and 2c to the electrolyte membrane 1, if the thickness of the first gasket layers 3a and 3c is 300 μm or less by the method for manufacturing the membrane electrode assembly 10 of the present invention, the gasket is attached. This is because the catalyst layers 2a and 2c can be completely transferred to the electrolyte membrane 1 up to the vicinity of the gasket of the electrolyte membrane.

図面に詳細には示していないが、第二ガスケット層4a、4cは、第一ガスケット層3a、3cと同様に熱可塑性樹脂層と接着層よりなる。   Although not shown in detail in the drawing, the second gasket layers 4a and 4c are made of a thermoplastic resin layer and an adhesive layer in the same manner as the first gasket layers 3a and 3c.

ガス拡散層5a、5cは、少なくともガス透過性(通気性)と導電性を有するものであればよい。例えば、炭素材料によって構成された織布、不織布(炭素繊維を交絡させることによって得られるフェルト等)、ペーパー類(カーボンペーパー等)が汎用される。
ガス拡散層5a、5cは、触媒層2a、2cより大きい面積を持つ。結果、触媒層2a、2cの全体に燃料ガスまたは酸化ガスが供給されるようになるので、高価な白金触媒を端部まで利用することができる。
The gas diffusion layers 5a and 5c only need to have at least gas permeability (breathability) and conductivity. For example, woven fabrics, non-woven fabrics (felts obtained by entanglement of carbon fibers, etc.) and papers (carbon papers etc.) made of carbon material are widely used.
The gas diffusion layers 5a and 5c have a larger area than the catalyst layers 2a and 2c. As a result, since the fuel gas or the oxidizing gas is supplied to the entire catalyst layers 2a and 2c, an expensive platinum catalyst can be used up to the end.

(膜電極接合体の製造方法)
次に、図2及び図3を参照して、本発明の実施形態に係る膜電極接合体の製造方法について説明する。
図2に示すように、電解質膜1上に第一ガスケット層3c、3aを形成する。第一ガスケット層3a、3cを形成するにあたっては、熱可塑性樹脂層31c、31aの片面側に、接着層32c、32aとして、粘着剤または接着剤、ヒートシール剤をスクリーン印刷により塗布し、接着層付き熱可塑性樹脂層31a、31cを電解質膜1上に設置、固定化する。第一ガスケット層3a、3cの厚さは、隣接させる触媒層2a、2cと同等もしくは近いことが望ましい。
第一ガスケット層3a、3cの厚さと触媒層2a、2cの厚さが異なると、第一ガスケット層3a、3c上にガス拡散層5a、5cを積層した際に両層間に空隙が生じることから、発電性能が低下してしまう。
また、電解質膜1の厚さは、薄ければ薄いほどプロトン伝導に起因する抵抗が抑えられ、発電性能の向上が期待できるが、薄膜化に伴いハンドリング性が低下し、歩留まりの低下を招く。これに対し、第一ガスケット層3a、3cを電解質膜1に設置後、固定化することで、電解質膜1のハンドリングを第一ガスケット層3a、3cの部分にて行えるようになる。これにより、電解質膜1のハンドリング性が向上する。
(Method for producing membrane electrode assembly)
Next, with reference to FIG.2 and FIG.3, the manufacturing method of the membrane electrode assembly which concerns on embodiment of this invention is demonstrated.
As shown in FIG. 2, first gasket layers 3 c and 3 a are formed on the electrolyte membrane 1. In forming the first gasket layers 3a and 3c, an adhesive, an adhesive, or a heat sealant is applied to one side of the thermoplastic resin layers 31c and 31a as the adhesive layers 32c and 32a by screen printing. The attached thermoplastic resin layers 31 a and 31 c are installed and fixed on the electrolyte membrane 1. The thickness of the first gasket layers 3a and 3c is desirably equal to or close to that of the adjacent catalyst layers 2a and 2c.
If the thickness of the first gasket layers 3a, 3c and the thickness of the catalyst layers 2a, 2c are different, voids are generated between the two layers when the gas diffusion layers 5a, 5c are laminated on the first gasket layers 3a, 3c. The power generation performance will be reduced.
Further, as the thickness of the electrolyte membrane 1 is thinner, resistance due to proton conduction is suppressed, and improvement in power generation performance can be expected. However, as the thickness of the electrolyte membrane 1 is reduced, handling properties are reduced and yield is reduced. On the other hand, the first gasket layers 3a and 3c are placed on the electrolyte membrane 1 and then fixed, whereby the electrolyte membrane 1 can be handled at the first gasket layers 3a and 3c. Thereby, the handleability of the electrolyte membrane 1 is improved.

電解質膜1上に第一ガスケット層3a、3cを形成した後、ゴム系転写基材に塗布した触媒層2a、2cを電解質膜1の各面に転写する。ゴム系転写基材は、ショアA硬さが40より低いものは、熱ラミネートによる転写の際にせん断による歪みが大きく、転写不良が生じる。一方、ショアA硬さが80より高いものは、第一ガスケット層3a、3cと電解質膜1の高さのギャップへの追従性が低く、ガスケット近傍まで触媒層を電解質膜へ転写させることが難しいので、転写した触媒層2a、2cとガスケット層3a、3cとの間の空隙が大きくなってしまう。
ゴム系転写基材として、シリコーンゴムおよびフッ素ゴム基材のうち、ショアA硬さが40〜70のものが、第一ガスケット層3a、3cと電解質膜1の高さのギャップへの追従性が高く転写性も良好であることから、転写基材として望ましい。ゴム系転写基材の触媒インクに対する濡れ性が問題になる場合は、コロナ処理やプラズマ処理、フッ素コーティング等の公知の表面処理法を用いてもよい。
After the first gasket layers 3 a and 3 c are formed on the electrolyte membrane 1, the catalyst layers 2 a and 2 c applied to the rubber transfer substrate are transferred to each surface of the electrolyte membrane 1. When the rubber-based transfer substrate has a Shore A hardness of less than 40, distortion due to shear is large during transfer by thermal lamination, resulting in transfer failure. On the other hand, when the Shore A hardness is higher than 80, the followability to the gap between the heights of the first gasket layers 3a and 3c and the electrolyte membrane 1 is low, and it is difficult to transfer the catalyst layer to the electrolyte membrane to the vicinity of the gasket. Therefore, the gap between the transferred catalyst layers 2a and 2c and the gasket layers 3a and 3c becomes large.
Of the silicone rubber and fluororubber base materials, those having a Shore A hardness of 40 to 70 as the rubber-based transfer base material have the ability to follow the gap between the heights of the first gasket layers 3a and 3c and the electrolyte membrane 1. It is desirable as a transfer substrate because of its high transferability and good transferability. When the wettability of the rubber-based transfer substrate with respect to the catalyst ink becomes a problem, a known surface treatment method such as corona treatment, plasma treatment, or fluorine coating may be used.

さらに、ゴム転写基材の電解質膜1側にフッ素樹脂シートを設置して、フッ素樹脂シート上に触媒インクを塗布したものを触媒層付転写基材としてもよい。   Further, a transfer substrate with a catalyst layer may be formed by installing a fluororesin sheet on the electrolyte membrane 1 side of the rubber transfer substrate and applying a catalyst ink on the fluororesin sheet.

また、図3に示すように、熱ラミネートによる触媒層2a、2cの転写を行なう場合、ゴム転写基材6の前記第一ガスケット層付き電解質膜1と反対の面側に、多孔体によるシート基材7を配置する。その結果、前記ゴム転写基材6と熱ラミネートに使用する輸送シート(SUS板9)間の空気かみを避けることができ、転写不良を抑えることができる。   In addition, as shown in FIG. 3, when transferring the catalyst layers 2a and 2c by thermal lamination, a sheet base made of a porous material is provided on the surface of the rubber transfer substrate 6 opposite to the electrolyte membrane 1 with the first gasket layer. The material 7 is arranged. As a result, air contact between the rubber transfer substrate 6 and the transport sheet (SUS plate 9) used for thermal lamination can be avoided, and transfer defects can be suppressed.

また、第一ガスケット層3a、3cの電解質膜1側と反対の面にマスクシート8をあらかじめ積層させておいてもよい。結果、熱ラミネートによる触媒層2a、2cの転写後、第一ガスケット層3a、3c上に転写されてしまった触媒はマスクシート8を除去することで取り除くことができる。   The mask sheet 8 may be laminated in advance on the surface of the first gasket layers 3a and 3c opposite to the electrolyte membrane 1 side. As a result, after the transfer of the catalyst layers 2 a and 2 c by thermal lamination, the catalyst transferred onto the first gasket layers 3 a and 3 c can be removed by removing the mask sheet 8.

続いて、図1に示すように、第二ガスケット層4a、4cを第一ガスケット層3a、3c上に配置し、形成した第二ガスケット層4a、4cの開口部に露出する、触媒層2a、2cとその周囲の第一ガスケット層3a、3cに跨る部分上に、ガス拡散層5a、5cを積層する。ただし、第二ガスケット層4a、4cとガス拡散層5a、5cの積層する順番は、この限りではなく、先にガス拡散層5a、5cを積層してから、第二ガスケット層4a、4cを配置してもよい。最後に、熱ラミネートもしくは熱プレスを行うことで、膜電極接合体10を一体化させることができる。   Subsequently, as shown in FIG. 1, the second gasket layers 4a and 4c are disposed on the first gasket layers 3a and 3c, and exposed to the openings of the formed second gasket layers 4a and 4c. Gas diffusion layers 5a and 5c are laminated on a portion straddling 2c and the surrounding first gasket layers 3a and 3c. However, the order in which the second gasket layers 4a and 4c and the gas diffusion layers 5a and 5c are stacked is not limited to this, and the second gasket layers 4a and 4c are disposed after the gas diffusion layers 5a and 5c are stacked first. May be. Finally, the membrane electrode assembly 10 can be integrated by performing thermal lamination or hot pressing.

以下に、本発明の固体高分子形燃料電池における膜電極接合体およびその製造方法について、具体例を挙げて説明するが、本発明は実施例によって制限されるものではない。
白金担持量が60%である白金担持カーボン触媒と、20質量%高分子形電解質溶液であるNafion(登録商標、デュポン社製)を水、エタノール=1:2の混合溶媒に加えた。続いて遊星ボールミルで分散処理を行い、触媒インクを調整した。
Hereinafter, the membrane electrode assembly and the production method thereof in the polymer electrolyte fuel cell of the present invention will be described with specific examples, but the present invention is not limited to the examples.
A platinum-supported carbon catalyst having a platinum loading of 60% and Nafion (registered trademark, manufactured by DuPont), which is a 20% by mass polymer electrolyte solution, were added to a mixed solvent of water and ethanol = 1: 2. Subsequently, a dispersion treatment was performed with a planetary ball mill to prepare a catalyst ink.

プレート上に、転写基材として、シリコーンゴムフィルムを固定後、アプリケーターにより触媒インクを転写基材上に塗布した。触媒インクからなる塗膜が形成された転写シートをオーブン(熱風循環恒温乾燥機41−S5H/佐竹化学機械工業社製)に入れ、オーブンの温度を50 ℃に設定し、5分間乾燥させることで転写基材上に触媒層を作成した。このとき、白金担持量はカソード触媒層が約0.5mg/cm 、アノード触媒層が約0.3mg/cm となるように調整した。 After fixing a silicone rubber film as a transfer substrate on the plate, a catalyst ink was applied onto the transfer substrate with an applicator. The transfer sheet on which the coating film made of catalyst ink is formed is placed in an oven (hot air circulating constant temperature dryer 41-S5H / Satake Chemical Machinery Co., Ltd.), the oven temperature is set to 50 ° C. and dried for 5 minutes. A catalyst layer was formed on the transfer substrate. At this time, the amount of platinum supported was adjusted so that the cathode catalyst layer was about 0.5 mg / cm 2 and the anode catalyst layer was about 0.3 mg / cm 2 .

次に、第一ガスケット層として、枠状に切り取ったPENフィルム(厚さ:25μm、内枠の面積25cm )に接着剤をスクリーン印刷によりパターン印刷し、電解質膜の両面に配置した。また、電解質膜として、Nafion211を用いた。続いて、120℃、120kgf/cm で5分間熱プレスを行い、第一ガスケット層を硬化、接着させた。 Next, an adhesive was pattern printed by screen printing on a PEN film (thickness: 25 μm, inner frame area 25 cm 2 ) cut into a frame shape as a first gasket layer, and arranged on both surfaces of the electrolyte membrane. Further, Nafion 211 was used as the electrolyte membrane. Subsequently, hot pressing was performed at 120 ° C. and 120 kgf / cm 2 for 5 minutes to cure and bond the first gasket layer.

次に、第一ガスケット層付き電解質膜に、触媒層が形成された転写基材、その外側にポーラスフィルム(厚さ:350μm)、を配置した構成で、熱ラミネートを行い、触媒層を転写した。転写後、転写基材、マスクシートを除去した。   Next, heat transfer was performed to transfer the catalyst layer in a configuration in which a transfer substrate having a catalyst layer formed on the electrolyte membrane with the first gasket layer and a porous film (thickness: 350 μm) on the outside were disposed. . After the transfer, the transfer substrate and the mask sheet were removed.

続いて、第二ガスケット層を第一ガスケット層上に配置し、形成した第二ガスケット層の開口部にMPL処理カーボンペーパー(東レ社製)を貼合したガス拡散層を積層した。次に、120℃、120kgf/cm で5分間熱プレスを行い、膜電極接合体の一体化を行なった。 Subsequently, the second gasket layer was disposed on the first gasket layer, and a gas diffusion layer in which MPL-treated carbon paper (manufactured by Toray Industries, Inc.) was bonded to the opening of the formed second gasket layer was laminated. Next, hot pressing was performed at 120 ° C. and 120 kgf / cm 2 for 5 minutes to integrate the membrane electrode assembly.

得られた膜電極接合体を刃型により打ち抜き、触媒層と第一ガスケット層のクリアランスを観察したところ、およそ30μmであった。   The obtained membrane / electrode assembly was punched out with a blade mold, and the clearance between the catalyst layer and the first gasket layer was observed, and was about 30 μm.

本発明は固体高分子形燃料電池、特に燃料電池自動車や家庭用燃料電池などにおける、固体高分子形燃料電池単セルやスタックに好適に活用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for a polymer electrolyte fuel cell single cell or a stack in a polymer electrolyte fuel cell, particularly a fuel cell automobile or a household fuel cell.

1…電解質膜
2a…アノード側触媒層
2c…カソード側触媒層
3a…アノード側第一ガスケット
3c…カソード側第一ガスケット
4a…アノード側第二ガスケット
4c…カソード側第二ガスケット
5a…アノード側ガス拡散層
5c…カソード側ガス拡散層
31a…アノード側熱可塑性樹脂層
31c…カソード側熱可塑性樹脂層
32a…アノード側接着層
32c…カソード側接着層
6…ゴム転写基材
7…多孔体によるシート基材
8…マスクシート
9…SUS板
10…膜電極接合体
DESCRIPTION OF SYMBOLS 1 ... Electrolyte membrane 2a ... Anode side catalyst layer 2c ... Cathode side catalyst layer 3a ... Anode side first gasket 3c ... Cathode side first gasket 4a ... Anode side second gasket 4c ... Cathode side second gasket 5a ... Anode side gas diffusion Layer 5c ... Cathode side gas diffusion layer 31a ... Anode side thermoplastic resin layer 31c ... Cathode side thermoplastic resin layer 32a ... Anode side adhesive layer 32c ... Cathode side adhesive layer 6 ... Rubber transfer substrate 7 ... Sheet substrate made of porous material 8 ... Mask sheet 9 ... SUS plate 10 ... Membrane electrode assembly

Claims (4)

膜電極接合体を構成する電解質膜のアノード側及びカソード側にそれぞれ位置する両面の周縁部に第一ガスケット層を積層する工程と、
前記電解質膜の両面側において、前記第一ガスケット層の内側に露出する前記電解質膜に触媒層を積層する工程と、
前記電解質膜の両面側において、前記第一ガスケット層に跨るガス拡散層を前記触媒層に積層する工程と、
前記電解質膜の両面側において、前記ガス拡散層の周囲に露出する前記第一ガスケット層に第二ガスケット層を積層する工程とを含み、
前記電解質膜に前記触媒層を積層する前記工程は、触媒インクをゴム転写基材に塗布した触媒層転写基材を用いて前記触媒層を前記電解質膜に転写する工程を含む、
ことを特徴とする膜電極接合体の製造方法。
Laminating the first gasket layer on the peripheral portions of both surfaces located on the anode side and the cathode side of the electrolyte membrane constituting the membrane electrode assembly,
Laminating a catalyst layer on the electrolyte membrane exposed inside the first gasket layer on both sides of the electrolyte membrane;
Laminating a gas diffusion layer straddling the first gasket layer on the catalyst layer on both sides of the electrolyte membrane;
Laminating a second gasket layer on the first gasket layer exposed around the gas diffusion layer on both sides of the electrolyte membrane,
The step of laminating the catalyst layer on the electrolyte membrane includes a step of transferring the catalyst layer to the electrolyte membrane using a transfer substrate with a catalyst layer in which a catalyst ink is applied to a rubber transfer substrate.
A method for producing a membrane electrode assembly, comprising:
前記電解質膜に前記触媒層を積層する前記工程は、フッ素コーディングした前記ゴム転写基材に前記触媒インクを塗布した前記触媒層付転写基材を用いて行うことを特徴とする請求項1に記載の膜電極接合体の製造方法。   The said process of laminating | stacking the said catalyst layer on the said electrolyte membrane is performed using the said transfer base material with a catalyst layer which apply | coated the said catalyst ink to the said rubber transfer base material which carried out the fluorine coding. The manufacturing method of the membrane electrode assembly. 前記電解質膜に前記触媒層を積層する前記工程は、フッ素樹脂シートを設置した前記ゴム転写基材に前記触媒インクを塗布した前記触媒層付転写基材を用いて行うことを特徴とする請求項1に記載の膜電極接合体の製造方法。   The step of laminating the catalyst layer on the electrolyte membrane is performed using the transfer substrate with a catalyst layer in which the catalyst ink is applied to the rubber transfer substrate on which a fluororesin sheet is installed. 2. A method for producing a membrane electrode assembly according to 1. 前記電解質膜に前記触媒層を積層する前記工程において、前記ゴム転写基材の前記電解質膜と反対の面側に多孔体によるシート基材を配置した状態で、該シート基材の上から熱ラミネート処理して、前記触媒層を前記電解質膜に転写する工程を含むことを特徴とする請求項1に記載の膜電極接合体の製造方法。   In the step of laminating the catalyst layer on the electrolyte membrane, heat lamination is performed from above the sheet substrate with a porous sheet substrate disposed on the surface of the rubber transfer substrate opposite to the electrolyte membrane. The method for producing a membrane / electrode assembly according to claim 1, further comprising a step of transferring the catalyst layer to the electrolyte membrane.
JP2011071494A 2011-03-29 2011-03-29 Manufacturing method of membrane electrode assembly Expired - Fee Related JP5849418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071494A JP5849418B2 (en) 2011-03-29 2011-03-29 Manufacturing method of membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071494A JP5849418B2 (en) 2011-03-29 2011-03-29 Manufacturing method of membrane electrode assembly

Publications (2)

Publication Number Publication Date
JP2012209019A JP2012209019A (en) 2012-10-25
JP5849418B2 true JP5849418B2 (en) 2016-01-27

Family

ID=47188602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071494A Expired - Fee Related JP5849418B2 (en) 2011-03-29 2011-03-29 Manufacturing method of membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP5849418B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115238B2 (en) * 2013-03-27 2017-04-19 凸版印刷株式会社 Membrane electrode structure and manufacturing method thereof
JP6201398B2 (en) * 2013-04-22 2017-09-27 凸版印刷株式会社 Transfer sheet with mask film / base film, method for producing transfer sheet with mask film / base film, and method for producing catalyst layer sheet
JP6354126B2 (en) * 2013-09-02 2018-07-11 凸版印刷株式会社 Membrane electrode assembly and manufacturing method thereof
JP6522924B2 (en) * 2014-11-10 2019-05-29 帝人株式会社 Laminate having a heat seal layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286887B2 (en) * 2008-03-31 2013-09-11 大日本印刷株式会社 Membrane / electrode assembly with reinforcing sheet for polymer electrolyte fuel cell and method for producing the same

Also Published As

Publication number Publication date
JP2012209019A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5363335B2 (en) Gas diffusion layer with built-in gasket
JP4540316B2 (en) Catalyst coated ionomer membrane with protective film layer and membrane electrode assembly made from the membrane
JP2007095669A (en) Electrolyte film-electrode assembly
KR101072829B1 (en) Method and system of preparing Membrane-electrode assembly of fuel cell
JP2014053118A (en) Fuel cell and manufacturing method of the same
JP5594021B2 (en) Membrane electrode assembly and manufacturing method thereof
JP5849418B2 (en) Manufacturing method of membrane electrode assembly
JP2008135295A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and its manufacturing method
JP2015215958A (en) Method for manufacturing fuel cell
JP5838570B2 (en) Membrane electrode assembly in polymer electrolyte fuel cell
JP5707825B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP2010192392A (en) Porous membrane complex for fuel cell, electrolyte membrane-electrode-porous membrane complex for fuel cell, and manufacturing method of them
JP2016143468A (en) Electrolyte membrane for fuel cell, method of manufacturing electrode structure
JP5615794B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP2013258096A (en) Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
JP4852894B2 (en) Method for producing electrolyte membrane-electrode assembly
JP2016012444A (en) Fuel cell and manufacturing method of the same
JP2021099953A (en) Fuel battery unit cell
JP2013122929A (en) Gas diffusion layer element for solid polymer fuel cell, solid polymer fuel cell, and manufacturing method of the same
US20220037681A1 (en) Method for producing fuel cell
JP6144651B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP5720321B2 (en) Manufacturing method of gas diffusion electrode
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees