JP5614468B2 - Manufacturing method of gas diffusion electrode for fuel cell - Google Patents

Manufacturing method of gas diffusion electrode for fuel cell Download PDF

Info

Publication number
JP5614468B2
JP5614468B2 JP2013046535A JP2013046535A JP5614468B2 JP 5614468 B2 JP5614468 B2 JP 5614468B2 JP 2013046535 A JP2013046535 A JP 2013046535A JP 2013046535 A JP2013046535 A JP 2013046535A JP 5614468 B2 JP5614468 B2 JP 5614468B2
Authority
JP
Japan
Prior art keywords
porous layer
layer
conductive porous
gas diffusion
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013046535A
Other languages
Japanese (ja)
Other versions
JP2013140808A (en
Inventor
康太 中井
康太 中井
真広 山本
真広 山本
健一 落合
健一 落合
美由紀 寺戸
美由紀 寺戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013046535A priority Critical patent/JP5614468B2/en
Publication of JP2013140808A publication Critical patent/JP2013140808A/en
Application granted granted Critical
Publication of JP5614468B2 publication Critical patent/JP5614468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、固体高分子型燃料電池に用いるガス拡散電極の製造方法に関する。   The present invention relates to a method for producing a gas diffusion electrode used for a polymer electrolyte fuel cell.

燃料電池は、水素ガスなどの燃料ガスと酸素を有する酸化ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギを直接取り出すものである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから移動体用の電源として注目されている。   In a fuel cell, a fuel gas such as hydrogen gas and an oxidizing gas containing oxygen are electrochemically reacted through an electrolyte, and electric energy is directly taken out between electrodes provided on both surfaces of the electrolyte. In particular, a polymer electrolyte fuel cell using a polymer electrolyte has attracted attention as a power source for a mobile body because it has a low operating temperature and is easy to handle.

固体高分子型燃料電池は、水素イオン伝導性の固体高分子電解質膜の両面にそれぞれ白金等を含有する触媒層を設け、その上に電子伝導性および通気性を有するガス拡散層を設ける。触媒層およびガス拡散層が燃料極(アノードまたは負極)と酸化剤極(カソードまたは正極)となる(例えば、特許文献1)。そして、燃料極、酸化剤極へセパレータに設けたガス供給溝から水素を含む燃料ガス、酸素を含む酸化剤ガスをそれぞれ供給して、以下の電気化学反応により発電を行っている。   In the polymer electrolyte fuel cell, a catalyst layer containing platinum or the like is provided on both surfaces of a hydrogen ion conductive solid polymer electrolyte membrane, and a gas diffusion layer having electron conductivity and air permeability is provided thereon. The catalyst layer and the gas diffusion layer serve as a fuel electrode (anode or negative electrode) and an oxidant electrode (cathode or positive electrode) (for example, Patent Document 1). Then, a fuel gas containing hydrogen and an oxidant gas containing oxygen are supplied to the fuel electrode and the oxidant electrode from gas supply grooves provided in the separator, respectively, and electricity is generated by the following electrochemical reaction.

[燃料極反応]: H2 → 2H+ + 2e- …(化1)
[酸化剤極反応]: 2H+ + 2e- + 1/2O2 → H2O …(化2)
燃料電池の発電反応中、セパレータ流路から供給された燃料ガス、酸化剤ガスは、ガス拡散層を通過して触媒層に至り、触媒の作用で上記電極反応が促進される。ガス拡散層は触媒層への反応ガス供給経路、触媒層からセパレータまでの導電経路、高分子電解質膜の保湿及び過剰な生成水の排出という各機能を担っている。
[Fuel electrode reaction]: H 2 → 2H + + 2e (Formula 1)
[Oxidant electrode reaction]: 2H + + 2e + 1 / 2O 2 → H 2 O (chemical formula 2)
During the power generation reaction of the fuel cell, the fuel gas and oxidant gas supplied from the separator channel pass through the gas diffusion layer to reach the catalyst layer, and the electrode reaction is promoted by the action of the catalyst. The gas diffusion layer has various functions such as a reaction gas supply path to the catalyst layer, a conductive path from the catalyst layer to the separator, moisture retention of the polymer electrolyte membrane, and discharge of excess generated water.

通常、ガス拡散層は、カーボンペーパやカーボンクロスが用いられるが、ガス拡散層の表面には、カーボン繊維の毛羽や凹凸がある。このため、触媒層を形成した固体高分子電解質膜とガス拡散層とを接合した膜電極接合体(MEA)と、セパレータとを積層して燃料電池スタックを構成する際の締め付け圧力により、ガス拡散層の毛羽や凹凸が固体高分子電解質膜に損傷を与える可能性があり、これを回避するために、触媒層とガス拡散層との間に保護接着層を設ける技術が知られている(特許文献1)。この保護接着層は、導電性カーボンと水素イオン伝導性高分子電解質から構成される。   Normally, carbon paper or carbon cloth is used for the gas diffusion layer, but the surface of the gas diffusion layer has fluff or unevenness of carbon fibers. Therefore, gas diffusion is caused by the clamping pressure when a fuel cell stack is formed by stacking a separator and a membrane electrode assembly (MEA) in which a solid polymer electrolyte membrane in which a catalyst layer is formed and a gas diffusion layer are joined. In order to avoid the fluff and unevenness of the layer from damaging the solid polymer electrolyte membrane, a technique for providing a protective adhesive layer between the catalyst layer and the gas diffusion layer is known (patent) Reference 1). This protective adhesive layer is composed of conductive carbon and a hydrogen ion conductive polymer electrolyte.

特開2005−216834号公報(第6頁、図1)Japanese Patent Laying-Open No. 2005-216834 (page 6, FIG. 1)

しかしながら、上記従来の燃料電池構造においては、保護接着層はガス拡散層よりもガス透過性が劣るために、保護機能を重視して保護接着層を厚くすると、触媒層へのガス供給性能が低下し、逆に保護接着層を薄くすると、触媒層との接触性能が低下して接触抵抗が増加したり、ガス拡散層の毛羽や凹凸から触媒層を保護する機能が十分に果たされないという問題点があった。   However, in the above conventional fuel cell structure, the protective adhesive layer is inferior in gas permeability to the gas diffusion layer. Therefore, if the protective adhesive layer is thickened with an emphasis on the protective function, the gas supply performance to the catalyst layer decreases. On the other hand, if the protective adhesive layer is thinned, the contact performance with the catalyst layer decreases and the contact resistance increases, or the function of protecting the catalyst layer from the fluff and irregularities of the gas diffusion layer is not sufficiently fulfilled. There was a point.

本第1発明は、第1の空孔率を有する第1導電性多孔質層と第1の空孔率より低い第2の空孔率を有する第2導電性多孔質層とを備えた燃料電池用ガス拡散電極の製造方法であって、多孔質層を親水化処理溶液に浸漬して親水化する親水化工程と、親水化した前記多孔質層に導電性物質及びポリテトラフルオロエチレン微粒子を含有するインクスラリーを塗着する塗着工程と、前記導電性物質及び前記ポリテトラフルオロエチレン微粒子を塗着した多孔質層を熱処理する熱処理工程と、を備えたことを要旨とする燃料電池用ガス拡散電極の製造方法である。   The first invention provides a fuel comprising a first conductive porous layer having a first porosity and a second conductive porous layer having a second porosity lower than the first porosity. A method for producing a gas diffusion electrode for a battery, wherein a hydrophilic layer is made hydrophilic by immersing the porous layer in a hydrophilic treatment solution, and a conductive substance and polytetrafluoroethylene fine particles are added to the hydrophilic porous layer. A fuel cell gas comprising: a coating step of coating an ink slurry containing; and a heat treatment step of heat treating a porous layer coated with the conductive material and the polytetrafluoroethylene fine particles. It is a manufacturing method of a diffusion electrode.

また、本第2発明は、第1の空孔率を有する第1導電性多孔質層と第1の空孔率より低い第2の空孔率を有する第2導電性多孔質層とを備えた燃料電池用ガス拡散電極の製造方法であって、第3の空孔率を有する第1多孔質層と第3の空孔率より低い第4の空孔率を有する第2多孔質層とを積層したものを熱圧着により一体化して積層多孔質層を形成する熱圧着工程と、前記積層多孔質層を親水化処理溶液に浸漬して親水化する親水化工程と、親水化した前記積層多孔質層に導電性物質を含有するインクスラリーを塗着する塗着工程と、前記導電性物質を塗着した前記積層多孔質層を熱処理する熱処理工程と、を備えたことを要旨とする燃料電池用ガス拡散電極の製造方法である。   In addition, the second invention includes a first conductive porous layer having a first porosity and a second conductive porous layer having a second porosity lower than the first porosity. A fuel cell gas diffusion electrode manufacturing method, comprising: a first porous layer having a third porosity; and a second porous layer having a fourth porosity lower than the third porosity; Are laminated by thermocompression bonding to form a laminated porous layer, a hydrophilicizing step of hydrophilizing the laminated porous layer by immersing the laminated porous layer in a hydrophilization treatment solution, and the hydrophilicized laminate A fuel comprising: a coating step of coating an ink slurry containing a conductive substance on a porous layer; and a heat treatment step of heat-treating the laminated porous layer coated with the conductive substance. It is a manufacturing method of the gas diffusion electrode for batteries.

さらに、本第3発明は、第1の空孔率を有する第1導電性多孔質層と第1の空孔率より低い第2の空孔率を有する第2導電性多孔質層とを備えた燃料電池用ガス拡散電極の製造方法であって、前記第1導電性多孔質層と前記第2導電性多孔質層とが一体化された導電性多孔質層を形成する工程と、前記導電性多孔質層の前記第1導電性多孔質層にガス拡散層基材を加熱接合する工程と、を備えたことを要旨とする燃料電池用ガス拡散電極の製造方法である。   Furthermore, the third invention includes a first conductive porous layer having a first porosity and a second conductive porous layer having a second porosity lower than the first porosity. A method for producing a gas diffusion electrode for a fuel cell, comprising: forming a conductive porous layer in which the first conductive porous layer and the second conductive porous layer are integrated; and And a step of heat bonding a gas diffusion layer base material to the first conductive porous layer of the porous porous layer.

本第1発明によれば、多孔質層の表面には、導電性物質及びポリテトラフルオロエチレン微粒子からなる比較的空孔率が低い導電性多孔質層が形成されるとともに、比較的空孔率が高い多孔質層の内部まで導電性が付与されることにより比較的空孔率が高い導電性多孔質層が形成され、簡単な工程により、触媒層へのガス供給性能の低下を極力回避しながら、ガス拡散層の毛羽や凹凸から触媒層を十分保護することができる燃料電池用ガス拡散電極を製造することができるという効果がある。   According to the first aspect of the present invention, a conductive porous layer having a relatively low porosity formed of a conductive material and polytetrafluoroethylene fine particles is formed on the surface of the porous layer, and a relatively low porosity. A conductive porous layer with a relatively high porosity is formed by providing conductivity to the inside of the porous layer with a high porosity, and a simple process avoids a decrease in gas supply performance to the catalyst layer as much as possible. However, there is an effect that it is possible to manufacture a gas diffusion electrode for a fuel cell that can sufficiently protect the catalyst layer from fluff and unevenness of the gas diffusion layer.

本第2発明によれば、それぞれ所望の空孔率を有する比較的空孔率が高い導電性多孔質層と比較的空孔率が低い導電性多孔質層とを一体化した燃料電池用ガス拡散電極を製造することができるという効果がある。   According to the second aspect of the present invention, a fuel cell gas in which a conductive porous layer having a desired porosity and a relatively high porosity is integrated with a conductive porous layer having a relatively low porosity. There is an effect that a diffusion electrode can be manufactured.

本第3発明によれば、比較的空孔率が高い第1導電性多孔質層にガス拡散層基材が加熱接合するので、導電性多孔質層とガス拡散層基材との密着性を向上させることができる。   According to the third invention, since the gas diffusion layer base material is heat-bonded to the first conductive porous layer having a relatively high porosity, the adhesion between the conductive porous layer and the gas diffusion layer base material is improved. Can be improved.

本発明に係る燃料電池用ガス拡散電極を用いた単セルの構造を説明する模式断面図である。It is a schematic cross section explaining the structure of the single cell using the gas diffusion electrode for fuel cells which concerns on this invention. 本発明に係る燃料電池用ガス拡散電極の実施例1を説明する拡大模式断面図である。It is an expansion schematic cross section explaining Example 1 of the gas diffusion electrode for fuel cells which concerns on this invention. 本発明に係る燃料電池用ガス拡散電極の実施例2を説明する拡大模式断面図である。It is an expansion schematic cross section explaining Example 2 of the gas diffusion electrode for fuel cells which concerns on this invention. 本発明に係る燃料電池用ガス拡散電極を構成する少なくとも2種類の空孔率が異なる導電性多孔質層の製造方法の実施例1を説明する製造工程図である。It is a manufacturing-process figure explaining Example 1 of the manufacturing method of the electroconductive porous layer from which the at least 2 type of porosity which comprises the gas diffusion electrode for fuel cells which concerns on this invention differs. 本発明に係る燃料電池用ガス拡散電極を構成する少なくとも2種類の空孔率が異なる導電性多孔質層の製造方法の実施例2を説明する製造工程図である。It is a manufacturing process figure explaining Example 2 of the manufacturing method of the electroconductive porous layer from which the porosity which comprises at least 2 types of porosity which comprises the gas diffusion electrode for fuel cells which concerns on this invention is different.

次に図面を参照して、本発明の実施の形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

[実施例1]
図1は、本発明に係る燃料電池用ガス拡散電極の実施例1を用いた固体高分子型燃料電池の模式的な断面図である。同図において、固体分子型燃料電池の単セル1は、高分子電解質膜2の両面に酸化剤極(カソード)3と燃料極(アノード)4とを備え、これら高分子電解質膜2と酸化剤極3と燃料極4とで膜電極接合体(MEA)5を構成している。
[Example 1]
FIG. 1 is a schematic cross-sectional view of a polymer electrolyte fuel cell using Example 1 of a gas diffusion electrode for a fuel cell according to the present invention. In the figure, a unit cell 1 of a solid molecular fuel cell comprises an oxidant electrode (cathode) 3 and a fuel electrode (anode) 4 on both sides of a polymer electrolyte membrane 2, and these polymer electrolyte membrane 2 and oxidant. The electrode 3 and the fuel electrode 4 constitute a membrane electrode assembly (MEA) 5.

酸化剤極3は、高分子電解質膜2の一方の表面に形成された触媒層6と、比較的空孔率が低い導電性多孔質層7と、比較的空孔率が高い導電性多孔質層8と、ガス拡散層基材9とを有している。同様に、燃料極4は、高分子電解質膜2の他方の表面に形成された触媒層10と、比較的空孔率が低い導電性多孔質層11と、比較的空孔率が高い導電性多孔質層12と、ガス拡散層基材13とを備えている。   The oxidant electrode 3 includes a catalyst layer 6 formed on one surface of the polymer electrolyte membrane 2, a conductive porous layer 7 having a relatively low porosity, and a conductive porous having a relatively high porosity. It has a layer 8 and a gas diffusion layer substrate 9. Similarly, the fuel electrode 4 includes a catalyst layer 10 formed on the other surface of the polymer electrolyte membrane 2, a conductive porous layer 11 having a relatively low porosity, and a conductivity having a relatively high porosity. A porous layer 12 and a gas diffusion layer substrate 13 are provided.

酸化剤極3のガス拡散層基材9の背面には、酸化剤極側セパレータ14が配設されている。また、燃料極4のガス拡散層基材13の背面には、燃料極側セパレータ16が配設されている。酸化剤極側セパレータ14には酸化剤ガス流路15が設けられている。また、燃料極側セパレータ16には燃料ガス流路17が設けられている。さらに、高分子電解質膜2と酸化剤極側セパレータ14との間、及び高分子電解質膜2と燃料極側セパレータ16との間には、それぞれシール部材18が設けられ、酸化剤ガス及び燃料ガスが単セル1の側面から漏洩することを防止している。   An oxidant electrode side separator 14 is disposed on the back surface of the gas diffusion layer base material 9 of the oxidant electrode 3. A fuel electrode-side separator 16 is disposed on the back surface of the gas diffusion layer base material 13 of the fuel electrode 4. The oxidant electrode side separator 14 is provided with an oxidant gas flow path 15. The fuel electrode side separator 16 is provided with a fuel gas flow path 17. Further, seal members 18 are provided between the polymer electrolyte membrane 2 and the oxidant electrode side separator 14 and between the polymer electrolyte membrane 2 and the fuel electrode side separator 16, respectively. Is prevented from leaking from the side surface of the single cell 1.

高分子電解質膜2は、パーフルオロスルホン酸基ポリマーや芳香族炭化水素系ポリマー等の水素イオン導電性高分子膜が用いられる。触媒層6,10は、白金微粒子をカーボン粒子に担持した触媒とアイオノマー(パーフルオロスルホン酸基ポリマーでもよい)とで形成される。   The polymer electrolyte membrane 2 is a hydrogen ion conductive polymer membrane such as a perfluorosulfonic acid group polymer or an aromatic hydrocarbon polymer. The catalyst layers 6 and 10 are formed of a catalyst in which platinum fine particles are supported on carbon particles and an ionomer (which may be a perfluorosulfonic acid group polymer).

比較的空孔率が低い導電性多孔質層7,11は、触媒層6,10に接し、比較的空孔率が高い導電性多孔質層8,12は、ガス拡散層基材9,13に接している。   The conductive porous layers 7 and 11 having a relatively low porosity are in contact with the catalyst layers 6 and 10, and the conductive porous layers 8 and 12 having a relatively high porosity are used as the gas diffusion layer base materials 9 and 13. Is in contact with

比較的空孔率が低い導電性多孔質層7,11と、比較的空孔率が高い導電性多孔質層8,12とは、例えば、比較的空孔率が高い三次元多孔質構造のポリテトラフルオロエチレン(PTFE)膜に、導電性物質としてのカーボン粒子と撥水材料としてのPTFE粒子とを含有したインクを塗着させたものを熱処理することにより得られる。   The conductive porous layers 7 and 11 having a relatively low porosity and the conductive porous layers 8 and 12 having a relatively high porosity have, for example, a three-dimensional porous structure having a relatively high porosity. It is obtained by heat-treating a polytetrafluoroethylene (PTFE) film coated with ink containing carbon particles as a conductive substance and PTFE particles as a water repellent material.

これにより素材のPTFE膜が比較的空孔率が高い導電性多孔質層8となると共に、その表面に比較的空孔率が低い導電性多孔質層7が形成される。同様に、比較的空孔率が低い導電性多孔質層11と比較的空孔率が高い導電性多孔質層12が形成される。   Thus, the material PTFE film becomes the conductive porous layer 8 having a relatively high porosity, and the conductive porous layer 7 having a relatively low porosity is formed on the surface thereof. Similarly, the conductive porous layer 11 having a relatively low porosity and the conductive porous layer 12 having a relatively high porosity are formed.

ガス拡散層基材9,13は、カーボンペーパーやカーボンクロスが用いられる。セパレータ14,16には、カーボンや耐食処理を施した金属板が用いられる。   For the gas diffusion layer base materials 9 and 13, carbon paper or carbon cloth is used. The separators 14 and 16 are made of carbon or a metal plate subjected to corrosion resistance treatment.

実際の燃料電池では、図1の単セル1を複数積層して積層体を構成し、積層体の両端部に固定及び電流取り出し用のエンドプレートを設ける。そして、各セル内の構成要素、及びセル間の接触抵抗が小さくなるように、所定の締め付け力で両エンドプレート間を締め付ける。このように両エンドプレート間を締め付けて燃料電池スタックを構成する際に、ガス拡散層基材9,13を構成するカーボンペーパやカーボンクロスの表面の凹凸や毛羽は、ガス拡散層基材9,13に接する比較的空孔率の高い導電性多孔質層8,12によって吸収され、ガス拡散層基材9,13と比較的空孔率の高い導電性多孔質層8,12とが密着しガス透過性を確保しつつ接触抵抗を低くすることができる。   In an actual fuel cell, a plurality of single cells 1 in FIG. 1 are stacked to form a stacked body, and end plates for fixing and current extraction are provided at both ends of the stacked body. Then, the end plates are tightened with a predetermined tightening force so that the contact resistance between the constituent elements in each cell and the cells is reduced. When the fuel cell stack is configured by tightening both end plates in this way, the unevenness and fluff on the surface of the carbon paper and carbon cloth constituting the gas diffusion layer base materials 9 and 13 13 is absorbed by the conductive porous layers 8 and 12 having a relatively high porosity in contact with the gas diffusion layer base material 9, and the gas diffusion layer base materials 9 and 13 are in close contact with the conductive porous layers 8 and 12 having a relatively high porosity. The contact resistance can be lowered while ensuring gas permeability.

ここで、比較的空孔率が高い導電性多孔質層8,12の厚さは、望ましくは15[μm]以上、100[μm]以下とする。比較的空孔率が高い導電性多孔質層8,12の厚さが15[μm]未満であると、ガス拡散層基材9,13の表面凹凸や毛羽等の表面粗さを吸収できず、カーボン繊維が触媒層6,10や高分子電解質膜2を突き刺して、電気的な短絡や両極間のガスのクロスリークが生じる虞がある。また、セルの面直方向の剛性が低下し、燃料電池用ガス拡散電極の耐久性が低下する。逆に厚さが100[μm]を超えると、ガス透過性が低下し、大出力時に触媒層に供給される反応ガスが不足し発電出力性能が低下する。   Here, the thickness of the conductive porous layers 8 and 12 having a relatively high porosity is desirably 15 [μm] or more and 100 [μm] or less. When the thickness of the conductive porous layers 8 and 12 having a relatively high porosity is less than 15 [μm], the surface roughness such as surface irregularities and fluff of the gas diffusion layer base materials 9 and 13 cannot be absorbed. The carbon fibers may pierce the catalyst layers 6 and 10 and the polymer electrolyte membrane 2 to cause an electrical short circuit or a gas cross leak between both electrodes. Further, the rigidity in the direction perpendicular to the surface of the cell is lowered, and the durability of the gas diffusion electrode for a fuel cell is lowered. On the other hand, when the thickness exceeds 100 [μm], the gas permeability decreases, the reaction gas supplied to the catalyst layer at the time of large output becomes insufficient, and the power generation output performance decreases.

また、表面が比較的平坦な触媒層6,10は、それぞれ比較的空孔率が低い導電性多孔質層7,11に接している。そして、比較的空孔率が低い導電性多孔質層7,11は、比較的空孔率が高い導電性多孔質層8,12よりも薄く形成されている。例えば、比較的空孔率が低い導電性多孔質層7,11の厚さは、望ましくは2[μm]以上、50[μm]以下とする。比較的空孔率が低い導電性多孔質層7,11の厚さが2[μm]未満であれば、触媒層6,10の表面凹凸を吸収できず、比較的空孔率が低い導電性多孔質層7,11と触媒層6,10との間の接触抵抗が増大する。逆に比較的空孔率が低い導電性多孔質層7,11の厚さが50[μm]を超えると、ガス透過性が低下し、大出力時に触媒層に供給される反応ガスが不足し発電出力性能が低下する。   The catalyst layers 6 and 10 having relatively flat surfaces are in contact with the conductive porous layers 7 and 11 having relatively low porosity, respectively. The conductive porous layers 7 and 11 having a relatively low porosity are formed thinner than the conductive porous layers 8 and 12 having a relatively high porosity. For example, the thickness of the conductive porous layers 7 and 11 having a relatively low porosity is desirably 2 [μm] or more and 50 [μm] or less. If the thickness of the conductive porous layers 7 and 11 having a relatively low porosity is less than 2 [μm], the surface irregularities of the catalyst layers 6 and 10 cannot be absorbed, and the conductivity having a relatively low porosity. The contact resistance between the porous layers 7 and 11 and the catalyst layers 6 and 10 increases. On the contrary, if the thickness of the conductive porous layers 7 and 11 having relatively low porosity exceeds 50 [μm], the gas permeability decreases, and the reaction gas supplied to the catalyst layer at the time of large output becomes insufficient. Power generation output performance is reduced.

次に、図2の酸化剤極3の拡大模式断面図を説明する。尚、燃料極4の構造も同様である。図2において、比較的空孔率が高い三次元多孔質構造のPTFE膜(23,24)は、PTFE粒子23と、PTFE粒子23相互を連結する架橋部24から構成される。このPTFE膜(23,24)に導電性物質としてのカーボン粒子21と、PTFE粒子22とを含むインクを塗着して、乾燥、焼成させる。これによりPTFE膜(23,24)の内部に、インク成分であるカーボン粒子21とPTFE粒子22とが入り込んで比較的空孔率が高い導電性多孔質層8となるとともに、表面(図2では下面)には、カーボン粒子21とPTFE粒子22からなる高密度の層ができ、これが比較的空孔率が低い導電性多孔質層7となる。   Next, an enlarged schematic cross-sectional view of the oxidant electrode 3 in FIG. 2 will be described. The structure of the fuel electrode 4 is the same. In FIG. 2, the three-dimensional porous PTFE membrane (23, 24) having a relatively high porosity is composed of PTFE particles 23 and bridging portions 24 that connect the PTFE particles 23 to each other. The PTFE membranes (23, 24) are coated with ink containing carbon particles 21 as conductive materials and PTFE particles 22, and are dried and fired. As a result, the carbon particles 21 and the PTFE particles 22 that are ink components enter the PTFE membrane (23, 24) to form the conductive porous layer 8 having a relatively high porosity, and the surface (in FIG. 2). On the lower surface), a high-density layer composed of carbon particles 21 and PTFE particles 22 is formed, and this becomes the conductive porous layer 7 having a relatively low porosity.

次に、図4の製造工程図を参照して、本実施例1における比較的空孔率が低い導電性多孔質層7と比較的空孔率が高い導電性多孔質層8との製造方法を説明する。尚、燃料極4を構成する比較的空孔率が低い導電性多孔質層11と比較的空孔率が高い導電性多孔質層12も同様の製造方法により製造される。   Next, referring to the manufacturing process diagram of FIG. 4, a method for manufacturing the conductive porous layer 7 having a relatively low porosity and the conductive porous layer 8 having a relatively high porosity in the first embodiment. Will be explained. Note that the conductive porous layer 11 having a relatively low porosity and the conductive porous layer 12 having a relatively high porosity constituting the fuel electrode 4 are also manufactured by the same manufacturing method.

この製法の概略は、(1)多孔質PTFE膜を親水化処理する親水化工程、(2)親水化処理したPTFE膜にカーボン及びPTFE粒子を含むインクを浸透させて付着するインク塗着工程、(3)インクを乾燥させる乾燥工程、(4)熱処理によりインク粒子及びPTFE粒子をPTFE膜に固定する焼成工程からなる。   The outline of this production method is as follows: (1) a hydrophilic step for hydrophilizing the porous PTFE membrane, (2) an ink coating step for penetrating and adhering ink containing carbon and PTFE particles to the hydrophilic PTFE membrane, (3) A drying step for drying the ink, and (4) a baking step for fixing the ink particles and the PTFE particles to the PTFE film by heat treatment.

図4のステップS1において、まず比較的高空孔率の多孔質層として、比較的高空孔率の多孔質PTFE膜を準備する。この多孔質PTFE膜は、例えば、一軸伸延、または二軸伸延における伸延条件を制御することにより、種々の厚さ及び空孔率(全体積に対する細孔または空隙の割合)に調整した製品が提供されている(例えば、商品名:ポアフロンメンブレン、住友電工ファインポリマー社製)。本発明における比較的空孔率が高い導電性多孔質層8、12の材料に用いる多孔質PTFE膜は、厚さが15〜100[μm]、孔径が1〜30[μm]、空孔率が70%以上のものが好ましい。   In step S1 of FIG. 4, a porous PTFE membrane having a relatively high porosity is first prepared as a porous layer having a relatively high porosity. This porous PTFE membrane is provided with products adjusted to various thicknesses and porosity (ratio of pores or voids relative to the total volume) by controlling, for example, the uniaxial or biaxial distraction conditions (For example, trade name: Poaflon membrane, manufactured by Sumitomo Electric Fine Polymer Co., Ltd.). The porous PTFE membrane used for the material of the conductive porous layers 8 and 12 having a relatively high porosity in the present invention has a thickness of 15 to 100 [μm], a pore diameter of 1 to 30 [μm], and a porosity of Is preferably 70% or more.

次いで、ステップS2において、多孔質PTFE膜のインク付着性を高めるための親水化処理溶液を調製する。親水化処理溶液としては、非イオン系界面活性剤(商品名:トリトンTriton X-100、ダウケミカル社製)4gをエタノール200gと混合する。   Next, in step S2, a hydrophilic treatment solution for improving ink adhesion of the porous PTFE film is prepared. As a hydrophilic treatment solution, 4 g of a nonionic surfactant (trade name: Triton X-100, manufactured by Dow Chemical Co.) is mixed with 200 g of ethanol.

次いで、ステップS3において、多孔質PTFE膜を親水化する。これは、例えば、多孔質PTFE膜を額縁状の治具により水平に固定し、治具内に親水化処理溶液を流し込んで浸漬する。   Next, in step S3, the porous PTFE membrane is hydrophilized. For example, the porous PTFE membrane is horizontally fixed with a frame-shaped jig, and the hydrophilization solution is poured into the jig and immersed therein.

次いで、ステップS4で、カーボン粒子とPTFE粒子とを含むインクスラリーを調製する。インクスラリーは、界面活性剤と、純水と、カーボン粒子と、PTFE粒子とを主成分とする。インクスラリーの調製には、界面活性剤として非イオン系界面活性剤(商品名:トリトンTriton X-100、ダウケミカル社製)3gと純水200gとを予め混合攪拌した溶液に、カーボンブラック(デンカ社製アセチレンブラック AB−6)をジェットミルで平均粒径1[μm]程度まで粉砕したカーボン粒子20gを投入して攪拌する。更にPTFE粒子を加えるために、PTFE分散液として、ダイキン工業社製ポリフロンPolyflon D−1E(固形分64%)を30g投入混合し、攪拌してインクスラリーとした。   Next, in step S4, an ink slurry containing carbon particles and PTFE particles is prepared. The ink slurry contains a surfactant, pure water, carbon particles, and PTFE particles as main components. The ink slurry was prepared by mixing carbon black (Denka) with a solution obtained by previously mixing and stirring 3 g of a nonionic surfactant (trade name: Triton Triton X-100, manufactured by Dow Chemical Co., Ltd.) and 200 g of pure water as a surfactant. 20 g of carbon particles obtained by pulverizing acetylene black AB-6) manufactured by a company to an average particle size of about 1 [μm] with a jet mill are added and stirred. In order to further add PTFE particles, 30 g of Polyflon D-1E (solid content: 64%) manufactured by Daikin Industries, Ltd. was added and mixed as a PTFE dispersion, and stirred to obtain an ink slurry.

次いで、ステップS5において、治具に固定され親水化処理された多孔質PTFE膜の上からインクスラリーを接触させ、多孔質PTFE膜の下から減圧吸引する。これにより、多孔質PTFE膜内の親水化処理溶液が多孔質PTFE膜の内部から吸い出されると共に、インクスラリーが多孔質PTFE膜内に浸透する。   Next, in step S5, the ink slurry is brought into contact with the porous PTFE membrane fixed on the jig and subjected to the hydrophilic treatment, and suctioned under reduced pressure from under the porous PTFE membrane. Thereby, the hydrophilization treatment solution in the porous PTFE membrane is sucked out from the inside of the porous PTFE membrane, and the ink slurry penetrates into the porous PTFE membrane.

次いで、ステップS6において、インクスラリーを塗布した多孔質PTFE膜を乾燥炉に入れ、温度50〜120[℃]、時間5〜20[min]の乾燥条件でインク中の水分を蒸発乾燥させる。   Next, in step S6, the porous PTFE film coated with the ink slurry is placed in a drying furnace, and water in the ink is evaporated and dried under drying conditions of a temperature of 50 to 120 [° C.] and a time of 5 to 20 [min].

次いで、ステップS7において、インクスラリーが乾燥した多孔質PTFE膜を焼成炉に入れ、温度250〜350[℃]、時間5〜20[min]の焼成条件により焼成を行って、界面活性剤を除去するとともに、カーボン粒子及びPTFE粒子を多孔質PTFE膜の内部及び表面に固定することにより、比較的高空孔率の導電性多孔質層と、その表面に形成された比較的低空孔率の導電性多孔質層が一体化した導電性多孔質層が得られる。   Next, in step S7, the porous PTFE film from which the ink slurry has been dried is placed in a baking furnace, and baking is performed under baking conditions of a temperature of 250 to 350 [° C.] and a time of 5 to 20 [min] to remove the surfactant. In addition, by fixing the carbon particles and PTFE particles to the inside and the surface of the porous PTFE membrane, the conductive porous layer having a relatively high porosity and the conductivity having a relatively low porosity formed on the surface thereof. A conductive porous layer in which the porous layer is integrated is obtained.

この後、ステップS8において、導電性多孔質層の外周を所定の寸法にトリミングして、導電性多孔質層の製造を完了する。以上の製造工程により製造された導電性多孔質層の比較的高空孔率導電性多孔質層8,12の仕上がり厚さは、15[μm]以上、100[μm]以下が望ましい。また、比較的低空孔率導電性多孔質層7,11の仕上がり厚さは、2[μm]以上、50[μm]以下が望ましい。   Thereafter, in step S8, the outer periphery of the conductive porous layer is trimmed to a predetermined dimension to complete the manufacture of the conductive porous layer. The finished thickness of the relatively high porosity conductive porous layers 8 and 12 of the conductive porous layer manufactured by the above manufacturing process is preferably 15 [μm] or more and 100 [μm] or less. The finished thickness of the relatively low porosity conductive porous layers 7 and 11 is preferably 2 [μm] or more and 50 [μm] or less.

こうして得られた導電性多孔質層の比較的高空孔率の導電性多孔質層8(12)側にガス拡散層基材9(13)を重ねて加熱接合することにより、燃料電池用ガス拡散層が得られる。この加熱接合は、例えばホットプレス機により、温度150〜200[℃]、圧力0.5〜4[MPa]、時間0.5〜10[min]の条件で行うことができる。   A gas diffusion layer for a fuel cell is formed by stacking and joining the gas diffusion layer base material 9 (13) to the conductive porous layer 8 (12) side having a relatively high porosity of the conductive porous layer thus obtained. A layer is obtained. This heat bonding can be performed by, for example, a hot press machine under conditions of a temperature of 150 to 200 [° C.], a pressure of 0.5 to 4 [MPa], and a time of 0.5 to 10 [min].

以上説明した本実施例によれば、ガス拡散層基材9,13と、触媒層6,10との間に、比較的空孔率が高い導電性多孔質層8,12と、比較的空孔率が低い導電性多孔質層7,11とを設けたことにより、触媒層及びガス拡散層基材との接触面積を確保して接触抵抗を下げながら、ガス拡散層基材の表面凹凸や毛羽による触媒層や高分子電解質膜への局部的な圧迫或いは触媒層及び高分子電解質膜の穿孔を回避しつつ、ガス拡散性を確保することができるという効果がある。   According to the present embodiment described above, between the gas diffusion layer base materials 9 and 13 and the catalyst layers 6 and 10, the conductive porous layers 8 and 12 having a relatively high porosity, and the relatively empty By providing the conductive porous layers 7 and 11 having a low porosity, the surface unevenness of the gas diffusion layer substrate can be reduced while ensuring the contact area between the catalyst layer and the gas diffusion layer substrate and reducing the contact resistance. There is an effect that gas diffusibility can be secured while avoiding local pressure on the catalyst layer and the polymer electrolyte membrane by the fluff or perforation of the catalyst layer and the polymer electrolyte membrane.

また、図1の構成において、ガス拡散層基材9,13を除去して、セパレータ14,16に直接、比較的空孔率が高い導電性多孔質層8,12が接する構成としても本発明は有効である。即ち、セパレータ14,16に形成されたガス流路15,17の凹凸による圧力分布を比較的空孔率が高い導電性多孔質層8,12が吸収するとともに、比較的空孔率が低い導電性多孔質層7,11が触媒層6,10と良好な接触を行うことができる。   1, the gas diffusion layer bases 9 and 13 are removed, and the conductive porous layers 8 and 12 having a relatively high porosity are in direct contact with the separators 14 and 16 in the present invention. Is valid. That is, the conductive porous layers 8 and 12 having a relatively high porosity absorb the pressure distribution due to the unevenness of the gas flow paths 15 and 17 formed in the separators 14 and 16, and the conductivity having a relatively low porosity. The porous porous layers 7 and 11 can make good contact with the catalyst layers 6 and 10.

また、本実施例によれば、比較的空孔率が低い導電性多孔質層7,11の厚さは、比較的空孔率が高い導電性多孔質層8,12の厚さよりも薄くしたので、ガス拡散性の低下代を極力抑制しながら触媒層との接触抵抗を十分低減できるという効果がある。   Further, according to the present example, the thickness of the conductive porous layers 7 and 11 having a relatively low porosity is made thinner than the thickness of the conductive porous layers 8 and 12 having a relatively high porosity. Therefore, there is an effect that the contact resistance with the catalyst layer can be sufficiently reduced while suppressing the decrease in gas diffusibility as much as possible.

また、本実施例によれば、比較的空孔率が低い導電性多孔質層7,11は、少なくとも導電性材料としてカーボンを含むとともに、撥水性物質としてPTFE粒子を含むので、安価で耐久性のあるガス拡散電極を提供することができるという効果がある。   In addition, according to the present embodiment, the conductive porous layers 7 and 11 having a relatively low porosity include carbon as at least a conductive material and PTFE particles as a water repellent material, so that they are inexpensive and durable. There is an effect that it is possible to provide a gas diffusion electrode.

また、本実施例によれば、比較的空孔率が高い第1導電性多孔質層と比較的空孔率が低い第2導電性多孔質層とを備えたガス拡散層を有する燃料電池用ガス拡散電極の製造方法であって、比較的空孔率が高い多孔質層を親水化処理液により親水化する親水化工程と、親水化した前記多孔質層に導電性物質及びポリテトラフルオロエチレン微粒子を含有するインクスラリーを塗着する塗着工程と、前記導電性物質及び前記ポリテトラフルオロエチレン微粒子の付着した多孔質層を熱処理する熱処理工程と、を備えたことにより、比較的空孔率が高い膜状構造体上に厚さが均一の薄い比較的空孔率が低い膜状構造体を容易に形成することができるという効果がある。   Further, according to this embodiment, the fuel cell having a gas diffusion layer including the first conductive porous layer having a relatively high porosity and the second conductive porous layer having a relatively low porosity. A method for producing a gas diffusion electrode, wherein a porous layer having a relatively high porosity is hydrophilized with a hydrophilization treatment liquid, and a conductive substance and polytetrafluoroethylene are added to the hydrophilic layer. The method includes a coating step of coating an ink slurry containing fine particles, and a heat treatment step of heat-treating the porous layer to which the conductive substance and the polytetrafluoroethylene fine particles are adhered, so that the porosity is relatively high. There is an effect that it is possible to easily form a thin film structure having a uniform thickness and a relatively low porosity on a film structure having a high thickness.

また、本実施例によれば、比較的空孔率が高い第1導電性多孔質層にガス拡散層基材が加熱接合するので、導電性多孔質層とガス拡散層基材との密着性を向上させることができるという効果がある。   In addition, according to the present example, the gas diffusion layer base material is heat-bonded to the first conductive porous layer having a relatively high porosity, and thus the adhesion between the conductive porous layer and the gas diffusion layer base material. There is an effect that can be improved.

[実施例2]
次に、図3,5を参照して、本発明に係る燃料電池用ガス拡散電極の実施例2を説明する。尚、本実施例の燃料電池用ガス拡散電極を用いた燃料電池の単セル1の構造は、図1に示した実施例1と同様である。
[Example 2]
Next, a second embodiment of the gas diffusion electrode for a fuel cell according to the present invention will be described with reference to FIGS. In addition, the structure of the single cell 1 of the fuel cell using the gas diffusion electrode for a fuel cell of the present embodiment is the same as that of the first embodiment shown in FIG.

図3は、実施例2における酸化剤極3の拡大模式断面図である。尚、燃料極4の構造も同様である。図3において、比較的空孔率が高い三次元多孔質構造のPTFE膜(34,35)は、PTFE粒子34と、PTFE粒子34相互を連結する架橋部35から構成される。比較的空孔率が低い三次元多孔質構造のPTFE膜(32,33)は、PTFE粒子32と、PTFE粒子32相互を連結する架橋部33から構成される。これらPTFE膜(34,35)と、PTFE膜(32,33)とを熱圧着させた後に、カーボン粒子31を含むインクスラリーを塗布して、熱処理することにより、比較的空孔率が高い導電性多孔質層8と、比較的空孔率が低い導電性多孔質層7とが形成される。   FIG. 3 is an enlarged schematic cross-sectional view of the oxidizer electrode 3 in the second embodiment. The structure of the fuel electrode 4 is the same. In FIG. 3, the three-dimensional porous PTFE membrane (34, 35) having a relatively high porosity is composed of PTFE particles 34 and bridging portions 35 that connect the PTFE particles 34 to each other. The three-dimensional porous PTFE membrane (32, 33) having a relatively low porosity is composed of PTFE particles 32 and a bridging portion 33 that connects the PTFE particles 32 to each other. After the PTFE film (34, 35) and the PTFE film (32, 33) are thermocompression bonded, an ink slurry containing the carbon particles 31 is applied and heat-treated, thereby conducting a relatively high porosity. The porous layer 8 and the conductive porous layer 7 having a relatively low porosity are formed.

次に、図5の製造工程図を参照して、本実施例2における比較的空孔率が低い導電性多孔質層7と比較的空孔率が高い導電性多孔質層8との製造方法を説明する。尚、燃料極4を構成する比較的空孔率が低い導電性多孔質層11と比較的空孔率が高い導電性多孔質層12も同様の製造方法により製造される。   Next, referring to the manufacturing process diagram of FIG. 5, the manufacturing method of the conductive porous layer 7 having a relatively low porosity and the conductive porous layer 8 having a relatively high porosity in the second embodiment. Will be explained. Note that the conductive porous layer 11 having a relatively low porosity and the conductive porous layer 12 having a relatively high porosity constituting the fuel electrode 4 are also manufactured by the same manufacturing method.

この製法の概略は、(1)比較的高空孔率の多孔質PTFE膜と比較的低空孔率の多孔質PTFE膜とを熱圧着して、空孔率の異なる層を備えた多孔質PTFE膜を得る熱圧着工程と、(2)熱圧着された多孔質PTFE膜を親水化処理する親水化工程、(3)親水化処理したPTFE膜にカーボン粒子を含むインクを浸透させて付着するインク塗着工程、(4)インクを乾燥させる乾燥工程、(5)熱処理によりインク粒子をPTFE膜に固定する焼成工程からなる。   The outline of this production method is as follows: (1) A porous PTFE membrane having layers with different porosity by thermocompression bonding of a porous PTFE membrane having a relatively high porosity and a porous PTFE membrane having a relatively low porosity. (2) a hydrophilization process for hydrophilizing the thermo-bonded porous PTFE membrane, and (3) an ink coating that permeates and adheres ink containing carbon particles to the hydrophilized PTFE membrane. An adhesion process, (4) a drying process for drying the ink, and (5) a baking process for fixing the ink particles to the PTFE film by heat treatment.

図5のステップS10において、比較的空孔率が高い三次元多孔質構造のPTFE膜を準備する。ステップS11において、比較的空孔率が低い三次元多孔質構造のPTFE膜を準備する。これらの多孔質PTFE膜は、例えば、一軸伸延、または二軸伸延における伸延条件を制御することにより、種々の厚さ及び空孔率(全体積に対する細孔または空隙の割合)に調整した製品が提供されている(例えば、商品名:ポアフロンメンブレン、住友電工ファインポリマー社製)。   In step S10 of FIG. 5, a PTFE membrane having a three-dimensional porous structure having a relatively high porosity is prepared. In step S11, a three-dimensional porous PTFE membrane having a relatively low porosity is prepared. These porous PTFE membranes, for example, have products adjusted to various thicknesses and porosity (ratio of pores or voids to the total volume) by controlling the distraction conditions in uniaxial or biaxial distraction. (For example, trade name: Porefluoron membrane, manufactured by Sumitomo Electric Fine Polymer Co., Ltd.).

ステップS12において、比較的空孔率が高い三次元多孔質構造のPTFE膜と、比較的空孔率が低い三次元多孔質構造のPTFE膜とを重ねて、ホットプレス機にセットして、温度150〜200[℃]、圧力0.5〜4[MPa]、時間0.5〜10[min]のプレス条件で加熱圧着し、多孔質PTFE膜を得る。   In step S12, the three-dimensional porous structure PTFE membrane having a relatively high porosity and the three-dimensional porous structure PTFE membrane having a relatively low porosity are overlapped and set in a hot press machine. Heat-pressure bonding is performed under press conditions of 150 to 200 [° C.], pressure of 0.5 to 4 [MPa], and time of 0.5 to 10 [min] to obtain a porous PTFE membrane.

ステップS13において、多孔質PTFE膜のインク付着性を高めるための親水化処理溶液を調製する。親水化処理溶液としては、非イオン系界面活性剤(商品名:トリトンTriton X-100、ダウケミカル社製)4gをエタノール200gと混合する。   In step S13, a hydrophilic treatment solution for improving the ink adhesion of the porous PTFE membrane is prepared. As a hydrophilic treatment solution, 4 g of a nonionic surfactant (trade name: Triton X-100, manufactured by Dow Chemical Co.) is mixed with 200 g of ethanol.

ステップS14において、多孔質PTFE膜を親水化する。これは、例えば、多孔質PTFE膜を額縁状の治具により水平に固定し、治具内に親水化処理溶液を流し込んで浸漬する。   In step S14, the porous PTFE membrane is hydrophilized. For example, the porous PTFE membrane is horizontally fixed with a frame-shaped jig, and the hydrophilization solution is poured into the jig and immersed therein.

ステップS15で、カーボン粒子を含むインクスラリーを調製する。インクスラリーは、界面活性剤と、純水と、カーボン粒子とを主成分とする。インクスラリーの調製には、界面活性剤として非イオン系界面活性剤(商品名:トリトンTriton X-100、ダウケミカル社製)3gと純水200gとを予め混合攪拌した溶液に、カーボンブラック(デンカ社製アセチレンブラック AB−6)をジェットミルで平均粒径1[μm]程度まで粉砕したカーボン粒子20gを投入して攪拌する。   In step S15, an ink slurry containing carbon particles is prepared. The ink slurry contains a surfactant, pure water, and carbon particles as main components. The ink slurry was prepared by mixing carbon black (Denka) with a solution obtained by previously mixing and stirring 3 g of a nonionic surfactant (trade name: Triton Triton X-100, manufactured by Dow Chemical Co., Ltd.) and 200 g of pure water as a surfactant. 20 g of carbon particles obtained by pulverizing acetylene black AB-6) manufactured by a company to an average particle size of about 1 [μm] with a jet mill are added and stirred.

ステップS16において、治具に固定され親水化処理された多孔質PTFE膜の上からインクスラリーを接触させ、多孔質PTFE膜の下から減圧吸引する。これにより、多孔質PTFE膜内の親水化処理溶液が多孔質PTFE膜の内部から吸い出されると共に、インクスラリーが多孔質PTFE膜内に浸透する。   In step S16, the ink slurry is brought into contact with the porous PTFE film fixed to the jig and subjected to the hydrophilic treatment, and suctioned under reduced pressure from under the porous PTFE film. Thereby, the hydrophilization treatment solution in the porous PTFE membrane is sucked out from the inside of the porous PTFE membrane, and the ink slurry penetrates into the porous PTFE membrane.

次いで、ステップS17において、インクスラリーを塗布した多孔質PTFE膜を乾燥炉に入れ、温度50〜120[℃]、時間5〜20[min]の乾燥条件でインク中の水分を蒸発乾燥させる。   Next, in step S17, the porous PTFE film coated with the ink slurry is put in a drying furnace, and water in the ink is evaporated and dried under drying conditions of a temperature of 50 to 120 [° C.] and a time of 5 to 20 [min].

次いで、ステップS18において、インクスラリーが乾燥した多孔質PTFE膜を焼成炉に入れ、温度250〜350[℃]、時間5〜20[min]の焼成条件により焼成を行って、界面活性剤を除去するとともに、カーボン粒子を多孔質PTFE膜の内部に固定することにより、比較的高空孔率の導電性多孔質層と、比較的低空孔率の導電性多孔質層が一体化した導電性多孔質層が得られる。   Next, in step S18, the porous PTFE membrane from which the ink slurry has been dried is placed in a baking furnace, and baking is performed under baking conditions of a temperature of 250 to 350 [° C.] and a time of 5 to 20 [min] to remove the surfactant. In addition, by fixing the carbon particles inside the porous PTFE membrane, the conductive porous layer in which the conductive porous layer having a relatively high porosity and the conductive porous layer having a relatively low porosity are integrated. A layer is obtained.

この後、ステップS19において、導電性多孔質層の外周を所定の寸法にトリミングして、導電性多孔質層の製造を完了する。以上の製造工程により製造された導電性多孔質層の比較的高空孔率導電性多孔質層8,12の仕上がり厚さは、15[μm]以上、100[μm]以下が望ましい。また、比較的低空孔率導電性多孔質層7,11の仕上がり厚さは、2[μm]以上、50[μm]以下が望ましい。   Thereafter, in step S19, the outer periphery of the conductive porous layer is trimmed to a predetermined dimension, thereby completing the manufacture of the conductive porous layer. The finished thickness of the relatively high porosity conductive porous layers 8 and 12 of the conductive porous layer manufactured by the above manufacturing process is preferably 15 [μm] or more and 100 [μm] or less. The finished thickness of the relatively low porosity conductive porous layers 7 and 11 is preferably 2 [μm] or more and 50 [μm] or less.

こうして得られた導電性多孔質層の比較的高空孔率の導電性多孔質層8(12)側にガス拡散層基材9(13)を重ねて加熱接合することにより、燃料電池用ガス拡散層が得られる。この加熱接合は、例えばホットプレス機により、温度150〜200[℃]、圧力0.5〜4[MPa]、時間0.5〜10[min]の条件で行うことができる。   A gas diffusion layer for a fuel cell is formed by stacking and joining the gas diffusion layer base material 9 (13) to the conductive porous layer 8 (12) side having a relatively high porosity of the conductive porous layer thus obtained. A layer is obtained. This heat bonding can be performed by, for example, a hot press machine under conditions of a temperature of 150 to 200 [° C.], a pressure of 0.5 to 4 [MPa], and a time of 0.5 to 10 [min].

以上説明した本実施例によれば、ガス拡散層基材9,13と、触媒層6,10との間に、比較的空孔率が高い導電性多孔質層8,12と、比較的空孔率が低い導電性多孔質層7,11とを設けたことにより、触媒層及びガス拡散層基材との接触面積を確保して接触抵抗を下げながら、ガス拡散層基材の表面凹凸や毛羽による触媒層や高分子電解質膜への局部的な圧迫或いは触媒層及び高分子電解質膜の穿孔を回避しつつ、ガス拡散性を確保することができるという効果がある。   According to the present embodiment described above, between the gas diffusion layer base materials 9 and 13 and the catalyst layers 6 and 10, the conductive porous layers 8 and 12 having a relatively high porosity, and the relatively empty By providing the conductive porous layers 7 and 11 having a low porosity, the surface unevenness of the gas diffusion layer substrate can be reduced while ensuring the contact area between the catalyst layer and the gas diffusion layer substrate and reducing the contact resistance. There is an effect that gas diffusibility can be secured while avoiding local pressure on the catalyst layer and the polymer electrolyte membrane by the fluff or perforation of the catalyst layer and the polymer electrolyte membrane.

また、図1の構成において、ガス拡散層基材9,13を除去して、セパレータ14,16に直接、比較的空孔率が高い導電性多孔質層8,12が接する構成としても本発明は有効である。即ち、セパレータ14,16に形成されたガス流路15,17の凹凸による圧力分布を比較的空孔率が高い導電性多孔質層8,12が吸収するとともに、比較的空孔率が低い導電性多孔質層7,11が触媒層6,10と良好な接触を行うことができる。   1, the gas diffusion layer bases 9 and 13 are removed, and the conductive porous layers 8 and 12 having a relatively high porosity are in direct contact with the separators 14 and 16 in the present invention. Is valid. That is, the conductive porous layers 8 and 12 having a relatively high porosity absorb the pressure distribution due to the unevenness of the gas flow paths 15 and 17 formed in the separators 14 and 16, and the conductivity having a relatively low porosity. The porous porous layers 7 and 11 can make good contact with the catalyst layers 6 and 10.

また、本実施例によれば、比較的空孔率が低い導電性多孔質層7,11の厚さは、比較的空孔率が高い導電性多孔質層8,12の厚さよりも薄くしたので、ガス拡散性の低下代を極力抑制しながら触媒層との接触抵抗を十分に低減することができるという効果がある。   Further, according to the present example, the thickness of the conductive porous layers 7 and 11 having a relatively low porosity is made thinner than the thickness of the conductive porous layers 8 and 12 having a relatively high porosity. Therefore, there is an effect that the contact resistance with the catalyst layer can be sufficiently reduced while suppressing the gas diffusibility reduction margin as much as possible.

また、本実施例によれば、比較的空孔率が低い導電性多孔質層7,11は、少なくとも導電性材料としてカーボンを含むとともに、撥水性物質としてPTFE粒子を含むので、安価で耐久性のあるガス拡散電極を提供することができるという効果がある。   In addition, according to the present embodiment, the conductive porous layers 7 and 11 having a relatively low porosity include carbon as at least a conductive material and PTFE particles as a water repellent material, so that they are inexpensive and durable. There is an effect that it is possible to provide a gas diffusion electrode.

また、本実施例によれば、比較的高空孔率の多孔質層と比較的低空孔率の多孔質層とのそれぞれの空孔率を最適に選択し、これらを接合した後に、カーボン粒子を被着するので、比較的高空孔率の導電性多孔質層と、比較的低空孔率の導電性多孔質層のそれぞれの空孔率も最適に設定することができるという効果がある。   Further, according to this example, the porosity of each of the porous layer having a relatively high porosity and the porous layer having a relatively low porosity is optimally selected, and after joining them, the carbon particles are bonded. Since it adheres, there exists an effect that the porosity of each of the conductive porous layer having a relatively high porosity and the conductive porous layer having a relatively low porosity can be set optimally.

1 単セル
2 高分子電解質膜
3 酸化剤極
4 燃料極
5 MEA(膜電極接合体)
6,10 触媒層
7,11 低空孔率導電性多孔質層
8,12 高空孔率導電性多孔質層
9,13 ガス拡散層基材
14,16 セパレータ
15 酸化剤ガス流路
17 燃料ガス流路
18 シール部材
DESCRIPTION OF SYMBOLS 1 Single cell 2 Polymer electrolyte membrane 3 Oxidant electrode 4 Fuel electrode 5 MEA (membrane electrode assembly)
6,10 Catalyst layer 7,11 Low porosity conductive porous layer 8,12 High porosity conductive porous layer 9,13 Gas diffusion layer base material 14,16 Separator 15 Oxidant gas flow path 17 Fuel gas flow path 18 Seal member

Claims (3)

第1の空孔率及び第1の厚さを有する第1導電性多孔質層と、第1の空孔率より低い第2の空孔率と第1の厚さより薄い第2の厚さを有する第2導電性多孔質層とからなる導電性多孔質層を備え、ガス拡散層と触媒層との間に配置され、前記ガス拡散層から供給される反応ガスを固体高分子電解質膜の表面に形成された触媒層へ供給するとともに、電流取出用の電極となる燃料電池用ガス拡散電極の製造方法であって、
多孔質層を親水化処理溶液に浸漬して親水化する親水化工程と、
親水化した前記多孔質層に導電性物質及びポリテトラフルオロエチレン微粒子を含有するインクスラリーを塗着する塗着工程と、
前記導電性物質及び前記ポリテトラフルオロエチレン微粒子を塗着した多孔質層を熱処理する熱処理工程と、
を備えたことにより、前記多孔質層を第1導電性多孔質層とするとともに、前記第1導電性多孔質層の表面に第2導電性多孔質層を形成することを特徴とする燃料電池用ガス拡散電極の製造方法。
A first conductive porous layer having a first porosity and a first thickness; a second porosity lower than the first porosity; and a second thickness less than the first thickness. A conductive porous layer comprising a second conductive porous layer, and disposed between the gas diffusion layer and the catalyst layer, the reaction gas supplied from the gas diffusion layer is transferred to the surface of the solid polymer electrolyte membrane A gas diffusion electrode for a fuel cell that is supplied to the catalyst layer formed on the electrode and serves as an electrode for current extraction,
A hydrophilization step of hydrophilizing by immersing the porous layer in a hydrophilization solution;
An application step of applying an ink slurry containing a conductive substance and polytetrafluoroethylene fine particles to the hydrophilic porous layer;
A heat treatment step of heat treating the porous layer coated with the conductive material and the polytetrafluoroethylene fine particles;
The fuel cell , wherein the porous layer is a first conductive porous layer, and a second conductive porous layer is formed on the surface of the first conductive porous layer. Method for manufacturing gas diffusion electrode.
第1の空孔率及び第1の厚さを有する第1導電性多孔質層と、第1の空孔率より低い第2の空孔率と第1の厚さより薄い第2の厚さを有する第2導電性多孔質層とからなる導電性多孔質層を備え、ガス拡散層と触媒層との間に配置され、前記ガス拡散層から供給される反応ガスを固体高分子電解質膜の表面に形成された触媒層へ供給するとともに、電流取出用の電極となる燃料電池用ガス拡散電極の製造方法であって、
第3の空孔率を有する第1多孔質層と第3の空孔率より低い第4の空孔率を有する第2多孔質層とを積層したものを熱圧着により一体化して積層多孔質層を形成する熱圧着工程と、
前記積層多孔質層を親水化処理溶液に浸漬して親水化する親水化工程と、
親水化した前記積層多孔質層に導電性物質を含有するインクスラリーを塗着する塗着工程と、
前記導電性物質を塗着した前記積層多孔質層を熱処理する熱処理工程と、
を備えたことにより、前記積層多孔質層を第1導電性多孔質層とするとともに、前記第1導電性多孔質層の表面に第2導電性多孔質層を形成することを特徴とする燃料電池用ガス拡散電極の製造方法。
A first conductive porous layer having a first porosity and a first thickness; a second porosity lower than the first porosity; and a second thickness less than the first thickness. A conductive porous layer comprising a second conductive porous layer, and disposed between the gas diffusion layer and the catalyst layer, the reaction gas supplied from the gas diffusion layer is transferred to the surface of the solid polymer electrolyte membrane A gas diffusion electrode for a fuel cell that is supplied to the catalyst layer formed on the electrode and serves as an electrode for current extraction,
A laminated porous body in which a first porous layer having a third porosity and a second porous layer having a fourth porosity lower than the third porosity are laminated by thermocompression bonding. A thermocompression bonding step to form a layer;
A hydrophilization step of immersing the laminated porous layer in a hydrophilization treatment solution to make it hydrophilic;
An application step of applying an ink slurry containing a conductive substance to the hydrophilic porous layer;
A heat treatment step of heat treating the laminated porous layer coated with the conductive material;
By providing the laminated porous layer as a first conductive porous layer, a fuel is characterized in that a second conductive porous layer is formed on the surface of the first conductive porous layer. A method for producing a gas diffusion electrode for a battery.
第1の空孔率及び第1の厚さを有する第1導電性多孔質層と、第1の空孔率より低い第2の空孔率と第1の厚さより薄い第2の厚さを有する第2導電性多孔質層とからなる導電性多孔質層を備え、ガス拡散層と触媒層との間に配置され、前記ガス拡散層から供給される反応ガスを固体高分子電解質膜の表面に形成された触媒層へ供給するとともに、電流取出用の電極となる燃料電池用ガス拡散電極の製造方法であって、
第1導電性多孔質層の表面に第2導電性多孔質層を形成することで、
前記第1導電性多孔質層と前記第2導電性多孔質層とが一体化された導電性多孔質層を形成する工程と、
前記導電性多孔質層の前記第1導電性多孔質層にガス拡散層基材を加熱接合する工程と、
を備えたことを特徴とする燃料電池用ガス拡散電極の製造方法。
A first conductive porous layer having a first porosity and a first thickness; a second porosity lower than the first porosity; and a second thickness less than the first thickness. A conductive porous layer comprising a second conductive porous layer, and disposed between the gas diffusion layer and the catalyst layer, the reaction gas supplied from the gas diffusion layer is transferred to the surface of the solid polymer electrolyte membrane A gas diffusion electrode for a fuel cell that is supplied to the catalyst layer formed on the electrode and serves as an electrode for current extraction,
By forming the second conductive porous layer on the surface of the first conductive porous layer,
Forming a conductive porous layer in which the first conductive porous layer and the second conductive porous layer are integrated;
Heat bonding a gas diffusion layer substrate to the first conductive porous layer of the conductive porous layer;
A method for producing a gas diffusion electrode for a fuel cell, comprising:
JP2013046535A 2013-03-08 2013-03-08 Manufacturing method of gas diffusion electrode for fuel cell Expired - Fee Related JP5614468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013046535A JP5614468B2 (en) 2013-03-08 2013-03-08 Manufacturing method of gas diffusion electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013046535A JP5614468B2 (en) 2013-03-08 2013-03-08 Manufacturing method of gas diffusion electrode for fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007176375A Division JP5298469B2 (en) 2007-07-04 2007-07-04 Gas diffusion electrode for fuel cell

Publications (2)

Publication Number Publication Date
JP2013140808A JP2013140808A (en) 2013-07-18
JP5614468B2 true JP5614468B2 (en) 2014-10-29

Family

ID=49038036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013046535A Expired - Fee Related JP5614468B2 (en) 2013-03-08 2013-03-08 Manufacturing method of gas diffusion electrode for fuel cell

Country Status (1)

Country Link
JP (1) JP5614468B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032415A (en) * 2013-08-01 2015-02-16 本田技研工業株式会社 Electrolyte membrane-electrode structure
CN106063008B (en) * 2014-02-24 2019-05-10 东丽株式会社 Gas diffusion electrode substrate and the membrane-electrode assembly and fuel cell for having it

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242986A (en) * 2002-02-20 2003-08-29 Mitsubishi Heavy Ind Ltd Manufacturing method of fuel cell electrode
JP4691914B2 (en) * 2004-06-21 2011-06-01 日産自動車株式会社 Gas diffusion electrode and solid polymer electrolyte fuel cell
JP2006324104A (en) * 2005-05-18 2006-11-30 Nissan Motor Co Ltd Gas diffusion layer for fuel cell and fuel cell using this
JP4811992B2 (en) * 2005-08-22 2011-11-09 日産自動車株式会社 Conductive porous film
JP2007207486A (en) * 2006-01-31 2007-08-16 Nissan Motor Co Ltd Gas diffusion layer of solid polymer fuel cell
JP2008277093A (en) * 2007-04-27 2008-11-13 Equos Research Co Ltd Diffusion layer for fuel cell, fuel cell, and manufacturing method of fuel cell

Also Published As

Publication number Publication date
JP2013140808A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP2014053118A (en) Fuel cell and manufacturing method of the same
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JP2009534796A (en) Method for configuring components for electrochemical cells
JP2008146928A (en) Gas diffusing electrode for fuel cell and its manufacturing method
JP2010225495A (en) Electrolyte membrane with reinforced film, catalyst layer with reinforced film-electrolyte membrane laminate, membrane-electrode assembly with reinforced film, liquid material impregnated electrolyte membrane type fuel cell, and their manufacturing methods
JP5614468B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
KR20190037878A (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JP2009140652A (en) Membrane-electrode assembly manufacturing method
JP2007193948A (en) Fuel cell
JP2010225484A (en) Fuel cell and method for manufacturing the same
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP2015079639A (en) Electrolyte membrane/electrode structure
JP2022143038A (en) Fuel cell manufacturing method
JP2001243963A (en) Cell for fuel cell and fuel cell having the same
JP5272571B2 (en) FUEL CELL MANUFACTURING METHOD AND FUEL CELL
JP5375208B2 (en) Fuel cell manufacturing method, fuel cell
JP2005276847A (en) Polymer solid electrolyte-electrode junction
JP2004214001A (en) Jointing method and jointing device for electrode and solid polyelectrolyte membrane
JP5993987B2 (en) Manufacturing method of fuel cell
JP6356436B2 (en) Electrolyte membrane / electrode structure
JP5804449B2 (en) Manufacturing method of membrane electrode assembly
JP5870883B2 (en) Manufacturing method of fuel cell
JP6412995B2 (en) Manufacturing method of electrolyte membrane / electrode structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R151 Written notification of patent or utility model registration

Ref document number: 5614468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees