JP2000090944A - Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body - Google Patents

Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body

Info

Publication number
JP2000090944A
JP2000090944A JP10276642A JP27664298A JP2000090944A JP 2000090944 A JP2000090944 A JP 2000090944A JP 10276642 A JP10276642 A JP 10276642A JP 27664298 A JP27664298 A JP 27664298A JP 2000090944 A JP2000090944 A JP 2000090944A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrolyte membrane
film
electrolyte
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10276642A
Other languages
Japanese (ja)
Other versions
JP2000090944A5 (en
Inventor
Kazuhide Totsuka
戸塚  和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10276642A priority Critical patent/JP2000090944A/en
Publication of JP2000090944A publication Critical patent/JP2000090944A/en
Publication of JP2000090944A5 publication Critical patent/JP2000090944A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell having high reliability while restricting the increase in the resistance due to extension of an electrolyte film by pinching a substrate-electrolyte film layered structure laminated on one surface or both surfaces of a solid polymer electrolyte film in the wet condition so that a catalyst surface of the substrate formed with the catalyst layer in the surface thereof contacts with the solid polymer electrolyte film, and heating them for pressure-contact. SOLUTION: A catalyst layer forming substrate 7 is laminated on both surfaces of an electrolyte film 1 in the wet condition so that the catalyst layer 2 is directed to the electrolyte film 1, and the electrolyte 1 is coated with a film 3 for restricting the lowering of the moisture content from both sides of the layered structure. Unnecessary moisture existing between the electrolyte film 1 and the catalyst layer 2, between the catalyst layer 2 and the film 3, and between the electrolyte film 1 and the film 3 is eliminated so as to tightly fit these laminated material. The layers structure is placed on a flat plate 4, and the water is scraped by a rubber scraper. The layered structure, of which moisture is eliminated, is set in a pressing jig 6, and heated for pressure-contact so as to transfer the catalyst layer 2 on the catalyst layer forming substrate 7 to the electrolyte film 1, and thereafter, the film 3 and the catalyst layer forming substrate 7 are eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、触媒層−電解質膜接合
体の作製方法およびそれを用いた固体高分子電解質型燃
料電池に関する。
The present invention relates to a method for producing a catalyst layer-electrolyte membrane assembly and a solid polymer electrolyte fuel cell using the same.

【0002】[0002]

【従来の技術】燃料電池は電解質の両面に配されたガス
拡散電極の一方にカソードガスとしてたとえば酸素を、
もう一方にアノードガスとしてたとえば水素とを供給し
て電気化学的に反応させて電力を得る装置である。固体
高分子電解質型燃料電池では、電解質は高分子の膜で、
例えばイオン交換樹脂膜の一種であるパーフロロスルホ
ン酸樹脂膜などの含水状態でプロトン導電性を示す膜が
用いられる。
2. Description of the Related Art In a fuel cell, for example, oxygen is used as a cathode gas at one of gas diffusion electrodes arranged on both sides of an electrolyte.
This is a device for supplying electric power by supplying, for example, hydrogen as an anode gas to the other and electrochemically reacting it. In a solid polymer electrolyte fuel cell, the electrolyte is a polymer membrane,
For example, a membrane exhibiting proton conductivity in a water-containing state, such as a perfluorosulfonic acid resin membrane, which is a kind of ion exchange resin membrane, is used.

【0003】この電解質膜の両面にそれぞれアノードお
よびカソードのガス拡散電極を接合したものが、ガス拡
散電極−電解質膜接合体である。ガス拡散電極はガス拡
散層と触媒層とからなり、アノードおよびカソードのそ
れぞれの触媒層は白金族金属の金属粒子あるいはこれら
の粒子を担持したカーボン粒子などを触媒として備えて
おり、ガス拡散層は多孔質なカーボンペーパーなどで構
成される。
[0003] A gas diffusion electrode-electrolyte membrane assembly is formed by bonding anode and cathode gas diffusion electrodes to both surfaces of the electrolyte membrane. The gas diffusion electrode is composed of a gas diffusion layer and a catalyst layer.Each of the anode and cathode catalyst layers includes platinum group metal particles or carbon particles carrying these particles as a catalyst. It is made of porous carbon paper.

【0004】基本単位となる単電池は、ガス拡散電極−
電解質膜接合体を、ガスを供給する流路を備えたガス不
透過性の一対のセパレータで挟持して構成され、この単
電池を複数個積層して固体高分子電解質型燃料電池とす
る。
A unit cell as a basic unit includes a gas diffusion electrode.
The electrolyte membrane assembly is sandwiched between a pair of gas-impermeable separators having a gas supply channel, and a plurality of such cells are stacked to form a solid polymer electrolyte fuel cell.

【0005】固体高分子電解質型燃料電池では、アノー
ドに水素を、カソードに酸素を供給し、次のような電気
化学反応が進行する。
In a solid polymer electrolyte fuel cell, hydrogen is supplied to the anode and oxygen is supplied to the cathode, and the following electrochemical reaction proceeds.

【0006】 アノード: 2H2 → 4H+ + 4e- カソード: O2 + 4H+ + 4e- → 2H2O ガス拡散電極−電解質膜接合体は、主に次のような二つ
の方法で作製される。
[0006] The anode: 2H 2 → 4H + + 4e - cathode: O 2 + 4H + + 4e - → 2H 2 O gas diffusion electrode - electrolyte membrane assembly is made mainly in two ways: .

【0007】第1は、触媒を含有するインク状あるいは
ペースト状の触媒混合物を、沈降法・印刷法・スプレー
法などの方法で電解質膜表面に塗布して、電解質膜に触
媒層を形成し、その後、これとガス拡散層とを加熱圧接
などの方法により一体に接合する方法である。
[0007] First, an ink-like or paste-like catalyst mixture containing a catalyst is applied to the surface of an electrolyte membrane by a method such as a sedimentation method, a printing method, or a spray method to form a catalyst layer on the electrolyte film. After that, this and the gas diffusion layer are integrally joined by a method such as heating and pressure welding.

【0008】第2は、触媒を含有するインク状あるいは
ペースト状の触媒混合物を、沈降法・印刷法・スプレー
法などの方法でガス拡散層表面に塗布して、ガス拡散層
に触媒層を形成し、その後、これと電解質膜とを加熱圧
接などの方法により一体に接合する方法である。ガス拡
散層としては、例えば撥水性を有するカーボンペーパー
が使用される。
[0008] Second, a catalyst mixture containing a catalyst in the form of an ink or paste is applied to the surface of the gas diffusion layer by a method such as a sedimentation method, a printing method, or a spray method to form a catalyst layer on the gas diffusion layer. After that, this and the electrolyte membrane are integrally joined by a method such as heating and pressure welding. As the gas diffusion layer, for example, carbon paper having water repellency is used.

【0009】しかし、電解質膜は水やアルコールなどの
有機溶媒を吸収すると膨潤し、逆に乾燥すると収縮する
性質をもつため、含水量が変化すると電解質膜の寸法が
変化する。
However, since the electrolyte membrane has a property of swelling when absorbing an organic solvent such as water or alcohol, and shrinking when dried, the dimensions of the electrolyte membrane change when the water content changes.

【0010】このために、水やアルコールなどの有機溶
媒を含有するインク状あるいはペースト状の触媒混合物
を直接電解質膜に付与する第1の方法では、電解質膜が
変形して均一な触媒層を形成することは困難である。
For this purpose, in the first method of directly applying an ink-like or paste-like catalyst mixture containing an organic solvent such as water or alcohol to the electrolyte membrane, the electrolyte membrane is deformed to form a uniform catalyst layer. It is difficult to do.

【0011】また、あらかじめガス拡散電極表面に触媒
層を形成しておく第2の方法では、カーボンペーパーな
どは表面に粗い凹凸を有する多孔質材料であるため、こ
の表面に形成する触媒層の厚みや塗布量を精度よく制御
することは困難である。
In the second method in which a catalyst layer is formed on the surface of the gas diffusion electrode in advance, since carbon paper or the like is a porous material having rough irregularities on the surface, the thickness of the catalyst layer formed on this surface is reduced. And it is difficult to control the amount of application with high accuracy.

【0012】そこで、インク状あるいはペースト状の触
媒混合物を沈降法・印刷法・スプレー法などの方法で触
媒層形成基体上に塗布して、均一な触媒層を形成した
後、これと電解質膜とを加熱圧接することで触媒層を電
解質膜に転写し、触媒層と電解質膜とを一体に接合する
転写法が考案されている。この方法によれば、塗布量の
制御も比較的容易であり、電解質膜に比較的均質で薄層
の触媒層を形成することができる。
Therefore, a catalyst mixture in the form of an ink or paste is applied to a catalyst layer-forming substrate by a method such as a precipitation method, a printing method, or a spray method to form a uniform catalyst layer. A transfer method has been devised in which a catalyst layer is transferred to an electrolyte membrane by heating and pressing the catalyst layer, and the catalyst layer and the electrolyte membrane are integrally joined. According to this method, the control of the coating amount is relatively easy, and a relatively uniform and thin catalyst layer can be formed on the electrolyte membrane.

【0013】[0013]

【発明が解決しようとする課題】転写法では、乾燥状態
あるいは含水状態の電解質膜を用いることができる。電
解質膜は水を取り込んで含水率が増大すると伸張する特
性をもつ。ここで電解質膜の含水率を、電解質膜の乾燥
重量に対する電解質中に含まれる水の重量の比と定義す
る。
In the transfer method, a dry or water-containing electrolyte membrane can be used. The electrolyte membrane has the property of expanding when water is taken in and the water content increases. Here, the water content of the electrolyte membrane is defined as the ratio of the weight of water contained in the electrolyte to the dry weight of the electrolyte membrane.

【0014】乾燥状態の電解質膜を用いた場合、触媒層
−電解質膜接合体の電解質膜の含水量が増大すると、接
合した触媒層が伸張される。触媒層が伸張すると触媒層
を構成する触媒を担持するカーボン粒子の間隔が粗くな
り、カーボン粒子間の接触が低下して触媒層の電気抵抗
が増大するという問題があった。
When the electrolyte membrane in a dry state is used, if the water content of the electrolyte membrane of the catalyst layer-electrolyte membrane assembly increases, the bonded catalyst layer is extended. When the catalyst layer is extended, the distance between the carbon particles supporting the catalyst constituting the catalyst layer becomes coarse, so that the contact between the carbon particles is reduced and the electric resistance of the catalyst layer is increased.

【0015】したがって、触媒層の接合の前後では、電
解質膜の伸張に起因する触媒層の伸張がないことが好ま
しく、触媒層−電解質膜接合体の形成には乾燥状態より
含水状態の電解質膜を用いる方が好ましい。
Therefore, before and after the joining of the catalyst layers, it is preferable that there is no extension of the catalyst layer due to the extension of the electrolyte membrane. For the formation of the catalyst layer-electrolyte membrane assembly, it is necessary to use an electrolyte membrane that is more hydrated than dry. It is preferable to use them.

【0016】これに対して、含水状態の電解質膜を用い
た場合、触媒層を電解質膜に転写する際の加熱によって
電解質膜の含水率が急激に低下すること、またこのとき
に発生する蒸気によって電解質膜が変形する。電解質膜
の変形は、接合した触媒層の周辺部分で著しい。
On the other hand, when a water-containing electrolyte membrane is used, the water content of the electrolyte membrane rapidly decreases due to heating when the catalyst layer is transferred to the electrolyte membrane. The electrolyte membrane is deformed. The deformation of the electrolyte membrane is remarkable in the peripheral portion of the bonded catalyst layer.

【0017】一般に、ガス拡散電極−電解質膜接合体
を、流路が加工された一対のセパレータで挟持して構成
された燃料電池おいて、その電解質膜の周辺部分とセパ
レータ間にOリングやガスケットなどを配置して、適度
な圧迫を加えることにより気密性を保ち、電池外部への
反応ガスの漏れを防止する構造をとっている。したがっ
て、前述の接合した触媒層の周辺部の電解質膜の変形は
燃料電池の気密性の低下の原因となり、燃料電池の信頼
性が低下するという問題がある。
In general, in a fuel cell in which a gas diffusion electrode-electrolyte membrane assembly is sandwiched between a pair of separators having processed channels, an O-ring or gasket is provided between the separator and the peripheral portion of the electrolyte membrane. The airtightness is maintained by applying an appropriate amount of pressure, and a structure for preventing leakage of the reaction gas to the outside of the battery is adopted. Therefore, the deformation of the electrolyte membrane in the peripheral portion of the joined catalyst layer causes a decrease in the airtightness of the fuel cell, and thus causes a problem that the reliability of the fuel cell is reduced.

【0018】[0018]

【課題を解決するための手段】本発明の目的は、触媒層
形成基体上に形成した触媒層を電解質膜に転写する触媒
層−電解質膜接合体の作製方法において、含水状態の電
解質膜を用いることにより触媒層の接合の前後の電解質
膜の伸張に起因する触媒層の抵抗の増大を抑制するとと
もに、燃料電池を構成したときの気密性の低下の原因と
なる加熱による接合した触媒層の周辺部の電解質膜の変
形を抑制することにあり、もって抵抗過電圧が小さい触
媒層−電解質膜接合体を製造方法を提供し、信頼性が高
く優れた特性を有する固体高分子電解質型燃料電池を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a catalyst layer-electrolyte membrane assembly for transferring a catalyst layer formed on a catalyst layer forming substrate to an electrolyte membrane, using a hydrous electrolyte membrane. This suppresses the increase in the resistance of the catalyst layer due to the expansion of the electrolyte membrane before and after the bonding of the catalyst layer, and the vicinity of the bonded catalyst layer due to heating, which causes a decrease in airtightness when a fuel cell is configured. A method for producing a catalyst layer-electrolyte membrane assembly having a low resistance overvoltage by suppressing deformation of an electrolyte membrane in a portion, and providing a solid polymer electrolyte fuel cell having high reliability and excellent characteristics. Is to do.

【0019】本発明は、まず触媒層形成基体上に触媒層
を形成し、それを目的の大きさに裁断した後、触媒層面
が電解質膜に接するように含水状態の電解質膜の片面な
いし両面に配置する。さらにこの電解質膜より大きいフ
ィルムで両側から電解質膜を完全に覆うようにして加熱
圧接用積層体を作製する。なお、フィルムは電解質膜の
含水量の低下を抑制するためのものである。
According to the present invention, a catalyst layer is first formed on a catalyst layer-forming substrate, cut into a desired size, and then placed on one or both sides of a hydrated electrolyte membrane so that the catalyst layer surface is in contact with the electrolyte membrane. Deploy. Further, a laminate for heating and pressing is produced by completely covering the electrolyte membrane from both sides with a film larger than the electrolyte membrane. The film is for suppressing a decrease in the water content of the electrolyte membrane.

【0020】この加熱圧接用積層体の電解質膜と触媒層
形成基体−触媒層とフィルムとの間に存在する余剰の水
を除去してそれらを密着させた後、プレス治具に設置し
て加熱圧接することにより触媒層形成基体上の触媒層を
電解質膜に転写する。その後フィルムと触媒層形成基体
とを除去し、目的の触媒層−電解質膜接合体を得る。
After removing excess water present between the electrolyte membrane and the catalyst layer-forming substrate-catalyst layer and the film of the laminated body for heating and press-bonding and bringing them into close contact with each other, it is placed in a press jig and heated. By pressing, the catalyst layer on the catalyst layer forming substrate is transferred to the electrolyte membrane. Thereafter, the film and the catalyst layer-forming substrate are removed to obtain a desired catalyst layer-electrolyte membrane assembly.

【0021】[0021]

【発明の実施の形態】本発明の触媒層−電解質膜接合体
の製造方法を、図1に示した模式図に基いて具体的に説
明する。図1において、1は電解質膜、2は触媒層、3
はフィルム、4は平板、5はゴムヘラ、6はプレス治
具、7は触媒層形成基体、8は触媒層−電解質膜接合体
である。電解質膜への触媒層の転写は4つの工程からな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing a catalyst layer-electrolyte membrane assembly according to the present invention will be specifically described with reference to the schematic diagram shown in FIG. In FIG. 1, 1 is an electrolyte membrane, 2 is a catalyst layer, 3
Is a film, 4 is a flat plate, 5 is a rubber spatula, 6 is a press jig, 7 is a catalyst layer forming base, and 8 is a catalyst layer-electrolyte membrane assembly. Transfer of the catalyst layer to the electrolyte membrane consists of four steps.

【0022】工程1は積層工程であり、断面を図1−a
に示す。前処理を施した含水状態の電解質膜1の両面
(場合によっては片面でも良い)に、触媒層2を形成し
た触媒層形成基体7を触媒層2が電解質膜1に向き合う
方向に積層した後、この積層体の両側から電解質膜より
大きい含水率の低下を抑制するためのフィルム3、たと
えばポリテトラフロロエチレン−ヘキサフロロプロピレ
ン共重合体フィルム(商品名、ダイキン工業社、ネオフ
ロン50μm厚)で電解質膜を覆うように積層する。
Step 1 is a laminating step, and its cross section is shown in FIG.
Shown in After laminating the catalyst layer forming substrate 7 on which the catalyst layer 2 has been formed in a direction in which the catalyst layer 2 faces the electrolyte membrane 1, A film 3, for example, a polytetrafluoroethylene-hexafluoropropylene copolymer film (trade name, Daikin Industries, Neoflon 50 μm thick) for suppressing a decrease in water content larger than the electrolyte membrane from both sides of the laminate. Are laminated so as to cover.

【0023】この積層体を上部からみた様子を図2に模
式的に示す。図2において、記号1〜3は図1と同じも
のを示す。図2に示したように、触媒層2と電解質膜1
とフィルム3の大きさの関係は、触媒層2が一番小さ
く、フィルム3が一番大きくなっている。
FIG. 2 schematically shows a state in which this laminate is viewed from above. In FIG. 2, symbols 1 to 3 indicate the same as those in FIG. As shown in FIG. 2, the catalyst layer 2 and the electrolyte membrane 1
And the size of the film 3, the catalyst layer 2 is the smallest and the film 3 is the largest.

【0024】図2での説明では、触媒層2、電解質膜1
およびフィルム3は四角形のもの用いているが、触媒層
2が電解質膜1からはみ出ることなく積層され、電解質
膜1がフィルム3からはみ出ることなく積層されていれ
ば、それらの形状は四角形に限定されるものでなく、円
形、多角形などいかなる形状であっても構わない。
In the description with reference to FIG. 2, the catalyst layer 2, the electrolyte membrane 1
And the film 3 is rectangular, but if the catalyst layer 2 is laminated without protruding from the electrolyte membrane 1 and the electrolyte membrane 1 is laminated without protruding from the film 3, their shapes are limited to rectangular. However, the shape may be any shape such as a circle and a polygon.

【0025】含水率の低下を抑制するためのフィルム3
としては、前述のフッ素系の高分子フィルム以外にも、
フィルムが実質的に透水性を有さず、少なくとも180
℃の温度で安定であるものならば他の高分子フィルムあ
るいは金属箔などの、有機物もしくは無機物のフィルム
を用いることができる。
Film 3 for suppressing a decrease in water content
As, besides the above-mentioned fluorine-based polymer film,
The film has substantially no water permeability and is at least 180
Organic or inorganic films such as other polymer films or metal foils can be used as long as they are stable at a temperature of ° C.

【0026】触媒層形成基体7上への触媒層2の形成方
法は、沈降法、印刷法やスプレー法な従来公知の方法を
用いることができ、触媒層の厚みや触媒の付与量や触媒
種を任意に選択することができる。触媒層形成基体7
は、前述の方法により触媒層を形成できるシート状もし
くはプレート状であればその材質は、高分子、無機物あ
るいは金属を用いることができる。
As a method for forming the catalyst layer 2 on the catalyst layer forming substrate 7, a conventionally known method such as a sedimentation method, a printing method or a spray method can be used. Can be arbitrarily selected. Catalyst layer forming substrate 7
As for the material, a polymer, an inorganic substance, or a metal can be used as long as the material is a sheet or plate capable of forming a catalyst layer by the above-described method.

【0027】加熱圧接により触媒層形成基体7上に形成
した触媒層2の電解質膜1への転写を容易にするため
に、離型性に優れた触媒層形成基体の使用が好ましく、
たとえばフッ素系の高分子シートなどを用いることがで
きる。また、加熱圧接の時の熱伝導性および含水率の低
下を抑制するためのフィルム3の密着性とを良くするた
めに、触媒層形成基体7はシート状の厚みが薄いことが
好ましく、たとえば厚みが0.025mmのテトラフロ
ロエチレンヘキサフロロプロピレン共重合体シートや
0.015mmのアルミ箔や銅箔を用いることができ
る。
In order to facilitate the transfer of the catalyst layer 2 formed on the catalyst layer-forming substrate 7 to the electrolyte membrane 1 by heating and pressure welding, it is preferable to use a catalyst layer-forming substrate having excellent releasability.
For example, a fluorine-based polymer sheet or the like can be used. Further, in order to improve the heat conductivity and the adhesiveness of the film 3 for suppressing a decrease in the water content at the time of heating and pressing, the catalyst layer forming substrate 7 preferably has a thin sheet-like thickness. However, a tetrafluoroethylene hexafluoropropylene copolymer sheet having a thickness of 0.025 mm, an aluminum foil or a copper foil having a thickness of 0.015 mm can be used.

【0028】工程2は余剰水分の除去工程であり、断面
を図1−bに示す。工程1の積層体において、電解質膜
1と触媒層2、触媒層2とフィルム3あるいは電解質膜
1とフィルム3との間に存在する余分な水分を除去し、
これらの積層物を密着させる。
Step 2 is a step of removing excess moisture, and a cross section is shown in FIG. 1-b. In the laminate of step 1, excess water present between the electrolyte membrane 1 and the catalyst layer 2, between the catalyst layer 2 and the film 3, or between the electrolyte membrane 1 and the film 3 is removed,
These laminates are brought into close contact.

【0029】この工程はたとえばガラス板のような平板
4に上記の積層体を設置し、スキージブレードのような
ゴムヘラ5を用いて余分な水を扱き出すようにして除去
できる。このほかに、ロールをかける方法や一定幅のス
リットの間を通す方法などを用いても余分な水が除去で
き、積層物が密着できればいずれの方法を用いても構わ
ない。
In this step, for example, the above-mentioned laminate is placed on a flat plate 4 such as a glass plate, and excess water can be removed by using a rubber spatula 5 such as a squeegee blade. In addition to this, any method may be used as long as excess water can be removed and a laminate can be adhered by using a method of applying a roll or a method of passing a slit having a fixed width.

【0030】工程3は加熱圧接工程であり、断面を図1
−cに示す。余分な水分を取り除いた積層体をプレス治
具6に設置した後、所定の条件で加熱圧接して触媒層形
成基体7上の触媒層2を電解質膜1に転写する。
Step 3 is a heating and pressing step, and its cross section is shown in FIG.
-C. After the laminate from which excess water has been removed is placed on the press jig 6, the catalyst layer 2 on the catalyst layer forming substrate 7 is transferred to the electrolyte membrane 1 by heating and pressing under predetermined conditions.

【0031】プレス治具6のプレス面は転写する触媒層
2よりもひとまわり大きく、触媒層2の形状とプレス面
の形状は好ましくは相似形であり、触媒層の全面がプレ
ス面に接触するように設置する。触媒層2の周辺の電解
質膜1にはプレス面が当らないことが好ましいが、プレ
ス面が触媒層2より十分に大きく電解質膜1にプレス面
が当っても構わない。
The press surface of the press jig 6 is slightly larger than the catalyst layer 2 to be transferred, and the shape of the catalyst layer 2 and the shape of the press surface are preferably similar, and the entire surface of the catalyst layer contacts the press surface. Install as follows. It is preferable that the pressed surface does not hit the electrolyte membrane 1 around the catalyst layer 2, but the pressed surface may be sufficiently larger than the catalyst layer 2 and hit the electrolyte membrane 1.

【0032】この加熱圧接の温度は、電解質膜中の水が
急激に気化しないように100℃以下の温度であること
が好ましく、さらに好ましくは50℃〜90℃である
が、触媒層形成基体上の触媒層を電解質膜に転写できる
温度であれば何度でも構わない。またこの加熱圧接の圧
力は、加熱温度との兼ね合いで決まり25kg/cm2
〜500kg/cm2が好ましいが、触媒層形成基体上
の触媒層を電解質膜に転写できる圧力であればいくらで
も構わない。
The temperature of the heating and pressing is preferably 100 ° C. or less, more preferably 50 ° C. to 90 ° C., so that water in the electrolyte membrane does not rapidly evaporate. Any temperature may be used as long as the catalyst layer can be transferred to the electrolyte membrane. Further, the pressure of this heating pressure welding is determined in consideration of the heating temperature and is 25 kg / cm 2.
The pressure is preferably from 500 kg / cm 2 to 500 kg / cm 2, but any pressure can be used as long as the catalyst layer on the catalyst layer-forming substrate can be transferred to the electrolyte membrane.

【0033】工程4は触媒層形成基体を除去する工程で
あり、断面を図1−dに示す。加熱圧接により電解質膜
1に触媒層2を転写した積層体からフィルム3および触
媒層形成基体7を除去する。触媒層形成基体7は容易に
剥がし取ることができるが、触媒層形成基体7として金
属箔を用いた場合、酸などに溶解することにより触媒層
形成基体を除去することもできる。このようにして作製
した触媒層−電解質膜接合体は、精製水中に保存する。
Step 4 is a step of removing the substrate on which the catalyst layer is formed, and its cross section is shown in FIG. 1-d. The film 3 and the catalyst layer forming substrate 7 are removed from the laminate in which the catalyst layer 2 has been transferred to the electrolyte membrane 1 by heating and pressing. The catalyst layer-forming substrate 7 can be easily peeled off. However, when a metal foil is used as the catalyst layer-forming substrate 7, the catalyst layer-forming substrate can be removed by dissolving it in an acid or the like. The catalyst layer-electrolyte membrane assembly thus produced is stored in purified water.

【0034】本発明の触媒層−電解質膜接合体の作製に
用いる含水状態の電解質膜は、プロトン化の前処理を施
した状態で用いることができる。たとえばこの前処理
は、市販の電解質膜(たとえばNafion膜など)を
精製水で数回洗浄した後、脱脂のために3%過酸化水素
水で1時間程度煮沸処理を施して精製水で数回洗浄した
後、0.5Mの希硫酸で1時間程度煮沸処理を施すこと
により電解質膜の対イオンをプロトンに交換し、さらに
精製水で数回洗浄する。
The water-containing electrolyte membrane used for producing the catalyst layer-electrolyte membrane assembly of the present invention can be used after it has been subjected to a pretreatment for protonation. For example, in this pretreatment, a commercially available electrolyte membrane (for example, a Nafion membrane or the like) is washed several times with purified water, then subjected to boiling treatment with 3% hydrogen peroxide for about 1 hour for degreasing, and several times with purified water. After the washing, the counter ion of the electrolyte membrane is exchanged for protons by performing boiling treatment with 0.5 M diluted sulfuric acid for about 1 hour, and further washed several times with purified water.

【0035】電解質膜は含水率が大きいほどプロトン伝
導性も大きくなり、逆に、含水率が低下するとプロトン
伝導性も低下し、含水率がゼロになるとプロトン伝導性
を示さない。前処理における煮沸条件を高温高圧にすれ
ばさらに含水率を増大させることも可能であるが、常温
で高含水率を保つことは困難である。
The proton conductivity of the electrolyte membrane increases as the water content increases. Conversely, when the water content decreases, the proton conductivity decreases, and when the water content becomes zero, the electrolyte does not exhibit proton conductivity. It is possible to further increase the water content by setting the boiling conditions in the pretreatment to high temperature and high pressure, but it is difficult to maintain a high water content at normal temperature.

【0036】前述の条件で前処理を施して室温の精製水
中に保存した電解質膜の含水率は35wt%程度であ
り、この値が常温での含水率のほぼ最大である。したが
って、電解質膜のプロトン伝導性を高く保つためには、
前処理を施して精製水中に保存されている電解質膜の含
水率を低減させることなく、電解質膜−触媒層接合体を
作製することが望まれる。
The water content of the electrolyte membrane pretreated under the above-mentioned conditions and stored in purified water at room temperature is about 35 wt%, which is almost the maximum of the water content at room temperature. Therefore, to keep the proton conductivity of the electrolyte membrane high,
It is desired to produce an electrolyte membrane-catalyst layer assembly without performing a pretreatment and reducing the water content of the electrolyte membrane stored in purified water.

【0037】電解質膜−触媒層接合体を形成するときの
電解質膜は、前処理を施して保存してある精製水から取
り出して、表面に保存水が存在する状態のものを用いる
ことができる。この高い含水率の電解質膜の両面から含
水率の低下を抑制するためのフィルムを配した積層体を
形成した後、電解質膜の表面などに存在する余剰な水を
扱き出して積層体を密着させる。
The electrolyte membrane for forming the electrolyte membrane-catalyst layer assembly may be one which is taken out of the purified water that has been subjected to pretreatment and stored, and the surface of which has stored water. After forming a laminate on which a film for suppressing a decrease in the water content is formed from both sides of the electrolyte membrane having a high moisture content, excess water present on the surface of the electrolyte membrane or the like is drawn out and the laminate is adhered to the laminate. .

【0038】本発明に用いる電解質膜は、前述の方法で
前処理を施された上記含水率のものに限定されるもので
はなく、要は電解質膜が含水状態であれば、どのような
前処理を施された電解質膜であっても構わない。また、
電解質膜はパーフロロスルホン酸、パーフロロカルボン
酸やスチルビニルベンゼンスルホン酸など含水状態でプ
ロトン導電性を示す高分子膜であるならば、いずれの膜
を用いることができる。
The electrolyte membrane used in the present invention is not limited to those having the above-mentioned water content pretreated by the above-mentioned method. May be applied to the electrolyte membrane. Also,
As the electrolyte membrane, any membrane can be used as long as it is a polymer membrane that exhibits proton conductivity in a water-containing state, such as perfluorosulfonic acid, perfluorocarboxylic acid, and stilvinylbenzenesulfonic acid.

【0039】燃料電池用ガス拡散電極−電解質膜接合体
は、例えばつぎのようにして作製する。保存してある精
製水から触媒層−電解質膜接合体を取り出して表面に水
が存在する状態ままでガス拡散層として撥水性を有する
カーボンペーパーを積層し、さらに電解質膜を覆うよう
に両側から含水率の低下を抑制するためのフィルムで覆
うように積層体を構成する。この積層体をプレス治具に
設置して加熱圧接してガス拡散層を触媒層の部分に接合
する。フィルムを配することで、加熱圧接するときの含
水率の低減を抑制することができる。
The fuel cell gas diffusion electrode-electrolyte membrane assembly is produced, for example, as follows. The catalyst layer-electrolyte membrane assembly is taken out from the stored purified water, water-repellent carbon paper is laminated as a gas diffusion layer while water is present on the surface, and water is impregnated from both sides so as to cover the electrolyte membrane. The laminate is configured to be covered with a film for suppressing a reduction in the rate. This laminate is placed in a press jig and heated and pressed to join the gas diffusion layer to the catalyst layer. By arranging the film, it is possible to suppress a decrease in the water content at the time of heating and pressing.

【0040】[0040]

【実施例】本発明の触媒層−電解質膜接合体の製造方法
の実施例について説明する。
EXAMPLES Examples of the method for producing a catalyst layer-electrolyte membrane assembly of the present invention will be described.

【0041】[実施例1]はじめに、触媒層の作製方法
について説明する。すなわち、市販のナフィオン溶液5
wt%(アルドリッチ社製)13.2mlに白金が30
wt%担持されたカーボン触媒1.5gを添加し、撹拌
しながら60℃に加熱し、濃縮して粘度を調整したイン
ク状の混合物を調製した。この触媒混合物を300メッ
シュを用いたスクリーン印刷で触媒層形成基体としての
アルミ箔表面に塗布した後、乾燥して触媒層を形成し
た。これを5cm×5cmに裁断して、触媒層−触媒層
形成基体を作製した。ここで得られた触媒層は厚み約1
0μmであり、白金触媒の重量は約0.1mg/cm2
であった。
Example 1 First, a method for forming a catalyst layer will be described. That is, commercially available Nafion solution 5
30% platinum in 13.2ml wt% (Aldrich)
1.5 g of a carbon catalyst loaded with wt% was added, heated to 60 ° C. with stirring, and concentrated to prepare an ink-like mixture whose viscosity was adjusted. This catalyst mixture was applied to the surface of an aluminum foil as a catalyst layer forming substrate by screen printing using a 300 mesh, and then dried to form a catalyst layer. This was cut into 5 cm x 5 cm to prepare a catalyst layer-catalyst layer forming substrate. The catalyst layer obtained here has a thickness of about 1
0 μm, and the weight of the platinum catalyst is about 0.1 mg / cm 2
Met.

【0042】つぎに、電解質膜の前処理について説明す
る。電解質膜はパーフロロスルホン酸樹脂膜である市販
のNafion115(デュポン社の登録商標)を用い
た。Nafion115膜を精製水で3回洗浄した後、
3%過酸化水素水で1時間煮沸した後、精製水で3回洗
浄した。さらに、Nafion膜の対イオンをプロトン
型にするために0.5Mの希硫酸で1時間煮沸した後、
精製水で3回洗浄した。このような前処理を施した後、
このNafion115膜を使用するまで、室温で精製
水中に保管した。
Next, the pretreatment of the electrolyte membrane will be described. As the electrolyte membrane, a commercially available Nafion 115 (registered trademark of DuPont), which is a perfluorosulfonic acid resin membrane, was used. After washing the Nafion 115 membrane three times with purified water,
After boiling for 1 hour in 3% hydrogen peroxide solution, it was washed three times with purified water. Further, after boiled with 0.5 M diluted sulfuric acid for 1 hour in order to make the counter ion of the Nafion membrane into a proton type,
Washed three times with purified water. After performing such pre-processing,
The Nafion 115 membrane was stored in purified water at room temperature until use.

【0043】つぎに、電解質膜への触媒層の転写につい
て説明する。先に作製した触媒層−触媒層形成基体を、
前述の前処理を施した電解質膜の両面の所定の位置に配
置した。このとき両側の触媒層は、電解質膜を介して位
置を一致させた。これに含水率の低下を抑制するための
フィルムを両側から覆うように配置して積層体を構成し
た。
Next, transfer of the catalyst layer to the electrolyte membrane will be described. The previously prepared catalyst layer-catalyst layer forming substrate was
It was arranged at a predetermined position on both sides of the electrolyte membrane subjected to the pretreatment described above. At this time, the positions of the catalyst layers on both sides were matched via the electrolyte membrane. Then, a film for suppressing a decrease in the water content was disposed so as to cover from both sides to form a laminate.

【0044】フィルムとしては厚み50μmのテトラフ
ロロエチレン−ヘキサフロロプロピレン共重合体フィル
ム(ダイキン工業(株)製、商品名ネオフロンフィル
ム)を用いた。このときの電解質膜の含水率は、約35
wt%であった。この積層体を平らなガラス坂に置き、
スキージブレードを用いて積層体の余分な水を扱き出し
て除去して積層体を密着させた。
As the film, a 50 μm-thick tetrafluoroethylene-hexafluoropropylene copolymer film (manufactured by Daikin Industries, Ltd., trade name: Neoflon film) was used. The water content of the electrolyte membrane at this time is about 35
wt%. Place this stack on a flat glass slope,
Using a squeegee blade, excess water in the laminate was drawn out and removed to bring the laminate into close contact.

【0045】この積層体をプレス治具に設置して120
kg/cm2、90℃、90秒間の条件で加熱圧接して
触媒層を電解質膜に転写した後、フィルムと触媒層形成
基体を剥がしとり触媒層−電解質膜接合体を作製した。
これを本発明の触媒層−電解質膜接合体Aとした。
This laminate was placed on a press jig and placed
After transferring the catalyst layer to the electrolyte membrane by heating and pressing under the conditions of kg / cm 2 , 90 ° C. and 90 seconds, the film and the catalyst layer-forming substrate were peeled off to produce a catalyst layer-electrolyte membrane assembly.
This was designated as catalyst layer-electrolyte membrane assembly A of the present invention.

【0046】つぎに、ガス拡散電極−電解質膜接合体の
作製方法について説明する。ガス拡散電極−電解質膜接
合体は、触媒層−電解質膜接合体の触媒層の部分にガス
拡散層を接合したものである。ガス拡散層としては、厚
み0.2mmのカーボンペーパーをディスパージョンポ
リテトラフロロエチレン溶液に含浸した後、焼成して撥
水性をもたせたものを用いた。この撥水性を有するカー
ボンペーパーを5cm×5cmの大きさに裁断し、先に
作製した触媒層−電解質膜接合体Aの両側の触媒層の部
分に配置し、さらに含水率の低下を抑制するためのフィ
ルムを両側から覆うように積層してプレス治具に配置
し、120kg/cm2、90℃、5分間の条件で加熱
圧接してガス拡散層を触媒層に接合体した。フィルムを
剥がしとり、本発明の触媒層−電解質膜接合体Aを用い
て作製したガス拡散電極−電解質膜接合体Aを作製し
た。
Next, a method for producing the gas diffusion electrode-electrolyte membrane assembly will be described. The gas diffusion electrode-electrolyte membrane assembly is obtained by joining a gas diffusion layer to the catalyst layer portion of the catalyst layer-electrolyte membrane assembly. As the gas diffusion layer, a carbon paper having a thickness of 0.2 mm was impregnated with a dispersion polytetrafluoroethylene solution and then fired to give water repellency. This carbon paper having water repellency is cut into a size of 5 cm × 5 cm, and placed on the catalyst layers on both sides of the previously prepared catalyst layer-electrolyte membrane assembly A to further suppress a decrease in water content. The film was laminated on both sides so as to cover it from both sides, and placed in a press jig, and heated and pressed under the conditions of 120 kg / cm 2 , 90 ° C., and 5 minutes to join the gas diffusion layer to the catalyst layer. The film was peeled off, and a gas diffusion electrode-electrolyte membrane assembly A produced using the catalyst layer-electrolyte membrane assembly A of the present invention was produced.

【0047】このガス拡散電極−電解質膜接合体Aをガ
ス流路が加工された一対の金属製セパレータに挟持して
固体高分子電解質型燃料電池Aを構成した。
The gas diffusion electrode-electrolyte membrane assembly A was sandwiched between a pair of metal separators in which gas channels were processed, to form a solid polymer electrolyte fuel cell A.

【0048】フィルムを用いて作製したガス拡散電極−
電解質膜接合体のガス拡散電極周辺部分の電解質膜は、
フィルムを用いない時よりも形状の変化が少なかった。
このためにガス拡散電極−電解質膜接合体をセパレータ
で挟持して燃料電池を構成するときに、この接合体の周
辺部分の電解質膜とセパレータ間の気密性が向上し、よ
り高いガス圧を加えても漏れが発生しなくなった。これ
に対して、フィルムを用いずに作製したガス拡散電極−
電解質膜接合体のガス拡散電極周辺部分の電解質膜は形
状の変化が大きく、燃料電池の気密性の低下をもたらし
た。
Gas Diffusion Electrode Made Using Film
The electrolyte membrane around the gas diffusion electrode of the electrolyte membrane assembly,
The change in shape was less than when no film was used.
For this reason, when a fuel cell is constructed by sandwiching the gas diffusion electrode-electrolyte membrane assembly between separators, the airtightness between the electrolyte membrane and the separator in the peripheral portion of the assembly is improved, and a higher gas pressure is applied. No more leaks. On the other hand, a gas diffusion electrode made without using a film
The shape of the electrolyte membrane around the gas diffusion electrode of the electrolyte membrane assembly greatly changed, resulting in a decrease in the airtightness of the fuel cell.

【0049】[比較例]実施例1で前処理を施した電解
質膜(Nafion115)を数枚のろ紙とペーパータ
オルで挟持して圧迫を加えた状態で減圧にし、80℃で
一晩(約16時間)真空乾燥して含水率がゼロの電解質
膜を準備した。実施例1で作製したものと同じ触媒層を
この含水率がゼロの電解質膜の両側に配置し、厚み50
μmのテトラフロロエチレン−ヘキサフロロプロピレン
共重合体フィルムを両側から覆うように配置した積層体
を構成した。この積層体をプレス治具に設置して120
kg/cm2、90℃、90秒間の条件で加熱圧接して
触媒層を電解質膜に転写した後、フィルムと触媒層形成
基体を剥がしとり、触媒層−電解質膜接合体を作製した
後、精製水に浸漬して電解質膜を含水状態に戻した。こ
れを触媒層−電解質膜接合体Bとした。
[Comparative Example] The electrolyte membrane (Nafion 115) pretreated in Example 1 was sandwiched between several filter papers and paper towels, and the pressure was reduced under pressure. The pressure was reduced at 80 ° C. overnight (about 16 hours). ) Vacuum drying was performed to prepare an electrolyte membrane having a water content of zero. The same catalyst layer as that prepared in Example 1 was disposed on both sides of the electrolyte membrane having a water content of zero, and had a thickness of 50%.
A laminate in which a μm tetrafluoroethylene-hexafluoropropylene copolymer film was disposed so as to cover from both sides was formed. This laminate is placed on a press jig and
After transferring the catalyst layer to the electrolyte membrane by heating and pressing under the conditions of kg / cm 2 , 90 ° C. and 90 seconds, the film and the catalyst layer-forming substrate are peeled off, and a catalyst layer-electrolyte membrane assembly is produced. The electrolyte membrane was immersed in water to return to a water-containing state. This was designated as catalyst layer-electrolyte membrane assembly B.

【0050】実施例1と同じようにガス拡散層として撥
水性を有するカーボンペーパーを触媒層−電解質膜接合
体Bの両面に配置し、さらにフィルムを両側から覆うよ
うに積層してプレス治具に配置し、120kg/c
2、90℃、5分間の条件で加熱圧接してガス拡散層
を触媒層に接合した。フィルムを剥がしとり、触媒層−
電解質膜接合体Bを用いて作製したガス拡散電極−電解
質膜接合体Bを作製した。
As in Example 1, water-repellent carbon paper as a gas diffusion layer was disposed on both surfaces of the catalyst layer-electrolyte membrane assembly B, and the film was laminated so as to cover both sides, and the resultant was applied to a press jig. 120 kg / c
The gas diffusion layer was joined to the catalyst layer by heating and pressing under conditions of m 2 , 90 ° C., and 5 minutes. Peel off the film, catalyst layer-
A gas diffusion electrode-electrolyte membrane assembly B produced using the electrolyte membrane assembly B was produced.

【0051】このガス拡散電極−電解質膜接合体Bをガ
ス流路が加工された一対の金属製セパレータに挟持して
固体高分子電解質型燃料電池Bを構成した。
The polymer electrolyte fuel cell B was constituted by sandwiching the gas diffusion electrode-electrolyte membrane assembly B between a pair of metal separators having gas channels formed therein.

【0052】実施例1で作製した固体高分子電解質型燃
料電池Aと比較例で作製した固体高分子電解質型燃料電
池Bとを同じ条件で作動させた。すなわち、燃料ガスに
は純水素を用いて60℃に設定したバブラー式の加湿器
で加湿した後、利用率が70%になる流量で電池に供給
した。酸化ガスには純酸素を用いて60℃に設定したバ
ブラー式の加湿器で加湿した後、利用率が50%になる
流量で電池に供給した。反応ガスは、それぞれ大気圧で
供給した。電池には65℃のクーラントを循環して、電
池温度を一定に保った。
The solid polymer electrolyte fuel cell A manufactured in Example 1 and the solid polymer electrolyte fuel cell B manufactured in Comparative Example were operated under the same conditions. That is, pure hydrogen was used as the fuel gas, and the fuel gas was humidified by a bubbler humidifier set at 60 ° C., and then supplied to the battery at a flow rate at which the utilization factor became 70%. After humidifying with a bubbler humidifier set to 60 ° C. using pure oxygen as the oxidizing gas, the gas was supplied to the battery at a flow rate at which the utilization factor became 50%. The reaction gases were each supplied at atmospheric pressure. Coolant at 65 ° C. was circulated through the battery to keep the battery temperature constant.

【0053】固体高分子電解質型燃料電池AとBとの電
流−電圧特性を図3に示す。図3において、11は固体
高分子電解質型燃料電池Aの、12は固体高分子電解質
型燃料電池Bの電流−電圧特性である。
FIG. 3 shows the current-voltage characteristics of the solid polymer electrolyte fuel cells A and B. 3, reference numeral 11 denotes a current-voltage characteristic of the solid polymer electrolyte fuel cell A, and reference numeral 12 denotes a current-voltage characteristic of the solid polymer electrolyte fuel cell B.

【0054】図3から明らかなように、触媒層−電解質
膜接合体を作製する時に含水状態の電解質膜を用いた本
発明になる固体高分子電解質型燃料電池Aは、乾燥状態
の電解質膜を用いた比較例の固体高分子電解質型燃料電
池Bより、電流密度の増大にともなう電圧低下が小さく
優れた特性を示した。
As is evident from FIG. 3, the solid polymer electrolyte fuel cell A according to the present invention, which uses a hydrated electrolyte membrane when producing a catalyst layer-electrolyte membrane assembly, uses a dry electrolyte membrane. Compared to the solid polymer electrolyte fuel cell B of the comparative example used, the voltage drop due to the increase in the current density was small, indicating excellent characteristics.

【0055】内部抵抗計(TSURUGAMODEL
3562)を用いて、これらの固体高分子電解質型燃料
電池の開路電圧での内部抵抗を測定したところ、固体高
分子電解質型燃料電池Aは9.6mΩの値を示し、一
方、固体高分子電解質型燃料電池Bは17.2mΩの値
を示した。このことは、固体高分子電解質型燃料電池B
の内部抵抗は、固体高分子電解質型燃料電池Aのそれよ
りも大きく、このために前者は抵抗過電圧の増大により
特性が低下するものと考えられる。また、精製水に浸漬
して含水状態に戻した触媒層−電解質膜接合体Bに電解
質膜の含水率を測定したところ、その含水率は31wt
%であった。この値は、前処理後の含水率35wt%よ
り小さく、一度乾燥した電解質膜は精製水に浸漬するだ
けでは、十分に含水率が復元しないことを示した。
An internal resistance meter (TSURUGAMODEL)
When the internal resistance of these solid polymer electrolyte fuel cells at an open circuit voltage was measured using 3562), the solid polymer electrolyte fuel cell A showed a value of 9.6 mΩ, while the solid polymer electrolyte fuel cell A showed a value of 9.6 mΩ. Type fuel cell B showed a value of 17.2 mΩ. This means that the solid polymer electrolyte fuel cell B
Has a higher internal resistance than that of the solid polymer electrolyte fuel cell A. Therefore, it is considered that the characteristics of the former decrease due to an increase in the resistance overvoltage. The water content of the electrolyte membrane was measured for the catalyst layer-electrolyte membrane assembly B immersed in purified water to return to a water-containing state, and the water content was 31 wt.
%Met. This value was smaller than the water content of 35 wt% after the pretreatment, and it was shown that once the electrolyte membrane was dried, the water content was not sufficiently restored only by immersing it in purified water.

【0056】これらのことから、触媒層−電解質膜接合
体を作製する場合、含水状態の電解質膜を用いる方が、
抵抗過電圧が小さく高出力密度の固体高分子電解質型燃
料電池を作製することができるものである。
From these facts, when a catalyst layer-electrolyte membrane assembly is produced, it is better to use a hydrated electrolyte membrane.
A solid polymer electrolyte fuel cell having a low resistance overvoltage and a high output density can be manufactured.

【0057】[実施例2]実施例1で前処理を施した電
解質膜(Nafion115)を相対湿度を制御した容
器の中に2日間に安置し、さまざまな含水率の電解質膜
を作製した。作製した電解質膜の含水率は、それぞれ3
1wt%、28wt%、25wt%、23wt%および
20wt%である。実施例1で作製したものと同じ触媒
層をそれぞれの含水率の電解質膜の両側に配置し、含水
率の低下を抑制するためのフィルムを両側から覆うよう
に配置した積層体を構成した。
Example 2 The electrolyte membrane (Nafion 115) subjected to the pretreatment in Example 1 was placed in a container whose relative humidity was controlled for 2 days to produce electrolyte membranes having various water contents. The water content of the prepared electrolyte membrane was 3
They are 1 wt%, 28 wt%, 25 wt%, 23 wt% and 20 wt%. The same catalyst layer as that prepared in Example 1 was arranged on both sides of the electrolyte membrane having each moisture content, and a laminate was arranged so as to cover from both sides a film for suppressing a decrease in moisture content.

【0058】この積層体をプレス治具に設置して120
kg/cm2、90℃、90秒間の条件で加熱圧接して
触媒層を電解質膜に転写した後、フィルムと触媒層形成
基体を剥がしとり触媒層−電解質膜接合体を作製した
後、精製水に浸漬して電解質膜を含水状態に戻した。
This laminate was placed on a press jig and placed
After transferring the catalyst layer to the electrolyte membrane by heating and pressing under the conditions of kg / cm 2 , 90 ° C. and 90 seconds, the film and the catalyst layer-forming substrate are peeled off to form a catalyst layer-electrolyte membrane assembly, and purified water To return the electrolyte membrane to a water-containing state.

【0059】含水率が31wt%の電解質膜を用いて作
製したものを本発明の触媒層−電解質膜接合体C、28
wt%の電解質膜を用いて作製したものを本発明の触媒
層−電解質膜接合体D、25wt%の電解質膜を用いて
作製したものを本発明の触媒層−電解質膜接合体E、2
3wt%の電解質膜を用いて作製したものを本発明の触
媒層−電解質膜接合体Fとした。20wt%の電解質膜
を用いて作製したものを本発明の触媒層−電解質膜接合
体Gとした。
A catalyst layer-electrolyte membrane assembly C, 28 of the present invention was prepared using an electrolyte membrane having a water content of 31 wt%.
The catalyst layer-electrolyte membrane assembly D of the present invention was prepared using a wt% electrolyte membrane, and the catalyst layer-electrolyte membrane assembly E of the present invention was prepared using a 25 wt% electrolyte membrane.
A catalyst layer-electrolyte membrane assembly F of the present invention was prepared using a 3 wt% electrolyte membrane. A catalyst layer-electrolyte membrane assembly G of the present invention was prepared using a 20 wt% electrolyte membrane.

【0060】実施例1と同じようにガス拡散層として撥
水性を有するカーボンペーパーを本発明の触媒層−電解
質膜接合体C、D、E、FおよびGのそれぞれの両面に
配置し、さらにフィルムを両側から覆うように積層して
プレス治具に配置し、120kg/cm2、90℃、5
分間の条件で加熱圧接してガス拡散層を触媒層に接合体
した。フィルムを剥がしとり本発明のガス拡散電極−電
解質膜接合体C、D、E、FおよびGをそれぞれ作製し
た。これらのガス拡散電極−電解質膜接合体C、D、
E、FおよびGのそれぞれにガス流路が加工された一対
の金属製セパレータに挟持して固体高分子電解質型燃料
電池C、D、E、FおよびGをそれぞれ構成し、実施例
1と同じ条件で作動させた。
As in Example 1, carbon paper having water repellency as a gas diffusion layer was disposed on both surfaces of the catalyst layer-electrolyte membrane assemblies C, D, E, F and G of the present invention. And placed on a press jig so as to cover from both sides, at 120 kg / cm 2 , 90 ° C., 5
The gas diffusion layer was joined to the catalyst layer by heating and pressing under the conditions of minutes. The film was peeled off to produce gas diffusion electrode-electrolyte membrane assemblies C, D, E, F and G of the present invention. These gas diffusion electrode-electrolyte membrane assemblies C, D,
The solid polymer electrolyte fuel cells C, D, E, F and G are respectively sandwiched between a pair of metal separators each having a gas channel processed in each of E, F and G, and are the same as those in Example 1. Operated under conditions.

【0061】図4は、実施例1、実施例2および比較例
で作製した固体高分子電解質型燃料電池A、B、C、
D、E、FおよびGの、電流密度500mA/cm2
おける端子電圧と触媒層−電解質膜接合体を作製する時
に用いた電解質膜の含水率との関係を示したものであ
る。
FIG. 4 shows the solid polymer electrolyte fuel cells A, B, C, and C produced in Example 1, Example 2, and Comparative Example.
FIG. 4 shows the relationship between the terminal voltage of D, E, F, and G at a current density of 500 mA / cm 2 and the water content of the electrolyte membrane used when producing the catalyst layer-electrolyte membrane assembly.

【0062】電流密度500mA/cm2での端子電圧
は、含水率が35wt%の電解質膜を用いて作製した固
体高分子電解質型燃料電池Aが最も高く、電解質膜の含
水率が低下するにしたがって徐々に低下し、20wt%
未満の含水率では著しい低下が見られた。
The terminal voltage at a current density of 500 mA / cm 2 is the highest for a solid polymer electrolyte fuel cell A prepared using an electrolyte membrane having a water content of 35 wt%, and decreases as the water content of the electrolyte membrane decreases. Decrease gradually, 20wt%
At lower moisture contents, a significant decrease was observed.

【0063】内部抵抗計(TSURUGA MODEL
3562)を用いて、これらの固体高分子電解質型燃料
電池A、C、D、E、F、GおよびBの、電流密度50
0mA/cm2での内部抵抗を測定したところ、それぞ
れ9.8mΩ、9.8mΩ、10.0mΩ、11.5m
Ω、11.9mΩ、13.8mΩおよび17.5mΩの
値を示し、触媒層を転写するときの含水率が低下するに
したがって内部抵抗が増大することを示した。
An internal resistance meter (TSURUGA MODEL)
3562), the current density of these solid polymer electrolyte fuel cells A, C, D, E, F, G and B was 50
When the internal resistance at 0 mA / cm 2 was measured, it was 9.8 mΩ, 9.8 mΩ, 10.0 mΩ, and 11.5 mΩ, respectively.
The values of Ω, 11.9 mΩ, 13.8 mΩ, and 17.5 mΩ indicated that the internal resistance increased as the water content at the time of transferring the catalyst layer decreased.

【0064】正方形の電解質膜を使用した場合、含水率
が35wt%の時の電解質膜の一辺の長さを1とした電
解質膜の相対寸法と含水率との関係を図5に示す。含水
率が28wt%になると電解質膜の一辺の長さは約3
%、23wt%では約5%、20wt%では約9%、0
wt%では16%も収縮し、逆に、再び含水率を35w
t%付近にもどすと収縮した割合だけ伸張した。
FIG. 5 shows the relationship between the relative size of the electrolyte membrane and the water content when the length of one side of the electrolyte membrane is 1 when the water content is 35 wt% when a square electrolyte membrane is used. When the water content becomes 28 wt%, the length of one side of the electrolyte membrane becomes about 3
%, 23 wt% about 5%, 20 wt% about 9%, 0%
In the case of wt%, it shrinks by as much as 16%.
When it was returned to the vicinity of t%, it was expanded by the contracted ratio.

【0065】つまり、この収縮した状態の電解質膜に触
媒層を転写すると、電解質膜の含水率が増大して伸張す
ると触媒層もそれだけ伸張することになる。そこで電解
質膜の含水率の変化にともなう伸縮により、触媒層を構
成する触媒を胆持したカーボン粒子間の接触が悪くな
り、触媒層の電子やプロトン伝導性に悪影響を及ぼすこ
とが考えられる。
That is, when the catalyst layer is transferred to the contracted electrolyte membrane, when the water content of the electrolyte membrane is increased and the electrolyte membrane is extended, the catalyst layer is extended accordingly. It is conceivable that the contact between the carbon particles holding the catalyst constituting the catalyst layer becomes poor due to expansion and contraction due to the change in the water content of the electrolyte membrane, which adversely affects the electron and proton conductivity of the catalyst layer.

【0066】図4と図5から、含水率の低下による電解
質膜の伸縮率が9%以下の比較的小さい範囲の電解質膜
を用いた固体高分子電解質型燃料電池では、内部抵抗の
増大は比較的小さく、触媒層の伝導性への影響は小さい
が、伸縮率が9%を超えるとその内部抵抗は著しく増大
し、触媒層の伝導性への影響が大きいことがわかった。
FIGS. 4 and 5 show that the increase in internal resistance of a solid polymer electrolyte fuel cell using an electrolyte membrane having a relatively small range of 9% or less due to a decrease in water content was observed. The effect on the conductivity of the catalyst layer was small, but when the expansion ratio exceeded 9%, the internal resistance increased remarkably, and the effect on the conductivity of the catalyst layer was found to be large.

【0067】このことは、抵抗過電圧の小さい触媒層−
電解質膜接合体を形成するには、電解質膜の伸縮を9%
以下にすること、すなわち含水率を20wt%以上に保
つことが必要である。とくに、電解質膜の伸縮を3%以
内にすると抵抗過電圧の増大への影響は見られないの
で、電解質膜の含水率を28wt%以上に保つことが好
ましい。
This means that the catalyst layer having a small resistance overvoltage is
To form an electrolyte membrane assembly, the expansion and contraction of the electrolyte membrane must be 9%.
It is necessary to keep the water content below, that is, to keep the water content at 20 wt% or more. In particular, if the expansion and contraction of the electrolyte membrane is set to 3% or less, no influence on the increase of the resistance overvoltage is observed, so that the water content of the electrolyte membrane is preferably kept at 28 wt% or more.

【0068】[0068]

【発明の効果】本発明は、含水率の低下を抑制するため
のフィルムを密着した状態で加熱圧接によって触媒層を
含水状態の電解質膜に転写することにより、電解質膜と
外気との接触を断ち、乾燥を防止でき、35wt%と比
較的高含水率の電解質膜を用いる場合でも含水率を保持
することに効果的であり、電解質膜の高いプロトン導電
性を保ことができ、急激な含水率の変化に起因する電解
質膜の変形を防止することができる。
According to the present invention, the contact between the electrolyte membrane and the outside air is cut off by transferring the catalyst layer to the water-containing electrolyte membrane by heating and pressing in a state where the film for suppressing the decrease in the moisture content is in close contact with the film. It is effective in maintaining a water content even when an electrolyte membrane having a relatively high water content of 35 wt% is used, and it is possible to maintain high proton conductivity of the electrolyte membrane and to have a rapid water content. The deformation of the electrolyte membrane due to the change in the temperature can be prevented.

【0069】また、転写のときに電解質膜と触媒層との
余剰な水が存在しないことは電解質膜への触媒層の転写
がより完全におこなわれや易くなる。
Further, the absence of excess water between the electrolyte membrane and the catalyst layer at the time of transfer facilitates the complete transfer of the catalyst layer to the electrolyte membrane.

【0070】本発明になる触媒層−電解質接合体の作製
方法により、電解質膜周辺部分の変形することを抑制で
き、それに起因する燃料電池の気密性の低下を防止でき
るとともに、電解質膜の変形に起因する触媒層の電子や
プロトンの導電性の低減を抑制して抵抗過電圧の小さい
触媒層−電解質膜接合体が得られ、信頼性が高く優れた
特性をもつ固体高分子電解質型燃料電池を提供すること
ができる。
According to the method for producing a catalyst layer-electrolyte assembly according to the present invention, deformation of the peripheral portion of the electrolyte membrane can be suppressed, and the resulting decrease in the airtightness of the fuel cell can be prevented. Providing a solid polymer electrolyte fuel cell with high reliability and excellent characteristics by suppressing the reduction in the conductivity of electrons and protons in the catalyst layer due to the resulting catalyst layer-electrolyte membrane assembly with low resistance overvoltage can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の含水状態の電解質膜を用いた触媒層−
電解質膜接合体の作製工程を示す模式図。
FIG. 1 shows a catalyst layer using a water-containing electrolyte membrane of the present invention.
FIG. 3 is a schematic view illustrating a process for manufacturing an electrolyte membrane assembly.

【図2】本発明の含水状態の電解質膜を用いた触媒層−
電解質膜接合体の作製工程のおける積層体の構成を示す
模式図。
FIG. 2 shows a catalyst layer using a water-containing electrolyte membrane of the present invention.
FIG. 4 is a schematic diagram showing a configuration of a laminate in a manufacturing process of an electrolyte membrane assembly.

【図3】本発明の実施例1の触媒層−電解質膜接合体A
および比較例の触媒層−電解質膜接合体Bを用いた固体
高分子電解質型燃料電池の電流−電圧特性を示す図。
FIG. 3 shows a catalyst layer-electrolyte membrane assembly A of Example 1 of the present invention.
The figure which shows the current-voltage characteristic of the solid polymer electrolyte type fuel cell using the catalyst layer-electrolyte membrane assembly B of the comparative example.

【図4】触媒層−電解質膜接合体を作製したときの電解
質膜の含水率とその接合体を用いて構成した固体高分子
電解質型燃料電池の500mA/cm2における端子電
圧との関係を示す図。
FIG. 4 shows the relationship between the water content of an electrolyte membrane when a catalyst layer-electrolyte membrane assembly is produced and the terminal voltage at 500 mA / cm 2 of a solid polymer electrolyte fuel cell formed using the assembly. FIG.

【図5】含水率35wt%の電解質膜の一辺の寸法を1
としたときの相対寸法と電解質膜の含水率との関係を示
した図。
FIG. 5 shows the dimensions of one side of an electrolyte membrane having a water content of 35 wt% as 1
The figure which showed the relationship between the relative dimension at the time of setting, and the water content of an electrolyte membrane.

【符号の説明】[Explanation of symbols]

1 電解質膜 2 触媒層 3 フィルム 4 ガラス板 5 ゴムヘラ 6 プレス治具 7 触媒層形成基体 8 触媒層−電解質膜接合体 11 本発明の固体高分子電解質型燃料電池Aの電流−
電圧特性 12 比較例の固体高分子電解質型燃料電池Bの電流−
電圧特性
Reference Signs List 1 electrolyte membrane 2 catalyst layer 3 film 4 glass plate 5 rubber spatula 6 press jig 7 catalyst layer forming substrate 8 catalyst layer-electrolyte membrane assembly 11 current of solid polymer electrolyte fuel cell A of the present invention-
Voltage characteristics 12 Current of solid polymer electrolyte fuel cell B of Comparative Example-
Voltage characteristics

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に触媒層を形成した触媒層形成基体
を、その触媒層面が固体高分子電解質膜に接するよう
に、含水状態の固体高分子電解質膜の片面または両面に
積層した基体ー電解質膜積層体を、2枚のフィルムの間
に挟んだ状態で加熱圧接されたことを特徴とする、触媒
層−電解質膜接合体の製造方法。
1. A substrate-electrolyte in which a catalyst layer-forming substrate having a catalyst layer formed on its surface is laminated on one or both surfaces of a hydrated solid polymer electrolyte membrane such that the catalyst layer surface is in contact with the solid polymer electrolyte membrane. A method for producing a catalyst layer-electrolyte membrane assembly, wherein the membrane laminate is heated and pressed while being sandwiched between two films.
【請求項2】 固体高分子電解質膜の含水率が20wt
%以上であることを特徴とする、請求項1記載の触媒層
−電解質膜接合体の製造方法。
2. The solid polymer electrolyte membrane having a water content of 20 wt.
%. The method for producing a catalyst layer-electrolyte membrane assembly according to claim 1, wherein
【請求項3】 請求項1記載の方法で作製した触媒層−
電解質膜接合体を用いたガス拡散電極−電解質膜接合体
を備えたことを特徴とする固体高分子電解質型燃料電
池。
3. A catalyst layer produced by the method according to claim 1.
A solid polymer electrolyte fuel cell comprising a gas diffusion electrode-electrolyte membrane assembly using an electrolyte membrane assembly.
JP10276642A 1998-09-10 1998-09-10 Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body Withdrawn JP2000090944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10276642A JP2000090944A (en) 1998-09-10 1998-09-10 Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10276642A JP2000090944A (en) 1998-09-10 1998-09-10 Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body

Publications (2)

Publication Number Publication Date
JP2000090944A true JP2000090944A (en) 2000-03-31
JP2000090944A5 JP2000090944A5 (en) 2005-10-27

Family

ID=17572300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10276642A Withdrawn JP2000090944A (en) 1998-09-10 1998-09-10 Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body

Country Status (1)

Country Link
JP (1) JP2000090944A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237308A (en) * 2001-02-09 2002-08-23 Sony Corp Gas diffusible electrode and its manufacturing method, as well as electrochemical device
JP2003017086A (en) * 2001-06-28 2003-01-17 Asahi Glass Co Ltd Manufacturing method of membrane electrode laminated body for solid polymer fuel cell
JP2004186143A (en) * 2002-11-18 2004-07-02 Honda Motor Co Ltd Manufacture method of electrode structure for solid polymer fuel cell
JP2005529451A (en) * 2002-04-03 2005-09-29 スリーエム イノベイティブ プロパティズ カンパニー Laminating apparatus and method
JP2006513527A (en) * 2002-06-13 2006-04-20 ゼネラル・モーターズ・コーポレーション Method for making a membrane electrode assembly
JP2007280939A (en) * 2006-02-27 2007-10-25 Gm Global Technology Operations Inc Method of laminating decalcomania to carrier film
KR100774729B1 (en) 2006-11-15 2007-11-08 현대자동차주식회사 3 layer mea a manufacturing process used sublayer
US7425383B2 (en) 2001-10-31 2008-09-16 Hitachi, Ltd. Electrode for polymer electrolyte fuel cell, separator therefore, and polymer electrolyte fuel cell, and generating system using them
WO2008133255A1 (en) 2007-04-23 2008-11-06 Toyota Jidosha Kabushiki Kaisha Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
JP2009259789A (en) * 2008-03-28 2009-11-05 Dainippon Printing Co Ltd Catalyst layer transfer film
US7722684B2 (en) 2003-05-28 2010-05-25 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
JP2010198948A (en) * 2009-02-26 2010-09-09 Toppan Printing Co Ltd Membrane-electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
JP2010205676A (en) * 2009-03-05 2010-09-16 Toppan Printing Co Ltd Membrane-electrode assembly and method for manufacturing the same, and polymer electrolyte fuel cell
US8114552B2 (en) 2002-11-18 2012-02-14 Honda Motor Co., Ltd. Electrode structure for polymer electrolyte fuel cell comprising sulfonated polyarylene-based polymer and method for manufactuing same
JP2012069467A (en) * 2010-09-27 2012-04-05 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate with protective sheet and aggregate thereof
CN102763255A (en) * 2010-12-16 2012-10-31 松下电器产业株式会社 Method for manufacturing membrane-catalyst layer assembly
JP2012216379A (en) * 2011-03-31 2012-11-08 Eneos Celltech Co Ltd Manufacturing method of membrane electrode assembly, and manufacturing apparatus of membrane electrode assembly

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691794B2 (en) * 2001-02-09 2011-06-01 ソニー株式会社 Method for manufacturing electrochemical device
JP2002237308A (en) * 2001-02-09 2002-08-23 Sony Corp Gas diffusible electrode and its manufacturing method, as well as electrochemical device
JP2003017086A (en) * 2001-06-28 2003-01-17 Asahi Glass Co Ltd Manufacturing method of membrane electrode laminated body for solid polymer fuel cell
US7659028B2 (en) 2001-10-31 2010-02-09 Hitachi, Ltd. Polymer electrolyte fuel cell
US7425383B2 (en) 2001-10-31 2008-09-16 Hitachi, Ltd. Electrode for polymer electrolyte fuel cell, separator therefore, and polymer electrolyte fuel cell, and generating system using them
US8480838B2 (en) 2002-04-03 2013-07-09 3M Innovative Properties Company Lamination apparatus and methods
JP2005529451A (en) * 2002-04-03 2005-09-29 スリーエム イノベイティブ プロパティズ カンパニー Laminating apparatus and method
US8309218B2 (en) 2002-04-03 2012-11-13 3M Innovative Properties Company Lamination apparatus and methods
JP2006513527A (en) * 2002-06-13 2006-04-20 ゼネラル・モーターズ・コーポレーション Method for making a membrane electrode assembly
JP4746317B2 (en) * 2002-06-13 2011-08-10 ゼネラル・モーターズ・コーポレーション Method for making a membrane electrode assembly
US8114552B2 (en) 2002-11-18 2012-02-14 Honda Motor Co., Ltd. Electrode structure for polymer electrolyte fuel cell comprising sulfonated polyarylene-based polymer and method for manufactuing same
JP2004186143A (en) * 2002-11-18 2004-07-02 Honda Motor Co Ltd Manufacture method of electrode structure for solid polymer fuel cell
US8828620B2 (en) 2003-05-28 2014-09-09 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
US7722684B2 (en) 2003-05-28 2010-05-25 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
US8268511B2 (en) 2003-05-28 2012-09-18 3M Innovative Properties Company Roll-good fuel cell fabrication processes, equipment, and articles produced from same
JP2007280939A (en) * 2006-02-27 2007-10-25 Gm Global Technology Operations Inc Method of laminating decalcomania to carrier film
KR100774729B1 (en) 2006-11-15 2007-11-08 현대자동차주식회사 3 layer mea a manufacturing process used sublayer
WO2008133255A1 (en) 2007-04-23 2008-11-06 Toyota Jidosha Kabushiki Kaisha Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
JP2009259789A (en) * 2008-03-28 2009-11-05 Dainippon Printing Co Ltd Catalyst layer transfer film
JP2010198948A (en) * 2009-02-26 2010-09-09 Toppan Printing Co Ltd Membrane-electrode assembly and method of manufacturing the same, and polymer electrolyte fuel cell
JP2010205676A (en) * 2009-03-05 2010-09-16 Toppan Printing Co Ltd Membrane-electrode assembly and method for manufacturing the same, and polymer electrolyte fuel cell
JP2012069467A (en) * 2010-09-27 2012-04-05 Dainippon Printing Co Ltd Catalyst layer-electrolyte membrane laminate with protective sheet and aggregate thereof
CN102763255A (en) * 2010-12-16 2012-10-31 松下电器产业株式会社 Method for manufacturing membrane-catalyst layer assembly
JP2012216379A (en) * 2011-03-31 2012-11-08 Eneos Celltech Co Ltd Manufacturing method of membrane electrode assembly, and manufacturing apparatus of membrane electrode assembly

Similar Documents

Publication Publication Date Title
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JPH08162132A (en) Polymer solid electrolyte-electrode joined body
US7090738B2 (en) Method of manufacturing membrane electrode assembly
JP5298469B2 (en) Gas diffusion electrode for fuel cell
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP4780814B2 (en) Fuel cell
JP2008521168A (en) Preconditioning of fuel cell membrane electrode assembly
JP2008010173A (en) Membrane/electrode assembly for fuel cell
US20040197629A1 (en) Electric power generating element for fuel cell and fuel cell using the same
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP2000299119A (en) Manufacture of catalyst layer
JP2003331852A (en) Membrane-electrode assembly for fuel cell and its manufacturing method
JP2009140652A (en) Membrane-electrode assembly manufacturing method
JP2003303596A (en) Polymer electrolyte type fuel cell and manufacturing method thereof
JP5040000B2 (en) Manufacturing method of membrane / electrode assembly
JP2001057217A (en) Polymer electrolyte type fuel cell
JP5326458B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2015079639A (en) Electrolyte membrane/electrode structure
JP5614468B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
JP3428079B2 (en) Energy conversion device, fuel cell, and method of manufacturing fuel cell
JPH05190184A (en) Electrode-electrolyte joint body, manufacture thereof, and fuel cell using thereof
JP2005276847A (en) Polymer solid electrolyte-electrode junction
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP4262942B2 (en) Polymer solid electrolyte / electrode assembly for lithium battery and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070808