JP2004186143A - Manufacture method of electrode structure for solid polymer fuel cell - Google Patents

Manufacture method of electrode structure for solid polymer fuel cell Download PDF

Info

Publication number
JP2004186143A
JP2004186143A JP2003371835A JP2003371835A JP2004186143A JP 2004186143 A JP2004186143 A JP 2004186143A JP 2003371835 A JP2003371835 A JP 2003371835A JP 2003371835 A JP2003371835 A JP 2003371835A JP 2004186143 A JP2004186143 A JP 2004186143A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
catalyst layer
electrolyte membrane
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003371835A
Other languages
Japanese (ja)
Inventor
Yuichiro Hama
雄一郎 濱
Masaru Iguchi
勝 井口
Junichi Yano
順一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003371835A priority Critical patent/JP2004186143A/en
Priority to US10/713,146 priority patent/US20040096731A1/en
Publication of JP2004186143A publication Critical patent/JP2004186143A/en
Priority to US11/723,436 priority patent/US8114552B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for obtaining an electrode structure having excellent dimensional stability in forming a solid polymer fuel cell, to provide a solid polymer fuel cell having the electrode structure, and to provide an electric apparatus and a transportation apparatus using the solid polymer fuel cell. <P>SOLUTION: A polymer electrolyte membrane 1 is formed from a solution of sulfonylation poly arylene system polymer. A catalyst paste containing a catalyst particle having platinum particle held by carbon particle, and the polymer electrolyte is applied on a sheet support body 2, which is dried to form an electrode catalyst layer 3. The electrode catalyst layer 3, 3 is joined on each side of the polymer electrolyte membrane 1, through thermal transfer. The electrode catalyst layer 3 is joined through thermal transfer on a polymer electrolyte membrane 1 containing a solvent of 0.5% or less in weight of the whole membrane. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に用いられる電極構造体の製造方法に関するものである。   The present invention relates to a method for manufacturing an electrode structure used in a polymer electrolyte fuel cell.

石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化している。そこで、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目されて広範に開発され、一部では実用化され始めている。前記燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。   While petroleum resources are being depleted, environmental problems such as global warming due to consumption of fossil fuels are becoming more serious. In view of this, fuel cells have attracted attention as clean electric power sources for electric motors that do not generate carbon dioxide, and have been widely developed, and some have begun to be put into practical use. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current are easily obtained.

前記固体高分子型燃料電池に用いる電極構造体として、白金等の触媒がカーボンブラック等の触媒担体に担持されイオン導伝性高分子バインダーにより一体化されることにより形成されている一対の電極触媒層を備え、両電極触媒層の間にイオン導伝可能な高分子電解質膜を挟持すると共に、各電極触媒層の上に、拡散層を積層したものが知られている。前記電極構造体は、さらに各拡散層の上に、ガス通路を兼ねたセパレータを積層することにより、固体高分子型燃料電池を構成することができる。   As the electrode structure used in the polymer electrolyte fuel cell, a pair of electrode catalysts formed by a catalyst such as platinum supported on a catalyst carrier such as carbon black and integrated with an ion-conductive polymer binder It is known that an electrode-conductive polymer electrolyte membrane is sandwiched between both electrode catalyst layers, and a diffusion layer is laminated on each electrode catalyst layer. In the electrode structure, a polymer electrolyte fuel cell can be formed by further laminating a separator also serving as a gas passage on each diffusion layer.

前記固体高分子型燃料電池では、一方の電極触媒層を燃料極として前記拡散層を介して水素、メタノール等の還元性ガスを導入し、他方の電極触媒層を酸素極として前記拡散層を介して空気、酸素等の酸化性ガスを導入する。このようにすると、燃料極側では、前記電極触媒層に含まれる触媒の作用により、前記還元性ガスからプロトンが生成し、前記プロトンは前記高分子電解質膜を介して、前記酸素極側の電極触媒層に移動する。そして、前記プロトンは、前記酸素極側の電極触媒層で、前記電極触媒層に含まれる触媒の作用により、該酸素極に導入される前記酸化性ガスと反応して水を生成する。従って、前記燃料極と酸素極とを導線により接続することにより電流を取り出すことができる。   In the polymer electrolyte fuel cell, a reducing gas such as hydrogen or methanol is introduced through the diffusion layer using one electrode catalyst layer as a fuel electrode, and the other electrode catalyst layer is introduced through the diffusion layer as an oxygen electrode. Oxidizing gas such as air and oxygen. With this configuration, on the fuel electrode side, protons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer, and the protons pass through the polymer electrolyte membrane to the electrode on the oxygen electrode side. Move to the catalyst layer. Then, the protons react with the oxidizing gas introduced into the oxygen electrode in the electrode catalyst layer on the oxygen electrode side by the action of a catalyst contained in the electrode catalyst layer to generate water. Therefore, a current can be taken out by connecting the fuel electrode and the oxygen electrode with a conducting wire.

従来、前記電極構造体は、例えば次のようにして製造されている(例えば特許文献1参照)。まず、パーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))、スルホン化ポリアリーレン系ポリマー等の高分子電解質を、N−メチルピロリドン等の溶媒に溶解して、高分子電解質溶液を調製する。次に、前記高分子電解質溶液から、キャスト法により高分子電解質膜を形成する。   Conventionally, the electrode structure is manufactured, for example, as follows (for example, see Patent Document 1). First, a polymer electrolyte such as a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) or a sulfonated polyarylene-based polymer is dissolved in a solvent such as N-methylpyrrolidone to obtain a polymer. Prepare an electrolyte solution. Next, a polymer electrolyte membrane is formed from the polymer electrolyte solution by a casting method.

一方、白金粒子を炭素粒子に担持させた触媒粒子を、前記高分子電解質溶液に分散させて、該触媒粒子と高分子電解質とを含む触媒ペーストを調製する。そして、前記触媒ペーストを、ポリエチレンテレフタレートフィルム等のシート状支持体上に塗布し、乾燥させることにより、電極触媒層を形成する。   On the other hand, catalyst particles in which platinum particles are supported on carbon particles are dispersed in the polymer electrolyte solution to prepare a catalyst paste containing the catalyst particles and a polymer electrolyte. Then, the catalyst paste is applied on a sheet-like support such as a polyethylene terephthalate film and dried to form an electrode catalyst layer.

次に、前記高分子電解質膜の両面を前記電極触媒層で挟持し、80〜160℃の範囲の温度に保持することにより、前記高分子電解質膜と、前記電極触媒層に含まれる高分子電解質とを軟化させた上で、1〜10MPaの範囲の面圧を掛け、1〜60分間この状態を保持する。この結果、前記電極触媒層が、前記ポリエチレンテレフタレートフィルムから、前記高分子電解質膜側に転写され、該高分子電解質膜と熱圧着により接合される。   Next, both surfaces of the polymer electrolyte membrane are sandwiched between the electrode catalyst layers and maintained at a temperature in the range of 80 to 160 ° C., whereby the polymer electrolyte membrane and the polymer electrolyte contained in the electrode catalyst layer Are softened, a surface pressure in the range of 1 to 10 MPa is applied, and this state is maintained for 1 to 60 minutes. As a result, the electrode catalyst layer is transferred from the polyethylene terephthalate film to the polymer electrolyte membrane side, and is bonded to the polymer electrolyte membrane by thermocompression.

次に、両側の電極触媒層を拡散層で挟持して、ホットプレスすることにより、各電極触媒層に拡散層が接合され、電極構造体を形成することができる。   Next, the electrode catalyst layers on both sides are sandwiched between the diffusion layers and hot-pressed, whereby the diffusion layers are joined to the respective electrode catalyst layers, thereby forming an electrode structure.

しかしながら、前記従来の製造方法で製造された前記電極構造体は、寸法の変化が大きいという不都合がある。
特許第2991377号公報
However, the electrode structure manufactured by the conventional manufacturing method has a disadvantage that a change in dimension is large.
Japanese Patent No. 291377

本発明は、かかる不都合を解消して、優れた寸法安定性を備える電極構造体を得ることができる製造方法を提供することを目的とする。   An object of the present invention is to provide a manufacturing method capable of solving such a disadvantage and obtaining an electrode structure having excellent dimensional stability.

本発明者らは、前記従来の製造方法で製造された前記電極構造体から固体高分子型燃料電池を形成したときに、寸法の変化が大きくなる理由について、鋭意検討した。この結果、従来の製造方法では、電極触媒層との熱圧着を容易にするために高分子電解質膜に含まれる溶媒が、該電極触媒層を熱転写する際の熱により蒸発して、該高分子電解質膜が収縮することを知見した。   The present inventors have conducted intensive studies on the reason why the change in dimension is large when a polymer electrolyte fuel cell is formed from the electrode structure manufactured by the conventional manufacturing method. As a result, in the conventional manufacturing method, in order to facilitate thermocompression bonding with the electrode catalyst layer, the solvent contained in the polymer electrolyte membrane is evaporated by the heat at the time of thermal transfer of the electrode catalyst layer, and the polymer It was found that the electrolyte membrane contracted.

前記高分子電解質膜は、膜全体の1〜30重量%程度の溶媒を含んでいることにより膨潤し、加熱により軟化しやすくなるので、電極触媒層との熱圧着が容易になる。そこで、前記高分子電解質膜はキャスト法により成膜された後、オーブン等により乾燥して、前記範囲の溶媒を含むようにされている。あるいは、前記高分子電解質膜は、前記オーブン等による乾燥後、エタノールまたはメタノール等の溶媒に浸漬し、または前記溶媒を吹き付けることにより、前記範囲の溶媒を含むようにされている。   The polymer electrolyte membrane swells by containing about 1 to 30% by weight of the solvent with respect to the whole membrane, and is easily softened by heating, so that thermocompression bonding with the electrode catalyst layer is facilitated. Therefore, the polymer electrolyte membrane is formed by a casting method and then dried by an oven or the like so as to contain the solvent in the above range. Alternatively, after drying in the oven or the like, the polymer electrolyte membrane is immersed in a solvent such as ethanol or methanol or sprayed with the solvent to contain the solvent in the above range.

本発明者らは、前記知見に基づいてさらに検討を重ねた。この結果、前記高分子電解質膜に含まれる溶媒の量を所定の範囲以下に低減することにより、電極触媒層の熱転写時に該高分子電解質膜の収縮を抑制して、優れた寸法安定性を得ることができることを見出し、本発明を完成した。   The present inventors have further studied based on the above findings. As a result, by reducing the amount of the solvent contained in the polymer electrolyte membrane to a predetermined range or less, contraction of the polymer electrolyte membrane during thermal transfer of the electrode catalyst layer is suppressed, and excellent dimensional stability is obtained. The inventors have found that the present invention can be performed and completed the present invention.

そこで、本発明の電極構造体の製造方法は、スルホン化ポリアリーレン系ポリマーの溶液から高分子電解質膜を形成する工程と、白金粒子を炭素粒子に担持させた触媒粒子と高分子電解質とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、該高分子電解質膜の両面に該電極触媒層を熱転写して接合する工程とを備える固体高分子型燃料電池用電極構造体の製造方法において、膜全体の0.5重量%以下の範囲の溶媒を含む高分子電解質膜に、前記電極触媒層を熱転写して接合することを特徴とする。   Therefore, the method for manufacturing an electrode structure of the present invention includes a step of forming a polymer electrolyte membrane from a solution of a sulfonated polyarylene-based polymer, and a catalyst particle in which platinum particles are supported on carbon particles and a polymer electrolyte. A solid polymer comprising a step of applying a catalyst paste on a sheet-like support and drying to form an electrode catalyst layer, and a step of thermally transferring and bonding the electrode catalyst layer to both surfaces of the polymer electrolyte membrane In the method for producing an electrode structure for a fuel cell, the electrode catalyst layer is thermally transferred and joined to a polymer electrolyte membrane containing a solvent in a range of 0.5% by weight or less of the whole membrane.

本発明の製造方法によれば、前記高分子電解質膜は、前記電極触媒層が熱転写される工程では、溶媒の含有量が膜全体の0.5重量%以下の範囲とされている。従って、本発明の製造方法で得られた電極構造体は、前記電極触媒層を熱転写する際に、前記高分子電解質膜から蒸発する溶媒の量が極めて少なく、該高分子電解質膜の収縮を抑制して、優れた寸法安定性を得ることができる。   According to the production method of the present invention, in the polymer electrolyte membrane, in the step of thermally transferring the electrode catalyst layer, the content of the solvent is in a range of 0.5% by weight or less of the whole membrane. Therefore, in the electrode structure obtained by the production method of the present invention, the amount of the solvent that evaporates from the polymer electrolyte membrane during the thermal transfer of the electrode catalyst layer is extremely small, and the contraction of the polymer electrolyte membrane is suppressed. As a result, excellent dimensional stability can be obtained.

前記電極触媒層が熱転写される工程で、前記高分子電解質膜に含まれる溶媒の量が膜全体の0.5重量%を超えていると、該高分子電解質膜から該溶媒が蒸発することによる該高分子電解質膜の収縮を抑制することができない。   In the step of thermally transferring the electrode catalyst layer, when the amount of the solvent contained in the polymer electrolyte membrane exceeds 0.5% by weight of the whole membrane, the solvent is evaporated from the polymer electrolyte membrane. The contraction of the polymer electrolyte membrane cannot be suppressed.

また、固体高分子型燃料電池では、前記電極構造体から固体高分子型燃料電池を形成したのち、該電池を実際に運転することにより、前記高分子電解質膜に含有されている前記溶媒を排出して、電位を一定にする処理(エージング)を行う必要がある。ここで、本発明の製造方法により得られた電極構造体は、前述のように前記高分子電解質膜に含有されている前記溶媒の量が、膜全体の0.5重量%以下と、格段に低減されているので、固体高分子型燃料電池を形成したときに前記エージングに要する時間を大幅に短縮することができる。   Further, in the polymer electrolyte fuel cell, after the polymer electrolyte fuel cell is formed from the electrode structure, the solvent contained in the polymer electrolyte membrane is discharged by actually operating the battery. Then, it is necessary to perform processing (aging) for making the potential constant. Here, in the electrode structure obtained by the production method of the present invention, as described above, the amount of the solvent contained in the polymer electrolyte membrane is remarkably 0.5% by weight or less of the whole membrane. Since it is reduced, the time required for the aging when a polymer electrolyte fuel cell is formed can be greatly reduced.

尚、本明細書では、「スルホン化ポリアリーレン系ポリマー」とは、次式の構成を備えるポリマーのスルホン化物を意味する。   In addition, in this specification, a "sulfonated polyarylene-based polymer" means a sulfonated product of a polymer having the following formula.

Figure 2004186143

前記2価の有機基としては、−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−等の電子吸引性基、−O−、−S−、−CH=CH−、−C≡C−等の基、さらに次式で表される電子供与性基等を挙げることができる。
Figure 2004186143

Examples of the divalent organic group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO -, - SO- , -SO 2 - electron-withdrawing group such as, -O -, - S -, - CH = CH -, - C≡C- such groups further include an electron-donating groups represented by the following formula Can be.

Figure 2004186143

また、前記2価の電子吸引性基としては、−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−等の基を挙げることができる。
Figure 2004186143

Further, as the divalent electron attractive group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO- , -SO -, - SO 2 - group and the like.

本発明の製造方法は、前記スルホン化ポリアリーレン系ポリマーが、例えば、式(1)で表される共重合体のスルホン化物であるか、式(2)で表される共重合体である場合に、好適に実施することができる。   In the production method of the present invention, the sulfonated polyarylene-based polymer is, for example, a sulfonated product of a copolymer represented by the formula (1) or a copolymer represented by the formula (2) In addition, it can be suitably implemented.

Figure 2004186143

式(1)で表される共重合体は、次式(3)で表されるモノマーと、次式(4)で表されるオリゴマーとを共重合させることにより得ることができる。
Figure 2004186143

The copolymer represented by the formula (1) can be obtained by copolymerizing a monomer represented by the following formula (3) and an oligomer represented by the following formula (4).

Figure 2004186143

式(1)で表される共重合体は、さらに濃硫酸と反応させることによりスルホン化して、電子吸引性基に隣接していないベンゼン環にスルホン酸基を導入してスルホン化することができる。
Figure 2004186143

The copolymer represented by the formula (1) can be sulfonated by further reacting with concentrated sulfuric acid, and sulfonated by introducing a sulfonic acid group into a benzene ring not adjacent to the electron-withdrawing group. .

また、式(2)で表される共重合体は、次式(5)で表されるモノマーと、前記式(4)で表されるオリゴマーとを共重合させた後、スルホン酸エステル基(−SO3CH(CH3)C25)を加水分解してスルホン酸基(−SO3H)とすることにより得ることができる。 Further, the copolymer represented by the formula (2) is obtained by copolymerizing a monomer represented by the following formula (5) and an oligomer represented by the formula (4), and then a sulfonic acid ester group ( —SO 3 CH (CH 3 ) C 2 H 5 ) to obtain a sulfonic acid group (—SO 3 H) by hydrolysis.

Figure 2004186143

また、本発明は、前記製造方法により得られる固体高分子型燃料電池用電極構造体を備える固体高分子型燃料電池にもある。本発明の固体高分子型燃料電池は、例えば、パーソナルコンピュータ、携帯電話等の電気機器の電源、バックアップ電源等として用いることができる。また、本発明の固体高分子型燃料電池は、例えば、自動車、潜水艦等の船舶等の輸送用機器の動力等としても用いることができる。
Figure 2004186143

The present invention also resides in a polymer electrolyte fuel cell including the polymer electrolyte fuel cell electrode structure obtained by the manufacturing method. The polymer electrolyte fuel cell of the present invention can be used, for example, as a power supply, a backup power supply, and the like for electric devices such as personal computers and mobile phones. Further, the polymer electrolyte fuel cell of the present invention can be used, for example, as a power source for transportation equipment such as automobiles and submarines.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の電極構造体の製造方法を模式的に示す製造工程図、図2は高分子電解質膜の溶媒含有量と寸法変化率との関係を示すグラフ、図3は固体高分子型燃料電池のエージングを行ったときの時間と電圧との関係を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a manufacturing process diagram schematically showing a manufacturing method of the electrode structure of the present embodiment, FIG. 2 is a graph showing a relationship between a solvent content of a polymer electrolyte membrane and a dimensional change rate, and FIG. Is a graph showing a relationship between time and voltage when aging of a fuel cell is performed.

本実施形態の製造方法では、まず、攪拌機、温度計、冷却管、Dean-Stark管、窒素導入用の三方コックを取り付けた1リットルの三口フラスコに、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン(ビスフェノールAF)67.3g(0.20モル)、4,4’−ジクロロベンゾフェノン53.5g(0.214モル)、炭酸カリウム34.6g(0.251モル)、N,N−ジメチルアセトアミド300ml、トルエン150mlを取り、オイルバス中、窒素雰囲気下で加熱し、撹拌下、130℃で反応させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成が殆ど認められなくなった。そこで、反応温度を130℃から徐々に150℃まで上げながら大部分のトルエンを除去した。150℃で10時間反応を続けた後、4,4’−ジクロロベンゾフェノン3.3g(0.0133モル)を加え、さらに5時間反応させた。   In the production method of the present embodiment, first, 2,2-bis (4-hydroxyphenyl) is placed in a 1-liter three-necked flask equipped with a stirrer, a thermometer, a cooling tube, a Dean-Stark tube, and a three-way cock for introducing nitrogen. -1,1,1,3,3,3-hexafluoropropane (bisphenol AF) 67.3 g (0.20 mol), 4,4′-dichlorobenzophenone 53.5 g (0.214 mol), potassium carbonate 34 1.6 g (0.251 mol), 300 ml of N, N-dimethylacetamide and 150 ml of toluene were taken, heated in an oil bath under a nitrogen atmosphere, and reacted at 130 ° C. with stirring. When water produced by the reaction was azeotroped with toluene and reacted while being removed from the system with a Dean-Stark tube, almost no water was observed in about 3 hours. Therefore, most of the toluene was removed while gradually increasing the reaction temperature from 130 ° C to 150 ° C. After the reaction was continued at 150 ° C. for 10 hours, 3.3 g (0.0133 mol) of 4,4′-dichlorobenzophenone was added, and the reaction was further performed for 5 hours.

得られた反応液を放冷後、副生した無機化合物の沈殿物を濾過して除去し、濾液を4リットルのメタノール中に投入した。沈殿した生成物を濾別、回収して乾燥後、テトラヒドロフラン300mlに溶解した。これをメタノール4リットルで再沈殿し、次式(4)で表されるオリゴマー98gを得た(収率93%)。   After allowing the obtained reaction solution to cool, the precipitate of by-product inorganic compound was removed by filtration, and the filtrate was poured into 4 liters of methanol. The precipitated product was separated by filtration, recovered, dried, and then dissolved in 300 ml of tetrahydrofuran. This was reprecipitated with 4 liters of methanol to obtain 98 g of an oligomer represented by the following formula (4) (yield: 93%).

Figure 2004186143

次に、式(4)で表されるオリゴマー28.4g(2.87ミリモル)、2,5−ジクロロ−4’−(4−フェノキシ)フェノキシベンゾフェノン29.2g(67.1ミリモル)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.37g(2.1ミリモル)、ヨウ化ナトリウム1.36g(9.07ミリモル)、トリフェニルホスフィン7.34g(28.0ミリモル)、亜鉛末11.0重量部(168ミリモル)をフラスコに取り、乾燥窒素置換した。次に、N−メチル−2−ピロリドン130mlを加え、80℃に加熱して撹拌下に4時間重合を行った。重合溶液をテトラヒドロフランで希釈し、塩酸/メタノールで凝固させ回収した。回収物に対してメタノール洗浄を繰り返し、テトラヒドロフランに溶解した。これをメタノールで再沈殿して精製し、濾集したポリマーを真空乾燥して、式(1)で表されるポリアリーレン系ポリマー5.07gを得た(収率96%)。
Figure 2004186143

Next, 28.4 g (2.87 mmol) of the oligomer represented by the formula (4), 29.2 g (67.1 mmol) of 2,5-dichloro-4 ′-(4-phenoxy) phenoxybenzophenone, bis ( 1.37 g (2.1 mmol) of nickel dichloride, 1.36 g (9.07 mmol) of sodium iodide, 7.34 g (28.0 mmol) of triphenylphosphine, 11.0 parts by weight of zinc powder ( 168 mmol) was placed in a flask and purged with dry nitrogen. Next, 130 ml of N-methyl-2-pyrrolidone was added, and the mixture was heated to 80 ° C. and polymerized for 4 hours with stirring. The polymerization solution was diluted with tetrahydrofuran and solidified and recovered with hydrochloric acid / methanol. The collected product was repeatedly washed with methanol and dissolved in tetrahydrofuran. This was purified by reprecipitation with methanol, and the polymer collected by filtration was vacuum-dried to obtain 5.07 g of a polyarylene-based polymer represented by the formula (1) (96% yield).

Figure 2004186143

次に、式(1)で表されるポリアリーレン系ポリマーに濃硫酸を加えてスルホン化し、スルホン化ポリアリーレン系ポリマーを調製した。
Figure 2004186143

Next, concentrated sulfuric acid was added to the polyarylene polymer represented by the formula (1) to sulfonate it, thereby preparing a sulfonated polyarylene polymer.

次に、前記スルホン化ポリアリーレンポリマーをN−メチルピロリドンに溶解して高分子電解質溶液を調製して、該高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、図1(a)示の高分子電解質膜1を形成した。高分子電解質膜1は、乾燥膜厚40μmであり、膜全体の0.5重量%以下の溶媒を含んでいた。   Next, the sulfonated polyarylene polymer was dissolved in N-methylpyrrolidone to prepare a polymer electrolyte solution, a film was formed from the polymer electrolyte solution by a casting method, and dried in an oven to obtain a solution shown in FIG. (A) The polymer electrolyte membrane 1 shown was formed. The polymer electrolyte membrane 1 had a dry film thickness of 40 μm and contained a solvent of 0.5% by weight or less of the whole membrane.

次に、カーボンブラック(ファーネスブラック)に白金粒子を担持させて触媒粒子を調製した。前記カーボンブラックと白金粒子との重量比は、例えば、カーボンブラック:白金粒子=1:1とすることができる。   Next, platinum particles were supported on carbon black (furnace black) to prepare catalyst particles. The weight ratio between the carbon black and the platinum particles may be, for example, carbon black: platinum particles = 1: 1.

次に、前記触媒粒子を、イオン導伝性高分子バインダー溶液としてのパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))溶液に、均一に分散させることにより、触媒ペーストを調製した。前記触媒粒子とイオン導伝性高分子バインダー溶液との重量比は、例えば、触媒粒子:イオン導伝性高分子バインダー=2:1とすることができる。   Next, the catalyst particles were uniformly dispersed in a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) solution as an ion-conducting polymer binder solution, whereby a catalyst paste was obtained. Was prepared. The weight ratio between the catalyst particles and the ion-conductive polymer binder solution may be, for example, catalyst particles: ion-conductive polymer binder = 2: 1.

次に、図1(b)示のポリエチレンテレフタレートフィルム2上に、前記触媒ペーストをスクリーン印刷し、乾燥させて、電極触媒層3を形成した。   Next, the catalyst paste was screen-printed on the polyethylene terephthalate film 2 shown in FIG. 1B and dried to form an electrode catalyst layer 3.

次に、図1(c)示のように、高分子電解質膜1を一対の電極触媒層3,3で挟持し、ポリエチレンテレフタレートフィルム2上からホットプレスした。前記ホットプレスは、例えば、80〜160℃の範囲の温度で、1〜10MPaの範囲の面圧を掛け、1〜60分間行う。この結果、電極触媒層3が高分子電解質膜1側に転写され、高分子電解質膜1と接合される。次いで、ポリエチレンテレフタレートフィルム2を剥離すると、図1(d)示のように、高分子電解質膜1を一対の電極触媒層3,3で挟持された構造体4が得られた。   Next, as shown in FIG. 1 (c), the polymer electrolyte membrane 1 was sandwiched between a pair of electrode catalyst layers 3 and 3 and hot pressed from above the polyethylene terephthalate film 2. The hot press is performed, for example, at a temperature in the range of 80 to 160 ° C. and a surface pressure in the range of 1 to 10 MPa for 1 to 60 minutes. As a result, the electrode catalyst layer 3 is transferred to the polymer electrolyte membrane 1 and joined to the polymer electrolyte membrane 1. Next, when the polyethylene terephthalate film 2 was peeled off, a structure 4 in which the polymer electrolyte membrane 1 was sandwiched between the pair of electrode catalyst layers 3 and 3 was obtained as shown in FIG.

次に、カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子との混合物をエチレングリコールに均一に分散させたスラリーを、図1(e)示のカーボンペーパー5の片面に塗布、乾燥させて下地層6を形成し、該カーボンペーパー5と下地層6とからなる拡散層7を形成した。前記カーボンブラックとPTFE粒子との重量比は、例えば、カーボンブラック:PTFE粒子=1:1とすることができる。   Next, a slurry in which a mixture of carbon black and polytetrafluoroethylene (PTFE) particles is uniformly dispersed in ethylene glycol is applied to one surface of the carbon paper 5 shown in FIG. Was formed, and a diffusion layer 7 composed of the carbon paper 5 and the underlayer 6 was formed. The weight ratio between the carbon black and the PTFE particles can be, for example, carbon black: PTFE particles = 1: 1.

次に、図1(f)に示すように、構造体4を一対の下地層6,6で挟持し、カーボンペーパー5上からホットプレスした。前記ホットプレスは、例えば100〜180℃の範囲の温度で、10〜100MPaの範囲の面圧を掛け、1〜60分間行う。この結果、拡散層7が下地層6を介して電極触媒層3に接合され、構造体4が拡散層7,7で挟持された構成を備える電極構造体8が得られた。   Next, as shown in FIG. 1 (f), the structure 4 was sandwiched between a pair of base layers 6, 6 and hot pressed from above the carbon paper 5. The hot pressing is performed, for example, at a temperature in the range of 100 to 180 ° C., applying a surface pressure in the range of 10 to 100 MPa, and for 1 to 60 minutes. As a result, an electrode structure 8 having a structure in which the diffusion layer 7 was bonded to the electrode catalyst layer 3 via the base layer 6 and the structure 4 was sandwiched between the diffusion layers 7 and 7 was obtained.

次に、電極触媒層3を高分子電解質膜1側に熱転写するときの、高分子電解質膜1の膜全体に対する溶媒の含有量が、それぞれ0.1重量%、0.3重量%、0.5重量%、1.0重量%、5.0重量%となるようにして、前記構造体4を製造した。そして、各構造体4から電極構造体8を構成したときの寸法変化率を測定した。結果を図2に示す。   Next, when the electrode catalyst layer 3 is thermally transferred to the polymer electrolyte membrane 1 side, the content of the solvent with respect to the entire polymer electrolyte membrane 1 is 0.1% by weight, 0.3% by weight, and 0.1% by weight, respectively. The structure 4 was manufactured so as to be 5% by weight, 1.0% by weight, and 5.0% by weight. Then, the dimensional change rate when the electrode structure 8 was formed from each structure 4 was measured. FIG. 2 shows the results.

図2から、高分子電解質膜1の膜全体に対する溶媒の含有量が、それぞれ0.1〜0.5重量%の範囲(実施例)では、電極構造体8の寸法変化がないことが明らかである。これに対して、前記溶媒の含有量が0.5重量%を超える1.0重量%、5.0重量%の場合(比較例)には、寸法変化率が大であり、該溶媒の含有量が増えるにつれ、寸法変化率も大きくなることが明らかである。   It is apparent from FIG. 2 that the dimensional change of the electrode structure 8 does not occur when the content of the solvent with respect to the entire polymer electrolyte membrane 1 is in the range of 0.1 to 0.5% by weight (Example). is there. On the other hand, when the content of the solvent is 1.0% by weight or 5.0% by weight exceeding 0.5% by weight (Comparative Example), the dimensional change rate is large, and the content of the solvent is large. It is clear that the dimensional change rate increases as the volume increases.

次に、電極触媒層3を高分子電解質膜1側に熱転写するときの、高分子電解質膜1の膜全体に対する溶媒の含有量が0.5重量%となるようにして製造した電極構造体8から構成した固体高分子型燃料電池(実施例)と、溶媒の含有量が5.0重量%となるようにして製造した電極構造体8から構成した固体高分子型燃料電池(比較例)とを運転し、電位が一定になるまでの時間(エージングに要する時間)を測定した。結果を図3に示す。   Next, when thermally transferring the electrode catalyst layer 3 to the polymer electrolyte membrane 1 side, the electrode structure 8 manufactured such that the content of the solvent with respect to the entire polymer electrolyte membrane 1 becomes 0.5% by weight. And a polymer electrolyte fuel cell (Comparative Example) composed of an electrode structure 8 manufactured so that the content of the solvent was 5.0% by weight. Was operated, and the time until the potential became constant (time required for aging) was measured. The results are shown in FIG.

図3から、前記比較例の固体高分子型燃料電池によれば、電位が一定になるまでに30時間を要するが、前記実施例の固体高分子型燃料電池によれば約11時間に過ぎず、エージングに要する時間が大幅に短縮されることが明らかである。   From FIG. 3, according to the polymer electrolyte fuel cell of the comparative example, it takes 30 hours until the potential becomes constant, but according to the polymer electrolyte fuel cell of the example, it takes only about 11 hours. It is clear that the time required for aging is greatly reduced.

本発明の電極構造体の製造方法を模式的に示す製造工程図。The manufacturing process figure which shows typically the manufacturing method of the electrode structure of this invention. 高分子電解質膜の溶媒含有量と寸法変化率との関係を示すグラフ。4 is a graph showing a relationship between a solvent content of a polymer electrolyte membrane and a dimensional change rate. 固体高分子型燃料電池のエージングを行ったときの時間と電圧との関係を示すグラフ。4 is a graph showing a relationship between time and voltage when aging of a polymer electrolyte fuel cell is performed.

符号の説明Explanation of reference numerals

1…高分子電解質膜、 2…シート状支持体、 3…電極触媒層、 8…電極構造体。   DESCRIPTION OF SYMBOLS 1 ... Polymer electrolyte membrane, 2 ... Sheet-like support, 3 ... Electrode catalyst layer, 8 ... Electrode structure.

Claims (6)

スルホン化ポリアリーレン系ポリマーの溶液から高分子電解質膜を形成する工程と、
白金粒子を炭素粒子に担持させた触媒粒子と高分子電解質とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
該高分子電解質膜の両面に該電極触媒層を熱転写して接合する工程とを備える固体高分子型燃料電池用電極構造体の製造方法において、
膜全体の0.5重量%以下の範囲の溶媒を含む高分子電解質膜に、前記電極触媒層を熱転写して接合することを特徴とする固体高分子型燃料電池用電極構造体の製造方法。
Forming a polymer electrolyte membrane from a solution of the sulfonated polyarylene-based polymer,
A step of applying a catalyst paste containing catalyst particles and a polymer electrolyte in which platinum particles are supported on carbon particles on a sheet-like support, and drying to form an electrode catalyst layer,
Bonding the electrode catalyst layer to both surfaces of the polymer electrolyte membrane by thermal transfer, the method for producing an electrode structure for a polymer electrolyte fuel cell comprising:
A method for producing an electrode structure for a polymer electrolyte fuel cell, wherein the electrode catalyst layer is thermally transferred to and joined to a polymer electrolyte membrane containing a solvent in a range of 0.5% by weight or less of the whole membrane.
前記スルホン化ポリアリーレン系ポリマーは、式(1)で表される共重合体のスルホン化物であることを特徴とする請求項1記載の固体高分子型燃料電池用電極構造体の製造方法。
Figure 2004186143
The method for producing an electrode structure for a polymer electrolyte fuel cell according to claim 1, wherein the sulfonated polyarylene-based polymer is a sulfonated product of a copolymer represented by the formula (1).
Figure 2004186143
前記スルホン化ポリアリーレン系ポリマーは、式(2)で表される共重合体であることを特徴とする請求項1記載の固体高分子型燃料電池用電極構造体の製造方法。
Figure 2004186143
The method for producing an electrode structure for a polymer electrolyte fuel cell according to claim 1, wherein the sulfonated polyarylene-based polymer is a copolymer represented by the formula (2).
Figure 2004186143
スルホン化ポリアリーレン系ポリマーの溶液から高分子電解質膜を形成する工程と、
白金粒子を炭素粒子に担持させた触媒粒子と高分子電解質とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
該高分子電解質膜の両面に該電極触媒層を熱転写して接合する工程とを備え、
膜全体の0.5重量%以下の範囲の溶媒を含む高分子電解質膜に、前記電極触媒層を熱転写して接合する製造方法により得られる固体高分子型燃料電池用電極構造体を備えることを特徴とする固体高分子型燃料電池。
Forming a polymer electrolyte membrane from a solution of the sulfonated polyarylene-based polymer,
A step of applying a catalyst paste containing catalyst particles and a polymer electrolyte in which platinum particles are supported on carbon particles on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally bonding the electrode catalyst layer to both surfaces of the polymer electrolyte membrane and joining the electrode catalyst layer,
An electrode structure for a polymer electrolyte fuel cell obtained by a method of thermally transferring and bonding the electrode catalyst layer to a polymer electrolyte membrane containing a solvent in a range of 0.5% by weight or less of the whole membrane. Characteristic polymer electrolyte fuel cell.
スルホン化ポリアリーレン系ポリマーの溶液から高分子電解質膜を形成する工程と、
白金粒子を炭素粒子に担持させた触媒粒子と高分子電解質とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
該高分子電解質膜の両面に該電極触媒層を熱転写して接合する工程とを備え、
膜全体の0.5重量%以下の範囲の溶媒を含む高分子電解質膜に、前記電極触媒層を熱転写して接合する製造方法により得られる固体高分子型燃料電池用電極構造体を備える固体高分子型燃料電池を用いることを特徴とする電気機器。
Forming a polymer electrolyte membrane from a solution of the sulfonated polyarylene-based polymer,
A step of applying a catalyst paste containing catalyst particles and a polymer electrolyte in which platinum particles are supported on carbon particles on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally bonding the electrode catalyst layer to both surfaces of the polymer electrolyte membrane and joining the electrode catalyst layer,
A solid polymer fuel cell comprising an electrode structure for a polymer electrolyte fuel cell obtained by a method of thermally transferring and bonding the electrode catalyst layer to a polymer electrolyte membrane containing a solvent in a range of 0.5% by weight or less of the whole membrane. An electric device characterized by using a molecular fuel cell.
スルホン化ポリアリーレン系ポリマーの溶液から高分子電解質膜を形成する工程と、
白金粒子を炭素粒子に担持させた触媒粒子と高分子電解質とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
該高分子電解質膜の両面に該電極触媒層を熱転写して接合する工程とを備え、
膜全体の0.5重量%以下の範囲の溶媒を含む高分子電解質膜に、前記電極触媒層を熱転写して接合する製造方法により得られる固体高分子型燃料電池用電極構造体を備える固体高分子型燃料電池を用いることを特徴とする輸送用機器。
Forming a polymer electrolyte membrane from a solution of the sulfonated polyarylene-based polymer,
A step of applying a catalyst paste containing catalyst particles and a polymer electrolyte in which platinum particles are supported on carbon particles on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally bonding the electrode catalyst layer to both surfaces of the polymer electrolyte membrane and joining the electrode catalyst layer,
A solid polymer fuel cell comprising an electrode structure for a polymer electrolyte fuel cell obtained by a method of thermally transferring and bonding the electrode catalyst layer to a polymer electrolyte membrane containing a solvent in a range of 0.5% by weight or less of the whole membrane. Transport equipment using a molecular fuel cell.
JP2003371835A 2002-11-18 2003-10-31 Manufacture method of electrode structure for solid polymer fuel cell Pending JP2004186143A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003371835A JP2004186143A (en) 2002-11-18 2003-10-31 Manufacture method of electrode structure for solid polymer fuel cell
US10/713,146 US20040096731A1 (en) 2002-11-18 2003-11-17 Electrode structure for polymer electrolyte fuel cell and method for manufacturing the same
US11/723,436 US8114552B2 (en) 2002-11-18 2007-03-20 Electrode structure for polymer electrolyte fuel cell comprising sulfonated polyarylene-based polymer and method for manufactuing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002333566 2002-11-18
JP2003371835A JP2004186143A (en) 2002-11-18 2003-10-31 Manufacture method of electrode structure for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2004186143A true JP2004186143A (en) 2004-07-02

Family

ID=32774569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371835A Pending JP2004186143A (en) 2002-11-18 2003-10-31 Manufacture method of electrode structure for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2004186143A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193109A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Manufacturing method of membrane-electrode assembly
JP2006228628A (en) * 2005-02-18 2006-08-31 Honda Motor Co Ltd Membrane for solid polymer fuel cell-electrode structure, and solid polymer fuel cell
JP2006344440A (en) * 2005-06-08 2006-12-21 Honda Motor Co Ltd Membrane-electrode assembly for polymer electrolyte fuel cell
US7837819B2 (en) * 2007-09-07 2010-11-23 Hyundai Motor Company Method of manufacturing membrane-electrode assembly for fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090944A (en) * 1998-09-10 2000-03-31 Japan Storage Battery Co Ltd Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JP2002298858A (en) * 2001-03-30 2002-10-11 Honda Motor Co Ltd Solid macromolecule type fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090944A (en) * 1998-09-10 2000-03-31 Japan Storage Battery Co Ltd Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JP2002298858A (en) * 2001-03-30 2002-10-11 Honda Motor Co Ltd Solid macromolecule type fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193109A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Manufacturing method of membrane-electrode assembly
JP4647902B2 (en) * 2002-11-29 2011-03-09 本田技研工業株式会社 Method for manufacturing membrane-electrode structure
JP2006228628A (en) * 2005-02-18 2006-08-31 Honda Motor Co Ltd Membrane for solid polymer fuel cell-electrode structure, and solid polymer fuel cell
JP4684678B2 (en) * 2005-02-18 2011-05-18 本田技研工業株式会社 Membrane-electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2006344440A (en) * 2005-06-08 2006-12-21 Honda Motor Co Ltd Membrane-electrode assembly for polymer electrolyte fuel cell
JP4508954B2 (en) * 2005-06-08 2010-07-21 本田技研工業株式会社 Membrane-electrode structure for polymer electrolyte fuel cell
US7837819B2 (en) * 2007-09-07 2010-11-23 Hyundai Motor Company Method of manufacturing membrane-electrode assembly for fuel cell

Similar Documents

Publication Publication Date Title
JP4806683B2 (en) A novel proton exchange membrane using cycloaddition reaction between azide and alkyne-containing components
JP4689581B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND ELECTRODE ASSEMBLY FOR FUEL CELL INCLUDING THE SAME
JP2004035891A (en) Proton conductive polymer having acid group on side chain, its manufacturing method, polymer membrane using the proton conductive polymer, and fuel cell using it
Lee et al. Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell
US8114552B2 (en) Electrode structure for polymer electrolyte fuel cell comprising sulfonated polyarylene-based polymer and method for manufactuing same
KR20020004065A (en) Partially fluorinated copolymer based on trifluorostyrene and substituted vinyl compound and ion conductive polymer layer formed therefrom
JP4999039B2 (en) Ion conductive binder
US20040115499A1 (en) Method for producing membrane-electrode structure
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
JP4647902B2 (en) Method for manufacturing membrane-electrode structure
JP4170973B2 (en) Polymer containing terminal sulfonic acid group and polymer electrolyte and fuel cell employing the same
JP6698148B2 (en) Fluorine-based nanocomposite membrane containing polyhedral oligomeric silsesquioxane having a proton donor and a proton acceptor, and method for producing the same
JP4211598B2 (en) Composite electrolyte, method for producing the same, electrolyte membrane using the same, membrane electrode assembly, and fuel cell
KR101778382B1 (en) Composition for polymerization of polymer, polymer using the same, polymer electrolyte membrane using the same
KR101771323B1 (en) Fluorine-based compound, polymer using the same, polymer electrolyte membrane using the same
JP4421261B2 (en) Method for manufacturing membrane-electrode structure
JP2004186143A (en) Manufacture method of electrode structure for solid polymer fuel cell
KR101127343B1 (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP4421264B2 (en) Method for manufacturing membrane-electrode structure
KR20120009789A (en) Proton-conducting polymer, polymer electrolyte membrane comprising polymer, cation-exchange resin comprising polymer, cation-exchange membrane comprising polymer, method for preparing polymer
JP2010238373A (en) Polymer electrolyte membrane, its manufacturing method, and membrane electrode assembly as well as solid polymer fuel cell using the same
JP6577656B2 (en) Hydrocarbon nanocomposite membrane containing polyhedral oligomeric silsesquioxane having proton donor and proton acceptor and method for producing the same
JP2008542505A (en) Ion conductive cross-linked copolymer
JP4955209B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP7006085B2 (en) Electrolyte membrane with catalyst layer, intermediate layer ink, intermediate layer decal and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713