JP2008126890A - 車両用操舵制御装置 - Google Patents

車両用操舵制御装置 Download PDF

Info

Publication number
JP2008126890A
JP2008126890A JP2006315631A JP2006315631A JP2008126890A JP 2008126890 A JP2008126890 A JP 2008126890A JP 2006315631 A JP2006315631 A JP 2006315631A JP 2006315631 A JP2006315631 A JP 2006315631A JP 2008126890 A JP2008126890 A JP 2008126890A
Authority
JP
Japan
Prior art keywords
steering angle
δfx
longitudinal force
wheels
δft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006315631A
Other languages
English (en)
Inventor
Yoshiyuki Yasui
由行 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2006315631A priority Critical patent/JP2008126890A/ja
Publication of JP2008126890A publication Critical patent/JP2008126890A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】左右車輪の前後力差の変動に起因する運転者の違和感を抑制する。
【解決手段】安定化モーメントMSから変動成分を除去した固定値Pに基づいて前輪修正舵角δftを求め、その変動成分を後輪修正舵角δrtに分担させる。これにより、車両全体として過不足の無い修正舵角制御を行うことができ、安定化モーメントMSの変動分も補償できる。また、安定化モーメントMSが固定値Pよりも大きい場合(変動成分が大きい場合)に、前輪修正舵角δftを固定値Pに応じて決定し、前輪修正舵角δftがほぼ一定値となるようにしているため、ステアリングホイール21の変動を低減することが可能となる。
【選択図】図2

Description

本発明は、左右車輪の前後力差に起因して発生する車両の偏向をその偏向方向と反対方向にカウンタステア操作することで低減するカウンタステア制御を実行する車両用操舵制御装置に関するものである。
車両が左右の路面の摩擦係数が異なる路面(以下、μスプリット路面という)を走行中において、アンチスキッド制御(ABS制御)、トラクション制御(TCS制御)等の車輪のスリップを抑制するスリップ抑制制御(以下、μスプリット制御という)が実行される場合、左右車輪の前後力(路面とタイヤとの間で発生する加減速方向の摩擦力のことであり、制駆動力とも呼ばれる。)に差(ABS制御の場合には制動力差、TCS制御の場合には駆動力差)が生じる。この前後力差に起因して車両を偏向させるヨーモーメント(以下、前後力差起因ヨーモーメントという)が発生する。
この前後力差起因ヨーモーメントによる車両の偏向を抑制するためには、車両の偏向方向と反対方向に対応するステアリングホイール操作を行うことで操舵車輪の舵角を車両の偏向方向と反対方向に向けて補正してこの前後力差起因ヨーモーメントを低減する(打ち消す)ことが必要となる。このような操舵車輪の舵角を車両の偏向方向と反対方向に向けて補正する操作はカウンタステア操作と呼ばれている。このカウンタステア操作を運転者が行うためには、運転スキルが要求される。
これに対し、特許文献1では、電動モータを駆動することでステアリングホイールの回転角度に対する操舵車輪の舵角の比(ステアリングギア比)を調整するステアリングギヤ比可変機構(以下、VGRSという)を利用し、操舵制御を操舵角制御により行う装置において、運転者のステアリングホイール操作によることなく上記カウンタステア操作が自動的に実行できるようにしたものが記載されている。具体的には、左右車輪の前後力差に基づいて操舵車輪の舵角の補正目標値が決定され、操舵車輪の舵角が補正目標値分だけ車両の偏向方向と反対方向に向けて補正される。
また、特許文献2では、μスプリット路で急制動を行った場合においても、車両の進路を変更させることなく安全に制動できるように、アンチスキッド制御システムによるブレーキ制御時に、左右車輪のブレーキ用液圧の圧力差を検出し、この圧力差に応じて車両の後輪あるいは前輪の補正操舵角を算出し、この補正操舵角に応じて車両の後輪あるいは前輪を操舵することが記載されている。
特開2005−255035号公報 特許第2540742号公報
一般に、ABS制御やTCS制御では、車輪のスリップを抑制するため、車輪の制動トルクや駆動トルクが周期的に増減する。これにより、車輪の前後力も周期的に増減する。そして、μスプリット路では路面と左車輪FL、RLと右車輪FR、RRとの摩擦力が異なるため、μスプリット制御が実行される場合、左右車輪の前後力の増減周期が異なって前後力差も周期的に増減し得る。
従って、上記特許文献1、2に記載の操舵角制御のように、左右車輪の前後力差に基づいて操舵車輪の舵角の補正量が決定される場合、上記補正量にも変動が生じ得、この結果、操舵車輪の舵角にも変動が生じ得る。このため、ステアリングホイールに直接的に影響を及ぼし、運転者に違和感を与えるという問題がある。
本発明は上記点に鑑みて、左右車輪の前後力差に起因するヨーモーメントによる車両の偏向を抑制する操舵角制御(以下、修正舵角制御という)を実行する車両の操舵角制御装置において、左右車輪の前後力差の変動に起因する運転者の違和感を抑制することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、車輪(FL〜RR)の前後力(FX**)を演算する第1演算手段(50i)と、前後力(FX**)に基づいて左右車輪の前後力差(ΔFX)を演算する第2演算手段(50j)と、前後力差(ΔFX)を含む状態量(ΔFX、MS)から、前後力差(ΔFX)の周期的な増減による変動成分を除去する除去手段(50k)と、前後力差(ΔFX)を含む状態量(ΔFX、MS)から変動成分を除去した除去後状態量(ΔFXe、MSe)に基づいて前輪(FL、FR)の修正舵角(δft)を演算する第3演算手段(50m)と、前後力差(ΔFX)を含む状態量(ΔFX、MS)に基づいて後輪(RL、RR)の修正舵角(δrt)を演算する第4演算手段(50n)と、前輪(FL、FR)および後輪(RL、RR)の修正舵角(δft、δrt)に基づいて制御指示値を出力する駆動手段(50b、50c)と、を備えていることを特徴としている。
このように、除去手段(50k)にて、前後力差(ΔFX)の周期的な増減による変動成分を除去したのち、第3演算手段(50m)にて、前後力差(ΔFX)を含む状態量(ΔFX、MS)から変動成分を除去した除去後状態量(ΔFXe、MSe)に基づいて前輪(FL、FR)の修正舵角(δft)を演算している。これにより、μスプリット制御が実行される際に、左右車輪の前後力の増減周期が相違するために前後力差(ΔFX)が周期的に増減し、前後力差(ΔFX)を含む状態量(ΔFX、MS)が変動しても、この変動成分に起因するステアリングホイールの影響を抑制でき、運転者に違和感を与えないようにすることが可能となる。
例えば、請求項2に示すように、除去手段(50k)は、車両のヨー共振周波数より小さい値のカットオフ周波数のローパスフィルタで構成される。
また、請求項3に示すように、除去手段(50k)は、前後力差(ΔFX)を含む状態量(ΔFX、MS)の減少量の時間変化に制限をかける手段とされても良い。
さらに、請求項4に示すように、除去手段(50k)にて、前後力差(ΔFX)を含む状態量(ΔFX、MS)が所定値(P)以下であるか超えているかを判定し、状態量(ΔFX、MS)が所定値(P)以下であれば、第3演算手段(50m)にて、状態量(ΔFX、MS)に基づいて前輪(FL、FR)の修正舵角(δft)を演算すると共に、第4演算手段(50n)にて、後輪(RL、RR)の修正舵角(δrt)をゼロとすることができる。
この場合、請求項5に示すように、状態量(ΔFX、MS)が所定値(P)を超えていれば、第3演算手段(50m)にて、所定値(P)に基づいて前輪(FL、FR)の修正舵角(δft)を演算すると共に、第4演算手段(50n)にて、状態量(ΔFX、MS)から所定値(P)を差し引いた値に基づいて後輪(RL、RR)の修正舵角(δrt)を演算することもできる。
以上の説明では、前後力差(ΔFX)を含む状態量(ΔFX、MS)から変動成分を除去した除去後状態量(ΔFXe、MSe)に基づいて前輪(FL、FR)の修正舵角(δft)を演算しているが、請求項6に示すように、前後力差(ΔFX)を含む状態量(ΔFX、MS)に基づいて前輪(FL、FR)の修正舵角(δft)を演算したのち、この修正舵角(δft)から変動成分を除去しても構わない。このような形態としても、請求項7〜10に示すように、除去手段(50k)として、上述した請求項2〜5と同様の構成とすることができ、同様の効果を得ることができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
図1は、本発明の第1実施形態にかかる操舵角制御装置が備えられた車両1の運動制御機構10の全体構成を示した概略図である。以下、この図を参照して、本車両1の運動制御機構10の構成について説明すると共に、本発明の一実施形態にかかる操舵角制御装置の詳細について説明する。
図1に示すように、運動制御機構10には、操舵角制御機構20、ブレーキ制御機構30、各種センサ41〜46および操舵角制御装置を構成する電子制御装置(以下、ECUという)50が備えられている。
本実施形態の操舵角制御機構20は、操舵制御を操舵角制御により行うもので、前輪操舵角制御機構20Aおよび後輪操舵角制御機構20Bを有した構成とされている。
前輪操舵角制御機構20Aは、図1に示されるように、ステアリングホイール21、ステアリングシャフト22、操舵角センサ23、ステアリングギア比可変機構(VGRS)24、ステアリングギア機構25、ステアリングリンク機構26等を備えて構成され、操舵車輪となる両前輪FL、FRおよび両後輪RL、RRの車両中心線に対する角度(操舵角)の調整を行う。
ステアリングホイール21は、運転者によって操作される操舵操作部材に相当するもので、このステアリングホイール21が運転者によって操作されることで、例えば図示しないステアリングコラムを介してステアリングシャフト22が回転させられる。
ステアリングシャフト22は、運転者のステアリング操作を操舵車輪に伝える。ステアリングシャフト22は、ステアリングホイール21側の部分(以下、上部シャフトという)22aとステアリングギア機構25側の部分(以下、下部シャフトという)22bの2部位に分かれており、上部シャフト22aには、運転者の操作による操舵角がそのまま伝えられ、下部シャフト22bには、上部シャフト22aに伝えられた操舵角が後述するVGRS24によって調整されて伝えられる。
また、本実施形態の前輪操舵角制御機構20Aには、操舵角センサ23が備えられており、運転者によるステアリングホイール21の回転角度(操舵角)が検出できるようになっている。
VGRS24は、ギア機構部24aとモータ24bとを有した構成とされる。このVGRS24は、モータ24bの(絶対)回転角度を制御することにより上部シャフト22aに対して下部シャフト22bを相対回転させ、ステアリングホイール21の回転角度に対する左右前輪FL、FRの操舵角の比(ステアリングギア比)を調整する。
例えば、VGRS24は、上部シャフト22aに接続されたサンギア24aa、モータ24bに接続されたリングギア24ab、および下部シャフト22bに接続されたキャリア24acを備えた周知の遊星ギア機構にて構成される。このようなVGRS24のモータ24bの回転角度を制御することにより、操舵角制御、すなわち車速感応ステアリングギア比制御、および、左車輪FL、RLと右車輪FR、RRの前後力差ΔFXに基づく修正舵角制御を実行することができる。なお、車速感応ステアリングギア比制御とは、高速走行時にはステアリングギア比を大きく設定することで車両1の走行安定性を確保し、低速走行時にはステアリングギア比を小さく設定することで車両1の取り回し性を向上するものである。
ステアリングギア機構25は、歯車の組み合わせ、例えばラックアンドピニオン型のもので構成され、下部シャフト22bの回転によりピニオンギア25aに回転角が与えられ、ピニオンギア25aと噛合わされたラック25bによってピニオンギア25aの回転運動がラック25bの往復運動に変換される。
ステアリングリンク機構26は、ステアリングギア機構25から伝えられる力をタイロッド26a等を介してナックルアーム26bまで伝える。これにより、左右前輪FL、FRが同方向に転舵される。
後輪操舵角制御機構20Bは、左右後輪RL、RRを操舵するものである。後輪操舵角制御装置20Bは、基本的にはステアリングリンク機構26と同様の構造のリンク機構27にて構成される。そして、ECU50のモータ制御信号にてモータ27aが駆動されると、モータ27aの回転運動がタイロッド27bを往復運動させる力に変換され、それがナックルアーム27cまで伝えられることで、左右後輪RL、RRが転舵される。
ブレーキ制御機構30は、複数の電磁弁、リザーバ、ポンプおよびモータ等が備えられたABS制御やTCS制御もしくは横滑り防止制御(以下、ESC(Electronic Stability Control)制御という)等を実行する周知のブレーキ液圧制御用アクチュエータ31を用いて、各車輪FL、FR、RL、RRに備えられた各ホイールシリンダ(以下、W/Cという)32**に発生させる圧力(以下、W/C圧という)を制御するものである。ブレーキ液圧制御用アクチュエータ31としては、液圧によりW/C圧を発生させる液圧ブレーキシステム、電気的にW/C圧を発生させるブレーキバイワイヤなどの電動ブレーキシステムのいずれも採用できるがいずれも公知のものであるので、ここではブレーキ液圧制御用アクチュエータ31の具体的な構造については省略する。
なお、参照符号に付した「**」は、各車輪FL〜RRのことを意味する添え字であり、「FL」は左前輪、「FR」は右前輪、「RL」は左後輪、「RR」は右後輪を意味している。例えば、W/C32**は、W/C32FL〜32RRのことを意味している。
このようなブレーキ制御機構30では、ABS制御、TCS制御やESC制御の非実行時(通常ブレーキ時)には、ブレーキぺダル60の操作に応じたブレーキ液圧を各W/C32**に発生させる。これにより、キャリパ33**によってディスクロータ34**にブレーキパッドが押し付けられ、制動トルクが発生させられる。そして、ABS制御、TCS制御やESC制御の実行時には、ブレーキ液圧制御用アクチュエータ31により、ブレーキペダル60の操作に独立して制御対象車輪となるW/C32**の圧力が調整され、制動トルクが調整される。
また、各種センサ41〜48は、操舵角制御やABS制御、TCS制御やESC制御等の各種制御等に用いる検出信号を発生させるものである。具体的には、各車輪FL〜RRごとに車輪速度センサ41**およびW/C圧センサ42**が備えられていると共に、ヨーレートセンサ43および横加速度センサ45、ペダル操作量センサ46が備えられている。さらに、ステアリングリンク機構26およびリンク機構27には前輪FL、FRと後輪RL、RRの実際の操舵角を検出する操舵角センサ47、48がそれぞれ備えられている。これら各種センサ41〜48の検出信号は、ECU50に入力される。
ECU50は、操舵角センサ23の検出信号を受け取り、その検出信号に応じた制御指示値を示すモータ制御信号を発生させると共に、各種センサ41〜48の検出信号を受け取り、それに応じてブレーキ液圧制御用アクチュエータ31を駆動し、通常のABS制御、TCS制御やESC制御に加えてμスプリット制御を実行したり、μスプリット制御の制御状態に応じてモータ制御信号の制御指示値の修正を行う。このように、ECU50にて、モータ制御信号を出力して左右前輪FL、FRおよび左右後輪RL、RRの転舵(操舵角)をそれぞれ調整する操舵角制御を行う。なお、本実施形態では様々な制御を統合的に行う1つECU50を表してあるが、車両1に搭載される複数個の制御ユニット、例えば、制駆動力制御ユニット、前輪操舵角制御ユニット、後輪操舵角制御ユニット、パワーステアリング制御ユニット、パワートレイン制御ユニットなど複数の制御ユニットを組み合わせ、これらを通信バスによって接続した構成とされていても良い。
図2は、ECU50(具体的にはCPU)のうち本実施形態で説明する操舵角制御に関わる部分のブロック構成を示した図である。この図を参照して、各制御ブロックについて説明する。なお、操舵角制御は、基準舵角制御と修正舵角制御とによって構成されている。前輪FL、FRに対する基準舵角制御(以下、前輪基準舵角制御)は、ステアリングホイールの回転角度(操舵角)と操舵車輪(前輪FL、FR)の操舵角との伝達比(以下、前輪操舵比という)を、車体速度等に基づいて制御するものである。すなわち、前輪基準舵角制御は車体速度等に応じた前輪操舵比制御である。後輪RL、RRに対する基準舵角制御(以下、後輪基準舵角制御)は、前輪FL、FRの操舵角に対する後輪RL、RRの操舵角の比(以下、後輪操舵比という)を、車体速度等に基づいて制御するものである。すなわち、後輪基準舵角制御は車体速度等に応じた後輪操舵角制御である。一方、修正舵角制御は、μスプリット制御が作動したときに発生する前後力差起因ヨーモーメントを打ち消すために、前輪および後輪の操舵角を修正し調整する操舵角制御である。換言すれば、μスプリット制御時に車両安定化のためのヨーモーメントを発生させる前輪FL、FRおよび後輪RL、RRの操舵角制御である。
図2に示すように、ECU50には、基準目標値決定手段50aおよび2つの駆動手段50b、50cが備えられている。
基準舵角決定手段50aは、運転者によるステアリングホイール21の操作に対応した前輪FL、FRおよび後輪RL、RRの操舵角の基準目標値を求めるものである。具体的には、基準舵角決定手段50aは、車体速度Vx、ステアリングホイール21の操舵角θsw、および、これらと前輪操舵比SGfとの関係を示すマップもしくは関数式に基づいて、前輪操舵比SGfを求める。ここで、前輪操舵比SGfとは、ステアリングホイール操舵角θswと操舵車輪(前輪FL、FR)の操舵角との伝達比である。図13(a)、(b)は、前輪操舵比SGfの演算に用いられる、それぞれ、車体速度Vxに基づく車速感応パラメータSGf1、ステアリングホイール操舵角θswに基づく操舵角感応パラメータSGf2を示したマップである。前輪操舵比SGfは、車速感応パラメータSGf1と操舵角感応パラメータSGf2の合算値(SGf=SGf1+SGf2)として演算される。これらのマップに示されるように、前輪操舵比SGfは、車体速度Vxが増加するほどより大きい値に設定され、ステアリングホイール操舵角θswが増大するほどより小さい値に設定される。なお、車体速度Vxは車輪速度センサ41**の検出信号から得られる各車輪速度Vw**に基づいて周知の手法により求められ、ステアリングホイール操舵角θswは操舵角センサ23の検出信号に基づいて求められる。そして、基準舵角決定手段50aは、前輪操舵比SGfとステアリングホイール操舵角θswに基づいて前輪基準舵角δfvを求める。すなわち、前輪基準舵角δfvは、前輪操舵比SGfを達成するための、ステアリングホイール21と前輪FL、FRとの相対位置(角度)を調整する目標値(具体的にはモータ24bの回転角度の目標値)である。
さらに、基準舵角決定手段50aは、後輪RL、RRの操舵角の基準目標値を求める。具体的には、基準舵角決定手段50aは、車体速度Vxと、これと後輪操舵比SGrとの関係を示すマップもしくは関数式に基づいて、後輪操舵比SGrを求める。ここで、後輪操舵比SGrとは、前輪FL、FRの操舵角に対する後輪RL、RRの操舵角の比である。図14は、車体速度Vxと後輪操舵比SGrとの関係を示したマップである。このマップに示されるように、後輪操舵比SGrは、車体速度Vxが低い場合には逆相(前輪FL、FRと後輪RL、RRとが逆の操舵方向であり、マップでは負の値)に設定され、車体速度Vxの増加にしたがって同相(前輪FL、FRと後輪RL、RRとが同じ操舵方向であり、マップでは正の値)のより大きい値に変更される。また、低速時の逆相を行わないように、車体速度Vxが小さいときには後輪操舵比SGrをゼロに設定することができる。そして、基準舵角決定手段50aは、ステアリングホイール操舵角θswと、車体速度等に基づいて設定された前輪操舵比SGfを用いて前輪FL、FRの操舵角を演算する。さらに、基準舵角決定手段50aは、前輪操舵角(=θsw/SGf)と後輪操舵比SGrとに基づいて後輪基準舵角δrvを求める。すなわち、後輪基準舵角δrvは、車体速度に応じた後輪操舵比制御を達成するための、後輪操舵角の目標値(具体的にはモータ27aの回転角度の目標値)である。

駆動手段50b、50cは、通常時(修正舵角制御の非作動時)には、モータ24b、27aの出力が基準舵角δfv、δrvと一致するように、モータ制御信号をモータ24b、27aに対して出力し、操舵角制御を行う。修正舵角制御を行う必要がある場合には、後述する前輪および後輪修正舵角δft、δrtが演算される。そして、前輪および後輪修正舵角δft、δrtおよび基準舵角δfv、δrvに基づいて(基準舵角δfv、δrvを修正舵角δft、δrtによって調整して)最終的な操舵角目標値(モータ24b、27aの出力目標値)が求められる。この出力目標値はモータ制御指令値に対応する値(モータ制御信号)に変換され、その変換後のモータ制御信号がモータ24b、27aに対して出力される。
また、ECU50には、μスプリット制御に対応した修正舵角制御(前後力差起因モーメントを低減する操舵角制御)を実行するための修正舵角を求める手段として、実運動演算手段50d、目標運動演算手段50e、比較手段50f、安定化モーメント演算手段50g、ABS/TCS制御手段50h、前後力演算手段50i、前後力差演算手段50j、変動成分除去手段50k、前輪および後輪修正舵角演算手段50m、50nが備えられている。
実運動演算手段50dは、車両1の実際に発生している運動量VMa(以下、実運動量という)を演算するものである。ここで、「運動量」とは、車両の旋回運動を表す状態量であり、ヨーレート、横加速度、車体スリップ角、車体スリップ角速度に相当する値を用いて演算される状態量である。例えば、ヨーレートセンサ43の検出信号に基づいて実際に発生している実際のヨーレート(以下、実ヨーレートという)を演算している。
目標運動演算手段50eは、車両1の目標とする運動量VMt(以下、目標運動量という)を演算するもので、上記の実運動量と同一次元の状態量を演算する。例えば、運動量がヨーレートである場合には、操舵角センサ23の検出信号と車体速度に基づいて周知の方法によって求められる目標とするヨーレート(以下、目標ヨーレートという)を演算している。
なお、ここでは、実運動量VMaと目標運動量VMtの対象をヨーレートとしているが、ESC制御に使用されるものとして周知となっている他の状態量(例えば、車体スリップ角等)を用いても良い。
比較手段50fは、実際の運動量VMaと目標とする運動量VMtの偏差ΔVMを演算するものである。安定化モーメント演算手段50gは、比較手段50fにて求められた偏差ΔVMと後述する前後力差演算手段にて求められる前後力差ΔFXを用いて安定化モーメントMSを演算するものである。具体的には、数式1に示す演算式に偏差ΔVMと前後力差ΔFXを代入することにより安定化モーメントMSを求めている。なお、数式1中において、G1、G2は予め決められている係数である。
(数1) MS=G1・ΔFX+G2・ΔVM …数式1
ABS/TCS制御手段50hは、車輪速度センサ41**からの検出信号に基づいて車輪速度Vw**および車体速度(推定車体速度)を求めると共に、各車輪FL〜RR毎にスリップ率を求め、このスリップ率に基づいてABS制御やTCS制御を実行するものである。ABS制御では、ブレーキ液圧制御用アクチュエータ31にて対象車輪のW/C圧の減圧、保持、増圧を行うことで制動トルクを調整することで車輪スリップを抑制する。TCS制御では、ブレーキ液圧制御用アクチュエータ31にて駆動車輪のW/C圧の増圧、保持、減圧を行うこと、もしくは、図示しないエンジンの出力調整を行うことにより、駆動トルクを調整し、車輪スリップを抑制する。これらABS制御やTCS制御の手法に関しては、周知であるためここでは説明を省略するが、このABS/TCS制御手段50hにて、ABS制御もしくはTCS制御中の各車輪FL〜RRのW/C圧の制御目標値が求められているため、これが前後力演算手段50iに伝えられる。
前後力演算手段50iでは、各車輪FL〜RRの前後力FX**が演算される。前後力とは、上述したように路面とタイヤとの間で発生する加減速方向の摩擦力、つまり制駆動力のことである。具体的には、ABS制御もしくはTCS制御中の各車輪FL〜RRのW/C圧の制御目標値に基づいて、左右それぞれの車輪FL〜RRの制動トルクを求めるという周知の手法により、各車輪FL〜RRの前後力FX**が求められる。
なお、前後力FX**に関しては、この他、W/C圧センサ42**の検出信号から検出した各車輪FL〜RRのW/C圧を利用して求められる左右それぞれの車輪FL〜RRの制動トルク、図示しないエンジンの駆動トルクから得られる各車輪FL〜RRの駆動トルク、車輪速度Vw**を微分して求められる各車輪FL〜RRの加減速度、各車輪FL〜RRの回転運動方程式、ブレーキ液圧制御用アクチュエータ31の作動状態(電磁弁への指示電流値)等からも求められ、周知となっているどの手法により求めても良い。
前後力差演算手段50jは、前後力演算手段50iにて求められた各車輪FL〜RRの前後力FX**に基づいて、左車輪FL、RLと右車輪FR、RRの前後力FX**の差(以下、前後力差という)ΔFXを演算する。μスプリット路面では、左右の路面の摩擦係数が異なっているため、μスプリット制御が実行される際には、左車輪FL、RLと右車輪FR、RRの前後力が異なった値となり、前後力差ΔFXが生じる。この前後力差ΔFXが前後力差起因ヨーモーメントの大きさと対応する物理量となる。
例えば、前後力差ΔFXは、右前後輪FR、RRの前後力FXFR、FXRRの和から左前後輪FL、RLの前後力FXFL、FXRLの和を差し引いた値を用いることができる。この前後力差ΔFXは、車両上方から見て時計回り方向と反時計回り方向とで正負の符号が変わるが、いずれの方向を正負としても構わない。なお、この前後力差演算手段50jで演算した前後力差ΔFXが上記した安定化モーメント演算手段50gに伝えられ、安定化モーメントMSが求められる。
変動成分除去手段50kは、μスプリット制御が実行される際に、左右車輪の前後力の増減周期が相違するために前後力差ΔFXが周期的に増減して、安定化モーメントMSが変動し得るため、この変動成分を除去する。
車両のヨー運動の安定化には、修正舵角の応答性として少なくとも2〜3Hzが必要となる。このとき、高周波数域を後輪RL、RRの修正舵角が受け持ち、前輪FL、FRの修正舵角は低周波数域を分担するようにすれば、ステアリングホイール21への変動が抑制される。このため、本実施形態では、変動成分除去手段50kを安定化モーメントMSに対するローパスフィルタとし、このローパスフィルタにて安定化モーメントMSのうち低周波数域のみを抽出して、除去後安定化モーメントMSeを前輪修正舵角δftの演算に用いるようにしている。
具体的には、ローパスフィルタのカットオフ周波数は、車両のヨー共振周波数(1Hz程度)より小さい値とすることができる。このローパスフィルタのカットオフ周波数は、一定値であっても構わないが、μスプリット制御開始直後には直ちに前後力差起因ヨーモーメントを抑え込む必要があることから、μスプリット制御が開始されてからの経過時間tmsに応じて徐々に低下するような形態とされると好ましい。
図3は、経過時間tmsとカットオフ周波数との関係の一例を示したグラフである。この図に示されるように、経過時間tmsが一定時間、つまりμスプリット制御開始直後の前後力差起因ヨーモーメントを押さえ込むための時間に至るまではカットオフ周波数を一定値としておき、その後徐々にカットオフ周波数を小さい値に変更することができる。このようにすれば、μスプリット制御開始直後には、前輪修正舵角δftは、安定化モーメントMSの変動成分を除去しつつもある程度加味した値として求められる。そして、μスプリット制御開始からの経過時間tmsが長くなると、前輪修正舵角δftは、安定化モーメントMSの変動成分がほぼ除去された値となる。このため、安定化モーメントMSの変動成分に起因するステアリングホイールの影響を抑制して、運転者に違和感を与えないようにしつつ、μスプリット制御開始直後には前輪FL、FR側でも前後力差起因ヨーモーメントを抑え込むことが可能となる。
前輪修正舵角演算手段50m、50nは、安定化モーメントMSから変動成分を除去した後の除去後安定化モーメントMSeに基づいて、前輪修正舵角δftを演算する。同様に、後輪修正舵角演算手段50nは、安定化モーメントMSに基づいて、後輪の修正舵角δrtを演算する。
図4は、安定化モーメントMSもしくは除去後安定化モーメントMSeと前輪および後輪修正舵角δft、δrtとの関係の一例を示したものである。例えば、安定化モーメントMSもしくは除去後安定化モーメントMSeに対して前輪および後輪修正舵角δft、δrtを一定の勾配で増加させ、安定化モーメントMSもしくは除去後安定化モーメントMSeが一定値以上になると前輪および後輪修正舵角δft、δrtも一定値とする。これにより、修正舵角制御を実行するための前輪FL、FRおよび後輪RL、RRの修正舵角の配分が求められる。
さらに、ECU50には、継続時間演算手段50pが備えられている。この継続時間演算手段50pにより、μスプリット制御が開始後の継続時間tmsが演算される。なお、μスプリット制御が開始したことは、例えばABS/TCS制御手段50gにてμスプリット制御中にセットされるフラグがリセット状態からセット状態に切り替わったことから判定可能である。
以上がECU50における前輪および後輪操舵制御系のブロック構成である。続いて、μスプリット制御が開始されたときのECU50の作動について図5を参照して説明する。図5は、μスプリット制御が開始されたときの安定化モーメントMS(二点鎖線)および除去後安定化モーメントMSe(実線)の変化の様子を示したタイミングチャートである。
上記のように構成されたECU50によれば、左右車輪FL〜RRそれぞれの前後力FX**が求められると、それに基づいて前後力差ΔFXが求められる。この前後力差ΔFXは、μスプリット制御が開始される際に大きくなる。また、実運動量VMaおよび目標運動量VMtの偏差ΔVMが演算されると、その偏差ΔVMと前後力差ΔFXに基づいて安定化モーメントMSが演算される。
そして、この安定化モーメントMSのうちの低周波域のみが抽出されて除去後安定化モーメントMSeが求められ、除去後安定化モーメントMSeに基づいて前輪修正舵角δftが演算されると共に、安定化モーメントMSに基づいて後輪修正舵角δrtが演算される。なお、変動成分除去手段50kのローパスフィルタのカットオフ周波数が図3に示すようにμスプリット制御開始から徐々に小さくされるものであれば、除去後安定化モーメントMSeはμスプリット制御開始直後には変動し、徐々にその変動が小さくなる。
この後、前輪および後輪修正舵角δft、δrtによって基準舵角δfv、δrvが調整されることで操舵角目標値が求められる。そして、それを実現する制御指示値を示すモータ制御信号がモータ24bやモータ27aに対して出力されることで、μスプリット制御中に発生する前後力差起因ヨーモーメントを低減する修正舵角制御を実行し、μスプリット制御中の運転者のカウンタステア操作を低減することができる。そして、このμスプリット制御が実行される際に、左右車輪の前後力の増減周期が相違するために前後力差ΔFXが周期的に増減して、安定化モーメントMSが変動しても、安定化モーメントMSの変動成分に起因するステアリングホイールの影響を抑制でき、運転者に違和感を与えないようにすることが可能となる。
以上説明した本実施形態の操舵角制御装置によれば、左右車輪の前後力差に起因するヨーモーメントによる車両の偏向を抑制する修正舵角制御を実行するに際し、左右車輪の前後力差の変動に起因する運転者の違和感を抑制することが可能となる。
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態では、第1実施形態に対して変動成分除去手段50kの構成を変更したものであり、その他に関しては第1実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、変動成分除去手段50kにて、安定化モーメントMSが減少するときの単位時間当たりの減少量(減少勾配)に制限を設ける。これについて、図6、図7を参照して説明する。
図6は、安定化モーメントMSの時間変化の様子を示したタイミングチャートである。図6中破線で示したように、μスプリット制御が実行される際には、左右車輪の前後力の増減周期が相違するために前後力差ΔFXが周期的に増減し、安定化モーメントMSも同様に変動する。この変動成分がそのまま加味されて前輪修正舵角δftが求められると、上述したように、安定化モーメントMSの変動成分に起因したステアリングホイールの影響が発生するため、図6中実線で示したように、減少時の勾配に制限を設けた除去後安定化モーメントMSeとし、安定化モーメントMSの変動成分を除去する。
図7は、このように減少勾配を制限するために実行される減少勾配制限処理のフローチャートである。この処理は、例えばμスプリット制御中に所定の演算周期毎に実行される。
まず、ステップ100では、継続時間tmsに基づいて減少勾配の制限値Kgを設定する。例えば、ステップ100中に示したように、継続時間tmsに対する減少勾配の制限値Kgの関係の一例を示したマップに基づいて減少勾配の制限値Kgを設定している。この関係は、第1実施形態で説明した継続時間tmsに対するカットオフ周波数の関係と同じものであり、継続時間tmsが短いとき、つまりμスプリット制御開始直後には、直ちに前後力差起因ヨーモーメントを抑え込む必要があることから、減少勾配の制限値Kgを大きくし、μスプリット制御開始からの経過時間tmsに応じて徐々に低下するような形態とされると好ましい。このようにすることで、安定化モーメントMSの変動成分に起因するステアリングホイール21の影響を抑制して、運転者に違和感を与えないようにしつつ、μスプリット制御開始直後には前輪FL、FR側でも前後力差起因ヨーモーメントを抑え込むことが可能となる。
続く、ステップ110では、制限演算中であるか否かを判定する。ここでいう制限演算とは、例えば、後述するステップ130において実行されるもので、制限演算が実行されたときにセットされるフラグがセットされているか否かに基づいて本判定を行う。
ステップ110で否定判定されればステップ120に進み、制限演算の開始条件を満たすか否かを判定する。ここで開始条件を満たせばステップ130に進んで制限演算を行い、満たしていなければ制限演算を行うことなく処理を終了する。また、ステップ110で肯定判定されればステップ140に進み、制限演算の終了条件を満たすか否かを判定する。そして、ここで終了条件を満たしていなければステップ130に進んで制限演算を行い、終了条件を満たせば処理を終了する。
ここで、上述した開始条件、制限演算および終了条件の詳細について、図8に示す安定化モーメントMSの変動に対する減少勾配の制限値Kgの関係図を参照して説明する。なお、図8中のタイミングは、演算周期毎の演算タイミングを示している。
開始条件は、今回と前回の演算タイミングで得られた安定化モーメントMS(以下、それぞれ今回値と前回値という)を比較し、前回値に対して今回値が減少していること、および、減少量が制限値Kgに対して演算周期Δtを掛けた値(Kg・Δt)よりも大きいことである。つまり、安定化モーメントMSが減少したときに、その減少勾配が制限値Kgを超えているような場合には、制限演算を開始する。図8の場合、図中(2)のタイミングが開始条件を満たすことになり、制限演算が開始される。
制限演算は、前輪修正舵角δftを演算する状態量である変動成分が除去された除去後安定化モーメントMSeとして、減少勾配の制限を掛けた値MSsを出力する。すなわち、図8中一点鎖線で示したように、制限演算開始時の安定化モーメントMSから制限値Kgに対して演算周期Δtを掛けた値を減算することで、減少勾配に制限を掛けた値MSsを求め、この値を除去後安定化モーメントMSeとして出力している。
終了条件は、安定化モーメントMSの今回値が除去後安定化モーメントMSe、つまり減少勾配に制限を掛けた値MSsを超えたことである。この条件を満たした場合に、制限演算を終了する。
このように、本実施形態では、変動成分除去手段50kにて減少勾配制限処理を実行することにより、安定化モーメントMSeの変動成分を除去するようにしている。このようにしても、第1実施形態と同様の効果を得ることができる。
(第3実施形態)
本発明の第3実施形態について説明する。本実施形態では、第1実施形態に対して変動成分除去手段50kの構成を変更すると共に、後輪修正舵角演算手段50nが後輪修正舵角δrtを変動成分除去手段50kでの処理結果に基づいて求めるようにしたものであり、その他に関しては第1実施形態と同様であるため、異なる部分についてのみ説明する。
本実施形態では、変動成分除去手段50kにて、前輪修正操舵の分担分と後輪修正操舵の分担分を求める。図9は、安定化モーメントMSに対する前輪修正操舵の分担分と後輪修正操舵の分担分を示したタイミングチャートである。この図に示すように、面積A相当を前輪修正操舵で受け持ち、面積B相当を後輪修正操舵で受け持たせる。つまり、安定化モーメントMSのうち前輪修正操舵の分担分を固定値Pとし、変動成分を含んだ残りの部分を後輪修正操舵の分担分とする。
ただし、固定値Pよりも安定化モーメントMSが小さくなる場合もあるため、μスプリット制御開始当初は固定値Pをデフォルト値としておき、所定期間τh経過後に安定化モーメントMSに応じて固定値Pが修正されるようにしている。これにより、前輪修正操舵の分担分となる固定値Pは安定化モーメントMSから変動成分を除去した値として設定される。図10において、固定値Pの修正の様子をタイミングチャートで示し、この図を参照して固定値Pの修正手法について説明する。
まず、μスプリット制御開始当初には固定値Pがデフォルト値P1として設定されている。そして、継続時間tmsが所定時間τhを超えるまでの期間中、変動成分除去手段50kでは、安定化モーメントMSの最大値MSmを記憶しておき、継続時間tmsが所定時間τhを超えたときに、最大値MSmに基づいて固定値Pを修正する。例えば、図10中に示すように、最大値MSmが値MSm1であった場合、この値MSm1と対応する修正値P2が設定され、固定値Pがデフォルト値P1から修正値P2に変更される。
また、変動成分除去手段50kは、安定化モーメントMSと固定値Pとを比較している。継続時間tmsが所定時間τhを超える前までの期間中は、安定化モーメントMSが固定値P未満の条件を満たすと、前輪修正舵角演算手段50mに対して安定化モーメントMSをそのまま除去後安定化モーメントMSeとして出力し、後輪修正舵角演算手段50nに対しては安定化モーメントMSをゼロとして出力する。すなわち、上記条件を満たす場合には、前輪側でのみ修正舵角制御が行われ、後輪修正舵角δrtはゼロとされる。
一方、継続時間tmsが所定時間τhを超えているか否かに関わらず、安定化モーメントMSが固定値P以上であれば、変動成分除去手段50kは、前輪修正舵角演算手段50mに対して固定値P(継続時間tmsが所定時間τh以下ならデフォルト値P1、所定時間τhを超えていれば修正値P2)を除去後安定化モーメントMSeとして出力し、後輪修正舵角演算手段50nに対しては安定化モーメントMSから固定値Pを差し引いた値(MS−P)を出力する。この場合には、前輪FL、FRおよび後輪RL、RRの双方で修正舵角制御が行われる。
図11は、このように安定化モーメントMSに対して前輪修正操舵と後輪修正操舵とに分担する場合の変動成分除去演算処理のフローチャートである。この変動成分除去演算処理は、例えばμスプリット制御中に所定の演算周期毎に実行される。なお、本フローチャートのうち、ステップ200〜240の処理が変動成分除去手段50kで実行されるもので、ステップ250〜280の処理が前輪修正舵角演算手段50mもしくは後輪修正舵角演算手段50nで実行されるものである。
まず、ステップ200では、継続時間tmsが所定時間τh以下であるか否かを判定する。ここで、μスプリット制御開始直後には肯定判定され、ステップ210に進む。ステップ210では、固定値Pとしてデフォルト値P1を設定したのち、ステップ220に進み、ステップ220にて、安定化モーメントMSの最大値MSmを求め、それを記憶する。この最大値MSmは、MAX(MS, MSm)、つまり前回の演算周期までの最大値MSmと今回の演算周期で求められた安定化モーメントMSとを比較して大きい方を選択するという手法が採られ、いずれか大きい方が新たな最大値MSmとして更新される。
一方、継続時間tmsが所定時間τhを超えていて、ステップ200で否定判定されると、ステップ230に進む。そして、ステップ230において、記憶しておいた最大値MSmが値MSm1であった場合、例えばステップ230中に示したマップに基づいて、値MSm1と対応する修正値P2を得て、固定値Pをデフォルト値P1から修正値P2に変更する。
続く、ステップ240では、安定化モーメントMSが固定値P未満か否かを判定する。継続時間tmsが所定時間τhを超える前までの期間中は、デフォルト値P1が固定値Pとして設定されるため、本ステップで肯定判定される可能性がある。ここで肯定判定されると、ステップ250に進み、安定化モーメントMSをそのまま除去後安定化モーメントMSeとし、それに対応する前輪修正舵角δftを例えば図中のマップに基づいて求める。その後、ステップ260に進み、後輪修正舵角δrtをゼロとする。
一方、ステップ240で否定判定されると、ステップ270に進み、固定値P(継続時間tmsが所定時間τh以下ならデフォルト値P1、所定時間τhを超えていれば修正値P2)を除去後安定化モーメントMSeとして、それに対応する前輪修正舵角δftを例えば図中のマップから求める。その後、ステップ280に進み、安定化モーメントMSから固定値Pを差し引いた値(MS−P)と対応する後輪修正舵角δrtを例えば図中のマップから求める。
以上説明したように、安定化モーメントMSから変動成分を除去した固定値Pに基づいて前輪修正舵角δftを求め、その変動成分を後輪修正舵角δrtに分担させるようにしている。これにより、車両全体として過不足の無い修正舵角制御を行うことができ、安定化モーメントMSの変動分も補償できる。また、安定化モーメントMSが固定値Pよりも大きい場合(変動成分が大きい場合)に、前輪修正舵角δftを固定値Pに応じて決定し、前輪修正舵角δftがほぼ一定値となるようにしているため、ステアリングホイール21の変動を低減することが可能となる。
(第4実施形態)
本発明の第4実施形態について説明する。上記第1〜第3実施形態では、車両運動状態をフィードバックした修正舵角制御も行われる操舵制御装置に関して、本発明の一実施形態を適用した場合について説明したが、修正舵角制御から車両運動状態のフィードバックを除いたものとしても良い。この場合、ECU50は、図2に示した実運動演算手段50d、目標運動演算手段50e、比較手段50fおよび安定化モーメント演算手段50gを無くした構成となる。そして、安定化モーメントMSに代えて、前後力差ΔFXそのものを用いて修正舵角δft、δrtを求める。
具体的には、図2中の括弧にて示したように、前後力差演算手段50jから安定化モーメント演算手段50gに伝えていた前後力差ΔFXを変動成分除去手段50kに伝え、変動成分除去手段50kで前後力差ΔFXにおける変動成分を除去することで除去後前後力差ΔFXeを求める。そして、前輪修正舵角演算手段50mでは、除去後前後力差ΔFXeに基づいて前輪修正舵角δftを演算し、後輪修正舵角手段50nでは、前後力差ΔFXに基づいて後輪修正舵角Δrtを演算する。
このように、前後力差ΔFXを用いて前輪および後輪修正舵角δft、δrtを求める。μスプリット制御中の車両偏向の原因は前後力差ΔFXであるから、前後力差ΔFXに基づいて前輪および後輪修正舵角δft、δrtを求めることで、第1実施形態と同様の効果を得ることができる。
(第5実施形態)
本発明の第5実施形態について説明する。本実施形態では、安定化モーメントMSもしくは前後力差ΔFXから直接変動成分を除去するのではなく、前輪修正舵角δftから変動成分を除去する。図12は、ECU50のうち本実施形態で説明する操舵角制御に関わる部分のブロック構成を示した図である。
上記第1〜第4実施形態では、安定化モーメント演算手段50gで演算された安定化モーメントMSもしくは前後力差演算手段50jで演算された前後力差ΔFXを変動成分除去手段50kに伝え、安定化モーメントMSもしくは前後力差ΔFXの変動成分を除去している。これに対し、図12に示すように、安定化モーメントMSもしくは前後力差ΔFXが前輪修正舵角演算手段50mや後輪修正舵角演算手段50nに伝えられるようにし、前輪修正舵角δftから変動成分を除去するようにしても良い。このような変動成分の除去方法は第1〜第4実施形態と同様である。
すなわち、第1実施形態のように、変動成分除去手段50kを車両のヨー共振周波数より小さい値のカットオフ周波数のローパスフィルタとし、前輪修正舵角δftをこのローパスフィルタに通過させるようにしても良い。
また、第2実施形態のように、変動成分除去手段50kにて前輪修正舵角δftの減少量の時間変化に制限をかけるようにしても良い。
さらに、第3実施形態のように、変動成分除去手段50kにて、前輪修正舵角δftが所定値Q以下であるか超えているかを判定し、前輪修正舵角δftが所定値Q以下であれば、変動成分除去後の前輪修正舵角δftとして、安定化モーメントMSに基づいて演算した前輪修正舵角δftを用い、後輪修正舵角δrtをゼロとする。また、前輪修正舵角δftが所定値Qを超えていれば、変動成分除去後の前輪修正舵角δftを所定値Qとすると共に、後輪修正舵角δrtを前輪修正舵角δftから所定値Qを差し引いた値とすれば良い。
(他の実施形態)
上記各実施形態では、ブレーキ制御機構30として、ブレーキ液圧制御用アクチュエータ31を用いた液圧ブレーキに基づいて車輪FL〜RRに制動トルクを与えるものについて記載したが、電動ブレーキのように電動モータによりW/C圧を発生させたり、直接ディスクロータにブレーキパッドを押し付けることで車輪FL〜RRに制動トルクを与えるものであっても構わない。この場合、例えば、電動モータの制御指示値に基づいて制動トルクを求めることが可能である。
また、上記各実施形態では、前後力差ΔFXとして、右前後輪FR、RRの前後力FXFR、FXRRの和から左前後輪FL、RLの前後力FXFL、FXRLの和を差し引いた値を用いているが、前後力差が制動力差である場合には、左右車輪の間の前後力差ΔFXとして、右側前車輪FRの前後力(制動力)FXfrから左側前車輪FLの前後力(制動力)FXflを減じて得られる値が使用されてもよい。また、前後力差が駆動力差である場合には、右側駆動車輪の前後力(駆動力)から左側駆動車輪の前後力(駆動力)を減じて得られる値が使用されてもよい。
なお、各図中に示したステップは、各種処理を実行する手段に対応するものである。
本発明の第1実施形態にかかる操舵制御装置が備えられた車両の運動制御機構の全体構成を示した概略図である。 ECUのうち操舵角制御に関わる部分のブロック構成を示した図である。 経過時間tmsとカットオフ周波数との関係の一例を示したグラフである。 安定化モーメントMSもしくはMSeと前輪および後輪修正舵角δft、δrtとの関係の一例を示したグラフである。 μスプリット制御が開始されたときの安定化モーメントMS(破線)および除去後安定化モーメントMSe(実線)の変化の様子を示したタイミングチャートである。 安定化モーメントMSの時間変化の様子を示したタイミングチャートである。 減少勾配制限処理のフローチャートである。 安定化モーメントMSの変動に対する減少勾配の制限値Kgの関係図である。 安定化モーメントMSに対する前輪修正操舵の分担分と後輪修正操舵の分担分を示したタイミングチャートである。 固定値Pの修正の様子を示したタイミングチャートである。 安定化モーメントMSに対して前輪修正操舵と後輪修正操舵とに分担する場合の変動成分除去演算処理のフローチャートである。 ECUのうち操舵制御に関わる部分のブロック構成を示した図である。 (a)、(b)は、それぞれ、車体速度Vxに基づく車速感応パラメータSGf1、ステアリングホイール操舵角θswに基づく操舵角感応パラメータSGf2を示したマップである。 車体速度Vxと後輪操舵比SGrとの関係を示したマップである。
符号の説明
1…車両、10…運動制御機構、20…操舵制御機構、21…ステアリングホイール、22…ステアリングシャフト、22a…上部シャフト、22b…下部シャフト、23、47、48…操舵角センサ、24…VGRS、25…ステアリングギア機構、26…ステアリングリンク機構、30…ブレーキ制御機構、31…ブレーキ液圧制御用アクチュエータ、32…W/C、41…車輪速度センサ、42…W/C圧センサ、43…ヨーレートセンサ、45…横加速度センサ、46…ペダル操作量センサ、50…ECU、60…ブレーキペダル。

Claims (10)

  1. 車輪(FL〜RR)のスリップを抑制すべく、前記車輪(FL〜RR)の前後力を調整するスリップ抑制制御を実行すると共に、左車輪(FL、RL)と右車輪(FR、RR)の通過する路面の摩擦係数が異なるμスプリット路面を走行中に前記スリップ抑制制御を実行するμスプリット制御が実行される車両(1)の前輪(FL、RL)および後輪(RL、RR)の操舵角を制御する車両用操舵角制御装置であって、
    前記車輪(FL〜RR)の前後力(FX**)を演算する第1演算手段(50i)と、
    前記前後力(FX**)に基づいて左右車輪の前後力差(ΔFX)を演算する第2演算手段(50j)と、
    前記前後力差(ΔFX)を含む状態量(ΔFX、MS)から、前記前後力差(ΔFX)の周期的な増減による変動成分を除去する除去手段(50k)と、
    前記前後力差(ΔFX)を含む状態量(ΔFX、MS)から前記変動成分を除去した除去後状態量(ΔFXe、MSe)に基づいて前記前輪(FL、FR)の修正舵角(δft)を演算する第3演算手段(50m)と、
    前記前後力差(ΔFX)を含む状態量(ΔFX、MS)に基づいて前記後輪(RL、RR)の修正舵角(δrt)を演算する第4演算手段(50n)と、
    前記前輪(FL、FR)および前記後輪(RL、RR)の前記修正舵角(δft、δrt)に基づいて制御指示値を出力する駆動手段(50b、50c)と、を備えていることを特徴とする車両用操舵角制御装置。
  2. 前記除去手段(50k)は、車両のヨー共振周波数より小さい値のカットオフ周波数のローパスフィルタであることを特徴とする請求項1に記載の車両用操舵角制御装置。
  3. 前記除去手段(50k)は、前記前後力差(ΔFX)を含む状態量(ΔFX、MS)の減少量の時間変化に制限をかける手段であることを特徴とする請求項1に記載の車両用操舵角制御装置。
  4. 前記除去手段(50k)は、前記前後力差(ΔFX)を含む状態量(ΔFX、MS)が所定値(P)以下であるか超えているかを判定し、
    前記状態量(ΔFX、MS)が所定値(P)以下であれば、前記第3演算手段(50m)にて、前記状態量(ΔFX、MS)に基づいて前記前輪(FL、FR)の修正舵角(δft)を演算すると共に、前記第4演算手段(50n)にて、前記後輪(RL、RR)の修正舵角(δrt)をゼロとすることを特徴とする請求項1に記載の車両用操舵角制御装置。
  5. 前記状態量(ΔFX、MS)が所定値(P)を超えていれば、前記第3演算手段(50m)にて、前記所定値(P)に基づいて前記前輪(FL、FR)の修正舵角(δft)を演算すると共に、前記第4演算手段(50n)にて、前記状態量(ΔFX、MS)から前記所定値(P)を差し引いた値に基づいて前記後輪(RL、RR)の修正舵角(δrt)を演算することを特徴とする請求項4に記載の車両用操舵角制御装置。
  6. 車輪(FL〜RR)のスリップを抑制すべく、前記車輪(FL〜RR)の前後力を調整するスリップ抑制制御を実行すると共に、左車輪(FL、RL)と右車輪(FR、RR)の通過する路面の摩擦係数が異なるμスプリット路面を走行中に前記スリップ抑制制御を実行するμスプリット制御が実行される車両(1)の前輪(FL、RL)および後輪(RL、RR)の操舵角を制御する車両用操舵角制御装置であって、
    前記車輪(FL〜RR)の前後力(FX**)を演算する第1演算手段(50i)と、
    前記前後力(FX**)に基づいて左右車輪の前後力差(ΔFX)を演算する第2演算手段(50j)と、
    前記前後力差(ΔFX)を含む状態量(ΔFX、MS)に基づいて前記前輪(FL、FR)の修正舵角(δft)を演算する第3演算手段(50m)と、
    前記前後力差(ΔFX)を含む状態量(ΔFX、MS)に基づいて前記後輪(RL、RR)の修正舵角(δrt)を演算する第4演算手段(50n)と、
    前記前輪(FL、FR)の修正舵角(δft)から、前記前後力差(ΔFX)の周期的な増減による変動成分を除去する除去手段(50k)と、
    前記後輪(RL、RR)の前記修正舵角(δrt)および前記変動成分を除去した後の前記前輪(FL、FR)の前記修正舵角(δft)に基づいて制御指示値を出力する駆動手段(50b、50c)と、を備えていることを特徴とする車両用操舵角制御装置。
  7. 前記除去手段(50k)は、車両のヨー共振周波数より小さい値のカットオフ周波数のローパスフィルタであることを特徴とする請求項6に記載の車両用操舵角制御装置。
  8. 前記除去手段(50k)は、前記前輪(FL、FR)の前記修正舵角(δft)の減少量の時間変化に制限をかける手段であることを特徴とする請求項6に記載の車両用操舵角制御装置。
  9. 前記除去手段(50k)は、前記前輪(FL、FR)の前記修正舵角(δft)が所定値(Q)以下であるか超えているかを判定し、
    前記前輪(FL、FR)の前記修正舵角(δft)が所定値(Q)以下であれば、前記変動成分を除去した後の前記前輪(FL、FR)の修正舵角(δft)として、前記第3演算手段(50m)にて前記状態量(ΔFX、MS)に基づいて演算した前記前輪(FL、FR)の修正舵角(δft)を用いると共に、前記後輪(RL、RR)の修正舵角(δrt)をゼロとすることを特徴とする請求項6に記載の車両用操舵角制御装置。
  10. 前記状態量(ΔFX、MS)が前記前輪(FL、FR)の前記修正舵角(δft)が所定値(Q)を超えていれば、前記変動成分を除去した後の前記前輪(FL、FR)の修正舵角(δft)を前記所定値(Q)とすると共に、前記後輪(RL、RR)の修正舵角(δrt)を前記前輪(FL、FR)の修正舵角(δft)から前記所定値(Q)を差し引いた値とすることを特徴とする請求項9に記載の車両用操舵角制御装置。
JP2006315631A 2006-11-22 2006-11-22 車両用操舵制御装置 Withdrawn JP2008126890A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315631A JP2008126890A (ja) 2006-11-22 2006-11-22 車両用操舵制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315631A JP2008126890A (ja) 2006-11-22 2006-11-22 車両用操舵制御装置

Publications (1)

Publication Number Publication Date
JP2008126890A true JP2008126890A (ja) 2008-06-05

Family

ID=39553161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315631A Withdrawn JP2008126890A (ja) 2006-11-22 2006-11-22 車両用操舵制御装置

Country Status (1)

Country Link
JP (1) JP2008126890A (ja)

Similar Documents

Publication Publication Date Title
JP4930007B2 (ja) 車両用操舵角制御装置
EP1424263B1 (en) Vehicle steering control device
EP2112053B1 (en) Yaw stability control system
JP5431745B2 (ja) 車両の運動制御装置
JP2009120162A (ja) 車輌の走行制御装置
JP2017061251A (ja) 車両姿勢制御装置
JP6328841B1 (ja) 制御装置、および、ステアリング装置
JP2009012708A (ja) 車両の旋回挙動制御装置
JP2018161951A (ja) 制御装置、および、ステアリング装置
JP2012035708A (ja) 操舵制御装置
JP4172361B2 (ja) 電動式パワーステアリング装置用制御装置
JP5194430B2 (ja) 車両の4輪操舵制御装置
JP5082402B2 (ja) 車両用操舵制御装置
JP6734905B2 (ja) 車両挙動安定化装置
JP5298950B2 (ja) 車両用操舵制御装置および車両用操舵制御方法
JP5082403B2 (ja) 車両用操舵角制御装置
JP5272570B2 (ja) 舵角制御装置及び舵角制御方法
JP5035538B2 (ja) 操舵力制御装置
JP4630039B2 (ja) 車両の操舵制御装置
JP2008126890A (ja) 車両用操舵制御装置
JP5194429B2 (ja) 車両の4輪操舵制御装置
JP4923978B2 (ja) 車両用操舵角制御装置
JP5167086B2 (ja) 電動パワーステアリング装置
JP5332700B2 (ja) 車両用転舵制御装置
JP5374458B2 (ja) 車両の舵角制御装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202