JP2008119792A - Memsデバイスの製造方法 - Google Patents

Memsデバイスの製造方法 Download PDF

Info

Publication number
JP2008119792A
JP2008119792A JP2006307546A JP2006307546A JP2008119792A JP 2008119792 A JP2008119792 A JP 2008119792A JP 2006307546 A JP2006307546 A JP 2006307546A JP 2006307546 A JP2006307546 A JP 2006307546A JP 2008119792 A JP2008119792 A JP 2008119792A
Authority
JP
Japan
Prior art keywords
etching
film
movable electrode
interlayer insulating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006307546A
Other languages
English (en)
Inventor
Shogo Inaba
正吾 稲葉
Akira Sato
彰 佐藤
Toru Watanabe
徹 渡辺
Takashi Mori
岳志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006307546A priority Critical patent/JP2008119792A/ja
Publication of JP2008119792A publication Critical patent/JP2008119792A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

【課題】本発明は、MEMS構造体をリリースするときのエッチング領域の平面方向の大きさを軽減することを可能とし、小型化が図れて製造効率が良好なMEMSデバイスの製造方法を提供する。
【解決手段】シリコン基板1上に形成された犠牲層15上に可動電極20を形成し、可動電極20上に、第一層間絶縁膜16、第一配線層23、第二層間絶縁膜17、第二配線層24を、この順に一部をパターニングしながら積層させた配線積層部を形成する。次に、可動電極20の全面が第一層間絶縁膜16の一部で覆われるように残して配線積層部の一部をドライエッチングにより除去し予備開口部C1aを形成する。次に、保護膜19を形成した後、選択比を有するエッチング液により、第一層間絶縁膜16の残った一部および犠牲層15を除去するリリースエッチングを行なって可動電極20をリリースする。
【選択図】図3

Description

本発明は、半導体製造プロセスを用いて、半導体基板上に機械的に可動な状態で形成される可動電極を備えたMEMSデバイスの製造方法に関するものである。
一般に、MEMS(Micro Electro Mechanical System)と呼ばれる微細加工技術を利用して形成された機械的に可動な可動電極等を備えた電気機械系構造体、例えば、共振器、フィルタ、センサ、モータ等が知られている。そして、この電気機械系構造体を、シリコン基板などの半導体基板上に形成してなるMEMSデバイスが提案されている。このようなMEMSデバイスは、半導体製造プロセスを利用して形成されることにより、CMOS(Complementary Metal Oxide Semiconductor)等の半導体回路と一体化することが可能であり、携帯電話機等といった小型化および高機能化が要求される通信機器に用いられる高周波回路などへの応用が期待されている。
例えば特許文献1に、デジタル回路やアナログ回路などのCMOSと、静電容量型圧力センサとを1チップに混載したMEMSデバイス(圧力センサ混載型半導体装置)が提案されている。このMEMSデバイスにMEMS構造体として搭載される静電容量型圧力センサ部は、圧力検知部である下部電極(固定電極)と参照用キャパシタ部、およびダイヤフラムとを有している。このうち、シリサイド膜により形成されたダイヤフラムは、下部電極上に積層された酸化シリコン(SiO2)膜の上に形成されていて、酸化シリコン膜の一部に形成された空洞内に配置されることにより、機械的に可動な状態な可動電極として機能するようになっている。
ここで、可動電極を有するMEMSデバイスの一般的な構成とその製造方法について、図7を用いて説明する。図7に示すMEMSデバイス130は、半導体基板としてのシリコン基板101上に、絶縁膜102と窒化膜103がこの順に積層され、この上に固定された状態で設けられた固定電極110を有している。固定電極110の上には、犠牲層115が積層され、さらにその上に、第一層間絶縁膜116、第一配線層123、第二層間絶縁膜117、第二配線層124、保護膜119がこの順に積層されて形成された配線積層部を有している。なお、保護膜119は、酸化シリコンなどの酸化膜層118aと窒化膜層118bがこの順に積層された二層構造となっている。また、配線積層部の略中央の一部が除去されて開口部C3が形成されている。そして、この開口部C3内には、一部が窒化膜103上に支持され、犠牲層115が除去されていることにより、窒化膜103および固定電極110と所定の隙間を有して可動な状態で設けられた可動電極120が備えられている。
MEMSデバイス130は、半導体製造プロセスを用いて製造される。まず、シリコンからなる半導体基板101上に、熱酸化膜である絶縁膜102とエッチングストップ膜である窒化膜103をこの順に積層させ、その上に多結晶シリコンからなる構造体形成膜を形成してパターニングすることにより構造体としての固定電極110を形成する。次に、犠牲層115を積層させ、その上に多結晶シリコンからなる構造体形成膜を形成してパターニングすることにより、構造体としての可動電極120を形成する。次に、第一層間絶縁膜116、第一配線層123、第二層間絶縁膜117、第二配線層124を、一部をパターニングしながらこの順に積層させて、固定電極110から配線を引き出す配線積層部を形成する。配線積層部の最上層には、酸化シリコンなどの酸化膜層118aと窒化膜層118bを順次積層させた二層構造の保護膜119を形成する。そして、可動電極120の上方の保護膜119からリリースエッチングを行なって開口部C3を形成する。リリースエッチングは、まず、保護膜119上面に開口部C3を形成するためのフォトレジストパターンを形成し、このフォトレジストパターンをエッチングマスクとして、フッ化水素系のエッチング液によりウェットエッチングする。すると、保護膜119、第二層間絶縁膜117、可動電極120の上面および側面を覆っている第一層間絶縁膜116と、可動電極120の下面部分の犠牲層115が除去され、エッチングストップ層として機能する窒化膜103によってエッチングが止まる。また、リリースエッチングでは、固定電極10がエッチングされずに残り、可動電極120が、窒化膜103および固定電極110と所定の隙間を設けてリリースされて可動な状態となる。
特開2006−126182号公報
しかしながら、前述の製造方法では、可動電極120をリリースするリリースエッチング工程では、可動電極20などの構造体上に形成された保護膜119を含む配線積層部と、可動電極20周辺の第一層間絶縁膜116および犠牲層115を一度に除去している。上層側の配線積層部の除去に時間がかかるために、可動電極120をリリースするまでのトータル時間が長くなる。このとき、ウェットエッチングが等方性エッチングであることから、エッチングレートの高い酸化膜層118aや第一層間絶縁膜116および第二層間絶縁膜117のサイドエッチングが進行することから、開口部C3の平面サイズが大きくなってしまう。また、エッチングが第一配線層123や第二配線層124などの機能部に達して、それらの機能不良を起こす虞があった。また、こうした機能部へのエッチングの悪影響を回避するために、機能部をリリースエッチング領域から遠ざけて配置する設計が必要となって、MEMSデバイスの小型化が困難になるという問題があった。
本発明は、上記問題を鑑みてなされたもので、その目的は、MEMS構造体をリリースするときのエッチング領域の平面方向の大きさを軽減することを可能とし、小型化が図れて製造効率が良好なMEMSデバイスの製造方法を提供することにある。
上記課題を解決するために、本発明では、半導体基板上に積層されたエッチングストップ膜と、エッチングストップ膜上に隙間を設けて機械的に可動な状態で配置された可動電極と、可動電極の周囲に形成された層間絶縁膜と配線とを含む配線積層部と、配線積層部上に形成される保護膜と、を有するMEMSデバイスの製造方法であって、半導体基板上にエッチングストップ膜を形成する工程と、エッチングストップ膜上に犠牲層を形成する工程と、一部が犠牲層上に形成された態様で可動電極を形成する工程と、可動電極を形成した後に層間絶縁膜を形成し、該層間絶縁膜上に配線を形成して配線積層部を形成する工程と、保護膜を形成する工程と、層間絶縁膜の一部を除去して予備開口部を形成する工程と、層間絶縁膜および犠牲層を除去して可動電極をリリースするリリースエッチング工程と、を有し、予備開口部形成工程で、可動電極の全面が層間絶縁膜に覆われるように残して層間絶縁膜の一部を除去することを特徴とする。
MEMSデバイスの製造方法においては、通常、可動電極をリリースするリリースエッチングは、可動電極やエッチングストップ膜以外の、犠牲層などを選択的にエッチングすることが可能な選択比を有するエッチング液を用いてウェットエッチング法により行なわれる。等方性エッチングであるウェットエッチング法では、エッチングを望まない部分のサイドエッチングも進むので、それを考慮して配線などの配置を設計する必要がある。
上記構成のMEMSデバイスの製造方法によれば、予備開口部形成工程にて、配線層積層部のリリースエッチング領域の一部を除去して予備開口部を形成してから、リリースエッチングを行なうので、リリースエッチング工程でのエッチング時間が短縮される。これにより、従来のように、配線積層部とリリースされる可動電極周辺部分とを一度にエッチングしてリリースエッチングする方法に比べて、リリースエッチング時の配線積層部のサイドエッチング量を抑えることができる。従って、リリースエッチングにより形成される開口部の大きさが軽減されるので、小型化が可能なMEMSデバイスの製造方法を提供することができる。
本発明では、保護膜を形成する工程の前に、予備開口部形成工程を実施する構成としてもよい。
この製造方法によれば、保護膜がない状態で予備開口部を形成するため、予備開口部形成工程のエッチング量が少なくなるので、配線積層部のサイドエッチング量が軽減する。これにより、後で実施するリリースエッチング工程も含めて、開口部の大きさをより軽減することができ、より小型化の図られたMEMSデバイスの製造方法を提供することができる。また、予備開口部形成工程において、ウェットエッチング法のような等方性エッチングを用いることもでき、工程設計の自由度が上がる。
さらに、サイドエッチングが配線などの機能部に達して機能不良を起こすなどの不具合を抑制することができる。
本発明は、予備開口部形成工程で、ドライエッチング法が用いられていることが好ましい。
一般に、ドライエッチングはエッチング異方性に優れているので、サイドエッチング量が抑えられ、予備開口部の平面方向の面積が広がるのを抑えることができる。これにより、リリースエッチング後の開口部も小さくなることから、より小型化を図ることが可能なMEMSデバイスの製造方法を提供できるという顕著な効果を奏する。しかも、エッチング選択比を有するエッチング液によるウェットエッチングにより、配線積層部を含めて一度にリリースエッチングを行なう従来法に比して、可動電極をリリースするための開口部の形成時間を大幅に短縮することができる。従って、MEMSデバイス製造のスループットが向上し、それに伴って製造コストを軽減することができる。
以下、本発明のMEMSデバイスおよびその製造方法の実施形態について説明する。
(第1の実施形態)
まず、MEMSデバイスの一実施形態について図面に沿って説明する。図1(a)は、本発明に係るMEMSデバイスの好適な実施形態の構成を示す平面図であり、図1(b)は同図(a)のA−A線断面図である。
図1に示すMEMSデバイス30は、半導体基板としてのシリコン基板1上に、固定された状態で設けられた固定電極10と、後述する第一層間絶縁膜16および第二層間絶縁膜17をそれぞれ介して形成された第一配線層23および第二配線層24を含む配線積層部とを有している。また、配線積層部の略中央の一部を除去することによって形成された開口部C1内に、犠牲層15が除去されることにより可動な状態で設けられた可動電極20が備えられている。
シリコン基板1上には、酸化シリコン膜(例えば、熱酸化膜)である絶縁膜2と、窒化シリコン(SiN)などからなる窒化膜3が、この順に積層されている。窒化膜3上には、多結晶シリコン膜を積層させてパターニングすることにより形成された固定電極10が設けられている。固定電極10は、開口部C1に露出された部分と、開口部C1周辺に積層されて形成された犠牲層15に覆われた部分とを有している。また、固定電極10の開口部C1に露出された部分の略中央はパターニングされることにより一部が除去されている。なお、固定電極10は、パターニングされる前の多結晶シリコン膜が積層された段階で、導電性を付与するためにリンイオンなどの不純物イオンのイオン打ち込みが施されている。
固定電極10上に形成された犠牲層15の上には、第一層間絶縁膜16、第一配線層23、第二層間絶縁膜17、第二配線層24がこの順に積層された配線積層部を有している。第一層間絶縁膜16の一部がパターニングされ、固定電極10と第一配線層23とが導通されている。また、第二層間絶縁膜17の一部がパターニングされ、第一配線層23と第二配線層24とが導通されている。なお、本実施形態では、第一層間絶縁膜16上に、第二層間絶縁膜17を挟んで第一配線層23と第二配線層24との二つの配線層が形成された構成を説明するが、これに限らず、一つまたは三つ以上の配線層を形成する構成とすることも可能である。
また、第二配線層24上には、酸化シリコンなどからなる酸化膜層18aと窒化膜層18bとがこの順に積層された二層からなる保護膜(パッシベーション膜)19が形成されている。保護膜19は、前述した開口部C1が形成された後で積層されて形成されるので、開口部C1の内側壁上の一部にも形成されている。
犠牲層15、第一層間絶縁膜16、第一配線層23、第二層間絶縁膜17、第二配線層24、酸化膜層18aと窒化膜層18bからなる保護膜19、が、この順に積層された配線積層部の略中央に形成された円筒形状もしくは矩形状の凹部である開口部C1の凹底部分には、多結晶シリコンからなる可動電極20が形成されている。可動電極20は、一部が窒化膜3上に支持され、犠牲層15が除去されていることにより、窒化膜3および固定電極10と所定の隙間を有して可動な状態で設けられている。
次に、上記の構成を有するMEMSデバイス30の動作の一例について説明する。本実施形態では、固定電極10において、可動電極20を挟んだ両側に形成された一方を駆動電極、他方を検出電極として説明する。また、可動電極20には直列バイアス電圧が印加されているものとする。
MEMSデバイス30の固定電極10の駆動電極側に駆動電圧を注入すると、固定電極10と可動電極20との間に電位差が生じ、これに伴って電荷が蓄電される。この電位の時間変化、若しくは蓄電される電荷の時間変化により、通常のキャパシタと同様に固定電極10の駆動電極側と可動電極20との間には交流電流が流れる。これは固定電極10の検出電極側と可動電極20との間においても同様であり、MEMSデバイス30全体には2つのキャパシタを直列に接続した場合の静電容量値に相当した交流電流が流れる。
一方で、可動電極20は特定の周波数において固有の振動周波数を有し、特定の周波数において厚み方向へ屈曲が生じる。この場合、前述した固定電極10の駆動電極側および検出電極側と可動電極20との間の静電容量に変位が生じ、各構造体間に形成されるキャパシタには電圧に相当した電荷が蓄電されているが、静電容量が変動した場合、キャパシタへの蓄電量Q=CVを満足させるために電荷の移動が生ずる。この結果、可動電極20の固有振動周波数においては、静電容量の変化に伴い電流が流れる。可動電極20からの出力電流は、固定電極10の検出電極側から検出される。
次に、上記のMEMSデバイス30の製造方法について説明する。図2、図3、図4は、MEMSデバイス30の製造工程を説明する概略断面図である。なお、図2、図3、図4は、図1(b)と同じ位置のMEMSデバイス30の断面を図示している。
MEMSデバイス30の製造においては、半導体製造プロセスが用いられる。
図2(a)において、シリコン基板1表面を熱酸化させるなどしてシリコン酸化膜からなる絶縁膜2を形成した上に、スパッタリングリング法やCVD(Chemical Vapor Deposition)法などにより窒化シリコン(SiN)などで構成される窒化膜3を形成する。この窒化膜3は、後述するリリースエッチングを行なう際のエッチングストップ層として機能するベース層となる。
次に、図2(b)に示すように、窒化膜3上に、CVD法などにより多結晶シリコン膜を積層させ、導電性を付与するためにリンイオン(例えば、31+)などの不純物イオンのイオン注入を施してから、フォトリソグラフィなどによりパターニングすることによって固定電極10を形成する。
次に、固定電極10上に、スパッタリングリング法などにより酸化シリコンなどの酸化膜からなる犠牲層15を形成する。そして、犠牲層15上に、CVD法などにより多結晶シリコン膜を積層させてからリンイオンなどの不純物イオンのイオン注入を行なって導電性を付与した後、フォトリソグラフィによりパターニングすることによって可動電極20を形成する(図2(c))。
次に、図3(a)において、CVD法やスパッタリングなどの方法により、第一層間絶縁膜16を形成する。このとき、第一層間絶縁膜16を積層させる下地層は凹凸を有するが、後の工程で第一層間絶縁膜16上に積層される配線層などの形成を容易にするために、第一層間絶縁膜16の上面は平坦になるようにすることが望ましい。このため、第一層間絶縁膜16には、リフローすることにより平坦化することが可能なBPSG(Boron Phosphorus Silicon Glass)やPSG(Phosphorus Silicon Glass)を用いることが好ましい。この他にも、液状の絶縁性ガラス材料をスピンコート法により塗布して成膜するSOG(Spin On Glass)を層間絶縁膜として用いたり、酸化シリコンなどをスパッタリングした後に化学的および機械的に研磨するCMP(Chemical Mechanical Polishing)などの平坦化技術を用いたりして層間絶縁膜の上面を平坦化する構成としてもよい。
次に、第一層間絶縁膜16上に、スパッタリング法やCVD法、およびフォトリソグラフィなどにより、第一配線層23、第二層間絶縁膜17、第二配線層24をこの順に積層させて形成する。第一配線層23および第二配線層24は、スパッタリング法や蒸着法などによりアルミニウム(Al)や銅(Cu)などの金属材料を積層し、フォトリソグラフィによりパターニングすることによって形成される。また、第一層間絶縁膜16および第二層間絶縁膜17にはそれぞれビアホールを形成する。このビアホール内をスルーホールとして、固定電極10と第一配線層23とが導通され、第一配線層23と第二配線層24とが導通される。
なお、本実施形態では、第一配線層23および第二配線層24の二層の配線層を形成する例を説明した。ここで、配線層は単層でもよく、また、必要に応じて三層以上設ける構成としてもよい。
次に、図3(b)において、第二配線層24を形成した積層体上にスピンコートなどの方法によりフォトレジストを塗布し、フォトリソグラフィにより後述する予備開口部C1a形成用のフォトレジストパターン91を形成する。そして、このフォトレジストパターン91を介して、ドライエッチングなどの方法により、第二層間絶縁膜17と第一層間絶縁膜16を、可動電極20が露出しない深さまでエッチングして予備開口部C1aを形成する。
予備開口部C1aを形成するエッチングには、例えばCHF3などの反応性ガスを用いたRIE(Reactive Ion Etching)法を用いることが好ましい。RIE法によるドライエッチングは異方性に優れており、フォトレジストパターン91の端部直下から水平方向に進んでいくサイドエッチングが起こりにくいので、略鉛直方向にエッチングを進めることができる。
予備開口部C1aは、後述する、可動電極20をリリースするためのリリースエッチングのエッチング量を軽減するために形成されるものなので、なるべく可動電極20上面付近までエッチングすることが望ましい。また、本実施形態で、可動電極20が露出しないように第一層間絶縁膜16の厚みの一部を残すのは、後述するリリースエッチングまでの工程において、可動電極20が各工程の処理液や外気などに曝されることによる損傷や汚染を防止する保護膜とするためである。従って、可動電極20上に残す第一層間絶縁膜16の厚さは、予備開口部C1aを形成するときのエッチングばらつきと、以降のリリースエッチングまでの工程の各処理で除去される量とを考慮してなるべく薄く設定することが好ましい。なお、予備開口部C1aを形成するときのエッチングは、本実施形態では可動電極20を覆う第一層間絶縁膜16の一部まで行なったが、必要に応じて、それより上層の絶縁膜(例えば、本実施形態では第二層間絶縁膜17)の一部まで行なう構成としてもよい。
次に、図3(c)に示すように、第二配線層24上に、酸化シリコンなどの酸化膜層18aと窒化シリコンなどの窒化膜層18bを順次積層してなる保護膜(パッシベーション膜)19を形成する。保護膜19は、CVD法やスパッタリングリング法などにより形成できる。この他、シリコンナイトライド(Si34)で構成される保護膜19は、例えばプラズマCVDを用いて形成することが好ましい。なお、CVD法やスパッタリング法などにより形成された保護膜19は形成面に沿うように積層されるので、予備開口部C1aの内側壁上および凹底部上にも形成される。
次に、保護膜19上に、スピンコートなどによりフォトレジスト膜を塗布してから、フォトリソグラフィを用いて予備開口部C1aの大きさと略同一開口を有するフォトレジストパターン92を形成する(図4(a))。
次に、可動電極20をリリースするためのリリースエッチングを行なう。リリースエッチングには、多結晶シリコンからなる固定電極10および可動電極20と、窒化シリコンからなる窒化膜3以外の、単結晶の酸化シリコンなどからなる各層をエッチングする選択比を有する例えばフッ化水素(HF)系のエッチング液を用いる。このエッチング液により、フォトレジストパターン92を介してウェットエッチングすると、図4(b)に示すように、可動電極20の上面および側面を覆っている第一層間絶縁膜16と、可動電極20の下面部分の犠牲層15が除去されて開口部C1が形成される。このとき、エッチングストップ層として機能する窒化膜3によって厚み方向のエッチングが止まり、また固定電極10がエッチングされずに残る。また、可動電極20が、窒化膜3および固定電極10と所定の隙間を設けてリリースされて可動な状態となる。
そして、リリースエッチング後にフォトレジストパターン92を剥離することにより、図4(c)に示すMEMSデバイス30が得られ、一連のMEMSデバイス30の製造工程を終了する。
次に、上記第1の実施形態の効果を述べる。
(1)上記のMEMSデバイス30の製造方法によれば、まず、第二層間絶縁膜17と第一層間絶縁膜16を、可動電極20が露出しない深さまでドライエッチングによりエッチングして予備開口部C1aを形成した。そして、固定電極10および可動電極20とエッチングストップ膜としての窒化膜3以外の、単結晶の酸化シリコンなどからなる各層をエッチングする選択比を有するフッ化水素系のエッチング液によりリリースエッチングを行なって可動電極20をリリースする構成とした。
この構成によれば、従来の、配線積層部とリリースされる可動電極20周辺部分とを一度にエッチングしてリリースエッチングする方法に比べて、リリースエッチング時間が短縮され、配線積層部のサイドエッチング量を抑えることができる。これにより、リリースエッチングにより形成される開口部C1を比較的小さくすることができるので、小型化が可能なMEMSデバイスの製造方法を提供することができる。
(2)上記のMEMSデバイス30の製造方法では、第二層間絶縁膜17と第一層間絶縁膜16を、可動電極20が露出しない深さまでエッチングして予備開口部C1aを形成するときに、RIE法などのドライエッチング法を用いる構成とした。
ドライエッチングは異方性に優れており、フォトレジストパターン91の端部直下の第二層間絶縁膜17がエッチングされる所謂アンダーカットや、配線積層部のサイドエッチングが抑制でき、略鉛直方向にエッチングが進むという特徴を有する。これにより、予備開口部C1aの大きさをより軽減することが可能となり、より小型化が図れるMEMSデバイスの製造方法に寄与することができる。
(3)上記のMEMSデバイス30の製造方法によれば、保護膜19を形成する前に、予備開口部C1aを形成している。そして、酸化膜層18aと窒化膜層18bをこの順に積層させた二層構造の保護膜19を形成した後に、リリースエッチングを行なう構成とした。
この構成によれば、保護膜19がない状態で予備開口部C1aを形成することにより、予備開口部C1a形成工程でのエッチング量が少なくなるので、配線積層部のサイドエッチング量がより軽減される。これにより、後で実施するリリースエッチング工程を経た後に形成される開口部C1の大きさがより軽減される。従って、より小型化の図れた固定電極10の製造方法を提供することができる。また、サイドエッチングが配線などの機能部に達して機能不良を起こすなどの不具合を抑制することができるので、固定電極10の信頼性および製造歩留りの向上が可能となる。
さらに、二層構造の保護膜19の上層である窒化膜層18bは、リリースエッチングで用いるフッ化水素系のエッチング液に溶け難いので、リリースエッチング時のバリア層となって配線積層部のサイドエッチを抑制する効果を奏する。また、予備開口部C1a形成工程において、ウェットエッチング法のような等方性エッチングを用いることもできるので、工程設計の自由度が上がる。
(第2の実施形態)
上記第1の実施形態におけるMEMSデバイス30の製造方法では、保護膜19を形成する前の段階で予備開口部C1aを形成し、その後保護膜19を形成したが、これに限らない。保護膜までの全ての積層工程を終えてから予備開口部を形成してMEMSデバイスを製造することも可能である。
図5および図6は、全ての積層工程を終えてから予備開口部を形成して製造されるMEMSデバイス70の製造方法を説明する概略断面図である。なお、本第2の実施形態におけるMEMSデバイス70の製造方法の説明のうち、上述した第1の実施形態と同様の構成については説明を省略する。
図5(a)において、上記の第1の実施形態と同様の方法により、まず、シリコン基板41上に、絶縁膜42、窒化膜43を順次積層させた上に、多結晶シリコン膜を積層させてパターニングすることにより固定電極50を形成する。次に、固定電極50上に、犠牲層55を形成した上に、多結晶シリコン膜を積層させてからパターニングすることにより可動電極60を形成する。次に、第一層間絶縁膜56、第一配線層63、第二層間絶縁膜57、第二配線層64を、フォトリソグラフィなどによりパターニングしながらこの順に積層させて形成する。そして、酸化シリコンなどの酸化膜層58aと窒化シリコンなどの窒化膜層58bを順次積層してなる保護膜59を形成する。
次に、図5(b)に示すように、保護膜59上にフォトレジストを塗布してからパターニングすることにより予備開口部C2aを形成するためのフォトレジストパターン94を形成する。
次に、図5(c)に示すように、フォトレジストパターン94をマスクとして、反応性ドライエッチングにより、上記の保護膜59、第二層間絶縁膜57、第一層間絶縁膜56を、可動電極60が露出しない深さまでエッチングして予備開口部C2aを形成する。本第2の実施形態では、エッチングガス種としてフロロカーボンガス、例えばc−C48、C36、C46、C56など、を用いて予備開口部C2aを形成し、予備開口部C2aの内側壁上に反応副生成物(ポリマー)からなるポリマー膜99が形成される例を説明する。フロロカーボンガスを用いてエッチングすると、エッチングされて予備開口部C2aが形成されていく過程で、エッチングガスの炭素の存在によって反応副生成物が生成されやすい。また、エッチング装置の内圧、ガス流量、ICP(Inductive Coupling Plasma)電力、バイアス電力等のエッチング条件を制御することにより、反応副生成物が予備開口部C2aの内側壁上に付着しやすくすることも可能である。このようにして形成された予備開口部C2aの内側壁上のポリマー膜99は、エッチングが進んでいく過程で、フォトレジストパターン94端部直下の側からのサイドエッチングを抑制する保護膜として作用する効果がある。
なお、予備開口部C2aを形成したときの可動電極60上に残す第一層間絶縁膜56の厚さは、上記第1の実施形態と同様に、以降のリリースエッチングまでの工程の各処理で除去される量とを考慮してなるべく薄く設定する。
次に、フォトレジストパターン94およびポリマー膜99を剥離してから、保護膜59上にフォトレジストを塗布し、フォトリソグラフィにより後述するリリースエッチングのマスクとなるフォトレジストパターン95を形成する(図6(a))。フォトレジストパターン94およびポリマー膜99の剥離には、酸素プラズマ処理やレジスト剥離液(例えば、アルキルベンゼンスルホン酸などを成分とした有機酸系のネガ型レジスト剥離液、またはエタノールアミン類を代表とした有機アミンと極性溶剤との混合液などを成分としたポジ型レジスト剥離液、など)、若しくはポリマー剥離液(例えば、フッ化アンモニウムを含む剥離液など)を用いて除去する。
なお、本第2の実施形態では、予備開口部C2aの形成に用いたフォトレジストパターン94を剥離して、次のリリースエッチング工程でのマスク効果を安定的に得るために、新たにフォトレジストパターン95を形成する構成としたが、これに限らない。予備開口部C2a形成後のフォトレジストパターン94の損傷度合いがリリースエッチングに耐え得る程度であれば、フォトレジストパターン94をそのままリリースエッチングのマスクとして用いても構わない。
次に、図6(b)に示すように、フッ化水素系のエッチング液などにより、可動電極60の上面および側面を覆っている第一層間絶縁膜56と、可動電極60の下面部分の犠牲層55とを除去するリリースエッチングを行なう。これにより、可動電極60は、リリースエッチングにより形成された開口部C2において機械的に可動な状態にリリースされる。このとき、保護膜59のうちリリースエッチング液に難溶な窒化膜層58bはほとんどエッチングされず、酸化膜層58a、第二層間絶縁膜57、第一層間絶縁膜56は若干サイドエッチングされる。
次に、フォトレジストパターン95を剥離することにより、図6(c)に示すように、第2の実施形態のMEMSデバイス70が得られる。
上記第2の実施形態におけるMEMSデバイス70の製造方法によれば、保護膜59を含む配線積層部に予備開口部C2aを形成してから、リリースエッチングを行なって可動電極60をリリースする構成となっている。これにより、配線積層部とリリースされる可動電極60周辺部分とを一度にエッチングしてリリースエッチングする方法に比べて、配線積層部のサイドエッチング量が抑えられるので、小型化のMEMSデバイス70を製造することができる。
(a)は、本発明の第1の実施形態であるMEMSデバイスの概略構造を説明する平面図、(b)は、同図(a)のA−A線断面図。 (a)〜(c)は、本発明の第1の実施形態であるMEMSデバイスの製造方法を説明する概略断面図。 (a)〜(c)は、本発明の第1の実施形態であるMEMSデバイスの製造方法を説明する概略断面図。 (a)〜(c)は、本発明の第1の実施形態であるMEMSデバイスの製造方法を説明する概略断面図。 (a)〜(c)は、MEMSデバイスの製造方法の第2の実施形態を説明する概略断面図。 (a)〜(c)は、MEMSデバイスの製造方法の第2の実施形態を説明する概略断面図。 は、MEMSデバイスの従来の概略構造を模式的に説明する断面図。
符号の説明
1,41,101…半導体基板としてのシリコン基板、3,43,103…エッチングストップ層としての窒化膜、10,50,110…固定電極、15,55,115…犠牲層、16,56,116…配線積層部の一つとしての第一層間絶縁膜、17,57,117…配線積層部の一つとしての第二層間絶縁層、23,63,123…配線が形成される第一配線層、24,64,124…配線が形成される第二配線層、19,59,119…保護膜、20,60,120…可動電極、30,70,130…MEMSデバイス、C1a,C2a…予備開口部、C1,C2,C3…開口部。

Claims (3)

  1. 半導体基板上に積層されたエッチングストップ膜と、エッチングストップ膜上に隙間を設けて機械的に可動な状態で配置された可動電極と、前記可動電極の周囲に形成された層間絶縁膜と配線とを含む配線積層部と、前記配線積層部上に形成される保護膜と、を有するMEMSデバイスの製造方法であって、
    前記半導体基板上に前記エッチングストップ膜を形成する工程と、
    前記エッチングストップ膜上に犠牲層を形成する工程と、
    一部が前記犠牲層上に形成された態様で前記可動電極を形成する工程と、
    前記可動電極を形成した後に前記層間絶縁膜を形成し、該層間絶縁膜上に前記配線を形成して前記配線積層部を形成する工程と、
    前記保護膜を形成する工程と、
    前記層間絶縁膜の一部を除去して予備開口部を形成する工程と、
    前記層間絶縁膜および前記犠牲層を除去して前記可動電極をリリースするリリースエッチング工程と、を有し、
    前記予備開口部形成工程で、前記可動電極の全面が前記層間絶縁膜に覆われるように残して前記層間絶縁膜の一部を除去することを特徴とするMEMSデバイスの製造方法。
  2. 請求項1に記載のMEMSデバイスの製造方法であって、
    前記保護膜を形成する工程の前に、前記予備開口部形成工程を実施することを特徴とするMEMSデバイスの製造方法。
  3. 請求項1または2に記載のMEMSデバイスの製造方法であって、
    前記予備開口部形成工程で、ドライエッチング法が用いられていることを特徴とするMEMSデバイスの製造方法。
JP2006307546A 2006-11-14 2006-11-14 Memsデバイスの製造方法 Withdrawn JP2008119792A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307546A JP2008119792A (ja) 2006-11-14 2006-11-14 Memsデバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307546A JP2008119792A (ja) 2006-11-14 2006-11-14 Memsデバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2008119792A true JP2008119792A (ja) 2008-05-29

Family

ID=39505105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307546A Withdrawn JP2008119792A (ja) 2006-11-14 2006-11-14 Memsデバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2008119792A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243837A (ja) * 2010-05-20 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> 高耐圧配線、配線設計装置および方法
CN113582130A (zh) * 2021-07-27 2021-11-02 绍兴中芯集成电路制造股份有限公司 基于晶圆制备mems器件的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243837A (ja) * 2010-05-20 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> 高耐圧配線、配線設計装置および方法
CN113582130A (zh) * 2021-07-27 2021-11-02 绍兴中芯集成电路制造股份有限公司 基于晶圆制备mems器件的方法
CN113582130B (zh) * 2021-07-27 2024-01-05 绍兴中芯集成电路制造股份有限公司 基于晶圆制备mems器件的方法

Similar Documents

Publication Publication Date Title
JP4737140B2 (ja) Memsデバイスおよびその製造方法
US8802473B1 (en) MEMS integrated pressure sensor devices having isotropic cavities and methods of forming same
US10513431B2 (en) Multiple silicon trenches forming method for MEMS sealing cap wafer and etching mask structure thereof
US20050032266A1 (en) Micro structure with interlock configuration
JP2006326806A (ja) Mems技術を使用した半導体装置
KR20130007255A (ko) 반도체 소자의 제조 방법
US10889493B2 (en) MEMS method and structure
JP2006289520A (ja) Mems技術を使用した半導体装置
JP2009160728A (ja) 単結晶シリコンで作製されるmems又はnems構造の機械部品の製造方法
US20110158439A1 (en) Silicon Microphone Transducer
TWI559388B (zh) 用於微機電系統的化學機械研磨處理流程
JP5158147B2 (ja) Memsデバイスおよびその製造方法
JP2008119792A (ja) Memsデバイスの製造方法
US8460960B2 (en) Method for fabricating integrated circuit
US7759256B2 (en) Micro-electro-mechanical system device and method for making same
JP4857718B2 (ja) マイクロマシン混載の電子回路装置、およびマイクロマシン混載の電子回路装置の製造方法
JP2006224219A (ja) Mems素子の製造方法
US9162877B2 (en) Lateral etch stop for NEMS release etch for high density NEMS/CMOS monolithic integration
US20130056858A1 (en) Integrated circuit and method for fabricating the same
JP2008149394A (ja) Memsデバイスの製造方法
JP2008119818A (ja) Memsデバイスおよびその製造方法
JP2006253268A (ja) 半導体装置およびその製造方法
JP2008093812A (ja) Mems・半導体複合回路及びmems素子
JP2008149405A (ja) Memsデバイスの製造方法
KR100449253B1 (ko) 커패시터 제조방법

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202