JP2008110430A - 加工方法及び工作機械 - Google Patents
加工方法及び工作機械 Download PDFInfo
- Publication number
- JP2008110430A JP2008110430A JP2006294715A JP2006294715A JP2008110430A JP 2008110430 A JP2008110430 A JP 2008110430A JP 2006294715 A JP2006294715 A JP 2006294715A JP 2006294715 A JP2006294715 A JP 2006294715A JP 2008110430 A JP2008110430 A JP 2008110430A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- processing
- cutting
- nozzle
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Auxiliary Devices For Machine Tools (AREA)
Abstract
【課題】環境汚染を防ぐことができると共に、良好な加工性能を有する加工方法及び工作機械を提供する。
【解決手段】ワークWを加工するエンドミル5の刃先5aに切削油を供給しながら、ワークWを加工する加工方法において、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に切削油を吐出する微量油吐出機構10によって、切削油を刃先5aに直接噴射する。
【選択図】図1
【解決手段】ワークWを加工するエンドミル5の刃先5aに切削油を供給しながら、ワークWを加工する加工方法において、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に切削油を吐出する微量油吐出機構10によって、切削油を刃先5aに直接噴射する。
【選択図】図1
Description
本発明は、加工方法及び工作機械に関し、より詳細には、切削加工、研削加工、ドリル加工等において、工作物を加工する工具の加工部に油を供給しながら、該工作物を加工する加工方法及び工作機械に関する。
例えば、切削加工では、工作物を切削する工具の加工部の冷却、潤滑、切り屑の排出を行なうために、従来、大量の切削油や切削用乳剤が使用されていた。しかしながら、このような切削油の大量消費は、廃油の回収や処理が問題になって環境汚染を引き起こす可能性があるとともに、資源を過剰消費することにもなる。
このため、加工時に、工作物の加工部に微量の霧状の切削油をエアと混合して吹き付けるセミドライ加工が考案されており、工具の刃先近傍に設けられた吐出口から霧状の切削油剤を吐出している(例えば、特許文献1及び2参照。)。
特開平11−138386号公報
特開2000−126983号公報
ところで、特許文献1及び2に記載のセミドライ加工では、霧状の切削油は加工部以外の広範囲に拡散するため非効率であると共に、雰囲気中に拡散するため環境汚染の原因となる。また、油霧発生装置に供給されるエア圧が変化してしまうと、加工部への霧状切削油とエアの量が変化してしまい、加工に際しての適正な潤滑条件を維持することができない。
さらに、高速加工では工具の高速回転によるエアカーテン作用により、加工部に霧状切削油が到達せず、工具寿命の低下や、粗さや引き目等の加工面品質低下を生じるという問題がある。
本発明は、上記のような事情に鑑みてなされたものであり、その目的は、環境汚染を防ぐことができると共に、良好な加工性能を有する加工方法及び工作機械を提供することにある。
本発明の上記目的は、下記の構成により達成される。
(1) 工作物を加工する工具の加工部に油を供給しながら、該工作物を加工する加工方法であって、
前記油を所定量及び所定速度で吐出する吐出機構によって、該油を前記加工部に直接噴射することを特徴とする加工方法。
(2) 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする(1)に記載の加工方法。
(3) 前記加工部に圧縮エアを直接噴射することを特徴とする(1)又は(2)に記載の加工方法。
(4) 前記油と前記圧縮エアを別々に設けられたノズル開口からそれぞれ吐出することを特徴とする(1)〜(3)のいずれかに記載の加工方法。
(5) 工作物を加工する工具の加工部に油を供給しながら、該工作物を加工する工作機械であって、
前記油を所定量及び所定速度で吐出して、該油を前記加工部に直接噴射可能な吐出機構を有することを特徴とする工作機械。
(6) 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする(5)に記載の工作機械。
(7) 前記加工部に圧縮エアを直接噴射することを特徴とする(5)又は(6)に記載の工作機械。
(8) 前記油を吐出するノズル開口と前記圧縮エアを吐出するノズル開口が別々に設けられていることを特徴とする(5)〜(7)のいずれかに記載の工作機械。
(9) 油を所定量及び所定速度で、工作物を加工する工具の加工部に直接噴射可能な吐出機構であって、
前記加工部に圧縮エアを直接噴射することを特徴とする吐出機構。
(10) 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする(9)に記載の吐出機構。
(1) 工作物を加工する工具の加工部に油を供給しながら、該工作物を加工する加工方法であって、
前記油を所定量及び所定速度で吐出する吐出機構によって、該油を前記加工部に直接噴射することを特徴とする加工方法。
(2) 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする(1)に記載の加工方法。
(3) 前記加工部に圧縮エアを直接噴射することを特徴とする(1)又は(2)に記載の加工方法。
(4) 前記油と前記圧縮エアを別々に設けられたノズル開口からそれぞれ吐出することを特徴とする(1)〜(3)のいずれかに記載の加工方法。
(5) 工作物を加工する工具の加工部に油を供給しながら、該工作物を加工する工作機械であって、
前記油を所定量及び所定速度で吐出して、該油を前記加工部に直接噴射可能な吐出機構を有することを特徴とする工作機械。
(6) 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする(5)に記載の工作機械。
(7) 前記加工部に圧縮エアを直接噴射することを特徴とする(5)又は(6)に記載の工作機械。
(8) 前記油を吐出するノズル開口と前記圧縮エアを吐出するノズル開口が別々に設けられていることを特徴とする(5)〜(7)のいずれかに記載の工作機械。
(9) 油を所定量及び所定速度で、工作物を加工する工具の加工部に直接噴射可能な吐出機構であって、
前記加工部に圧縮エアを直接噴射することを特徴とする吐出機構。
(10) 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする(9)に記載の吐出機構。
本発明の加工方法及び工作機械によれば、工作物を加工する工具の加工部に吐出機構によって所定量及び所定速度で油を直接吐出するようにしたので、油のダイレクト吐出によってエアカーテンを貫くことができるもので、加工部にのみ確実に効率よく油が供給される。これにより、加工部位での発熱の低減、切削力の軽減、刃物の磨耗やチッピングの低減が図れる。また、油の給油量も少量となり省エネルギー化が図れ、セミドライ加工と比べて油が霧状に散乱しないため、廃油の回収、処理が容易となり、ミスト公害による環境汚染を防ぐことができる。具体的に、油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に噴射されることが好ましい。
また、本発明の加工方法及び工作機械によれば、加工部に油に加えて圧縮エアを吹き付けることで、より効果的に工具の加工部の冷却、切り屑の排出を行なうことができる。
さらに、本発明の加工方法及び工作機械によれば、油を吐出するノズル開口と、前記圧縮エアを吐出するノズル開口が別々に設けられることで、吐出された油の直進性が維持され、油を加工部に確実に吐出することができると共に、油がミスト化することが抑制されてミスト公害による環境汚染を防ぐことができる。
以下、本発明の加工方法及び工作機械の各実施形態について図面を参照して詳細に説明する。
(第1実施形態)
図1は、本発明の加工方法及び工作機械が適用される、エンドミル加工を行なうフライス盤の構成図で、図2は、本発明の加工方法及び工作機械に適用される微量油吐出機構の構成図である。
図1は、本発明の加工方法及び工作機械が適用される、エンドミル加工を行なうフライス盤の構成図で、図2は、本発明の加工方法及び工作機械に適用される微量油吐出機構の構成図である。
図1に示すように、図示しないベッド上に設けられたテーブル1には、工作物であるワークWが固定される一方、ワークWの上方には、図示しない主軸ヘッドに固定される工具主軸3に取り付けられる工具であるエンドミル5が設けられている。ワークWとエンドミル5とは相対的に3軸方向(図1のX,Y,Z方向)に移動可能に構成されており、また、エンドミル5は工具主軸3内、或は、工具主軸3の外部に設けられた図示しないモータによって回転駆動される。
また、エンドミル5の近傍には、微量油吐出機構10のノズル11が固定部13を介して主軸ヘッド或はその外部に取り付けられており、ワークWを加工するエンドミル5の加工部、即ち、エンドミル5の刃先5aに向けて切削油が直接噴射される。
図2に示すように、本実施形態の微量油吐出機構10は、油を圧送するポンプ15と、このポンプ15から伸びる油配管(ポンプ側配管)17にオイルフィルタ19を介して接続され、切削油の量、速度、間隔等の条件を制御装置21によって制御可能な微量吐出装置23と、この微量吐出装置23から伸びる油配管(ノズル側配管)25を介して接続され、エンドミル5の刃先5aに微量の切削油を噴射するノズル11とにより構成されている。
ポンプ15は、油タンクに付設して設けられてもよい。このポンプ15は、ノズル11からの吐出油容量より大きい吐出油容量を有している。ポンプ15としては、空圧や油圧駆動のピストン式ポンプや、ギヤポンプ等の通常の油圧ポンプを用いることができる。
微量吐出装置23は、ポンプ15とノズル11とを接続する油配管(ポンプ側配管17、ノズル側配管25)に介装され、油配管を遮断又は開放するように動作する。微量吐出装置23には、例えばこれら油配管の遮断・開放動作を回転部材の回転によって行う所謂ロータリーバルブが用いられ、これにより、微量吐出装置23は上記した油配管を遮断・開放させる一連の動作を繰り返し行えるようになっている。
次に、この微量油吐出機構10の作用を説明する。微量油吐出機構10によって油を工作物の加工部に噴射するには、まず、ポンプ15を駆動する。ポンプ15の圧力はポンプ側配管17を通して微量吐出装置23に伝わる。この際、微量吐出装置23によって油配管を遮断(OFF)し、ポンプ15によりポンプ側配管17内の圧力を上昇させる。
微量吐出装置23は、ポンプ側配管17内の圧力が十分上昇するまで遮断状態を維持する。即ち、ポンプ側配管17やポンプ15内のOリング等、圧力による変形の大きな部位が十分変形するまで待つ。この際の待機動作は、例えば圧力スイッチによる圧力上昇の確認を行うか、ポンプ15の駆動開始から数秒待つなどの措置によってなされる。
油圧上昇後、微量吐出装置23を短時間tだけ開放(ON)することによって、ポンプ圧力がノズル11に加わり、吐出速度v、吐出量qで切削油が加工部に噴射される。つまり、微量吐出装置23はノズル11側への油圧を遮断する機能と、ノズル11へ油圧を伝える機能を持つ。
微量吐出装置23の下流側部品(微量吐出装置23自身、ノズル側配管25、ノズル11、及びそれらの継ぎ手等の結合部品)は、短時間に微量の切削油が流れるのみであるため、圧力に対して変形し難い部品が使用される。
次に、ノズル11からの吐出量と、微量吐出装置23の開放時間tとの関係を説明する。ノズル11から吐出される切削油の吐出速度v(m/s)及び吐出量q(m3/ショット)は(1)式及び(2)式で表される。
v=Cd・(2(p−Δp)/ρ)0.5 ・・・(1)
q=v・πd2 ・t/4 ・・・(2)
但し、Cd:流量係数、p:ポンプ圧力(Pa)、Δp:圧力損失(Pa)、ρ:切削油密度(kg/m3 )、d:ノズル径(m)、t:微量吐出装置の開放時間(s)である。
v=Cd・(2(p−Δp)/ρ)0.5 ・・・(1)
q=v・πd2 ・t/4 ・・・(2)
但し、Cd:流量係数、p:ポンプ圧力(Pa)、Δp:圧力損失(Pa)、ρ:切削油密度(kg/m3 )、d:ノズル径(m)、t:微量吐出装置の開放時間(s)である。
ここで、Cdは流量係数で、ノズル形状及び切削油粘度等によって決まる定数である。切削油用のノズルでは、実質的にノズル径で定まる定数であり、0.95〜0.5の値をとる。Δpは圧力損失であり、ほとんどが油配管の圧力損失で、微量吐出装置23の圧力損失は通常小さい。油配管の圧力損失は層流の粘性流体の管路摩擦の(3)式と実験結果が良く合う。
Δp=32・μ・L・d2 ・v/D4 ・・・(3)
但し、μ:切削油粘性係数(Pa・s)、L:配管長さ(m)、D:配管内径(m)である。
Δp=32・μ・L・d2 ・v/D4 ・・・(3)
但し、μ:切削油粘性係数(Pa・s)、L:配管長さ(m)、D:配管内径(m)である。
以上の(1)〜(3)式より、ポンプ圧力、切削油(切削油密度、切削油粘性係数)、配管(長さ、内径)が設定されると、微量吐出装置23の開放時間tと、ノズル11からの吐出量の関係が定まる。
通常、微量吐出装置23の開放時間tは一定とする。即ち、工作機械等主軸の使用条件では、周囲温度の変化は少なく切削油の粘度変化などの影響はほとんど無視できるため、吐出速度や給油量に大きなばらつきが生じることなく安定した潤滑が可能となるためである。
また、ノズル径は0.06〜0.3mmが最適となる。即ち、0.06未満では異物に対しノズル11が詰まる可能性があり、0.3以上では微量吐出装置23の流速確保が難しくなる上、油配管や切削油粘度の影響で吐出量が大きく変化するため、安定した潤滑が困難になる。
そして、ノズルからの吐出速度vは、10m/s以上100m/s以下と速く設定されており、高速回転時に発生するエアカーテンの影響を受けずに確実に加工部に切削油を供給することができる。この必要吐出速度からポンプ圧力が決定される。実用的にはポンプ圧力2.5MPa程度の安価な油圧ポンプにて、十分な吐出速度が得られる。
必要給油量はおよそQ=1〜20ml/hourである。ここで、加工部に必要な1ショットあたりの給油量は、条件によって大きく異なるが、0.0005ml/ショット以上0.01ml/ショット以下に設定される。これは、1ショットの吐出が0.0005ml未満では、切削油の圧縮性や油配管の圧力変形、微量吐出装置23の応答性に起因し、十分な吐出速度が得られない場合があり、0.01mlを越えると、従来のセミドライ加工と同量程度の油量となり、省エネルギー化が図れなくなると共に、廃油の回収、処理が容易でなくなるためである。
また、必要吐出量から要求される微量吐出装置23の開放時間tは0.1〜50msとなる。これは微量油を流す弁として十分実現可能な開放時間となる。従って、微量吐出装置23の開放時間t(0.1〜50ms)、1ショットあたりの吐出量q(0.0005〜0.01ml)により、必要供給量Q(1〜20ml/hour)を満足する時間間隔で、上記した作用、即ち、ポンプ15の駆動、微量吐出装置23の遮断によるポンプ側配管17内の昇圧、微量吐出装置23の開放、ポンプ15の停止を繰り返せば、安定して加工部に噴射することができる。
このように、上記の微量油吐出機構10によれば、ポンプ15からの吐出油圧力が一定圧力未満のとき、微量吐出装置23によって油配管が遮断される一方、ポンプ15からの吐出油圧力が一定圧力以上となったときには微量吐出装置23によって油配管が開放され、ポンプ15からの切削油がノズル11から間欠的に直接噴射される。このように微量の切削油が高速でワークWの加工部に直接吐出されることで、加工部にのみ確実に効率よく切削油が供給される。これにより、加工部位での発熱の低減、切削力の軽減、刃物の磨耗やチッピングの低減が図れる。また、切削油の給油量も少量となり省エネルギー化が図れ、セミドライ加工と比べて切削油が霧状に散乱しないため、廃油の回収、処理が容易となり、ミスト公害による環境汚染を防ぐことができる。
(第2実施形態)
次に、本発明の加工方法及び工作機械について図3〜図7を参照して詳細に説明する。なお、本実施形態は、微量油吐出機構において切削油に加えて圧縮エアがエンドミル5の刃先5aに供給される点において第1実施形態と異なるものであるため、第1実施形態と同等部分については、同一符号を付して説明を省略或は簡略化する。
次に、本発明の加工方法及び工作機械について図3〜図7を参照して詳細に説明する。なお、本実施形態は、微量油吐出機構において切削油に加えて圧縮エアがエンドミル5の刃先5aに供給される点において第1実施形態と異なるものであるため、第1実施形態と同等部分については、同一符号を付して説明を省略或は簡略化する。
図3に示すように、本実施形態の微量油吐出機構10aでは、第1実施形態と同様に切削油がノズル31から吐出されると共に、エアコンプレッサー33によって発生した圧縮エアが、エア用配管35(図1の一点鎖線も参照。)によって減圧弁37を介してノズル31に供給され、ノズル31内で切削油と混合することなくノズル31から吐出される。
図4に示すように、ノズル31は、内部を軸方向に貫通する切削油孔39aを有する第1円筒部材39と、第1円筒部材39の外周に設けられ、第1円筒部材39のフランジ部39bと側面でボルト固定される第2円筒部材41と、を有する。第1円筒部材39の後端部には、切削油用プラグ43が接続されて切削油孔39aをノズル側油配管25と連通させ、前端部に形成されたノズル開口39cから切削油を吐出する。また、第2円筒部材41の軸方向中間部には、径方向に貫通するプラグ孔41aが形成されており、このプラグ孔41aにエア用プラグ45が接続されている。さらに、このプラグ孔41aより前方で第1円筒部材39と第2円筒部材41の対向面間には環状隙間47が形成されており、エア用配管35から供給された圧縮エアが、この環状隙間47の前端部のノズル開口47aから筒状に噴出される。
このように切削油と共に吐出される圧縮エアは、より効果的にエンドミル5の刃先5aの冷却、切り屑の排出を行なうことができる。
また、切削油を吐出するノズル開口39cと圧縮エアを吐出するノズル開口47aが別々に設けられているので、切削油が霧状になることが抑えられ、雰囲気中にミストが浮遊することを抑制することができる。
なお、ノズル31の先端には、図5に示すようなカバー部材51が取り付けられてもよく、圧縮エアが拡散し切削油と干渉するような場合にも、切削油の直進性を支持してエンドミル5の刃先5aに正確に吐出することができる。
また、圧縮エアのノズル開口は、図4に示すように環状に形成される代わりに、図6に示すように、第1円筒部材39と第2円筒部材41の対向面によって円周方向に形成された複数のノズル孔47bによって構成されてもよい。この場合、各ノズル孔47bは、内部の環状隙間47と連通する。
また、圧縮エアのノズル開口は、図4に示すように環状に形成される代わりに、図6に示すように、第1円筒部材39と第2円筒部材41の対向面によって円周方向に形成された複数のノズル孔47bによって構成されてもよい。この場合、各ノズル孔47bは、内部の環状隙間47と連通する。
さらに、圧縮エアのノズルは、切削油が吐出されるノズルと別途形成されてもよく、図7に示すように、切削油が吐出されるノズル53の周囲で、円周方向の複数箇所に圧縮エアが吐出されるノズル55が配置されてもよい。
尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
本実施形態では、フライス盤について説明したが、いずれの工作機械であってもよく、マシニングセンタや、旋盤、研削盤、中ぐり盤等であってもよい。
また、工具の切削油と工具主軸に配置された軸受内部を潤滑する潤滑油が共用できる場合には、微量油吐出機構は、工具の加工部に油を吐出するだけでなく、微量吐出装置に分配機構を設けて軸受内部に油を吐出するようにしてもよい。
本実施形態では、フライス盤について説明したが、いずれの工作機械であってもよく、マシニングセンタや、旋盤、研削盤、中ぐり盤等であってもよい。
また、工具の切削油と工具主軸に配置された軸受内部を潤滑する潤滑油が共用できる場合には、微量油吐出機構は、工具の加工部に油を吐出するだけでなく、微量吐出装置に分配機構を設けて軸受内部に油を吐出するようにしてもよい。
以下、本発明の効果を確認するため、ミスト浮遊量測定試験、温度上昇測定試験、逃げ面凝着測定試験を行なった。
(ミスト浮遊量測定試験)
本試験では、微量油のみ或は微量油と圧縮エアを直接噴射する第1及び第2実施形態の加工方法と従来のセミドライ加工の各方法で、切削油を供給開始1分後、下記の専用の測定器を用いてミスト浮遊量を測定した。なお、測定場所は切削点から直線距離500mmの地点とし、マシニングセンタの扉を閉じた状態で測定を行なった。
測定器:KANOMAX製 RESPIRABLE AEROSOL MASS MONITOR(PIEZOBALANCE MODEL3511)
本試験では、微量油のみ或は微量油と圧縮エアを直接噴射する第1及び第2実施形態の加工方法と従来のセミドライ加工の各方法で、切削油を供給開始1分後、下記の専用の測定器を用いてミスト浮遊量を測定した。なお、測定場所は切削点から直線距離500mmの地点とし、マシニングセンタの扉を閉じた状態で測定を行なった。
測定器:KANOMAX製 RESPIRABLE AEROSOL MASS MONITOR(PIEZOBALANCE MODEL3511)
図8に示すように、セミドライ加工では、ミストコレクタを同時に使用した場合でも、約6.5mg/m3のミスト浮遊量であり、日本産業衛生学会が報告しているオイルミストの工場内規制値である3mg/m3を大きく越えている。一方、第1及び第2実施形態の微量油を直接噴射した場合は、それぞれ0.1mg/m3以下、約0.35mg/m3以下であり、雰囲気中にミストが浮遊しにくいことがわかる。
(温度上昇測定試験)
本試験では、微量油のみを直接噴射する第1実施形態の加工方法、セミドライ加工、切削油剤を全く使用しないで加工するドライ加工の3つの加工を行ない、図9に示すように、ワークWに30mm間隔(切削距離1m間隔)で埋め込まれた3つの熱電対60を用いて、切削点近傍の温度を測定した。なお、ワークWはアルミニウム合金(A6061)、工具は直径10mmの超硬スクエアエンドミル(2枚刃)が使用され、表1及び下記に示すような条件の下で試験を行なった。
本試験では、微量油のみを直接噴射する第1実施形態の加工方法、セミドライ加工、切削油剤を全く使用しないで加工するドライ加工の3つの加工を行ない、図9に示すように、ワークWに30mm間隔(切削距離1m間隔)で埋め込まれた3つの熱電対60を用いて、切削点近傍の温度を測定した。なお、ワークWはアルミニウム合金(A6061)、工具は直径10mmの超硬スクエアエンドミル(2枚刃)が使用され、表1及び下記に示すような条件の下で試験を行なった。
(切削条件)
回転数:15000min−1
切削送り:1500mm/min
軸方向切込み:6.0mm
半径方向切込み:0.5mm
切削の仕方:側面切削/ダウンカット
回転数:15000min−1
切削送り:1500mm/min
軸方向切込み:6.0mm
半径方向切込み:0.5mm
切削の仕方:側面切削/ダウンカット
図10に示すように、どの供給方法においても、熱電対と切削点との間の距離lが小さくなるほど温度は線形に上昇している。また、ドライ加工では、熱電対先端から0.5mmの位置を切削した時に約6.5度上昇しているが、本発明とセミドライ加工では、いずれも約3.8度の上昇であり、本発明は、いずれの距離においてもセミドライ加工と同様な冷却効果が得られることがわかる。
(逃げ面凝着測定試験)
本試験では、上記の温度測定試験と同様の条件で、第1実施形態の加工方法、セミドライ加工、ドライ加工の3つの加工を行ない、図11に示すエンドミル5の刃先5aの逃げ面5bに切り屑が凝着した凝着幅を顕微鏡にて観察した。
本試験では、上記の温度測定試験と同様の条件で、第1実施形態の加工方法、セミドライ加工、ドライ加工の3つの加工を行ない、図11に示すエンドミル5の刃先5aの逃げ面5bに切り屑が凝着した凝着幅を顕微鏡にて観察した。
図12に示すように、ドライ加工では、切削距離が増加するに従って凝着幅が増加しているが、本発明の加工方法では、切削距離が30m以降も7μm以下と、セミドライ加工と略同様に凝着幅を低減することができ、刃物の磨耗やチッピングを低減できることがわかる。
5 エンドミル(工具)
5a 刃先(加工部)
10,10a 微量油吐出機構
11,31 ノズル
15 ポンプ
23 微量吐出装置
W ワーク(工作物)
5a 刃先(加工部)
10,10a 微量油吐出機構
11,31 ノズル
15 ポンプ
23 微量吐出装置
W ワーク(工作物)
Claims (10)
- 工作物を加工する工具の加工部に油を供給しながら、該工作物を加工する加工方法であって、
前記油を所定量及び所定速度で吐出する吐出機構によって、該油を前記加工部に直接噴射することを特徴とする加工方法。 - 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする請求項1に記載の加工方法。
- 前記加工部に圧縮エアを直接噴射することを特徴とする請求項1又は2に記載の加工方法。
- 前記油と前記圧縮エアを別々に設けられたノズル開口からそれぞれ吐出することを特徴とする請求項1〜3のいずれかに記載の加工方法。
- 工作物を加工する工具の加工部に油を供給しながら、該工作物を加工する工作機械であって、
前記油を所定量及び所定速度で吐出して、該油を前記加工部に直接噴射可能な吐出機構を有することを特徴とする工作機械。 - 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする請求項5に記載の工作機械。
- 前記加工部に圧縮エアを直接噴射することを特徴とする請求項5又は6に記載の工作機械。
- 前記油を吐出するノズル開口と前記圧縮エアを吐出するノズル開口が別々に設けられていることを特徴とする請求項5〜7のいずれかに記載の工作機械。
- 油を所定量及び所定速度で、工作物を加工する工具の加工部に直接噴射可能な吐出機構であって、
前記加工部に圧縮エアを直接噴射することを特徴とする吐出機構。 - 前記油は、0.0005ml/ショット以上0.01ml/ショット以下の量で、10m/s以上100m/s以下の速度で間欠的に吐出されることを特徴とする請求項9に記載の吐出機構。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006294715A JP2008110430A (ja) | 2006-10-30 | 2006-10-30 | 加工方法及び工作機械 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006294715A JP2008110430A (ja) | 2006-10-30 | 2006-10-30 | 加工方法及び工作機械 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008110430A true JP2008110430A (ja) | 2008-05-15 |
Family
ID=39443244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006294715A Withdrawn JP2008110430A (ja) | 2006-10-30 | 2006-10-30 | 加工方法及び工作機械 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008110430A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200451831Y1 (ko) * | 2010-03-29 | 2011-01-14 | 주식회사 인지디스플레이 | 바텀 샤시 제조 장치용 태핑기의 오일 미스트 공급 유니트 |
WO2011122233A1 (ja) * | 2010-03-30 | 2011-10-06 | 新日本製鐵株式会社 | 機械構造用鋼の切削方法 |
CN104493636A (zh) * | 2014-11-12 | 2015-04-08 | 华中科技大学 | 一种用于提高铣削稳定性的金属深冷加工方法 |
RU192972U1 (ru) * | 2019-06-17 | 2019-10-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Устройство для подачи смазочно-охлаждающих технологических средств |
-
2006
- 2006-10-30 JP JP2006294715A patent/JP2008110430A/ja not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200451831Y1 (ko) * | 2010-03-29 | 2011-01-14 | 주식회사 인지디스플레이 | 바텀 샤시 제조 장치용 태핑기의 오일 미스트 공급 유니트 |
WO2011122233A1 (ja) * | 2010-03-30 | 2011-10-06 | 新日本製鐵株式会社 | 機械構造用鋼の切削方法 |
CN102470502A (zh) * | 2010-03-30 | 2012-05-23 | 新日本制铁株式会社 | 机械结构用钢的切削方法 |
JP5009438B2 (ja) * | 2010-03-30 | 2012-08-22 | 新日本製鐵株式会社 | 機械構造用鋼の切削方法 |
KR101290880B1 (ko) * | 2010-03-30 | 2013-07-29 | 신닛테츠스미킨 카부시키카이샤 | 기계 구조용 강의 절삭 방법 |
US8545137B2 (en) | 2010-03-30 | 2013-10-01 | Nippon Steel & Sumitomo Metal Corporation | Cutting method of steel for machine structural use |
CN104493636A (zh) * | 2014-11-12 | 2015-04-08 | 华中科技大学 | 一种用于提高铣削稳定性的金属深冷加工方法 |
RU192972U1 (ru) * | 2019-06-17 | 2019-10-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Устройство для подачи смазочно-охлаждающих технологических средств |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Study on minimum quantity lubrication in micro-grinding | |
US6123270A (en) | Work machining method and apparatus for supplying mist used therein | |
JP3549194B2 (ja) | 工作加工方法およびそれに用いる霧状体供給装置 | |
Aoyama | Development of a mixture supply system for machining with minimal quantity lubrication | |
EP1838481B1 (en) | Tool with selectively-biased member | |
JP5292045B2 (ja) | 深穴切削装置 | |
JP2002321111A (ja) | 深穴切削装置 | |
JP2012115971A (ja) | 工作機械およびその工具ホルダ | |
Madhukar et al. | A critical review on minimum quantity lubrication (MQL) coolant system for machining operations | |
JP2008110430A (ja) | 加工方法及び工作機械 | |
JP2010142889A (ja) | 工具保持具、工具保持具用切削液供給プレート及び切削加工方法 | |
JP3166021U (ja) | 小径研削砥石工具 | |
US10213848B2 (en) | Chip control tool | |
JP2976091B2 (ja) | 工作機械の切粉気流除去装置 | |
WO2005044511A1 (ja) | 深穴加工方法及び装置 | |
WO2005014239A2 (en) | Tool holder | |
JPH11347880A (ja) | ガンドリルの切粉気流除去装置 | |
JP4778935B2 (ja) | リーマ加工方法及びその装置 | |
KR101928291B1 (ko) | 공작기계용 이물질 유입 방지 장치 | |
Wu et al. | Influence of lubrication type and process conditions on milling performance | |
JP2001259963A (ja) | セルフ型のエアー利用による切削点の冷却方法と装置 | |
Ahsan et al. | An experimental study on the effect of minimum quantity lubrication on drilling AISI 1040 steel | |
JPH10235507A (ja) | 穴あけ加工方法及び穴あけ加工装置 | |
JP2002018676A (ja) | 工作機械の主軸の軸受潤滑廃油排出装置 | |
JP7487515B2 (ja) | 工具、工具ホルダ、切削加工機及び加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20090225 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20110113 |