JP2008106986A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2008106986A
JP2008106986A JP2006289815A JP2006289815A JP2008106986A JP 2008106986 A JP2008106986 A JP 2008106986A JP 2006289815 A JP2006289815 A JP 2006289815A JP 2006289815 A JP2006289815 A JP 2006289815A JP 2008106986 A JP2008106986 A JP 2008106986A
Authority
JP
Japan
Prior art keywords
compressor
oil
casing
expander
pressure equalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006289815A
Other languages
English (en)
Other versions
JP5023657B2 (ja
Inventor
Yasufumi Takahashi
康文 高橋
Hiroshi Hasegawa
寛 長谷川
Shingo Oyagi
信吾 大八木
Masanobu Wada
賢宣 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006289815A priority Critical patent/JP5023657B2/ja
Publication of JP2008106986A publication Critical patent/JP2008106986A/ja
Application granted granted Critical
Publication of JP5023657B2 publication Critical patent/JP5023657B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

【課題】 膨張機と圧縮機とを備えた冷凍サイクル装置において、膨張機と圧縮機とにおける油面高さの不均衡を是正し、膨張機における潤滑油不足を防止する。
【解決手段】冷凍サイクル装置の圧縮機11と膨張機13とは、均油管30および均圧管40によって接続されている。均圧管40の一端は、圧縮機ケーシング21の下側側面を貫通し、油溜まり31の油面31aから離れるように上方に向かって延長されている。均圧管40の他端は、膨張機ケーシング34の下側側面に接続されている。
【選択図】図4

Description

本発明は、圧縮機と膨張機とを備えた冷凍サイクル装置に関するものである。
従来から、冷媒を昇圧する圧縮機と、冷媒を冷却するガスクーラーと、冷媒を減圧膨張させる膨張機と、冷媒を蒸発させる蒸発器とを備え、それらが冷媒配管を介して順に接続されてなる冷凍サイクル装置が知られている。
近年、オゾン層破壊の防止や地球温暖化の防止の観点から、自然環境に適した代替冷媒が着目され、そのような代替冷媒として、二酸化炭素が注目されている。冷媒として二酸化炭素を用いる冷凍サイクル装置では、冷凍サイクルの高圧側で冷媒が超臨界状態となる。
具体的には、二酸化炭素を用いる冷凍サイクル装置では、圧縮機で昇圧された冷媒は超臨界状態となり、ガスクーラーで冷却された後、膨張機に流入する。膨張機に流入した冷媒は、減圧されることによって低圧低温の気液二相状態となった後、蒸発器で吸熱して蒸発し、圧縮機に戻る。
ところで、圧縮機および膨張機は、ともに摺動部分を有しており、潤滑油を必要とする。そのため、圧縮機および膨張機には、それぞれ油溜まりが設けられる。
ところが、冷凍サイクル装置の起動時や大きな負荷変動が生じた場合など、圧縮機および膨張機の一方から他方に向かって潤滑油が大量に流れ出てしまい、潤滑油不足を生じるおそれがある。そこで、圧縮機と膨張機とを均油管および均圧管で接続することが考えられる。
特許文献1には、膨張機を備えた冷凍サイクル装置ではないが、互いに並列な2台の圧縮機を備え、それら圧縮機同士を均油管および均圧管で接続した冷凍サイクル装置が開示されている。この冷凍サイクル装置では、均油管は両圧縮機のケーシングの下側側面に接続され、均圧管は両圧縮機のケーシングの上側側面に接続されている。そして、均油管および均圧管は、いずれも水平に延びている。
特開平03−124170号公報
しかし、圧縮機と膨張機とを均油管および均圧管で接続する場合に、図8(a)に示すように、均油管103を圧縮機101および膨張機102の各ケーシングの下側側面に接続し、均圧管104を各ケーシングの上側側面に接続し、均油管103および均圧管104を水平に配置するようにすると、以下のような問題が生じる。
すなわち、圧縮機101と膨張機102とでは、運転時の内部温度が大きく異なる。そのため、図8(a)に示すように、運転停止時には圧縮機101の油面101aと膨張機102の油面102aとは同じ高さに保たれるが、図8(b)に示すように、運転時には、膨張機102内の冷媒は温度が低下して密度が大きくなるのに対し、圧縮機101内の冷媒は、温度が上昇して密度が小さくなる。その結果、膨張機102内の密度の大きな冷媒が油面102aを押し下げ、膨張機102内の潤滑油が圧縮機101内へ流れ込み、膨張機102の潤滑油不足が生じるおそれがある。
詳しくは、図8(a)において、均圧管104と油面102a,101aとの間には大きな高低差hdがあるので、圧縮機101内の冷媒密度をρc、膨張機102内の冷媒密度をρeとすると、(ρe―ρc)×hdの分だけ、膨張機102の油面102aの方が圧縮機101の油面101aよりも強く押し下げられることになる。
そこで、本願発明者は、図9(a)に示すように、均圧管104を曲がり管で形成し、均圧管104の一端を圧縮機101の上側側面に接続する一方、均圧管104の他端を膨張機102の下側側面に接続することを検討した。この構成によれば、均圧管104の一端と圧縮機101の油面101aとの間の高低差は、均圧管104の他端と膨張機102の油面102aとの間の高低差よりも、均圧管104が曲がっている分Δhだけ大きくなる。そのため、図9(b)に示すように、膨張機102と圧縮機101とにおける油面高さの不均衡の是正が期待される。
しかしながら、本願発明者は鋭意研究の結果、図9(b)に示す構成では、実際には必ずしも膨張機と圧縮機とにおける油面高さの不均衡を是正できないことを見出した。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、膨張機と圧縮機とを備えた冷凍サイクル装置において、膨張機と圧縮機とにおける油面高さの不均衡を是正し、膨張機における潤滑油不足を防止することにある。
本願発明者は、鋭意研究の結果、以下の知見を得るに至った。図7に示すように、潤滑油の密度は温度が変わっても大きく変化しないが、二酸化炭素の密度は、高温から常温に近づくにつれて大きく変化し、常温付近では潤滑油の密度に近くなる。ここで、二酸化炭素を用いた冷凍サイクル装置では、通常、膨張機の内部温度は常温に近い温度(例えば20℃程度)となり、圧縮機の内部温度は常温よりも高い温度(例えば80℃程度)となる。一方、均圧管は断熱材等によって断熱処理が施されるものの、外部雰囲気に晒されるので、均圧管の内部温度は常温となる。そのため、均圧管の内部温度は膨張機の内部温度に近くなる。
したがって、冷媒の密度を考えた場合、均圧管は膨張機の一部と見なすことができ、図9(c)に仮想線で示すように、均圧管を水平な直管104aで形成した場合と大差がないことになる。そのため、均圧管として曲がり管104を用いることによって見かけ上の高低差を設けたにも拘わらず、実際には、図8(b)の例と同様、膨張機と圧縮機とにおける油面高さの不均衡を十分に是正することはできない。
このように、本願発明者は、図9(b)に示す構成では、均圧管の内部温度と膨張機の内部温度とが近くなると、油面高さの不均衡が十分に是正できないことに思い至り、本発明をなすに至った。
本発明に係る冷凍サイクル装置は、底部に油溜まりが形成されたケーシングを有し、冷媒を圧縮する圧縮機と、底部に油溜まりが形成されたケーシングを有し、冷媒を膨張させる膨張機と、前記圧縮機の油溜まりと前記膨張機の油溜まりとを連通する均油管と、一端が前記圧縮機のケーシングの上下方向中間位置よりも下方に接続され、他端が前記膨張機のケーシングの上下方向中間位置よりも下方に接続された均圧管と、を備え、前記均圧管の前記一端は、前記圧縮機のケーシングを貫通し、前記圧縮機の運転中における前記油溜まりの油面から離れるように当該ケーシングの内部で延長されているものである。
上記冷凍サイクル装置によれば、均圧管の一端は圧縮機ケーシングの下側に接続され、他端は膨張機ケーシングの下側に接続されており、圧縮機および膨張機のそれぞれにおいて、均圧管の端部と油面(運転停止時の油面)との高低差が小さい。言い換えると、均圧管の圧縮機側端部および膨張機側端部は、それぞれ圧縮機および膨張機の油溜まりの油面近傍に配置されている。そのため、膨張機内と圧縮機内とで冷媒の密度差が大きくても、油面を押し下げようとする圧力は膨張機内と圧縮機内とで大きく変わることはない。したがって、膨張機と圧縮機とにおける油面高さの不均衡を是正することができ、膨張機における潤滑油不足を防止することができる。
一方、圧縮機内において、均圧管の端部が油面近傍に位置していると、圧縮機内の油面が上昇した際に、油が均圧管に浸入するおそれがある。しかし、上記冷凍サイクル装置によれば、均圧管の一端は、油面(運転時の油面)から離れるように圧縮機ケーシングの内部で延長されている。そのため、均圧管に対する油の浸入を抑制することができる。
前記均圧管の前記一端は、前記圧縮機のケーシング内において上方または斜め上方に延長されていることが好ましい。
これにより、均圧管に対する油の浸入をさらに抑制することができる。また、均圧管の延長部分は圧縮機ケーシングの内部に位置しているので、圧縮機ケーシング内の冷媒とほぼ同じ温度となる。そのため、圧縮機では、均圧管が上方または斜め上方に延長されていても、冷媒が膨張機の油面を押し下げる圧力は大きくならない。したがって、膨張機と圧縮機とにおける油面高さの不均衡を、より一層効果的に是正することができる。
前記圧縮機は、前記油溜まりの上方に配置され、上下方向または斜め上下方向に延びる孔または溝が形成された電動機を備え、前記均圧管の前記一端は、前記孔または溝に挿入されていることが好ましい。
これにより、均圧管の一端の周囲の一部または全部は、電動機によって覆われる。そのため、均圧管に対する油の浸入をより一層抑制することができる。
前記均圧管の前記一端は、上方に向かって開口していることが好ましい。
これにより、均圧管に対する油の浸入をさらに抑制することができる。
前記圧縮機は、上下方向に延びる回転軸を備え、前記均圧管の前記一端は、前記圧縮機のケーシング内において前記回転軸に向かって延長されていてもよい。
前記圧縮機において、回転軸が回転すると、ケーシング内に冷媒の旋回流が生じ、それに伴って油溜まりの油には遠心力が働く。その結果、油面は、回転軸の中心側が最も低く、回転軸の外周側が最も高くなるように傾斜する。そのため、均圧管の一端を回転軸に向かって延長することにより、結果的に、均圧管の一端は油面から離れることになる。したがって、均圧管に対する油の浸入を効果的に抑制することができる。
前記圧縮機のケーシングの側壁には孔が形成され、前記均圧管は、前記圧縮機のケーシングの外側から前記孔に挿入された本体管と、前記圧縮機のケーシングの内側から前記本体管に挿入され、前記均圧管の前記一端を形成する延長管とを備えていてもよい。
このことにより、圧縮機のケーシング内で延長部分を有する均圧管を、比較的容易に製作することができる。
本発明に係る他の冷凍サイクル装置は、底部に油溜まりが形成されたケーシングを有し、冷媒を圧縮する圧縮機と、底部に油溜まりが形成されたケーシングを有し、冷媒を膨張させる膨張機と、前記圧縮機の油溜まりと前記膨張機の油溜まりとを連通する均油管と、一端が前記圧縮機のケーシングにおける前記油溜まりよりも上側かつ前記圧縮機の運転停止時の油面の近傍に接続され、他端が前記膨張機のケーシングにおける前記油溜まりよりも上側かつ前記膨張機の運転停止時の油面の近傍に接続された均圧管と、を備え、前記均圧管の前記一端は、前記圧縮機のケーシングを貫通し、前記圧縮機の運転中における前記油溜まりの油面から離れるように当該ケーシングの内部で延長されているものである。
なお、前記冷媒は二酸化炭素であってもよい。
以上のように、本発明によれば、膨張機と圧縮機とを備えた冷凍サイクル装置において、膨張機と圧縮機とにおける油面高さの不均衡を是正し、膨張機における潤滑油不足を防止することができる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
<実施形態1>
図1に示すように、実施形態に係る冷凍サイクル装置1は、圧縮機11と放熱器12と膨張機13と蒸発器14とを備えており、それらは冷媒配管15,16,17,18を介して順に接続されることによって冷媒回路10を構成している。圧縮機11と膨張機13とは、均油管30および均圧管40を介して接続されている。
この冷媒回路10には、冷媒として二酸化炭素が充填されている。ただし、冷媒は二酸化炭素以外のものであってもよい。圧縮機11および膨張機13には、潤滑油としてPAGが封入されている。
図2に示すように、圧縮機11は、ケーシング21と、電動機24と、電動機24によって駆動される回転軸25と、回転軸25の上側に取り付けられた圧縮機構26と、回転軸25の下側に取り付けられた油ポンプ27とを備えている。
本実施形態では、ケーシング21は、上端および下端が閉塞された略円筒状に形成されており、鉛直方向長さが水平方向長さよりも長い縦長のケーシングである。ただし、ケーシング21は横長のケーシングであってもよい。圧縮機11はいわゆる高圧ドーム型の圧縮機であり、ケーシング21の内部には、圧縮機構26から吐出される高圧の冷媒が充填される。
ケーシング21の上壁には吐出管15が接続されている。ケーシング21の上側側面には、吸入冷媒を圧縮機構26に導く吸入管18が接続されている。ケーシング21の下側側面、より詳しくは、上下方向中間位置よりも下側の側面には孔29が形成され、孔29よりも下側には孔28が形成されている。孔29には均圧管40が挿入され、孔28には均油管30が挿入されている。すなわち、ケーシング21の下側側面には、均圧管40および均油管30が接続されている。
ケーシング21の底部には、油が貯留された油溜まり31が形成されている。油ポンプ27は、回転軸25の回転に伴って油溜まり31の油を汲み上げるものであり、油溜まり31の油に浸漬されている。油ポンプ27の種類は何ら限定されないが、ここでは油ポンプ27は、トロコイドポンプによって形成されている。
ケーシング21の下部の内壁にはプレート32が固定され、プレート32には軸受33が固定されている。軸受33は、回転軸25の下側部分を回転自在に支持している。回転軸25には、油ポンプ27によって汲み上げられた油を圧縮機構26に導く給油路(図示せず)が設けられている。
電動機24は、ケーシング21の内壁に固定された固定子22と、回転軸25に固定された回転子23とによって構成されている。電動機24は、ケーシング21の上下方向のほぼ中央に配置されている。
圧縮機構26の具体的構成は何ら限定されないが、本実施形態では、圧縮機構26はスクロール式の圧縮機構によって構成されている。ただし、圧縮機構26はロータリ式等、他の形式の圧縮機構であってもよい。
膨張機13は、ケーシング34と、発電機37と、回転軸38と、回転軸38の上側に取り付けられた膨張機構39と、回転軸38の下側に取り付けられた油ポンプ41とを備えている。
膨張機13のケーシング34も、上端および下端が閉塞された略円筒状に形成されており、鉛直方向長さが水平方向長さよりも長い縦長のケーシングである。ただし、ケーシング34は横長のケーシングであってもよい。膨張機13はいわゆる高圧ドーム型の膨張機であり、ケーシング34の内部には、吸入管16から吸入した高圧の冷媒が充填される。
吸入管16は、ケーシング34の上側側面を貫通して膨張機構39に接続されている。また、ケーシング34の上側側面には、膨張機構39からの吐出冷媒を導く吐出管17が接続されている。ケーシング34の下側側面、より詳しくは、上下方向中間位置よりも下側の側面には孔45が形成され、孔45よりも下側には孔46が形成されている。孔45には均圧管40が挿入され、孔46には均油管30が挿入されている。このように、均圧管40および均油管30は、ケーシング34の下側側面に接続されている。
ケーシング34の底部には、油溜まり42が形成されている。油ポンプ41は、回転軸38の回転に伴って油溜まり42の油を汲み上げるものであり、油溜まり42の油に浸漬されている。本実施形態では、膨張機13の油ポンプ41もトロコイドポンプによって構成されている。
ケーシング34の下部の内壁にはプレート43が固定され、プレート43には軸受44が固定されている。軸受44は、回転軸38の下側部分を回転自在に支持している。回転軸38には、油ポンプ41によって汲み上げられた油を膨張機構39に導く給油路(図示せず)が設けられている。
発電機37は、ケーシング34の内壁に固定された固定子35と、回転軸38に固定された回転子36とによって構成されている。発電機37は、ケーシング34の上下方向のほぼ中央に配置されている。
本実施形態では、膨張機構39はロータリ式の膨張機構によって構成されている。ただし、膨張機構39はスクロール式等の他の形式の膨張機構であってもよい。膨張機構39の具体的構成は何ら限定されるものではない。
均油管30は、圧縮機11の油溜まり31と膨張機13の油溜まり42とを連通している。本実施形態では、均油管30は直管によって形成され、水平に延びている。ただし、均油管30は、曲がり管によって形成されていてもよく、傾斜していてもよい。
均圧管40の一端は、圧縮機11のケーシング21(以下、圧縮機ケーシング21という)の孔29を貫通し、圧縮機ケーシング21内の中心側(回転軸25側)に延びている。均圧管40の他端は、膨張機13のケーシング34(以下、膨張機ケーシング34という)の孔45に嵌め込まれている。言い換えると、均圧管40は、膨張機ケーシング34と圧縮機ケーシング21との間に架け渡された本体部40aと、本体部40aの一端側に位置し、圧縮機ケーシング21の内部で回転軸25側に延びる延長部40bとを有している。
均圧管40は、直管状に形成されており、水平に延びている。ただし、均圧管40は傾斜していてもよく、曲がっていてもよい。本体部40aと延長部40bとは一体物であってもよく、別体であってもよい。すなわち、均圧管40は単一部材によって形成されていてもよく、複数の部材を組み合わせることによって形成されていてもよい。
均圧管40の圧縮機11側の上下位置は、圧縮機11の運転停止時における油溜まり31の油面31aの上方かつ近傍の位置である。均圧管40の膨張機13側の上下位置も、膨張機13の運転停止時における油溜まり42の油面42aの上方かつ近傍の位置である。均圧管40の圧縮機11側の上下位置と膨張機13側の上下位置とは等しくなっている。
図示は省略するが、均圧管40の本体部40aは断熱材によって覆われており、断熱されている。均圧管40は、圧縮機ケーシング21および膨張機ケーシング34の外側に位置しており、上記断熱材を介して外気に晒されている。
冷凍サイクル装置1が運転を停止している際には、冷媒および油の温度は圧縮機11内および膨張機13内でそれぞれ同一であるので、圧縮機11内の冷媒密度と膨張機13内の冷媒密度とは等しくなり、圧縮機11内の油の密度と膨張機13内の油の密度も等しくなる。その結果、圧縮機11の油面高さと膨張機13の油面高さとは等しくなる。
前述したように、本実施形態では、冷媒回路10の冷媒として二酸化炭素が用いられ、潤滑油としてPAGが用いられている。例えば、圧縮機11および膨張機13の雰囲気温度(圧縮機ケーシング21および膨張機ケーシング34の外部の温度)が15℃であるとすると、圧縮機11内および膨張機13内の冷媒および油の温度も15℃となり、冷媒の密度は150kg/m、油の密度は1000kg/mとなる(図7参照)。
冷凍サイクル装置1(図1参照)の運転時には、圧縮機11から吐出された冷媒は、超臨界状態となる。圧縮機11から吐出された高温の冷媒は、放熱器12で放熱し、温度が低下した後、膨張機13において膨張する。膨張機13から吐出された冷媒は、蒸発器14で蒸発した後、圧縮機11に吸入される。
この際、圧縮機11内の温度は、常温よりも高い温度(例えば80℃程度。以下、単に高温という)となる一方、膨張機13内の温度は、常温(例えば15℃程度)となる。上述したように、均圧管40は断熱材(図示せず)を介して外気に晒されているので、均圧管40の内部の温度も常温となる。
ここで、圧縮機11内の温度が80℃、膨張機13内の温度が15℃になったとすると、図7に示すように、圧縮機11内の冷媒と油の密度は、それぞれ210kg/m、930kg/mとなり、膨張機13内の冷媒と油の密度は、それぞれ900kg/m、1000kg/mとなる。その結果、膨張機13内の油と冷媒との密度差は、1000kg/m―900kg/m=100kg/mとなり、非常に小さくなる。したがって、均圧管40と油面42aとの高低差H2−H4(図4参照)によって生じる差圧は、油面高さH4に依らずに、ほぼ一定となる。これに対し、圧縮機11内の冷媒密度(=210kg/m)は小さく、かつ、圧縮機11内の油の密度(=930kg/m)は膨張機13内の冷媒密度(=900kg/m)とほぼ等しい。そのため、圧縮機11の油面31aの高さH5は、膨張機13の均圧管40の接続位置とほぼ同等の高さとなる。また、均圧管40の内部温度は膨張機13の内部温度とほぼ等しい。この点からも、圧縮機11の油面31aの高さは、圧縮機11における均圧管40の接続位置とほぼ同じ高さとなる。
ところが、本実施形態によれば、均圧管40は、膨張機ケーシング34における比較的低い位置に接続され、膨張機13の油面42aの近傍に接続されている。また、均圧管40は、圧縮機ケーシング21における比較的低い位置に接続され、圧縮機11の油面31aの近傍に接続されている。そのため、圧縮機11および膨張機13のいずれにおいても、均圧管40の接続位置と油面との高低差が小さいので、圧縮機11内の冷媒密度と膨張機13内の冷媒密度とが大きく異なっていても、油面を押し下げようとする圧力は、膨張機内と圧縮機内とで大きく異なることはない。すなわち、膨張機13内の冷媒密度をρe、圧縮機11内の冷媒密度をρcとすると、膨張機13内で油面42aを押し下げようとする圧力はρe(H2−H4)であり、圧縮機11内で油面31aを押し下げようとする圧力はρc(H2−H5)であるが、H2≒H4かつH2≒H5であるので、ρeとρcとが大きく異なっていたとしても、それらの差は零に近くなる。したがって、膨張機13内の油が均油管30を通じて圧縮機11内に大量に流れ込むことはなく、膨張機13と圧縮機11とにおける油面高さの不均衡を是正することができる。そのため、膨張機13における潤滑油不足を防止することができる。
なお、均圧管40が圧縮機11の油面近傍に位置していることから、圧縮機11の油の一部が均圧管40を通じて膨張機13に流れ込むことが懸念される。しかし、本実施形態によれば、均圧管40には、圧縮機ケーシング21内において回転軸25側に延長された延長部40bを有している。図3に概念的に示すように、圧縮機11の運転中には、回転軸25および回転子23によって冷媒の旋回流が引き起こされ、油溜まりの油は、その冷媒によってかき回され、遠心力によって圧縮機ケーシング21の内面側に集まりやすい。その結果、油面31aは、回転軸25を中心として下向きに凹んだような状態となりやすい。そのため、回転軸25側に延長された延長部40bからは、油が浸入しにくくなる。このように、本実施形態によれば、均圧管40が油面31aから離れるように延長されている(なお、ここでいう油面31aとは、圧縮機11の運転中の油面のことである。そのため、延長部40bが水平に延びている場合も、油面31aから離れるように延びていることになる)ので、均圧管40を圧縮機ケーシング21の油面近傍に接続したにも拘わらず、均圧管40に対する油の浸入を抑制することができる。
<実施形態2>
図4に示すように、実施形態2に係る冷凍サイクル装置は、実施形態1において均圧管40に変更を加えたものである。実施形態1と同様の部分には同様の符号を付し、それらの説明は省略する。
実施形態2においても、均圧管40の一端は圧縮機ケーシング21の下側側面を貫通し、圧縮機ケーシング21の内部において、圧縮機11の運転中の油面31aから離れるように延長されている。ただし、本実施形態では、均圧管40は、圧縮機ケーシング21の内部で上向きに曲がっている。すなわち、本実施形態では、均圧管40は、膨張機ケーシング34と圧縮機ケーシング21との間に架け渡された本体部40aと、本体部40aの一端側に位置し、圧縮機ケーシング21の内部で上向きに延びる延長部40bとを有している。なお、均圧管40の曲がり具合は特に限定されず、急激に曲がっていてもよく、穏やかに曲がっていてもよい。すなわち、均圧管40は、上向きに屈曲していてもよく、湾曲していてもよい。
本実施形態においても、均圧管40の本体部40aは、直管状に形成されており、水平に延びている。延長部40bは、鉛直上向きに延びている。ただし、延長部40bを斜め上向きに延長させることも可能である。本体部40aと延長部40bとは一体物であってもよく、別体であってもよい。
本体部40aの圧縮機11側の上下位置は、圧縮機11の運転停止時における油溜まり31の油面31aの上方かつ近傍の位置である。本体部40aの膨張機13側の上下位置も、膨張機13の運転停止時における油溜まり42の油面42aの上方かつ近傍の位置である。本体部40aの圧縮機11側の上下位置と、本体部40aの膨張機13側の上下位置とは等しくなっている。ただし、均圧管40の延長部40bは上方に延長されているので、均圧管40の圧縮機ケーシング21内の開口高さH3と膨張機ケーシング34内の開口高さH2とは異なっている。
本実施形態においても、実施形態1と同様の効果を得ることができる。加えて、本実施形態によれば、均圧管40の延長部40bが上方に延長されているので、均圧管40に対する油の浸入をより一層抑制することができる。また、均圧管40の延長部40bは上向きに開口しているので、油の浸入をさらに効果的に抑制することができる。
なお、延長部40bは上向きに延びているが、圧縮機ケーシング21の内部に配置されているので、延長部40bの温度は圧縮機11の内部温度に等しくなる。そのため、均圧管40の本体部40aと異なり、延長部40b内の冷媒密度は、圧縮機ケーシング21内の冷媒密度と等しくなる。したがって、圧縮機11の油面31aが延長部40bの開口付近まで上昇するおそれはない。
<実施形態3>
図5に示すように、実施形態3は、実施形態2の均圧管40の延長部40bに変更を加えたものであり、延長部40bの先端の周囲を電動機24で覆ったものである。
具体的には、本実施形態では、電動機24の固定子22の一部に、上下方向に延びる溝22aが形成されている。なお、溝22aの代わりに上下方向に延びる孔が形成されていてもよい。そして、均圧管40の延長部40bの先端は、上記溝22aに挿入されている。
したがって、本実施形態によれば、実施形態2と同様の効果を得ることができる。加えて、本実施形態によれば、均圧管40の先端の周囲が電動機24によって覆われているので、均圧管40に対する油の浸入をより一層抑制することができる。
なお、電動機の溝22a等が斜め上下方向(上下方向から傾いた方向)に延び、均圧管40の延長部40bが、上記溝22a等に挿入されるように斜め上下方向に延びていてもよい。このような場合であっても、上述の効果を得ることができる。
<実施形態4>
図6に示すように、実施形態4は、実施形態2の均圧管40に変更を加えたものであり、均圧管40の本体部40aと延長部40bとを別部材で形成したものである。
本実施形態では、均圧管40の本体部40aは水平に延びる直管によって形成され、延長部40bは、本体部40aよりも小径の曲がり管によって形成されている。延長部40bは、上向きに延長されており、上向きに開口している。本体部40aは、外側から圧縮機ケーシング21の孔29に差し込まれている。一方、延長部40bは、圧縮機ケーシング21の内側から本体部40aに差し込まれている。なお、本体部40aと延長部40bとは、例えば溶接等によって接合されている。
本実施形態によれば、実施形態2と同様の効果を得ることができる。加えて、本実施形態によれば、均圧管40が複数の部材によって形成されているので、圧縮機ケーシング21に対して均圧管40を容易に組み立てることが可能となる。
<他の実施形態>
なお、前記各実施形態では、冷媒は二酸化炭素であり、潤滑油はPAGであった。しかし、図7に示すような特性を示す冷媒および潤滑油の組み合わせは、二酸化炭素およびPAGに限らず、種々存在する。本発明において、冷媒および潤滑油は、二酸化炭素およびPAGに限定される訳ではない。また、本発明に係る冷凍サイクル装置は、高温から常温になるにつれて密度比が近くなるような冷媒および潤滑油の組み合わせに対して特に有用であるが、そのような特性を有さない冷媒および潤滑油の組み合わせであっても、利用可能であることはもちろんである。
以上説明したように、本発明は、空気調和装置、給湯機、冷凍機、冷蔵庫、除湿機等を含む冷凍サイクル装置について有用である。
実施形態に係る冷凍サイクル装置の冷媒回路図 実施形態1に係る圧縮機および膨張機の縦断面図 実施形態1に係る圧縮機の縦断面図 実施形態2に係る圧縮機および膨張機の縦断面図 実施形態3に係る圧縮機および膨張機の縦断面図 実施形態4に係る圧縮機および膨張機の縦断面図 冷媒(二酸化炭素)および油(PAG)の温度に対する密度変化を示す特性図 (a)および(b)は冷凍サイクル装置の圧縮機および膨張機の縦断面図 (a)〜(c)は冷凍サイクル装置の圧縮機および膨張機の縦断面図
符号の説明
1 冷凍サイクル装置
11 圧縮機
13 膨張機
21 圧縮機ケーシング
30 均油管
31 圧縮機の油溜まり
31a 圧縮機の油面
34 膨張機ケーシング
40 均圧管
40a 本体部
40b 延長部
42 膨張機の油溜まり
42a 膨張機の油面

Claims (8)

  1. 底部に油溜まりが形成されたケーシングを有し、冷媒を圧縮する圧縮機と、
    底部に油溜まりが形成されたケーシングを有し、冷媒を膨張させる膨張機と、
    前記圧縮機の油溜まりと前記膨張機の油溜まりとを連通する均油管と、
    一端が前記圧縮機のケーシングの上下方向中間位置よりも下方に接続され、他端が前記膨張機のケーシングの上下方向中間位置よりも下方に接続された均圧管と、を備え、
    前記均圧管の前記一端は、前記圧縮機のケーシングを貫通し、前記圧縮機の運転中における前記油溜まりの油面から離れるように当該ケーシングの内部で延長されている、冷凍サイクル装置。
  2. 前記均圧管の前記一端は、前記圧縮機のケーシング内において上方または斜め上方に延長されている、請求項1に記載の冷凍サイクル装置。
  3. 前記圧縮機は、前記油溜まりの上方に配置され、上下方向または斜め上下方向に延びる孔または溝が形成された電動機を備え、
    前記均圧管の前記一端は、前記孔または溝に挿入されている、請求項2に記載の冷凍サイクル装置。
  4. 前記均圧管の前記一端は、上方に向かって開口している、請求項2または3に記載の冷凍サイクル装置。
  5. 前記圧縮機は、上下方向に延びる回転軸を備え、
    前記均圧管の前記一端は、前記圧縮機のケーシング内において前記回転軸に向かって延長されている、請求項1に記載の冷凍サイクル装置。
  6. 前記圧縮機のケーシングの側壁には孔が形成され、
    前記均圧管は、前記圧縮機のケーシングの外側から前記孔に挿入された本体管と、前記圧縮機のケーシングの内側から前記本体管に挿入され、前記均圧管の前記一端を形成する延長管とを備えている、請求項1〜5のいずれか一つに記載の冷凍サイクル装置。
  7. 底部に油溜まりが形成されたケーシングを有し、冷媒を圧縮する圧縮機と、
    底部に油溜まりが形成されたケーシングを有し、冷媒を膨張させる膨張機と、
    前記圧縮機の油溜まりと前記膨張機の油溜まりとを連通する均油管と、
    一端が前記圧縮機のケーシングにおける前記油溜まりよりも上側かつ前記圧縮機の運転停止時の油面の近傍に接続され、他端が前記膨張機のケーシングにおける前記油溜まりよりも上側かつ前記膨張機の運転停止時の油面の近傍に接続された均圧管と、を備え、
    前記均圧管の前記一端は、前記圧縮機のケーシングを貫通し、前記圧縮機の運転中における前記油溜まりの油面から離れるように当該ケーシングの内部で延長されている、冷凍サイクル装置。
  8. 前記冷媒は二酸化炭素である、請求項1〜7のいずれか一つに記載の冷凍サイクル装置。
JP2006289815A 2006-10-25 2006-10-25 冷凍サイクル装置 Expired - Fee Related JP5023657B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289815A JP5023657B2 (ja) 2006-10-25 2006-10-25 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289815A JP5023657B2 (ja) 2006-10-25 2006-10-25 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2008106986A true JP2008106986A (ja) 2008-05-08
JP5023657B2 JP5023657B2 (ja) 2012-09-12

Family

ID=39440476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289815A Expired - Fee Related JP5023657B2 (ja) 2006-10-25 2006-10-25 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP5023657B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277213A1 (en) * 2006-04-20 2009-11-12 Katsumi Sakitani Refrigerating Apparatus
JP5341075B2 (ja) * 2008-05-23 2013-11-13 パナソニック株式会社 流体機械および冷凍サイクル装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318086B2 (en) 2009-06-12 2012-11-27 Ashwin-Ushas Corporation, Inc. Microwave remediation of medical wastes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568877U (ja) * 1979-06-29 1981-01-26
JPS568878U (ja) * 1979-06-29 1981-01-26
JPH1182345A (ja) * 1997-09-12 1999-03-26 Matsushita Refrig Co Ltd 複数圧縮機の均油システム
JP2006189185A (ja) * 2005-01-05 2006-07-20 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2007285680A (ja) * 2006-04-20 2007-11-01 Daikin Ind Ltd 冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568877U (ja) * 1979-06-29 1981-01-26
JPS568878U (ja) * 1979-06-29 1981-01-26
JPH1182345A (ja) * 1997-09-12 1999-03-26 Matsushita Refrig Co Ltd 複数圧縮機の均油システム
JP2006189185A (ja) * 2005-01-05 2006-07-20 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2007285680A (ja) * 2006-04-20 2007-11-01 Daikin Ind Ltd 冷凍装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277213A1 (en) * 2006-04-20 2009-11-12 Katsumi Sakitani Refrigerating Apparatus
US8312732B2 (en) * 2006-04-20 2012-11-20 Daikin Industries, Ltd. Refrigerating apparatus
JP5341075B2 (ja) * 2008-05-23 2013-11-13 パナソニック株式会社 流体機械および冷凍サイクル装置

Also Published As

Publication number Publication date
JP5023657B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
JP4875484B2 (ja) 多段圧縮機
JP2008101559A (ja) スクロール圧縮機およびそれを用いた冷凍サイクル
JP2008144643A (ja) 多段圧縮機およびそれを用いた冷凍サイクル
JP6521048B2 (ja) スクロール圧縮機
JP4992862B2 (ja) 圧縮機
JP4114337B2 (ja) 冷凍装置
JP5023657B2 (ja) 冷凍サイクル装置
JP7360785B2 (ja) 回転式圧縮機および冷凍サイクル装置
JP2008286151A (ja) 流体機械およびそれを備えた冷凍サイクル装置
JP2006132377A (ja) 流体機械
JP6351749B2 (ja) スクロール圧縮機
JP2010031732A (ja) ロータリ圧縮機
JP2008138572A (ja) スクロール式流体機械
JP2008133968A (ja) 冷凍サイクル装置
JP6192801B2 (ja) 圧縮機
JP2012122452A (ja) 二段圧縮機
WO2019102532A1 (ja) 圧縮機及び冷凍サイクル装置
JP2010001835A (ja) 気体圧縮機
JP5791760B2 (ja) 冷媒圧縮機
JP2008163782A (ja) 密閉型冷媒圧縮機
JP5641801B2 (ja) 冷媒圧縮機
JP5911637B2 (ja) 圧縮機
KR102243832B1 (ko) 밀폐형 로터리 압축기
JP2006132332A (ja) 流体機械
JP5045471B2 (ja) 膨張機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees