JP2008102038A - 帯電粒子量評価装置 - Google Patents

帯電粒子量評価装置 Download PDF

Info

Publication number
JP2008102038A
JP2008102038A JP2006285361A JP2006285361A JP2008102038A JP 2008102038 A JP2008102038 A JP 2008102038A JP 2006285361 A JP2006285361 A JP 2006285361A JP 2006285361 A JP2006285361 A JP 2006285361A JP 2008102038 A JP2008102038 A JP 2008102038A
Authority
JP
Japan
Prior art keywords
flow rate
voltage
particle size
charged particles
concentric cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006285361A
Other languages
English (en)
Inventor
Masato Yamana
正人 山名
Yoshio Mitsutake
義雄 光武
Junichi Watanabe
純一 渡邉
Yukiyasu Asano
幸康 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006285361A priority Critical patent/JP2008102038A/ja
Publication of JP2008102038A publication Critical patent/JP2008102038A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】所望の粒径範囲で帯電粒子の粒子量を評価することができる帯電粒子量評価装置を提供する。
【解決手段】帯電粒子量評価装置1は、円柱状の内側導体2aおよび内側導体2aよりも大径の円筒状の外側導体2bを同心に配置した同心円筒状電極2と、両導体2a,2bの間の空間に軸方向に沿って層流を発生させる吸気ファン3と、両導体2a,2b間に電圧を印加する電圧源5と、両導体2a,2b間に流れる電流を測定する電流計4と、同心円筒状電極2の形状および寸法、吸気ファン3の流量、電圧源5の印加電圧および電流値取得部12が取得した電流計4の測定値に基づいて帯電粒子量を評価する粒径算出部15と、入力部16を用いて入力された帯電粒子の流量に応じて吸気ファン3の流量を制御することで臨界移動度を調整する流量制御部13と、電圧源5の印加電圧を制御することで臨界移動度を設定する電圧制御部11とを備える。
【選択図】図1

Description

本発明は、大気中に浮遊する微粒子の粒径や粒子数などを評価する帯電粒子量評価装置に関するものである。
この種の帯電粒子量評価装置としては、帯電した微粒子の電場中における移動速度(電気移動度)の違いを利用して、微粒子の粒径を測定する微分型電気移動度測定器(DMA:Differential Mobility Analyzer)が従来より提供されている(例えば特許文献1参照)。
しかしながら、DMAを用いた帯電粒子量評価装置は大型のため、ゲルディエンコンデンサと呼ばれる二重同心円筒を用いた帯電粒子量評価装置が従来より提供されている(例えば非特許文献1参照)。図6はゲルディエンコンデンサを用いた帯電粒子量評価装置1の概略構成図であり、この帯電粒子量評価装置1は、同心円筒状電極2と、吸気ファン3と、電流計4と、電圧源5とを主要な構成として備えている。
同心円筒状電極2は、互いに半径の異なる円筒状の内側導体2aおよび外側導体2bを同心に配して構成される。二重同心円筒の内、外側導体2bには電圧源5により直流電圧が印加され、内側導体2aは接地されている。なお電圧源5は図示しない電圧制御部によって電源電圧を変化させることができる。
吸気ファン3は、内側導体2aと外側導体2bとの間の空間を通して空気を吸引することによって、内側導体2aと外側導体2bの間の空間に矢印Aの方向に空気を流し、この空間に空気の流れる方向と速度が均一な層流を生成する。
電流計4は内側導体2aと外側導体2bとの間に流れる電流を測定するものであり、その電流値から帯電粒子の個数を算出することができる。
本装置では吸気ファン3により空気を吸引している状態で、内側導体2aを接地するとともに、電圧源5により外側導体2bに電圧Vを印加して、内外の導体間に電位差を与えると、両導体間に吸引された空気中の帯電粒子が、両導体間に発生する電界によって内側導体2aに引き寄せられる。そして、帯電粒子が内側導体2aに流れ込むと、両導体間に電流が発生するので、電流計4の測定値をもとに帯電粒子の粒子数を測定することができる。なお、電圧源5による印加電圧Vの極性と、電流計4の測定値の極性とを考慮すれば正負何れの極性の帯電粒子でも測定することができる。
ここで、帯電粒子の粒径はその移動度に依存し、その移動度は二重円筒(内側導体2aおよび外側導体2b)の寸法と空気の流量とを一定にすると、電圧源5の印加電圧Vによって定まる。したがって電圧源5の印加電圧を変化させ、その時の電流値を電流計4で測定することによって、所定の粒径の帯電粒子の数を求めることができる。但し、ゲルディエンコンデンサと呼ばれる二重同心円筒を用いた図6の測定装置では、電圧源5の印加電圧により定めた移動度以上(粒径以下)の帯電粒子を全て取り込み、その全数を評価している。
特開平10−288600号公報 北川信一郎編著、「大気電気学」、東海大学出版会、1996年6月10日、47−49頁
上述の帯電粒子量評価装置1では、移動度の変化をもとに帯電粒子の粒子量を所定の粒径範囲で測定することによって粒子数の分布を求めているが、計測したい帯電粒子の流量が同心円筒状電極2の内側導体2aと外側導体2bの間の層流の流量より大きい場合、帯電粒子の総量を測定できず、所望の粒径範囲で帯電粒子の評価が行えないという問題があった。
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、所望の粒径範囲で帯電粒子の粒子量を評価することができる帯電粒子量評価装置を提供することにある。
上記目的を達成するために、請求項1の発明は、円柱状の内側導体および内側導体よりも径の大きい円筒状の外側導体を同心に配置して構成された同心円筒状電極と、同心円筒状電極の一端側に設けられ、内側導体と外側導体との間の空間に同心円筒状電極の軸方向に層流を発生させる気流発生手段と、内側導体と外側導体との間に電圧を印加する電圧印加手段と、内側導体と外側導体との間に流れる電流を測定する電流測定手段と、同心円筒状電極の形状および寸法と気流発生手段による層流の流量と電流測定手段の測定結果とに基づいて帯電粒子量を評価する帯電粒子量評価手段と、計測対象の帯電粒子の臨界移動度を設定する臨界移動度設定手段とを具備したことを特徴とする。
請求項2の発明は、請求項1の発明において、臨界移動度設定手段は、気流発生手段の流量を制御することによって臨界移動度を設定する流量制御手段からなることを特徴とする。
請求項3の発明は、請求項1の発明において、臨界移動度設定手段は、電圧印加手段の印加電圧を調整することによって臨界移動度を設定する電圧制御手段からなることを特徴とする。
請求項4の発明は、請求項3の発明において、電圧制御手段は、同心円筒状電極の形状および寸法と、計測しようとする帯電粒子の臨界移動度と、気流発生手段の流量とに基づいて、電圧印加手段の印加電圧を調整することを特徴とする。
請求項5の発明は、請求項4の発明において、計測対象の帯電粒子の臨界移動度の最小値で気流発生手段の流量を変化させながら、計測した帯電粒子数が一定になるときの流量を求めることによって、計測対象の流量を推定する流量推定手段を設け、電圧制御手段は、同心円筒状電極の形状および寸法と、計測しようとする帯電粒子の臨界移動度と、流量推定手段により推定された流量とに基づいて、電圧印加手段の印加電圧を調整することを特徴とする。
請求項6の発明は、請求項1の発明において、同心円筒状電極は、軸方向において複数に分割された複数の電極ブロックを連結して構成され、臨界移動度設定手段が、複数の電極ブロックと、複数の電極ブロックの間を連結する導電性の連結部材又は絶縁性の連結部材のうちの何れか一方、又は、両方からなり、同心円筒状電極の全長を調整することで臨界移動度を設定することを特徴とする。
請求項1の発明によれば、臨界移動度設定手段を用いて設定された臨界移動度以上、つまり対応する粒径以下の帯電粒子の粒子量が測定されるので、臨界移動度設定手段を用いて測定対象の粒径範囲に対応する臨界移動度を設定することによって、所望の粒径範囲で帯電粒子の粒子量を測定できるという効果がある。
請求項2の発明によれば、流量制御手段により層流の流量を制御することで、臨界移動度を調整することができるので、所望の粒径範囲で帯電粒子の粒子量を測定することができる。
請求項3の発明によれば、電圧制御手段により電圧印加手段の印加電圧を制御することで、臨界移動度を調整することができるので、所望の粒径範囲で帯電粒子の粒子量を測定することができる。
請求項4の発明によれば、同心円筒状電極の形状および寸法と、計測しようとする帯電粒子の臨界移動度と、気流発生手段の流量とに基づいて、電圧制御手段が印加電圧を調整しているので、臨界移動度の設定を自動的に行えるという利点がある。
請求項5の発明によれば、同心円筒状電極の形状および寸法と、計測しようとする帯電粒子の臨界移動度と、流量推定手段により推定された流量とに基づいて、電圧制御手段が印加電圧を調整しているので、臨界移動度の設定を自動的に行えるという利点がある。しかも、流量推定手段は、計測しようとする帯電粒子の臨界移動度の最小値で気流発生手段の流量を変化させながら、計測した帯電粒子数が一定になるときの流量を求めることによって計測対象の流量を推定しており、流量を計測するための流量計測手段を別途設けたり、予め測定対象の流量を計測することなく、測定対象の帯電粒子の流量を推測することができるという利点もある。
請求項6の発明によれば、複数の電極ブロックの間を、導電性の連結部材又は絶縁性の連結部材のうちの何れか一方、又は、両方で連結することによって、同心円筒状電極の全長を変化させて、臨界移動度を調整することができるので、所望の粒径範囲で帯電粒子の粒子量を測定することができる。
以下に本発明の実施の形態を図面に基づいて説明する。
(実施形態1)
本発明の実施形態1を図1及び図2に基づいて説明する。本実施形態の帯電粒子量評価装置1は、図1に示すように、同心円筒状電極2と、気流発生手段たる吸気ファン3と、電流測定手段たる電流計4と、同心円筒状電極2の内側導体2aと外側導体2bの間に電圧を印加する電圧印加手段としての電圧源5と、吸気ファン3に電源を供給するための電圧源6と、コントローラ10とを主要な構成として備えている。
同心円筒状電極2は、円柱状の内側導体2aおよび内側導体2aよりも径の大きい円筒状の外側導体2bを同心に配して構成される。内側導体2aおよび外側導体2bは帯電粒子を引き寄せやすく、且つ、両導体間に流れる電流を測定しやすいように導電率の高い材料で形成するのが好ましく、例えば真鍮の表面にクロムめっきを施して形成される。
内側導体2aは中空ではなく、周面に接地端子21と電流測定端子22とを備え、接地端子21に接続された接地線25を介してグランドに接地される。この内側導体2aは、帯電して電流が流れることによって誤差が生じるのを防止するために、高い絶縁性を有する保持部材(図示せず)を介して外側導体2b内に保持されており、保持部材の材料としては、例えば高絶縁性の三フッ化塩化エチレン樹脂を用いるのが好ましい。
外側導体2bは中空円筒状であって、電源接続端子23と電流測定端子24とを備え、電源接続端子23を介して電圧源5の直流電圧が印加される。また内側導体2aの電流測定端子22と外側導体2bの電流測定端子24との間には電流計4が接続されている。ここに、内側導体2aの接地端子21と外側導体2bの電源接続端子23とで電圧印加端子が構成され、両導体2a,2b間に電圧源5の直流電圧が印加されようになっている。
ここで、帯電粒子の粒径および移動度と、外側導体2bおよび内側導体2aの間に印加した印加電圧と、同心円筒状電極2の形状および寸法の関係を図6に基づいて説明する。
空気中の帯電粒子が等しい移動度を持っていると仮定し、同心円筒状電極2の吸気側において外側導体2bの縁の点Pから流入した帯電粒子が、導体2a,2b間の電界を受けて点Sで捕捉されたものとすると、同心円筒状電極2の筒内に流入してくる帯電粒子は全て内側導体2aに捕捉されることになる。なお帯電粒子が捕捉される点Sの位置は外側導体2bへの印加電圧や気流の流量を調整することで変化する。
ところで、実際の空気中には様々な移動度を持った帯電粒子が存在しており、ある印加電圧および流量の条件下で点Pから流入し、内側導体2aにおいて出口側の縁の点Tで捕捉される帯電粒子の移動度を臨界移動度と呼ぶ。この臨界移動度は、内側導体2aで捕捉可能な帯電粒子と、内側導体2aで捕捉できない帯電粒子の境界を示し、臨界移動度よりも移動度の大きな帯電粒子は内側導体2aで全て捕捉されるが、臨界移動度よりも移動度の小さい帯電粒子は一部が捕捉されずに、同心円筒状電極2の出口から外部へ流出することになる。
例えば図6中の点Rから流入した帯電粒子が点Tで捕捉されたものとすると、移動度が同じ帯電粒子で、点Rを通る同心円C1と外側導体2bとの間の領域から流入する帯電粒子は同心円筒状電極2の出口から流出することになり、同心円C1と内側導体2aの間の領域(図中の斜線部)から流入した帯電粒子のみが内側導体2aで捕捉されることになる。
ここで、帯電粒子の臨界移動度kcは、外側導体2bへの印加電圧がV、内側導体2aと外側導体2bとの間に流れる層流の流量がφ、外側導体2bの半径がr0、内側導体2aの半径がr1、同心円筒状電極2の軸方向の全長がLの場合に、以下の式(1)を用いて表される。
Figure 2008102038
また、移動度kcと帯電粒子の粒径Dpとの関係は、帯電粒子の荷電数をnp、電気素量をe、カニンガム補正係数をCc、空気の粘性係数をμとした時に以下の式(2)で表される。
Figure 2008102038
ここで、カニンガム補正係数Ccは粒径Dpの関数であり、臨界移動度kcと粒径Dp及び印加電圧Vは上記の式(1)と式(2)を連立して求めることができる。なお、粒径Dpと印加電圧Vとの関係を求める際には、カニンガム補正係数Ccが粒径Dpにより変化するため、式(1)と式(2)を連立して臨界移動度kcを消去した式から数値的に算出する。
また臨界移動度kcは式(1)と式(2)とを用いて、測定したい粒径、層流の流量φ、同心円筒状電極2の内側導体2aの半径r1、外側導体2bの半径r0がわかっている場合、同心円筒状電極2の長さLが固定であれば印加電圧Vにより、印加電圧Vが固定であれば同心円筒状電極2の長さLにより決定される。本実施形態の帯電粒子量評価装置1では粒径の測定範囲を例えば0.6〜28nmとしてあり、ここで、帯電粒子の荷電数npを1と仮定すると、式(2)より電気移動度は5.49〜0.00274cm/V・sとなる。また層流の流量φを1.65m/min(1650L/min)、同心円筒状電極2の内側導体2aの半径r1を4.5cm、外側導体2bの半径r0を4.5cmとし、同心円筒状電極2の全長Lを52cmで固定した場合、印加電圧Vは0.99〜1981Vとなる。
また吸気ファン3は、電圧端子31を備え、電圧端子31を介して電圧源6の直流電圧が印加され、この直流雷圧によって吸気ファン3の回転数を変化させることで内側導体2aと外側導体2bの間の環状空間2cに流れる層流の流量を制御できる。この吸気ファン3は、同心円筒状電極2に対して気流の出口側(図1中の右側)に配置され、内側導体2aと外側導体2bの間の環状空間2cの空気を吸引することによって、この環状空間2c内に同心円筒状電極2の軸方向に沿って流れる気流を生成している。ここで、両導体2a,2b間の空間(環状空間2c)内に層流を生成するために、吸気ファン3の備える回転羽根(図示せず)の径が外側導体2bの径よりも大きく形成されており、回転羽根の回転面が同心円筒状電極2の中心軸方向と直交し、且つ、回転羽根の回転軸と同心円筒状電極2の中心軸とが同一直線上に存在するように吸気ファン3が配置され、同心円筒状電極2と吸気ファン3との間に気流の流れを乱す凹凸が出来ないように接続されている。なお両導体2a,2bの間の空間に層流を生成するのは、同心円筒状電極2の入口側(図1中の左側)から両導体2a,2bの間の空間に流入した帯電粒子を同心円筒状電極2の軸方向と平行に進ませることによって、帯電粒子を一定速度で移動する状態にして電界を作用させるためである。
電流計4は、内側導体2aの電流測定端子22と外側導体2bの電流測定端子24との間に接続されるデジタル式の電流計であり、電流の測定値は後述の電流値取得部12によって自動的に取得される。なお内側導体2aと外側導体2bとの間に流れる電流から帯電粒子の粒子数を求めることができ、両導体2a,2b間に流れる電流をisとすると、帯電粒子の荷電数npを1と仮定しているので、帯電粒子の個数nsは以下の式(3)で表される。なお、荷電数npが1でないときには、式(3)の電気素量eに荷電数npを乗じることにより算出できる。但し、eは電気素量、φは気流の流量である。
Figure 2008102038
また、電圧源5は、電源接続端子23を介して外側導体2bに直流電圧を印加する可変電源であり、自動制御で測定が行えるように後述の電圧制御部11によって印加電圧が自動的に制御される。なお、電圧源5による印加電圧の極性は正又は負に切り替えることが可能であり、電圧源5による印加電圧が正の電圧であれば正の帯電粒子を計測でき、印加電圧が負の電圧であれば負の帯電粒子を計測することができる。
電圧源6は、電圧端子31を介して吸気ファン3に直流電圧を印加する可変電源であり、自動制御で測定が行えるように後述の流量制御部13によって吸気ファン3で発生させたい流量に対応した回転数となるよう印加電圧が自動的に制御される。なお、電圧源6による印加電圧の極性は正又は負に切り替えることが可能であり、電圧源6による印加電圧の極性が正の電圧であれば、同心円筒状電極2から吸気ファン3側(図1中の右側)への気流発生を、印加電圧の極性が負の電圧であれば、吸気ファン3側から同心円筒状電極2側(図1中の左側)への気流発生を行うことができる。
次にコントローラ10の構成について説明する。コントローラ10は電圧制御部11(電圧制御手段)と、電流値取得部12と、流量制御部13(流量制御手段)と、演算処理部14と、入力部16とを主要な構成として備える。
電圧制御部11は、後述の粒径算出部15から入力された印加電圧の電圧値および極性に基づいて電圧源5の印加電圧を自動的に制御する。
電流値取得部12は、電流計4から電流の測定値を自動的に取得し、取得した電流値を粒径算出部15に出力する。
流量制御部13は、後述の入力部16によって入力された流量に基づいて、吸気ファン3の流量が入力された設定値となるように電圧源6の印加電圧を自動的に制御する。
演算処理部14は、帯電粒子量の評価を行う粒径算出部15(帯電粒子量評価手段)を備え、電圧制御部11を用いて電圧源5の印加電圧を設定したり、電流値取得部12から得られた電流値をもとに帯電粒子の粒径分布を求めたり、流量制御部13を用いて電圧源6の印加電圧を設定する機能を有している。尚、演算処理部14は例えばマイクロコンピュータを用いて構成され、粒径算出部15はマイクロコンピュータの演算機能によって実現される。
粒径算出部15は、後述の入力部16を用いて入力された測定条件に従い、測定対象の帯電粒子の粒径と移動度の関係から、外側導体2bに印加する電圧を算出して算出結果を電圧制御部11に出力するとともに、電流値取得部12から取得した電流値をもとに、電圧源5の印加電圧により設定される粒径以下の帯電粒子の個数を算出する。また粒径算出部15では、電圧制御部11を用いて電圧源5の印加電圧をスイープさせることで、測定対象の粒径を所定のスイープ幅ずつ変化させており、測定対象の粒径をスイープ幅だけ変化させる毎に粒子数を測定することによって、帯電粒子の粒子数の粒径分布を求めることができる。さらに、粒径算出部15は計測したい帯電粒子の極性を電圧制御部11に出力する。また、粒径算出部15は、計測した粒径分布を電子データとして記憶部(図示せず)に記憶させるとともに、図示しない出力装置(プリンタやモニタ装置など)に粒径分布を出力する。
入力部16は、測定しようとする帯電粒子の測定範囲や極性、粒径のスイープ幅、流量及び同心円筒状電極2の形状や寸法などの測定条件をユーザが入力するためのものであり、入力された測定条件は流量制御部13と粒径算出部15とに出力される。
次に本実施形態の帯電粒子量評価装置1の動作を図2のフロー図に従って説明する。
先ずコントローラ10の電源を投入する。コントローラ10に電力が供給されて、コントローラ10が動作を開始すると、測定担当者が入力部16を用いて帯電粒子の粒径の測定範囲および極性と、粒径のスイープ幅と、測定対象の帯電粒子の流量と、同心円筒状電極2の形状および寸法などの測定条件を入力する(ステップS1)。以下では粒径の測定範囲が0.6〜28nm、極性が負、0.6〜2nmの粒径範囲ではスイープ幅が0.2nm、2〜28nmの粒径範囲ではスイープ幅が2nm、帯電粒子の流量が1.65m/min(1650L/min)、同心円筒状電極2の内側導体2aの半径r1が4.5cm、外側導体2bの半径r0が4.8cmとし、全長Lは52cmで固定する。なお、電流計4において電流の向きを考慮すれば、印加する電圧の極性の入力を不要にすることもできる。
次に電圧源6の電源を投入する。ただし、電源投入時には電圧源6の電圧はゼロに設定されている。なお、コントローラ10の電源投入に連動して、電圧源6の電源を投入しても良い。
電圧源6の電源が投入されると、流量制御部13は、ステップS1で入力された帯電粒子の流量をもとに、吸気ファン3の回転数が入力された流量に対応する回転数となるような電圧に電圧源6の印加電圧を設定する。これにより、吸気ファン3が所望の回転数で回転し、入力部16で入力された帯電粒子の流量と同じ流量の層流を発生させる(ステップS2)。なお、今回の測定条件では吸気ファン3の流量は1.65m/min(1650L/min)に設定される。
次に電圧源5の電源を投入する。但し電源投入時には電圧源5の電圧はゼロに設定されている。なお、コントローラ10の電源投入に連動して、電圧源5の電源を投入させても良い。
電圧源5の電源が投入されると、粒径算出部15は、ステップS1で入力された帯電粒子の粒径の測定範囲および極性と、帯電粒子の流量と、同心円筒状電極2の寸法などの測定条件をもとに、前述の粒径、臨界移動度および印加電圧の関係式(1)(2)を連立して解くことにより、測定対象の粒径範囲に対応する印加電圧の変動範囲と、粒径のスイープ幅に対応した印加電圧のスイープ幅を算出しており、粒径を最小値から最大値まで所定のスイープ幅で変化させる際に各々の粒径に対応した印加電圧を求めている(ステップS3)。なお、上述した本実施形態の測定条件では、粒径の測定範囲に対応する印加電圧Vは0.99〜1981Vと算出される。
次に粒径算出部15は、粒径の最小値に対応した印加電圧の電圧値及び極性を電圧制御部11に出力する(ステップS4)。今回の測定条件では粒径の最小値は0.6nmである。
このとき、電圧制御部11が電圧源5の印加電圧を設定して、粒径の最小値に対応した印加電圧が外側導体2bに印加される(ステップS5)。なお外側導体2bに印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、負の帯電粒子を測定したい場合は外側導体2bに印加する電圧の極性を負極性とする。これによって、内側導体2aから外側導体2bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体2aに引き寄せられる。そして、電圧源5の印加電圧で設定された粒径以下の帯電粒子は内側導体2aに取り込まれて、内側導体2aと外側導体2bとの間に電流が流れるのである(ステップS6)。
内側導体2aに取り込まれた帯電粒子によって電流が流れると、その電流値は電流計4によって測定される。電流計4の測定値は電流値取得部12によって自動的に取得され、電流値取得部12は取得した電流値を粒径算出部15に出力する(ステップS7)。
粒径算出部15は、電流値取得部12から入力された電流値isから、上述の式(3)を用いて最小粒径以下の帯電粒子の数を算出し、測定対象の帯電粒子の粒径および個数を記憶部(図示せず)に記憶させる(ステップS8)。このとき、粒径算出部15では測定結果を記憶部に記憶させるとともに、図示しない出力装置に出力しても良い。
測定対象の帯電粒子の粒径と個数とを記憶部に記憶させると、粒径算出部15では全ての測定範囲について測定を終了したか否かを判断し(ステップS9)、測定が終わっていなければ、粒径を所定のスイープ幅だけ増加させた場合の印加電圧の電圧値及び極性を電圧制御部11に出力した後(ステップS10)、上述のステップS5〜S9までの処理を繰り返す。尚、0.6nm〜2nmの粒径範囲ではスイープ幅を0.2nmとしているので、最小粒径(0.6nm)の次は粒径が0.8nmの時の印加電圧の電圧値を出力する。
コントローラ10では上述の処理を行い、粒径を0.6nmから28nmまで所定のスイープ幅ずつスイープさせる毎に、各々の粒径の設定値で上記の処理S5〜S9を繰り返すことによって粒子数を算出し、粒径分布(粒径に対する個数の分布)を求めており、ステップS9において全ての測定範囲で測定を終了したと判断されると、粒径算出部15は粒径分布の算出結果を記憶部に記憶させるとともに、出力装置に測定結果を出力する(ステップS11)。
以上説明したように本実施形態の帯電粒子量評価装置1では、同心円筒状電極2に対して気流の出口側(図1中の右側)に配置された吸気ファン3の流量を流量制御部13によって制御可能にしており、例えばnanoeイオンドライヤー(松下電工株式会社の商品名)のように帯電粒子が所定の流量で流れている場合に、流量制御部13により同心円筒状電極2の内側導体2aと外側導体2bの間の層流の流量を変化させることで、臨界移動度を調節することができるため、所望の粒径範囲の帯電粒子量を計測することが可能になる。
また、本実施形態では粒径算出部15が、電圧制御部11を用いて外側導体2bに印加する印加電圧Vを変化させることによって、臨界移動度の調節を行っており、流量の変化に対して臨界移動度を容易に調節することができる。さらに本実施形態では、粒径算出部15が、入力部16を用いて入力された帯電粒子の粒径の測定範囲と、帯電粒子の流量と、同心円筒状電極の寸法とに基づいて、外側導体2bに印加する印加電圧Vを算出しており、測定しようとする帯電粒子の粒径範囲(臨界移動度)を自動的に設定することができる。
なお本実施形態では、計測対象の帯電粒子の臨界移動度を設定する臨界移動度設定手段として、吸気ファン3の流量を制御することによって臨界移動度を設定する手段(流量制御部13)と、電圧源5による印加電圧を制御することで臨界移動度を設定する手段(粒径算出部15および電圧制御部11からなる)の両方を備えているが、何れか一方のみを備えるようにしても良く、何れ一方の設定手段のみを備える場合でも臨界移動度を設定することで、所望の粒径範囲の帯電粒子量を計測することが可能になる。
(実施形態2)
本発明の実施形態2を図3及び図4に基づいて説明する。
本実施形態では、実施形態1で説明した帯電粒子量評価装置1において、計測する粒径の測定範囲の最大値(臨界移動度最小値)で、吸気ファン3の流量を変化させながら帯電粒子の粒子数の計測を行い、粒子数が一定になるときの流量を求めることによって、計測対象の流量を推定する流量推定部17(流量推定手段)を、コントローラ10の演算処理部14に追加して設けており、流量を測定するための流量測定手段を別途設けたり、予め計測対象の流量を計測しなくても、計測対象の流量を推定できるようにしている。尚、流量推定部17以外の構成は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
流量制御部13は、実施形態1で説明した機能に加えて、後述の流量推定部17から入力される流量に基づいて、吸気ファン3の回転数が流量推定部17の推定値になるように電圧源6の印加電圧を自動的に制御する機能を有している。
粒径算出部15は、実施形態1で説明した機能に加えて、入力部16を用いて測定条件が入力された時に帯電粒子の流量が不明であった場合、後述の流量推定部17に流量の推定処理を開始させる流量推定開始信号を出力し、流量の推定処理を行わせる。流量推定部17が流量の推定処理を開始した後に、流量推定部17から粒径算出部15に流量の設定値が入力されると、粒径算出部15は、帯電粒子の粒径の測定範囲のうち粒径の最大値(臨界移動度最小値)について、入力された流量の設定値と粒径の最大値(臨界移動度最小値)と帯電粒子の極性と同心円筒状電極2の形状および寸法とに基づいて、電圧源5による印加電圧Vを算出し、電圧制御部11に出力する。この時同時に粒径算出部15では、電流値取得部12から取得した電流値をもとに、現在の流量の設定値に対応する帯電粒子の粒子数を求め、その結果を流量推定部17に出力する。
流量推定部17は、粒径算出部15から流量推定開始信号が入力されると、吸気ファン3の流量を任意の流量に設定する信号を流量制御部13に出力するとともに、流量の設定値を粒径算出部15に出力する。また流量推定部17は、吸気ファン3の流量を上記設定値に設定した後に、粒径算出部15から現在の設定流量に対応する帯電粒子の粒子数の算出結果が入力されると、その粒子数を図示しない記憶部に記憶させるとともに、流量の設定値を現在の設定値から約10%増加させる信号を流量制御部13に出力するとともに、変更後の設定値を粒径算出部15に出力する。このとき、粒径算出部15は、変更後の流量の設定値に対応する帯電粒子の粒子数を求めて、流量推定部17に出力しており、流量推定部17では、流量の設定値を変化させる前後で粒径算出部15から入力される粒子数の値を比較し、粒子数が同じであれば、流量の推定処理を終了したことを示す流量推定終了信号を粒径算出部15に出力する。
次に本実施形態の帯電粒子量評価装置1の動作を図4のフロー図に従って説明する。
先ずコントローラ10の電源を投入する。コントローラ10に電力が供給されて、コントローラ10が動作を開始すると、測定担当者が入力部16を用いて帯電粒子の粒径の測定範囲および極性と、粒径のスイープ幅と、帯電粒子の流量と、同心円筒状電極2の形状および寸法などの測定条件を入力する(ステップS21)。ここで、帯電粒子の流量が不明な場合、測定担当者は入力部16を用いて帯電粒子の流量の入力欄に何も入力しなかったり、流量の値としてゼロを入力すれば良い。なお電流計4において電流の向きを考慮すれば、印加電圧の極性の入力を不要にすることもできる。
次に、コントローラ10は電圧源6の電源を投入する。但し電源投入時には電圧源6の電圧値はゼロに設定されている。尚、コントローラ10の電源と連動して、電圧源6の電源を投入させても良い。
ここで、粒径算出部15では、ステップS21で入力された測定条件をもとに帯電粒子の流量が不明か否かを判定し(ステップS22)、流量が不明な場合は流量の推定処理を実行させるため、流量推定開始信号を流量推定部17に出力する(ステップS23)。一方、入力部16を用いて流量が入力されている場合は、上述した図2のステップS2に移行し、実施形態1で説明したのと同様の動作を行うので、その説明は省略する。
一方、ステップS23で粒径算出部15から流量推定部17に流量推定開始信号が入力された場合、流量推定部17は、流量の推定処理を開始し、吸気ファン3の流量を任意の流量に設定する信号を流量制御部13と粒径算出部15とに出力する(ステップS24)。このとき、流量制御部13では、流量の設定信号をもとに吸気ファン3の回転数が流量の設定値に対応する回転数となるような電圧値に電圧源6の出力電圧を制御する。
その後、コントローラ10は電圧源5の電源を投入する。但し電源投入時には電圧源5の電圧はゼロに設定されている。尚、コントローラ10の電源と連動して、電圧源5の電源を投入させても良い。
電圧源5の電源が投入されると、粒径算出部15は、流量推定部17からの流量設定値の入力に伴い、帯電粒子の粒径の測定範囲のうち粒径の最大値(臨界移動度最小値)について、入力された流量の設定値と、粒径の最大値(臨界移動度最小値)と、帯電粒子の極性と、同心円筒状電極2の寸法とから、上述した粒径、臨界移動度および印加電圧の関係式(1)(2)を連立して解くことによって印加電圧Vを算出し、電圧制御部11に出力する(ステップS25)。
電圧制御部11は、粒径算出部15から入力される信号に基づいて電圧源5の印加電圧を所定の電圧値に設定し、粒径の最大値に対応した印加電圧Vを外側導体2bに印加する(ステップS26)。ここで、外側導体2bに印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、負の帯電粒子を測定したい場合は外側導体2bに印加する電圧の極性を負極性とする。これによって、内側導体2aから外側導体2bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体2aに引き寄せられる。そして、電圧源5の印加電圧Vで設定された粒径以下の帯電粒子は内側導体2aに取り込まれて、内側導体2aと外側導体2bとの間に電流が流れる(ステップS27)。
内側導体2aに取り込まれた帯電粒子によって電流が流れると、その電流値は電流計4によって測定され、その測定値は電流値取得部12によって自動的に取得される(ステップS28)。
電流値取得部12は、取得した電流値を粒径算出部15に出力し、粒径算出部15において、上述の式(3)を用いて粒径最大値以下の帯電粒子の数を算出し、流量推定部17へ出力する(ステップS29)。
流量推定部17は、吸気ファン3の流量を所定の設定値に設定した状態で、粒径算出部15から帯電粒子の粒子数の算出結果が入力されると、流量の現在の設定値に対応する帯電粒子の粒子数を図示しない記憶部に記憶させる(ステップS30)。ここで、流量推定部17は、吸気ファン3の流量の設定が1回のみかどうかを判定し(ステップS3l)、1回のみの場合は流量を現在の設定値から約10%増加させた値を新たな設定値として流量制御部13と粒径算出部15に出力し(ステップS32)、上述のステップS25〜S30までの処理を再度行わせる。一方、ステップS31において吸気ファン3の流量の設定が2回以上の場合、流量推定部17は、現在の流量設定値に対応する帯電粒子の粒子数の算出結果と、記憶部に記憶されている前回の流量設定値に対応した帯電粒子の粒子数の算出結果とを比較し、粒子数が同じかどうか判定する(ステップS33)。このとき、粒子数が同じであれば、つまり現在の流量設定値に対応する粒子数の算出結果と、記憶部に記憶されている前回の流量設定値に対応した粒子数の算出結果との差の絶対値が所定のしきい値以下であれば、流量推定部17は流量の推定処理を終了する流量推定終了信号を粒径算出部15に出力する(ステップS34)。一方、ステップS33の判定の結果、粒子数が同じでなければ、流量推定部17は、流量を現在の設定値から約10%増加させた値を新たな設定値として流量制御部13と粒径算出部15に出力し(ステップS32)、上述のステップS25に戻って、上記の処理を繰り返し実行する。
粒径算出部15は、ステップS34において流量推定部17から流量推定終了信号が入力されると、現在の流量の設定値を帯電粒子の流量に設定し(ステップS35)、図2のステップS3に移行する。すなわち、粒径算出部15では、現在の流量の設定値と、入力部16を用いて入力された帯電粒子の粒径の測定範囲および極性と、同心円筒状電極2の形状および寸法などの測定条件をもとに、上述した粒径、臨界移動度および印加電圧の関係式(1)(2)を連立して解くことによって、測定対象の粒径範囲に対応する印加電圧の変動範囲と、粒径のスイープ幅に対応した印加電圧のスイープ幅を算出しており、粒径を最小値から最大値まで所定のスイープ幅で変化させる際に、各々の粒径に対応した印加電圧を求めている(ステップS3)。
次に粒径算出部15は、粒径の最小値に対応した印加電圧の電圧値及び極性を電圧制御部11に出力する(ステップS4)。尚、今回の測定条件では粒径の最小値は0.6nmである。
このとき、電圧制御部11が電圧源5の印加電圧を設定して、粒径の最小値に対応した印加電圧が外側導体2bに印加される(ステップS5)。これによって、内側導体2aから外側導体2bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体2aに引き寄せられる。そして、電圧源5の印加電圧で設定された粒径以下の帯電粒子は内側導体2aに取り込まれて、内側導体2aと外側導体2bとの間に電流が流れる(ステップS6)。
内側導体2aに取り込まれた帯電粒子によって電流が流れると、その電流値は電流計4によって測定される。電流計4の測定値は電流値取得部12によって自動的に取得され、電流値取得部12は取得した電流値を粒径算出部15に出力する(ステップS7)。
粒径算出部15は、電流値取得部12から入力された電流値isから、上述の式(3)を用いて最小粒径以下の帯電粒子の数を算出し、測定対象の帯電粒子の粒径および個数を記憶部(図示せず)に記憶させる(ステップS8)。このとき、粒径算出部15では測定結果を記憶部に記憶させるとともに、図示しない出力装置に出力しても良い。
測定対象の帯電粒子の粒径と個数とを記憶部に記憶させると、粒径算出部15では全ての測定範囲について測定を終了したか否かを判断し(ステップS9)、測定が終わっていなければ、粒径を所定のスイープ幅だけ増加させた場合の印加電圧の電圧値及び極性を電圧制御部11に出力した後(ステップS10)、上述のステップS5〜S9までの処理を繰り返す。尚、0.6nm〜2nmの粒径範囲ではスイープ幅を0.2nmとしているので、最小粒径(0.6nm)の次は粒径が0.8nmの時の印加電圧の電圧値を出力する。
上述の処理を行い、粒径を0.6nmから28nmまで所定のスイープ幅ずつスイープさせる毎に、各々の粒径の設定値で上記の処理S5〜S9を繰り返すことによって粒子数を算出して、粒径分布(粒径に対する個数の分布)を求めており、ステップS9において全ての測定範囲で測定を終了したと判断されると、粒径算出部15は粒径分布の算出結果を記憶部に記憶させるとともに、出力装置に測定結果を出力する(ステップS11)。
以上説明したように本実施形態の帯電粒子量評価装置1では、実施形態1で説明した帯電粒子量評価装置1に流量推定部17を追加することによって、計測対象の帯電粒子の流量を測定することができ、流量計測手段を別途設けたり、予め測定対象の帯電粒子の流量を計測しなくても、測定対象の帯電粒子の流量を推定することができる。
そして、電圧制御部11が、ステップS21で入力された同心円筒状電極2の形状および寸法と、計測しようとする帯電粒子の臨界移動度と、流量推定部17により推定された流量とに基づいて、電圧源5の印加電圧を調整しており、印加電圧を調整することで臨界移動度を調整して、所望の粒径範囲の帯電粒子量を測定することができる。
なお、入力部16を用いて帯電粒子の流量が不明であるかどうかを測定条件の1つとして入力するようにしても良く、これによって帯電粒子の流量が不明か否かを明確にできる。また、帯電粒子の流量が不明であるかどうかを測定条件の1つとして入力するとともに、流量が不明の場合はおおよその流量の予測値を入力し、流量推定部17が入力された予測値を初期設定値として流量の推定処理を開始するようにしても良く、流量の推定処理にかかる時間を短縮することができる。また測定条件の一つとして、流量推定部17が、流量の設定値を増加させる際の増分(スイープ割合)を入力させるようにしても良く、スイープ割合を比較的小さい値に設定すれば、帯電粒子の流量を高い精度で推定することができる。
(実施形態3)
本発明の実施形態3に図5に基づいて説明する。
本実施形態では、実施形態1で説明した帯電粒子量評価装置1において、同心円筒状電極2が、軸方向において複数に分割された複数(例えば3個)の電極ブロック2、2、2を連結して構成され、臨界移動度設定手段を、複数の電極ブロック2、2、2と、電極ブロック間をそれぞれ連結する導電性の連結部材7および絶縁性の連結部材8で構成してある。そして、複数に分割された電極ブロック2、2、2の間を導電性の連結部材7や絶縁性の連結部材8を介して連結することで、同心円筒状電極2の軸方向の全長Lを調節して、臨界移動度を調節することができ、電圧源5による印加電圧の高圧化を防ぐこともできる。なお、同心円筒状電極2以外の構成は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、図示および説明は省略する。
同心円筒状電極2は、電極ブロック2、2、2を空気ギャップを介して連結することにより構成される。各電極ブロック2、2、2は、それぞれ、中空ではない円柱状の内側導体2a、2a、2aと、内側導体2a、2a、2aよりも径の大きい円筒状の外側導体2b、2b、2bを同心に配して構成される。なお内側導体2a、2a、2aの径、外側導体2b、2b、2bの径はそれぞれ同一の寸法に形成されている。
電極ブロック2は、3つの電極ブロック2〜2のうち最も吸気側(図5の左側)に配置されており、電極ブロック2の内側導体2aは接地端子21と電流測定端子22とを備え、接地端子21に接続された接地線25を介してグランドに接地される。また、電極ブロック2の外側導体2bは電源接続端子23と電流測定端子24とを備え、電源接続端子23を介して電圧源5の直流電圧が印加される。また、内側導体2aの電流測定端子22と外側導体2bの電流測定端子24との間には電流計4が接続されている。ここに、内側導体2aの接地端子21と外側導体2bの電源接続端子23とで電圧印加端子が構成され、両導体2a,2b間に電圧源5の直流電圧が印加されようになっている。
また電極ブロック2,2の内側導体2a,2aは、それぞれ、接地端子26,28備えており、内側導体2aは接地端子26に接続された接地線27を介して、内側導体2aは接地端子28に接続された接地線29を介してそれぞれグランドに接地されている。
導電性の連結部材7は、内側導体2a,2aと径が同じ円柱状の内側導体7aと、外側導体2b,2bと径が同じ円筒状の外側導体7bとを同心に配置して構成されており、内側導体7aは高い絶縁性を有する保持部材(図示せず)を介して外側導体7b内に保持されている。連結部材7は電極ブロック2,2間に介装され、その全長L4は電極ブロック2,2間の空気ギャップと同じ長さに形成されているので、電極ブロック2,2は連結部材7を介して連結されることになる。ここで、電極ブロック2,2間を導電性の連結部材7を介して連結すると、内側導体2a,2aの間、外側導体2b,2bの間がそれぞれ導通するため、上述した式(1)における同心円筒状電極2の全長Lが(L1+L2+L4)となり、電極ブロック2,2の全長L1,L2や連結部材7の全長L4をそれぞれ所望の長さに設定することで、同心円筒状電極2の全長Lを調整することができる。ここにおいて、連結部材7(内側導体7aおよび外側導体7b)の材料は、電流量による粒子数の誤差を小さくするために、同心円筒状電極2と同じ材料にすることが好ましい。
一方、絶縁性の連結部材8は、内側導体2a,2aと径が同じ円柱状の内側絶縁体8aと、外側導体2b,2bと径が同じ円筒状の外側絶縁体8bとを同心に配置して構成されており、内側絶縁体8aは高い絶縁性を有する保持部材(図示せず)を介して外側絶縁体8b内に保持されている。連結部材8は電極ブロック2,2間に介装され、その全長L5は電極ブロック2,2間の空気ギャップと同じ長さに形成されている。ここで、電極ブロック2,2間を絶縁性の連結部材8を介して連結すると、内側導体2a,2aの間、外側導体2b,2bの間がそれぞれ電気的に絶縁されるため、上述した式(1)における同心円筒状電極2の全長Lを(L1+L2+L4)とすることができる。ここにおいて、連結部材8に電流が流れると粒子数の測定誤差が発生する要因となるため、連結部材8の材料としては、なるべく高い絶縁性を有する材料を用いるのが好ましい。
次に本実施形態の帯電粒子量評価装置1の動作について説明を行う。なおコントローラ10の構成は実施形態1とほぼ同様であるので、図2のフロー図を参照して動作説明を行う。
先ずコントローラ10の電源を投入する。コントローラ10に電力が供給されて、コントローラ10が動作を開始すると、測定担当者が入力部16を用いて帯電粒子の粒径の測定範囲および極性と、粒径のスイープ幅と、測定対象の帯電粒子の流量と、同心円筒状電極2の形状および寸法などの測定条件を入力する(ステップS1)。なお、以下では粒径の測定範囲が0.6〜28nm、極性が負、0.6〜2nmの粒径範囲ではスイープ幅が0.2nm、2〜28nmの粒径範囲ではスイープ幅が2nm、帯電粒子の流量が1.65m/min(1650L/min)、同心円筒状電極2の内側導体2aの半径r1を4.5cm、外側導体2bの半径r0を4.8cmとし、電圧源5の印加電圧は0〜1000Vの範囲内でしか変動できないものとする。また同心円筒状電極2は3つの電極ブロック2,2,2からなり、電極ブロック2,2の間を導電性の連結部材7を介して、電極ブロック2,2の間を絶縁性の連結部材8を介してそれぞれ連結するものとし、各電極ブロック2,2,2の全長L1,L2,L3をそれぞれ50cm、連結部材7,8の全長L4,L5をそれぞれ3cmとする。なお、電流計4において電流の向きを考慮すれば、印加する電圧の極性の入力を不要にすることもできる。
次に電圧源6の電源を投入する。ただし、電源投入時には電圧源6の電圧はゼロに設定されている。なお、コントローラ10の電源投入に連動して、電圧源6の電源を投入しても良い。
電圧源6の電源が投入されると、流量制御部13は、入力部16を用いて入力された帯電粒子の流量をもとに、吸気ファン3の回転数が入力された流量に対応する回転数となるような電圧に電圧源6の印加電圧を設定する。これにより、吸気ファン3が所望の回転数で回転し、入力部16で入力された帯電粒子の流量と同じ流量の層流を発生させる(ステップS2)。なお、今回の測定条件では吸気ファン3の流量は1.65m/min(1650L/min)に設定される。
次に電圧源5の電源を投入する。但し電源投入時には電圧源5の電圧はゼロに設定されている。なお、コントローラ10の電源投入に連動して、電圧源5の電源を投入させても良い。
電圧源5の電源が投入されると、粒径算出部15は、入力部16を用いて入力された帯電粒子の粒径の測定範囲および極性と、帯電粒子の流量と、同心円筒状電極2の寸法などの測定条件をもとに、前述の粒径、臨界移動度および印加電圧の関係式(1)(2)を連立して解くことにより、測定対象の粒径範囲に対応する印加電圧の変動範囲と、粒径のスイープ幅に対応した印加電圧のスイープ幅を算出しており、粒径を最小値から最大値まで所定のスイープ幅で変化させる際に各々の粒径に対応した印加電圧を求めている(ステップS3)。なお粒径の測定範囲が0.6〜28nm、極性が負、0.6〜2nmの粒径範囲ではスイープ幅が0.2nm、2〜28nmの粒径範囲ではスイープ幅が2nm、帯電粒子の流量が1.65m/min(1650L/min)、同心円筒状電極2の内側導体2aの半径r1は4.5cm、外側導体2bの半径r0は4.8cmとし、電圧源5による最大印加電圧が1000Vという入力条件から、必要な同心円筒状電極2の全長Lが103cmと算出され、この情報が図示しないモニタに表示される。このとき測定担当者は、モニタの表示に基づいて、全長L1,L2が50cmの電極ブロック2,2の間に、全長L4が3cmの導電性の連結部材7を挿入するとともに、電極ブロック2,2の間に絶縁性の連結部材8を接続して、同心円筒状電極2の全長Lを103cmに調整してあり、入力された帯電粒子の粒径範囲で粒子量の測定が可能になる。
次に粒径算出部15は、粒径の最小値に対応した印加電圧の電圧値及び極性を電圧制御部11に出力する(ステップS4)。今回の測定条件では粒径の最小値は0.6nmである。
このとき、電圧制御部11が電圧源5の印加電圧を設定して、粒径の最小値に対応した印加電圧が外側導体2bに印加される(ステップS5)。なお外側導体2bに印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、負の帯電粒子を測定したい場合は外側導体2bに印加する電圧の極性を負極性とする。これによって、内側導体2aから外側導体2bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体2aに引き寄せられる。そして、電圧源5の印加電圧で設定された粒径以下の帯電粒子は内側導体2aに取り込まれて、内側導体2aと外側導体2bとの間に電流が流れるのである(ステップS6)。
内側導体2aに取り込まれた帯電粒子によって電流が流れると、その電流値は電流計4によって測定される。電流計4の測定値は電流値取得部12によって自動的に取得され、電流値取得部12は取得した電流値を粒径算出部15に出力する(ステップS7)。
粒径算出部15は、電流値取得部12から入力された電流値isから、上述の式(3)を用いて最小粒径以下の帯電粒子の数を算出し、測定対象の帯電粒子の粒径および個数を記憶部(図示せず)に記憶させる(ステップS8)。このとき、粒径算出部15では測定結果を記憶部に記憶させるとともに、図示しない出力装置に出力しても良い。
測定対象の帯電粒子の粒径と個数とを記憶部に記憶させると、粒径算出部15では全ての測定範囲について測定を終了したか否かを判断し(ステップS9)、測定が終わっていなければ、粒径を所定のスイープ幅だけ増加させた場合の印加電圧の電圧値及び極性を電圧制御部11に出力した後(ステップS10)、上述のステップS5〜S9までの処理を繰り返す。
上述の処理を行い、粒径を0.6nmから28nmまで所定のスイープ幅ずつスイープさせる毎に、各々の粒径の設定値で上記の処理S5〜S9を繰り返すことによって粒子数を算出して、粒径分布(粒径に対する個数の分布)を求めており、ステップS9において全ての測定範囲で測定を終了したと判断されると、粒径算出部15は粒径分布の算出結果を記憶部に記憶させるとともに、出力装置に測定結果を出力する(ステップS11)。
以上説明したように本実施形態の帯電粒子量評価装置1では、同心円筒状電極2を、軸方向において複数に分割された複数の電極ブロック2,2,2を連結して構成するものとし、各電極ブロックの間を導電性の連結部材7又は絶縁性の連結部材8を介して連結することによって、同心円筒状電極2の全長Lを調整可能にしてあり、同心円筒状電極2の全長Lを調整することによって臨界移動度を調整している。このように、各電極ブロック2,2,2の全長や、電極ブロック間を接続する導電性の連結部材7又は絶縁性の連結部材8の全長を調整することで、帯電粒子の臨界移動度を調整しているので、所望の粒径範囲の帯電粒子の粒子量を正確に測定することができる。なお本実施形態では、複数の電極ブロック2,2,2の間を導電性の連結部材7と絶縁性の連結部材8とを用いて連結することで、同心円筒状電極2の全長Lを調整しているが、導電性の連結部材7又は絶縁性の連結部材8の何れか一方のみを用いて電極ブロック間を連結することで、同心円筒状電極2の全長Lを調整するようにしても良く、いずれにしても同心円筒状電極2の全長Lを調整することで、臨界移動度を調整することができるので、所望の粒径範囲で帯電粒子の粒子量を測定することができる。
なお、本発明の精神と範囲に反することなしに、広範に異なる実施形態を構成することができることは明白なので、この発明は、特定の実施形態に制約されるものではない。
実施形態1の帯電粒子量評価装置の概略構成図である。 同上の動作を説明するフロー図である。 実施形態2の帯電粒子量評価装置の概略構成図である。 同上の動作を説明するフロー図である。 実施形態3の帯電粒子量評価装置の概略構成図である。 従来の帯電粒子量評価装置の概略構成図である。
符号の説明
1 帯電粒子量評価装置
2 同心円筒状電極
2a 内側導体
2b 外側導体
3 吸気ファン(気流発生手段)
4 電流計(電流測定手段)
5 電圧源(電圧印加手段)
10 コントローラ
11 電圧制御部(臨界移動度設定手段)
12 電流値取得部
13 流量制御部(臨界移動度設定手段)
14 演算処理部
15 粒径算出部(帯電粒子量評価手段、臨界移動度設定手段)
16 入力部

Claims (6)

  1. 円柱状の内側導体および内側導体よりも径の大きい円筒状の外側導体を同心に配置して構成された同心円筒状電極と、同心円筒状電極の一端側に設けられ、内側導体と外側導体との間の空間に同心円筒状電極の軸方向に層流を発生させる気流発生手段と、内側導体と外側導体との間に電圧を印加する電圧印加手段と、内側導体と外側導体との間に流れる電流を測定する電流測定手段と、同心円筒状電極の形状および寸法と気流発生手段により発生させる層流の流量と電流測定手段の測定結果とに基づいて帯電粒子量を評価する帯電粒子量評価手段と、計測対象の帯電粒子の臨界移動度を設定する臨界移動度設定手段とを具備したことを特徴とする帯電粒子量評価装置。
  2. 前記臨界移動度設定手段は、前記気流発生手段の流量を制御することによって臨界移動度を設定する流量制御手段からなることを特徴とする請求項1記載の帯電粒子量評価装置。
  3. 前記臨界移動度設定手段は、前記電圧印加手段の印加電圧を調整することによって臨界移動度を設定する電圧制御手段からなることを特徴とする請求項1記載の帯電粒子量評価装置。
  4. 前記電圧制御手段は、前記同心円筒状電極の形状および寸法と、計測しようとする帯電粒子の臨界移動度と、前記気流発生手段の流量とに基づいて、前記電圧印加手段の印加電圧を調整することを特徴とする請求項3記載の帯電粒子量評価装置。
  5. 計測対象の帯電粒子の臨界移動度の最小値で前記気流発生手段の流量を変化させながら、計測した帯電粒子数が一定になるときの流量を求めることによって、計測対象の流量を推定する流量推定手段を設け、前記電圧制御手段は、前記同心円筒状電極の形状および寸法と、計測しようとする帯電粒子の臨界移動度と、流量推定手段により推定された流量とに基づいて、前記電圧印加手段の印加電圧を調整することを特徴とする請求項4記載の帯電粒子量評価装置。
  6. 前記同心円筒状電極は、軸方向において複数に分割された複数の電極ブロックを連結して構成され、前記臨界移動度設定手段が、複数の電極ブロックと、複数の電極ブロックの間を連結する導電性の連結部材又は絶縁性の連結部材のうちの何れか一方、又は、両方からなり、同心円筒状電極の全長を調整することで臨界移動度を設定することを特徴とする請求項1記載の帯電粒子量評価装置。
JP2006285361A 2006-10-19 2006-10-19 帯電粒子量評価装置 Withdrawn JP2008102038A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285361A JP2008102038A (ja) 2006-10-19 2006-10-19 帯電粒子量評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285361A JP2008102038A (ja) 2006-10-19 2006-10-19 帯電粒子量評価装置

Publications (1)

Publication Number Publication Date
JP2008102038A true JP2008102038A (ja) 2008-05-01

Family

ID=39436469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285361A Withdrawn JP2008102038A (ja) 2006-10-19 2006-10-19 帯電粒子量評価装置

Country Status (1)

Country Link
JP (1) JP2008102038A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057665A (ja) * 2011-09-07 2013-03-28 Rion Co Ltd 流量比決定方法、粒径別粒度分布測定装置及び粒径別粒度分布測定方法
JP2013223853A (ja) * 2012-03-23 2013-10-31 Sharp Corp 粒子捕集装置およびそれを備えた粒子検出装置
WO2013183652A1 (ja) * 2012-06-06 2013-12-12 株式会社島津製作所 微粒子分級測定装置、粒子濃度分布が一様なサンプル作成装置、及びナノ粒子膜成膜装置
CN104634703A (zh) * 2013-11-08 2015-05-20 郑秀惠 空气离子迁移率谱分析方法及仪器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057665A (ja) * 2011-09-07 2013-03-28 Rion Co Ltd 流量比決定方法、粒径別粒度分布測定装置及び粒径別粒度分布測定方法
JP2013057664A (ja) * 2011-09-07 2013-03-28 Rion Co Ltd 粒径別粒度分布測定装置、及び、粒径別粒度分布測定方法
DE102012215828B4 (de) * 2011-09-07 2020-12-03 Rion Co. Ltd. Durchflussverhältnisfestlegeverfahren, Partikelgrößenverteilungsmessvorrichtung und Verfahren zur Messung einer Partikelgrößenverteilung
JP2013223853A (ja) * 2012-03-23 2013-10-31 Sharp Corp 粒子捕集装置およびそれを備えた粒子検出装置
WO2013183652A1 (ja) * 2012-06-06 2013-12-12 株式会社島津製作所 微粒子分級測定装置、粒子濃度分布が一様なサンプル作成装置、及びナノ粒子膜成膜装置
CN104380078A (zh) * 2012-06-06 2015-02-25 株式会社岛津制作所 微粒分级测定装置、粒子浓度分布均匀的试样制作装置、以及纳米粒子膜成膜装置
JPWO2013183652A1 (ja) * 2012-06-06 2016-02-01 株式会社島津製作所 微粒子分級測定装置、粒子濃度分布が一様なサンプル作成装置、及びナノ粒子膜成膜装置
JP2017009615A (ja) * 2012-06-06 2017-01-12 株式会社島津製作所 粒子濃度分布が一様なサンプル作成装置、及びナノ粒子膜成膜装置
CN104634703A (zh) * 2013-11-08 2015-05-20 郑秀惠 空气离子迁移率谱分析方法及仪器

Similar Documents

Publication Publication Date Title
JP2008102038A (ja) 帯電粒子量評価装置
US7550979B2 (en) System and method for measuring conductivity of fluid
CN110251130B (zh) 基于可移动变形组件的电阻抗成像方法、装置及系统
US8018239B2 (en) Method and device for measuring powder properties
JP2017009576A5 (ja)
JP2006329859A (ja) イオンコントロールセンサ
Conesa et al. Some geometrical and electrical aspects on the wire-to-cylinder corona discharge
JP4655738B2 (ja) 帯電粒子量評価装置および帯電粒子量評価方法
WO2017033586A1 (ja) ミキサ
KR102043884B1 (ko) 플라즈마 공정챔버 모니터링 장치 및 이를 이용한 플라즈마 공정챔버 모니터링 방법
JP2008102037A (ja) 帯電粒子量評価装置
WO2015128844A1 (en) A method and system for measuring surface tension
JP2007101237A (ja) 電気特性測定装置および電気特性測定方法
JP2010190815A (ja) 表面抵抗測定装置及び表面抵抗測定方法
JPS6131948A (ja) 塗膜インピ−ダンス測定装置
CN106199355A (zh) 静电探针差动测量方法
CN207689575U (zh) 一种gis盆式绝缘子的表面电阻率测量装置
CN103217611B (zh) 绝缘检查装置及绝缘检查方法
WO2012026924A1 (en) Methods, systems, and devices for calculating temperature change of an electrocaloric effect material
CN107219404A (zh) 一种频率调节的方法及装置
US11796439B2 (en) Uniformity output device, uniformity output method, and non-transitory computer-readable recording medium for determining whether a particle diameter of particles in a mixture is uniform or non-uniform
Chong et al. A study of the effect of electrode dimensions on scaling up ERT applications
CN107563100A (zh) 基于黑盒理论分析接触电阻变化规律的方法
Zhang et al. Six rotating electrodes exciting-measuring mode for electrical capacitance tomography system
JP2004053511A (ja) イオン測定システムおよびその方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105