JP2008101860A - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- JP2008101860A JP2008101860A JP2006285826A JP2006285826A JP2008101860A JP 2008101860 A JP2008101860 A JP 2008101860A JP 2006285826 A JP2006285826 A JP 2006285826A JP 2006285826 A JP2006285826 A JP 2006285826A JP 2008101860 A JP2008101860 A JP 2008101860A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- compressor
- output
- inverter
- detection means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
【課題】三相交流電源の欠相を負荷の広範囲で判定でき、かつ、三相交流電源の全ての相の欠相を検出することのできる冷凍サイクル装置が求められている。
【解決手段】この冷凍サイクル装置は、三相交流電源1の電力をインバータ装置2を介して冷媒回路15の圧縮機11用のモータ3に供給する装置であって、三相交流電源1からの入力電流を検出する手段4と、圧縮機11の仕事量を検出する圧縮機仕事量検出手段Wと、入力電流とインバータ装置2からの出力電力値との関係データを記憶している関係データ記憶手段9と、検出された圧縮機11の仕事量Ioとインバータ装置2からのインバータ出力周波数fとに基づいて出力電力想定値を算出する出力電力想定値算出手段7と、算出された出力電力想定値Io・fと検出された入力電流Iiと関係データとに基づいて三相交流電源1の欠相を判定する欠相判定手段8とを備えている。
【選択図】図1
【解決手段】この冷凍サイクル装置は、三相交流電源1の電力をインバータ装置2を介して冷媒回路15の圧縮機11用のモータ3に供給する装置であって、三相交流電源1からの入力電流を検出する手段4と、圧縮機11の仕事量を検出する圧縮機仕事量検出手段Wと、入力電流とインバータ装置2からの出力電力値との関係データを記憶している関係データ記憶手段9と、検出された圧縮機11の仕事量Ioとインバータ装置2からのインバータ出力周波数fとに基づいて出力電力想定値を算出する出力電力想定値算出手段7と、算出された出力電力想定値Io・fと検出された入力電流Iiと関係データとに基づいて三相交流電源1の欠相を判定する欠相判定手段8とを備えている。
【選択図】図1
Description
本発明は、三相交流電源をインバータ装置を介して圧縮機駆動モータに供給する冷凍サイクル装置に関するものである。
従来、この種の冷凍サイクル装置においては、圧縮機駆動モータに電力を供給する三相交流電源のいずれか一相の三相電流検出信号とインバータの出力周波数とから欠相判定領域を求め、この欠相判定領域を基に欠相の有無を判定する三相交流電源欠相検出装置を備えたものが記載されている(例えば、特許文献1参照)。
一方で、三相交流電源欠相検出手段として、図4に示すように、R相とS相に線間電圧検出手段18を設けてR相およびS相の欠相を検出し、T相にはインバータ入力電流検出手段4を設けてT相の欠相を検出する装置が知られている。
特許文献1記載の冷凍サイクル装置では、三相交流電源の欠相を判定する為の欠相判定基準値を、三相交流電源で検出されたインバータ入力電流とインバータ出力周波数により決定している。そのため、圧縮機のモータ負荷が小さい場合は電源電流が大きくならないことから、欠相時であるにも拘わらず、定めた判定範囲を超えない場合があり、欠相を検知できる運転範囲が狭いという問題がある。
他方で、図4に記載の三相交流電源欠相検出装置では、R相とS相の線間に線間電圧検出手段を設けているため、インバータ装置内で各線間に配備されているコンデンサの影響等により電圧の回り込みが発生し、R相とS相の欠相を検出できない場合がある。
本発明は、上記した問題点を解決するためになされたものであって、三相交流電源の欠相を圧縮機のモータ負荷の広範囲にわたって判定することができ、かつ、三相交流電源の全ての相について欠相を検出することのできる冷凍サイクル装置の提供を目的とする。
上記目的を達成するために、本発明に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器、冷媒絞り装置、および利用側熱交換器を連結してなる冷媒回路を有し、三相交流電源の電力をインバータ装置を介して圧縮機駆動モータに供給する冷凍サイクル装置において、インバータ装置に入力される三相交流電源のいずれか一相の入力電流を検出するインバータ入力電流検出手段と、圧縮機の仕事量を検出する圧縮機仕事量検出手段と、インバータ装置から出力される出力電力値と該出力電力値に対応する入力電流の正常範囲値との関係を示す関係データを予め記憶している関係データ記憶手段と、圧縮機仕事量検出手段により検出された圧縮機の仕事量とインバータ装置からのインバータ出力周波数とに基づいて出力電力想定値を算出する出力電力想定値算出手段と、出力電力想定値算出手段により算出された出力電力想定値とインバータ入力電流検出手段により検出された入力電流とを関係データ記憶手段の関係データに照合して三相交流電源の欠相を判定する欠相判定手段とを具備してなるものである。
また、請求項1の構成において、圧縮機仕事量検出手段がインバータ装置から圧縮機駆動モータへ出力される出力電流を検知するインバータ出力電流検出手段であり、圧縮機の仕事量がインバータ出力電流検出手段により検出された出力電流に基づくものである。
そして、請求項1の構成において、圧縮機仕事量検出手段が冷媒回路における圧縮機の吐出圧力および/または吸入圧力を検出する圧縮機圧力検出手段であり、圧縮機の仕事量が圧縮機圧力検出手段により検出された吐出圧力および/または吸入圧力に基づくものである。
本発明に係る冷凍サイクル装置によれば、三相交流電源の少なくとも一相の検出電流とインバータ装置からのインバータ出力周波数とに加えて、圧縮機の仕事量を加味し、更にインバータ装置からの出力電力値と入力電流の正常範囲値との関係データも用いるので、インバータ装置の負荷に応じて電源電流の欠相検知の判定値を決めることができる。従って、三相交流電源の一相の検出電流とインバータ出力周波数とから欠相を判定する従来技術と比べ、負荷が小さい場合においても欠相が発生したことの検知が可能となり、コスト低減の他、インバータ装置に異常な電流が流れることによる部品劣化の抑制が可能となる。
そして、上記の圧縮機仕事量検出手段としては、インバータ装置から圧縮機駆動モータへ出力される出力電流を検知するインバータ出力電流検出手段や、冷媒回路における圧縮機の吐出圧力および/または吸入圧力を検出する圧縮機圧力検出手段といった安価で容易に実現可能な具体的手段を用いることができる。
実施の形態1.
図1はこの発明の実施の形態1に係る冷凍サイクル装置の概略構成図、図2はこの発明の実施の形態1,2,3,4に係る冷凍サイクル装置に適用される関係データを示す説明図である。
図1において、この実施形態に係る冷凍サイクル装置は利用側冷却式の冷媒回路15を備えている。この冷媒回路15は、圧縮機11、熱源側熱交換器12、冷媒絞り装置13、および利用側熱交換器14を当該順に冷媒配管などを介して回路状に連結した構造を成している。上記の圧縮機11を駆動するモータ(圧縮機駆動モータ)3には、三相交流電源1の電力がインバータ装置2を介して供給されるようになっている。このインバータ装置2は三相交流の電力を任意の周波数、電圧に変換し、負荷であるモータ3に電源を供給する装置である。インバータ装置2の入力側(三相交流電源1とインバータ装置2の間)における三相交流電源1の例えばT相には、三相交流電源1からインバータ装置2に供給されるT相の入力電流Iiを電圧値に変換して検出するインバータ入力電流検出手段(T相検知)4が設けられている。インバータ装置2の出力側(インバータ装置2と圧縮機3の間)におけるいずれか一相(三相のうちいずれの相でもよい。)には、インバータ装置2から出力される電流Ioを電圧値に変換して検出するインバータ出力電流検出手段5が設けられている。
図1はこの発明の実施の形態1に係る冷凍サイクル装置の概略構成図、図2はこの発明の実施の形態1,2,3,4に係る冷凍サイクル装置に適用される関係データを示す説明図である。
図1において、この実施形態に係る冷凍サイクル装置は利用側冷却式の冷媒回路15を備えている。この冷媒回路15は、圧縮機11、熱源側熱交換器12、冷媒絞り装置13、および利用側熱交換器14を当該順に冷媒配管などを介して回路状に連結した構造を成している。上記の圧縮機11を駆動するモータ(圧縮機駆動モータ)3には、三相交流電源1の電力がインバータ装置2を介して供給されるようになっている。このインバータ装置2は三相交流の電力を任意の周波数、電圧に変換し、負荷であるモータ3に電源を供給する装置である。インバータ装置2の入力側(三相交流電源1とインバータ装置2の間)における三相交流電源1の例えばT相には、三相交流電源1からインバータ装置2に供給されるT相の入力電流Iiを電圧値に変換して検出するインバータ入力電流検出手段(T相検知)4が設けられている。インバータ装置2の出力側(インバータ装置2と圧縮機3の間)におけるいずれか一相(三相のうちいずれの相でもよい。)には、インバータ装置2から出力される電流Ioを電圧値に変換して検出するインバータ出力電流検出手段5が設けられている。
三相交流電源1の欠相判定を行なう演算装置10はCPU、メモリ、データバス、入出力ポート(いずれも図示省略)などを備えた汎用装置からなり、CPUは出力電力想定値算出手段7や欠相判定手段8の機能を備え、メモリは関係データ記憶手段9の機能を備えている。演算装置10の入力側には、インバータ入力電流検出手段4からの入力電流Ii信号の入力ラインと、インバータ装置2からのインバータ出力周波数f信号の入力ラインと、インバータ出力電流検出手段5からの出力電流Io信号の入力ラインが接続されている。演算装置10の出力側は、例えば判定報知、判定表示、通信出力などを行なう外部出力手段16と接続されている。上記した関係データ記憶手段9には、インバータ装置2から出力される出力電力値Io・fと、この出力電力値Io・fに対応する入力電流Iiの正常範囲値との関係を示すテーブルデータ(図2参照、本発明にいう関係データ)が予め記憶されている。
上記のインバータ入力電流検出手段(T相検知)4は三相交流電源1からインバータ装置2に供給されるT相の入力電流Iiを電圧値に変換して検出し欠相判定手段8へ伝送する。上記のインバータ出力電流検出手段5はインバータ装置2から出力される電流Ioを電圧値に変換して検出し出力電力想定値算出手段7へ伝送する。インバータ装置2の入力側と出力側では電力がほぼ等しくなることから、出力電力想定値算出手段7は、インバータ出力電流検出手段5により検出されたインバータ装置2からモータ3へ出力される出力電流Ioと、インバータ装置2から出力されたインバータ出力周波数fとを用いて、圧縮機11のモータ3(インバータ装置2の出力側)で必要となる出力電力想定値Io・fを算出し欠相判定手段8へ伝送する。欠相判定手段8は、出力電力想定値算出手段7から受け取った出力電力想定値Io・fと、インバータ入力電流検出手段4から受け取った入力電流(T相電流)Iiとを関係データ記憶手段9のテーブルデータに照合して三相交流電源1の欠相を判定する。
図2は関係データ記憶手段9に格納されたテーブルデータの内容を示している。図において、原点を通る破線の直線Sはインバータ装置2の出力電力値に対する入力電流の理論値を示す直線である。欠相判定ライン(実線の直線M,N)を理論値(破線の直線S)から上下に幅(±e)を設けた理由は、インバータ入力電流検出手段4の誤差や電源アンバランスによって入力電流Iiが変化することを考慮したマージンを持たせるためである。理論値からのマージンは電源バランスや機器定数からシミュレーションなどにより予め決定される。
より具体的には、例えばインバータ出力周波数fとインバータ出力電流Ioとからインバータ出力電圧Vを決定する(予め、インバータ出力周波数と出力電流に対応する出力電圧とを実測して関係データ記憶手段9に記憶させておく)。力率は冷凍サイクル装置のマイコン(図示省略)からのインバータ出力電圧指令値と、検出した出力電流の位相差から算出する。そして、次の(1)式により理論値としてのインバータ出力電力値P1を求める。
P1 = √3 × V × Io × cosθ × α ・・・(1)
ここで、P1:インバータ出力電力値
V :インバータ出力電圧(インバータ出力周波数fおよび出力電流Ioより決定)
Io:インバータ出力電流(インバータ出力電流検出手段5により検出)
cosθ :力率
α :力率誤差補正係数
(1)式で算出したインバータ出力電力値P1を基に三相交流電源電圧からインバータ入力電流が採り得る範囲(直線M〜N間)を算出して、上記した欠相判定のテーブルデータを作成し、関係データ記憶手段9に予め記憶させておくのである。
P1 = √3 × V × Io × cosθ × α ・・・(1)
ここで、P1:インバータ出力電力値
V :インバータ出力電圧(インバータ出力周波数fおよび出力電流Ioより決定)
Io:インバータ出力電流(インバータ出力電流検出手段5により検出)
cosθ :力率
α :力率誤差補正係数
(1)式で算出したインバータ出力電力値P1を基に三相交流電源電圧からインバータ入力電流が採り得る範囲(直線M〜N間)を算出して、上記した欠相判定のテーブルデータを作成し、関係データ記憶手段9に予め記憶させておくのである。
次に動作について説明する。三相中の二相が欠相の場合は電圧供給ができないために停電となり、欠相動作でなくなる。従って、以下では一相のみの欠相を想定して記載する。
インバータ入力電流検出手段4が設けられている相(図1ではT相)が欠相した場合、インバータ入力電流検出手段4により検出された入力電流Iiの値は非常に小さくなる。この場合、算出された出力電力想定値Io・fが入力電流Iiの下限値(直線N)を下回るので、欠相判定手段8はT相が欠相であると判断する。他方で、インバータ入力電流検出手段4を設けていない各相(図1ではR相、S相)の内、どちらか一方が欠相している場合、インバータ入力電流検出手段4を設けている相(図1ではT相)には通常は三相平衡分の電流が流れるところが、単相分の電流となるため、インバータ入力電流検出手段4により検出される電流値は非常に大きくなる。これにより、欠相判定手段8は、出力電力想定値算出手段7から受け取った出力電力想定値Io・fと、インバータ入力電流検出手段4から受け取った入力電流(T相電流)Iiとを関係データ記憶手段9のテーブルデータを参照して欠相の判定を行う。入力電流Iiは出力電力想定値に対する入力電流の上限値(直線M)を上回るので、欠相判定手段8はR相またはS相の欠相であると判断する。そして、欠相判定手段8が欠相と判定すると、演算装置10は外部出力手段16を介して冷凍サイクル装置のマイコンに指令出力を行い、空調能力を運転に支障のない能力まで落として応急運転を行うとともに、リモコン(図示省略)に出力してリモコンの表示画面に欠相の旨を表示させるのである。すなわち、この実施形態1の構成では、インバータ装置2から出力された出力電流Ioを検出するインバータ出力電流検出手段5が圧縮機仕事量検出手段Wに相当する。
インバータ入力電流検出手段4が設けられている相(図1ではT相)が欠相した場合、インバータ入力電流検出手段4により検出された入力電流Iiの値は非常に小さくなる。この場合、算出された出力電力想定値Io・fが入力電流Iiの下限値(直線N)を下回るので、欠相判定手段8はT相が欠相であると判断する。他方で、インバータ入力電流検出手段4を設けていない各相(図1ではR相、S相)の内、どちらか一方が欠相している場合、インバータ入力電流検出手段4を設けている相(図1ではT相)には通常は三相平衡分の電流が流れるところが、単相分の電流となるため、インバータ入力電流検出手段4により検出される電流値は非常に大きくなる。これにより、欠相判定手段8は、出力電力想定値算出手段7から受け取った出力電力想定値Io・fと、インバータ入力電流検出手段4から受け取った入力電流(T相電流)Iiとを関係データ記憶手段9のテーブルデータを参照して欠相の判定を行う。入力電流Iiは出力電力想定値に対する入力電流の上限値(直線M)を上回るので、欠相判定手段8はR相またはS相の欠相であると判断する。そして、欠相判定手段8が欠相と判定すると、演算装置10は外部出力手段16を介して冷凍サイクル装置のマイコンに指令出力を行い、空調能力を運転に支障のない能力まで落として応急運転を行うとともに、リモコン(図示省略)に出力してリモコンの表示画面に欠相の旨を表示させるのである。すなわち、この実施形態1の構成では、インバータ装置2から出力された出力電流Ioを検出するインバータ出力電流検出手段5が圧縮機仕事量検出手段Wに相当する。
この実施形態1の冷凍サイクル装置によれば、インバータ装置2からのインバータ出力周波数fと、検出したインバータ装置2の出力電流Ioとからインバータ出力電力想定値Io・fを算出し、この算出したインバータ出力電力想定値Io・fと三相交流電源1のT相で検出した入力電流Iiとを、関係データ記憶手段9のテーブルデータ(P1(直線S)±e)に照合して欠相判定を行なう。従って、インバータ装置2の負荷に応じて電源電流の欠相を詳細に判定することができる。これにより、モータ3の負荷が小さい場合においても三相交流電源1の欠相発生の検知が可能となる。その結果、コスト低減の他、インバータ装置2に異常な電流が流れることによる部品劣化を抑制することができる。
実施の形態2.
図3はこの発明の実施の形態2に係る冷凍サイクル装置の概略構成図である。この図3および図2を用いて本発明の実施の形態2を説明する。
図3において、1は三相交流電源、2はインバータ装置、3は圧縮機駆動用のモータ、4はインバータ入力電流検出手段、6は圧縮機吐出圧力検出手段、7は出力電力想定値算出手段、8は欠相判定手段、9は関係データ記憶手段、10は演算装置、11は圧縮機、12は熱源側熱交換器、13は冷媒絞り装置、14は利用側熱交換器、15は冷媒回路である。
図3はこの発明の実施の形態2に係る冷凍サイクル装置の概略構成図である。この図3および図2を用いて本発明の実施の形態2を説明する。
図3において、1は三相交流電源、2はインバータ装置、3は圧縮機駆動用のモータ、4はインバータ入力電流検出手段、6は圧縮機吐出圧力検出手段、7は出力電力想定値算出手段、8は欠相判定手段、9は関係データ記憶手段、10は演算装置、11は圧縮機、12は熱源側熱交換器、13は冷媒絞り装置、14は利用側熱交換器、15は冷媒回路である。
この実施形態2は、圧縮機仕事量検出手段Wとして実施形態1におけるインバータ出力電流検出手段5に替えて圧縮機吐出圧力検出手段6を用い、関係データ記憶手段9が、出力電流に関係するデータの替わりに圧縮機吐出圧力に関係するデータを記憶していること以外、実施形態1と同様の構成である。
そこで、圧縮機吐出圧力検出手段6は冷媒回路15における圧縮機11の吐出側に設けられて吐出圧力Pdを電圧値に変換して検出し出力電力想定値算出手段7へ伝送する。出力電力想定値算出手段7では、圧縮機吐出圧力検出手段6により検出された吐出圧力Pdと、インバータ装置2から送られてくるインバータ出力周波数fとからインバータ装置2の出力電力想定値Pd・fを算出して欠相判定手段8へ伝送する。欠相判定手段8は、出力電力想定値算出手段7から受け取った出力電力想定値Pd・fと、インバータ入力電流検出手段4から受け取った入力電流(T相電流)Iiとを関係データ記憶手段9のテーブルデータに照合し、実施形態1の場合と同様に動作して三相交流電源1の欠相を判定する。前記の欠相判定に用いる図2のテーブルデータにおいて、グラフ横軸の出力電力想定値の単位はPd・fである。
そこで、圧縮機吐出圧力検出手段6は冷媒回路15における圧縮機11の吐出側に設けられて吐出圧力Pdを電圧値に変換して検出し出力電力想定値算出手段7へ伝送する。出力電力想定値算出手段7では、圧縮機吐出圧力検出手段6により検出された吐出圧力Pdと、インバータ装置2から送られてくるインバータ出力周波数fとからインバータ装置2の出力電力想定値Pd・fを算出して欠相判定手段8へ伝送する。欠相判定手段8は、出力電力想定値算出手段7から受け取った出力電力想定値Pd・fと、インバータ入力電流検出手段4から受け取った入力電流(T相電流)Iiとを関係データ記憶手段9のテーブルデータに照合し、実施形態1の場合と同様に動作して三相交流電源1の欠相を判定する。前記の欠相判定に用いる図2のテーブルデータにおいて、グラフ横軸の出力電力想定値の単位はPd・fである。
尚、上記の実施形態では、圧縮機仕事量検出手段Wとしてインバータ出力電流検出手段5や圧縮機吐出圧力検出手段6を例示したが、本発明の圧縮機仕事量検出手段はそれらに限定されるものでない。すなわち、圧縮機の仕事量としては、上記以外に、例えば冷媒回路における圧縮機吸入圧力、圧縮機冷媒吐出温度、圧縮機本体温度などを検出して用いることも可能である。
実施の形態3.
すなわち、圧縮機11の仕事量として、圧縮機11吸入側の吸入圧力(冷媒回路15の冷媒循環量の関数である)を用いる場合は、冷媒回路15における圧縮機11の吸入側に設けた圧縮機吸入圧力検出手段17(図3参照)が圧縮機仕事量検出手段Wとして使用される。そして、関係データ記憶手段9には、図2のグラフ横軸で出力電力想定値の単位としてPs・fを採用したテーブルデータが予め格納されている。
そこで、出力電力想定値7は、圧縮機吸入圧力検出手段17により検出された吸入圧力Psと、インバータ装置2から出力されたインバータ出力周波数fとからインバータ装置2の出力電力想定値Ps・fを算出する。欠相判定手段8は、この出力電力想定値Ps・fと、検出された三相交流電源1の入力電流(T相電流)Iiとを関係データ記憶手段9のテーブルデータに照合し、実施形態1の場合と同様に動作して三相交流電源1の欠相を判定するのである。
すなわち、圧縮機11の仕事量として、圧縮機11吸入側の吸入圧力(冷媒回路15の冷媒循環量の関数である)を用いる場合は、冷媒回路15における圧縮機11の吸入側に設けた圧縮機吸入圧力検出手段17(図3参照)が圧縮機仕事量検出手段Wとして使用される。そして、関係データ記憶手段9には、図2のグラフ横軸で出力電力想定値の単位としてPs・fを採用したテーブルデータが予め格納されている。
そこで、出力電力想定値7は、圧縮機吸入圧力検出手段17により検出された吸入圧力Psと、インバータ装置2から出力されたインバータ出力周波数fとからインバータ装置2の出力電力想定値Ps・fを算出する。欠相判定手段8は、この出力電力想定値Ps・fと、検出された三相交流電源1の入力電流(T相電流)Iiとを関係データ記憶手段9のテーブルデータに照合し、実施形態1の場合と同様に動作して三相交流電源1の欠相を判定するのである。
実施の形態4.
また、圧縮機11の仕事量として、例えば冷媒回路15における、圧縮機11吸入側の吸入圧力(低圧圧力)Ps、圧縮機11吐出側の吐出圧力(高圧圧力)Pd、およびインバータ出力周波数fを用いることもできる。この実施形態4は図1と図3を組み合わせた構成に近いものである。圧縮機11の仕事量は、低圧圧力(冷媒循環量)、高圧低圧圧力差、モータ3の回転数により求められる。すなわち、次の(2)式を用いて理論値としてのインバータ出力電力値P1が決定される。
P1 = Ps×α1 + (Pd−Ps)×β + N×γ ・・・(2)
ここで、P1:インバータ出力電力値
Ps:圧縮機吸入圧力(低圧圧力)
Pd:圧縮機吐出圧力(高圧圧力)
N :モータ回転数(下記の(3)式により算出)
α1:冷媒循環量調整係数
β :高圧低圧差調整係数
γ :回転数調整係数
N=120f(1−s)/P ・・・(3)
P :モータ極数
f :インバータ出力周波数
s :すべり
(2)式で算出したインバータ出力電力値P1を基に三相交流電源電圧からインバータ入力電流Iiが採り得る範囲(P1±e)を決定して、欠相判定用のテーブルデータを作成し、関係データ記憶手段9に予め格納しておく。
また、圧縮機11の仕事量として、例えば冷媒回路15における、圧縮機11吸入側の吸入圧力(低圧圧力)Ps、圧縮機11吐出側の吐出圧力(高圧圧力)Pd、およびインバータ出力周波数fを用いることもできる。この実施形態4は図1と図3を組み合わせた構成に近いものである。圧縮機11の仕事量は、低圧圧力(冷媒循環量)、高圧低圧圧力差、モータ3の回転数により求められる。すなわち、次の(2)式を用いて理論値としてのインバータ出力電力値P1が決定される。
P1 = Ps×α1 + (Pd−Ps)×β + N×γ ・・・(2)
ここで、P1:インバータ出力電力値
Ps:圧縮機吸入圧力(低圧圧力)
Pd:圧縮機吐出圧力(高圧圧力)
N :モータ回転数(下記の(3)式により算出)
α1:冷媒循環量調整係数
β :高圧低圧差調整係数
γ :回転数調整係数
N=120f(1−s)/P ・・・(3)
P :モータ極数
f :インバータ出力周波数
s :すべり
(2)式で算出したインバータ出力電力値P1を基に三相交流電源電圧からインバータ入力電流Iiが採り得る範囲(P1±e)を決定して、欠相判定用のテーブルデータを作成し、関係データ記憶手段9に予め格納しておく。
そこで、出力電力想定値算出手段7は、吸入圧力Psと、吐出圧力Pdと、インバータ出力電流検出手段5により検出された出力電流Ioと、インバータ装置2から出力されたインバータ出力周波数fとから、インバータ装置2の出力電力想定値(Pd−Ps)・Io・fを算出する。この出力電力想定値(Pd−Ps)・Io・fと、インバータ入力電流検出手段4により検出された入力電流Iiとを関係データ記憶手段9のテーブルデータに照合し、実施形態1の場合と同様にして三相交流電源1の欠相を判定する。前記の欠相判定に用いる図2のテーブルデータにおいて、グラフ横軸の出力電力想定値の単位は((Pd−Ps)・Io・f)である。
このように、実施形態4の冷凍サイクル装置は、吐出圧力Pdおよびインバータ出力周波数fに加え、吸入圧力Psを用いて欠相判定を行なうので、運転条件の広い範囲にわたり判定精度が高くなる。
このように、実施形態4の冷凍サイクル装置は、吐出圧力Pdおよびインバータ出力周波数fに加え、吸入圧力Psを用いて欠相判定を行なうので、運転条件の広い範囲にわたり判定精度が高くなる。
尚、出力電力想定値は、上記以外に、「吐出圧力Pdと吸入圧力Psの圧力差(Pd−Ps)」のみを用いたり、または「吸入圧力Ps」のみを用いて算出することも可能である。
そして、上記した各実施形態では、利用側冷却式の冷媒回路を備える冷凍サイクル装置を例示したが、本発明は利用側加熱式の冷媒回路を備える冷凍サイクル装置にも適用可能であることは言うまでもない。また、上記では三相交流電源のうちT相のインバータ入力電流を検出して欠相判定に用いたが、T相以外にR相またはS相のインバータ入力電流を検出して欠相判定に用いるようにしても構わない。
1 三相交流電源、2 インバータ装置、3 モータ、4 インバータ入力電流検出手段、5 インバータ出力電流検出手段、6 圧縮機吐出圧力検出手段、7 出力電力想定値算出手段、8 欠相判定手段、9 関係データ記憶手段、11 圧縮機、12 熱源側熱交換器、13 冷媒絞り装置、14 利用側熱交換器、15 冷媒回路、17 圧縮機吸入圧力検出手段、f インバータ出力周波数、Ii 入力電流、Io 出力電流、Pd 吐出圧力、Ps 吸入圧力、W 圧縮機仕事量検出手段。
Claims (3)
- 圧縮機、熱源側熱交換器、冷媒絞り装置、および利用側熱交換器を連結してなる冷媒回路を有し、三相交流電源の電力をインバータ装置を介して圧縮機駆動モータに供給する冷凍サイクル装置において、
前記インバータ装置に入力される三相交流電源のいずれか一相の入力電流を検出するインバータ入力電流検出手段と、
前記圧縮機の仕事量を検出する圧縮機仕事量検出手段と、
前記インバータ装置から出力される出力電力値と該出力電力値に対応する前記入力電流の正常範囲値との関係を示す関係データを予め記憶している関係データ記憶手段と、
前記圧縮機仕事量検出手段により検出された圧縮機の仕事量と前記インバータ装置からのインバータ出力周波数とに基づいて出力電力想定値を算出する出力電力想定値算出手段と、
前記出力電力想定値算出手段により算出された出力電力想定値と前記インバータ入力電流検出手段により検出された入力電流とを前記関係データ記憶手段の関係データに照合して三相交流電源の欠相を判定する欠相判定手段とを具備してなることを特徴とする冷凍サイクル装置。 - 圧縮機仕事量検出手段がインバータ装置から圧縮機駆動モータへ出力される出力電流を検知するインバータ出力電流検出手段であり、圧縮機の仕事量が前記インバータ出力電流検出手段により検出された出力電流に基づくものであることを特徴とする請求項1に記載の冷凍サイクル装置。
- 圧縮機仕事量検出手段が冷媒回路における圧縮機の吐出圧力および/または吸入圧力を検出する圧縮機圧力検出手段であり、圧縮機の仕事量が前記圧縮機圧力検出手段により検出された吐出圧力および/または吸入圧力に基づくものであることを特徴とする請求項1に記載の冷凍サイクル装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006285826A JP2008101860A (ja) | 2006-10-20 | 2006-10-20 | 冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006285826A JP2008101860A (ja) | 2006-10-20 | 2006-10-20 | 冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008101860A true JP2008101860A (ja) | 2008-05-01 |
Family
ID=39436323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006285826A Pending JP2008101860A (ja) | 2006-10-20 | 2006-10-20 | 冷凍サイクル装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008101860A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010252563A (ja) * | 2009-04-17 | 2010-11-04 | Fuji Electric Systems Co Ltd | インバータの保護方法及び保護装置 |
JP2011155782A (ja) * | 2010-01-28 | 2011-08-11 | Daihen Corp | 溶接電源装置 |
KR101828789B1 (ko) | 2011-10-06 | 2018-02-14 | 주식회사 대유위니아 | 압축기의 상선 오조립 검출방법 |
KR101837984B1 (ko) | 2011-10-06 | 2018-03-15 | 주식회사 대유위니아 | 압축기의 상선 오조립 검출방법 |
WO2019155527A1 (ja) * | 2018-02-06 | 2019-08-15 | 三菱電機株式会社 | インバータ制御装置 |
CN113804988A (zh) * | 2021-09-16 | 2021-12-17 | 佛山市顺德区美的电子科技有限公司 | 一种缺相检测方法、装置、存储介质及家用设备 |
WO2022064989A1 (ja) * | 2020-09-25 | 2022-03-31 | 住友重機械工業株式会社 | 極低温冷凍機、および極低温冷凍機の監視方法 |
-
2006
- 2006-10-20 JP JP2006285826A patent/JP2008101860A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010252563A (ja) * | 2009-04-17 | 2010-11-04 | Fuji Electric Systems Co Ltd | インバータの保護方法及び保護装置 |
JP2011155782A (ja) * | 2010-01-28 | 2011-08-11 | Daihen Corp | 溶接電源装置 |
KR101828789B1 (ko) | 2011-10-06 | 2018-02-14 | 주식회사 대유위니아 | 압축기의 상선 오조립 검출방법 |
KR101837984B1 (ko) | 2011-10-06 | 2018-03-15 | 주식회사 대유위니아 | 압축기의 상선 오조립 검출방법 |
WO2019155527A1 (ja) * | 2018-02-06 | 2019-08-15 | 三菱電機株式会社 | インバータ制御装置 |
CN111656678A (zh) * | 2018-02-06 | 2020-09-11 | 三菱电机株式会社 | 变频控制装置 |
JPWO2019155527A1 (ja) * | 2018-02-06 | 2020-09-17 | 三菱電機株式会社 | インバータ制御装置 |
CN111656678B (zh) * | 2018-02-06 | 2023-05-02 | 三菱电机株式会社 | 变频控制装置 |
WO2022064989A1 (ja) * | 2020-09-25 | 2022-03-31 | 住友重機械工業株式会社 | 極低温冷凍機、および極低温冷凍機の監視方法 |
CN113804988A (zh) * | 2021-09-16 | 2021-12-17 | 佛山市顺德区美的电子科技有限公司 | 一种缺相检测方法、装置、存储介质及家用设备 |
CN113804988B (zh) * | 2021-09-16 | 2024-05-17 | 佛山市顺德区美的电子科技有限公司 | 一种缺相检测方法、装置、存储介质及家用设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008101860A (ja) | 冷凍サイクル装置 | |
CN100436823C (zh) | 压缩机的驱动装置及冷冻装置 | |
US8169180B2 (en) | Motor controller of air conditioner | |
US10418915B2 (en) | Refrigeration cycle apparatus | |
JP6333563B2 (ja) | インバータ制御装置およびそれを用いた冷凍装置 | |
JP4932636B2 (ja) | 圧縮機内部状態推定装置及び空気調和装置 | |
JP2013162719A (ja) | 突入電流防止装置 | |
JP2011144966A (ja) | 空気調和機用の圧縮機駆動制御装置 | |
JP2010193646A (ja) | インバーター装置及びこのインバーター装置を搭載した冷凍サイクル装置 | |
JP2008157182A (ja) | 圧縮機の駆動制御装置及びその方法 | |
JP4670825B2 (ja) | 圧縮機内部状態推定装置及び空気調和装置 | |
KR101910942B1 (ko) | 공기조화기의 전원 역상 검출 장치 및 방법 | |
KR102315586B1 (ko) | 공기조화기 및 그 동작 방법 | |
JPH10299664A (ja) | ポンプの運転制御装置 | |
JPH05288412A (ja) | 空気調和機用圧縮機の駆動装置 | |
JPH08189476A (ja) | 空気調和機の制御装置 | |
JP5383560B2 (ja) | 高調波対策機器及び高調波対策機器を有する冷凍サイクル装置並びに電流検出器の接続状態検出方法 | |
CN110537321A (zh) | 电机控制装置以及空调机 | |
WO2024180670A1 (ja) | 電力変換装置及び空気調和機の室外機 | |
KR101957168B1 (ko) | 공기조화기 | |
JP4462015B2 (ja) | 空気調和装置 | |
KR20220085386A (ko) | 압축기 이상 판단을 위한 검사 방법 | |
EP4400780A2 (en) | Power converter and air conditioner | |
JP2004205163A (ja) | 冷凍装置 | |
JP2020080582A (ja) | モータ制御装置及びこれを備えた空気調和機 |