JP2008100865A - Glass melting apparatus - Google Patents

Glass melting apparatus Download PDF

Info

Publication number
JP2008100865A
JP2008100865A JP2006283586A JP2006283586A JP2008100865A JP 2008100865 A JP2008100865 A JP 2008100865A JP 2006283586 A JP2006283586 A JP 2006283586A JP 2006283586 A JP2006283586 A JP 2006283586A JP 2008100865 A JP2008100865 A JP 2008100865A
Authority
JP
Japan
Prior art keywords
glass
raw material
glass melting
oxygen burner
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006283586A
Other languages
Japanese (ja)
Other versions
JP4624971B2 (en
Inventor
Susumu Shimura
進 志村
Koji Matsui
宏司 松井
Tatsuya Okamoto
達哉 岡本
Shingo Yamada
真悟 山田
Koichiro Kanefuji
▲紘▼一郎 金藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006283586A priority Critical patent/JP4624971B2/en
Publication of JP2008100865A publication Critical patent/JP2008100865A/en
Application granted granted Critical
Publication of JP4624971B2 publication Critical patent/JP4624971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass melting apparatus having good energy efficiency, producing a required excellent glass molten material in a short time of period and using a glass melting furnace which is small-sized, and in another word, has small installation space. <P>SOLUTION: In the glass melting apparatus using the glass melting furnace provided with a melting zone and a clarifying zone and for producing the glass molten material from a glass raw material and auxiliary raw materials, an oxygen burner is attached downward to the ceiling wall of the melting zone in the glass melting furnace, an assistant gas having 90 vol.% oxygen content is supplied to the oxygen burner and a powdery glass mixed raw material prepared by mixing the glass raw material with the auxiliary raw materials is supplied by gas conveyance. An exhaust port is formed on the ceiling wall or the upper part of the side wall of the clarifying zone of the glass melting furnace and the oxygen burner faces downward to burn the gas and the glass mixed raw material is supplied downward into the flame to be melted and the exhaust gas produced in the furnace is discharged from the exhaust port. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はガラス溶解装置に関し、更に詳しくは加熱源としてバーナを取付けたガラス溶解炉を用いてガラス原料や副原料からガラス溶解物を生成させる装置の改良に関する。   The present invention relates to a glass melting apparatus, and more particularly, to an improvement in an apparatus for generating a glass melt from a glass raw material or an auxiliary raw material using a glass melting furnace equipped with a burner as a heating source.

従来、ガラス溶解炉を用いてガラス原料や副原料からガラス溶解物を生成させるガラス溶解装置として、ガラス溶解炉の最上流部から炉内に投入したガラス原料や副原料を、該ガラス溶解炉の側壁に取付けたバーナで溶解するようにしたものが知られている(例えば特許文献1〜3参照)。しかし、これら従来のガラス溶解装置には、ガラス溶解炉の炉内に投入したガラス原料や副原料をバーナの燃焼による炉内輻射を利用して溶解するようになっているため、1)バーナとして酸素バーナを燃焼させる場合であっても、エネルギ効率が悪い、2)炉内に投入するガラス原料や副原料には融点の異なる様々なものが含まれており、これらのなかで融点の低いものは溶解が早いが、融点の高いものは溶解が遅いので、全体としての均質溶解が難しく、均質溶解にかかる時間が長い、3)ガラス溶解炉の炉内に生成するガラス溶解物の上部に未溶解のガラス原料等の低温物が存在するため、ガラス溶解物中に発生するガスが抜け難く、ガス抜きにかかる時間が長い、という問題がある。従来のガラス溶解装置には、エネルギ効率が悪く、所望通りの良好なガラス溶解物を生成させるのに長い時間がかかり、結果として大型のガラス溶解炉が必要になるという問題があるのである。
特開平11−11953号公報 特開平11−11954号公報 特開2005−15299号公報
Conventionally, as a glass melting apparatus for generating a glass melt from a glass raw material or auxiliary material using a glass melting furnace, the glass raw material or auxiliary material charged into the furnace from the most upstream part of the glass melting furnace is used. What melt | dissolved with the burner attached to the side wall is known (for example, refer patent documents 1-3). However, in these conventional glass melting apparatuses, glass raw materials and auxiliary raw materials introduced into the furnace of the glass melting furnace are melted by using in-furnace radiation by burning of the burner. 1) As a burner Even when an oxygen burner is burned, energy efficiency is poor. 2) Glass materials and auxiliary materials put into the furnace include various materials with different melting points, and among these, those with low melting points. Although melting is fast, melting with a high melting point is slow, so it is difficult to achieve homogeneous melting as a whole and the time required for homogeneous melting is long. 3) Undissolved in the upper part of the glass melt generated in the glass melting furnace. Since there are low-temperature materials such as melting glass raw materials, there is a problem that the gas generated in the glass melt is difficult to escape and the time required for degassing is long. The conventional glass melting apparatus has a problem that energy efficiency is low and it takes a long time to produce a desired glass melt as desired, and as a result, a large glass melting furnace is required.
JP-A-11-11953 Japanese Patent Laid-Open No. 11-11954 JP 2005-15299 A

本発明が解決しようとする課題は、エネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも小型の、言い替えれば設置スペースの少ないガラス溶解炉を用いることができるガラス溶解装置を提供する処にある。   The problem to be solved by the present invention is to use a glass melting furnace that is energy efficient, can produce a desired glass melt as desired in a short time, and in other words, has a small installation space. It is a place to provide a glass melting apparatus that can be used.

前記の課題を解決する本発明は、溶解ゾーンと清澄ゾーンとを備えるガラス溶解炉を用い、ガラス原料及び副原料からガラス溶解物を生成させるガラス溶解装置において、ガラス溶解炉の溶解ゾーンの天井壁に酸素バーナが下向きで取付けられており、該酸素バーナには酸素濃度90容量%以上の支燃ガスが供給され、またガラス原料及び副原料を混合した粉体状のガラス混合原料が気体搬送により供給されるようになっていて、該ガラス溶解炉の清澄ゾーンの天井壁又は側壁上部に排気口が開設され、酸素バーナを下向きで燃焼させると共にガラス混合原料をその火炎中に下向きで供給して溶解し、この際に炉内に発生する排ガスを排気口から排出するようにして成ることを特徴とするガラス溶解装置に係る。   The present invention that solves the above-mentioned problems uses a glass melting furnace having a melting zone and a clarification zone, and in a glass melting apparatus that generates a glass melt from a glass raw material and auxiliary raw materials, a ceiling wall of the melting zone of the glass melting furnace An oxygen burner is attached downward, and the oxygen burner is supplied with a combustion-supporting gas having an oxygen concentration of 90% by volume or more. An exhaust port is opened on the ceiling wall or upper side wall of the refining zone of the glass melting furnace, the oxygen burner is burned downward, and the glass mixed raw material is supplied downward into the flame. The present invention relates to a glass melting apparatus characterized in that it melts and exhaust gas generated in the furnace at this time is discharged from an exhaust port.

本発明に係るガラス溶解装置も、ガラス溶解炉を用い、ガラス原料及び副原料からガラス溶解物を生成させるようになっている。かかるガラス溶解炉は、炉内上流側に溶解ゾーンを備え、また炉内下流側に清澄ゾーンを備えており、また必要に応じて双方のゾーンの間にスロートを備え、さらに炉内最下流側に作業ゾーンを備えている。   The glass melting apparatus according to the present invention also uses a glass melting furnace to generate a glass melt from a glass raw material and an auxiliary raw material. Such a glass melting furnace has a melting zone on the upstream side in the furnace, a clarification zone on the downstream side in the furnace, and a throat between both zones as necessary, and further on the most downstream side in the furnace Has a working zone.

本発明に係るガラス溶解装置に用いるガラス溶解炉は、その溶解ゾーンの天井壁に酸素バーナが下向きに取付けられている。この酸素バーナには酸素濃度90容量%以上の支燃ガスが供給されるようになっており、またガラス原料及び副原料を混合した粉体状のガラス混合原料が気体搬送により供給されるようになっていて、この酸素バーナを下向きで燃焼させるときにガラス混合原料をその火炎中に下向きで供給して溶解するようになっている。かかる酸素バーナそれ自体としては、公知のものを転用でき、例えば特開平8−312938号公報、特開2000−55340号公報及び特開2000−103656号公報等に記載されているような酸素バーナを転用できる。これらの酸素バーナは、先端部におけるノズル構造が、中心部から外周部に向かい、例えば燃料供給ノズル、一次支燃ガス供給ノズル、被処理物(ガラス混合原料)供給ノズル及び二次支燃ガス供給ノズルのように、複数の供給ノズルが同心円状に配列されたものからなっている。   In the glass melting furnace used in the glass melting apparatus according to the present invention, an oxygen burner is attached downward on the ceiling wall of the melting zone. The oxygen burner is supplied with a combustion supporting gas having an oxygen concentration of 90% by volume or more, and a powdery glass mixed raw material in which glass raw materials and auxiliary raw materials are mixed is supplied by gas conveyance. Thus, when this oxygen burner is burned downward, the glass mixed raw material is supplied downward into the flame and melted. As such an oxygen burner itself, a known one can be used. For example, an oxygen burner described in JP-A-8-312938, JP-A-2000-55340, JP-A-2000-103656, and the like can be used. Can be diverted. In these oxygen burners, the nozzle structure at the tip is directed from the center to the outer periphery, for example, a fuel supply nozzle, a primary combustion gas supply nozzle, an object to be processed (glass mixed raw material) supply nozzle, and a secondary combustion gas supply. Like a nozzle, it consists of a plurality of supply nozzles arranged concentrically.

前記のような酸素バーナをガラス溶解炉の溶解ゾーンの天井壁に下向きで取付け、これに酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させると、火炎それ自体の温度が高くなるだけでなく、その火炎は炉内に生成するガラス溶解物の湯面をも加熱し、しかも発生する排ガス量は少なく、該排ガス中における所謂NOx濃度も低い。かかる火炎中に粉体状のガラス混合原料を下向きで供給すると、該ガラス混合原料は極めて短時間で溶解する。しかもこのとき、下向きで燃焼する高温の火炎中に下向きで供給したガラス混合原料の水分は一気に蒸発し、炭酸化合物の形態をとる原料は分解してガスを放出するので、炉内のガラス溶解物中におけるガス発生量は著しく低くなる。ガラス混合原料の溶解及び生成したガラス溶解物の清澄を短時間で行なうことができるのであり、結果として、エネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも炉長の短い、言い替えれば設置スペースの少ないガラス溶解炉を用いることができるのである。   If the above-mentioned oxygen burner is mounted downward on the ceiling wall of the melting zone of the glass melting furnace, and a combustion-supporting gas having an oxygen concentration of 90% by volume or more is supplied and burned downward, the temperature of the flame itself becomes high. In addition, the flame heats the molten metal surface of the glass melt generated in the furnace, and the amount of generated exhaust gas is small, so-called NOx concentration in the exhaust gas is low. When a powdery glass mixed raw material is supplied downward in such a flame, the glass mixed raw material dissolves in a very short time. At this time, the water in the glass mixed raw material supplied downward in the high-temperature flame that burns downward evaporates all at once, and the raw material in the form of a carbonate compound decomposes and releases gas, so the glass melt in the furnace The amount of gas generated inside is extremely low. The melting of the glass mixed raw material and the clarification of the generated glass melt can be performed in a short time. As a result, energy efficiency is good, and a desired glass melt as desired can be generated in a short time. Moreover, a glass melting furnace having a short furnace length, in other words, a small installation space can be used.

また本発明に係るガラス溶解装置に用いるガラス溶解炉は、その清澄ゾーンの天井壁又は側壁上部に排気口が開放されている。前記のように酸素バーナの下向きで燃焼する高温火炎中に粉体状のガラス混合原料を下向きで供給して溶解すると、相応に高温の排ガスが発生するが、かかる排ガスを炉内溶解ゾーンを経由して炉内清澄ゾーンの排気口から、好ましくは炉内清澄ゾーン下流部の排気口から排出し、その保有熱を炉や炉内に生成するガラス溶解物の湯面の加熱乃至保温に利用して、これによってもガラス溶解物の清澄をより効率良く行なうことができるようにするのである。   Moreover, the glass melting furnace used for the glass melting apparatus which concerns on this invention has the exhaust port open | released by the ceiling wall or side wall upper part of the clarification zone. As described above, when the powdery glass mixed raw material is supplied downward and melted in the high-temperature flame that burns downward in the oxygen burner, a correspondingly high-temperature exhaust gas is generated, but this exhaust gas passes through the melting zone in the furnace. Then, it is discharged from the exhaust port of the clarification zone in the furnace, preferably from the exhaust port downstream of the clarification zone in the furnace, and the retained heat is used for heating or heat insulation of the molten metal surface of the glass melt generated in the furnace or the furnace. This also makes it possible to clarify the glass melt more efficiently.

本発明に係るガラス溶解装置では、ガラス溶解炉の溶解ゾーン及び/又は清澄ゾーンの天井壁に補助酸素バーナを下向きで取付け、該補助酸素バーナをこれにガラス混合原料を供給することなく下向きで燃焼させるようにするのが好ましい。何らかの原因で、前記した酸素バーナへのガラス混合原料の供給量が少なくなると、これに合わせて該酸素バーナの燃焼量を絞ることになるが、その結果、炉内のガラス溶解物に対する加熱が不足することとなるときは、補助酸素バーナを下向きで燃焼させて不足分を補うことができるようにするのである。   In the glass melting apparatus according to the present invention, an auxiliary oxygen burner is attached to the ceiling wall of the melting zone and / or the refining zone of the glass melting furnace in a downward direction, and the auxiliary oxygen burner is burned downward without supplying a glass mixed raw material thereto. It is preferable to do so. For some reason, if the supply amount of the glass mixture raw material to the oxygen burner is reduced, the combustion amount of the oxygen burner will be reduced accordingly. As a result, the heating of the glass melt in the furnace is insufficient. When this happens, the auxiliary oxygen burner is burned downward so that the shortage can be compensated.

前記した酸素バーナ及び/又は補助酸素バーナには昇降手段を設け、該昇降手段の作動によりそれらの先端部と炉内のガラス溶解物の湯面との間の距離を可変となるようにするのが好ましい。酸素バーナや補助酸素バーナの燃焼量を調節するだけでなく、これらのバーナの先端部と炉内のガラス溶解物の湯面との間の距離をも変えることによって、炉内のガラス溶解物、なかでもその湯面の加熱をより自在に制御できるようにするのである。酸素バーナや補助酸素バーナの燃焼量を調節すると、それらの火炎長さが変わり、火炎の先端部と湯面との距離が変わることが多いが、この距離が適正でない場合は、かかる距離を前記の昇降手段により適正に制御できる。   The above-described oxygen burner and / or auxiliary oxygen burner is provided with lifting means, and the operation of the lifting means makes the distance between the tip of the glass burner and the molten metal surface in the furnace variable. Is preferred. In addition to adjusting the amount of combustion of the oxygen burner and auxiliary oxygen burner, by changing the distance between the tip of these burners and the surface of the molten glass melt in the furnace, In particular, the heating of the hot water surface can be controlled more freely. When the amount of combustion of the oxygen burner or auxiliary oxygen burner is adjusted, their flame lengths change, and the distance between the tip of the flame and the molten metal surface often changes. It can be properly controlled by the lifting means.

また本発明に係るガラス溶解装置では、ガラス溶解炉の炉床壁内及び/又は側壁内に排ガス通路を形成し、前記の排気口から排出した排ガスの全部又は一部を該排ガス通路を介して排出するようにするのが好ましい。排気口に接続された排気系に前記の排ガス通路を分岐して接続し、該排気口から排出した排ガスの全部又は一部を該排ガス通路を介して該排気系へと戻すことにより、ガラス溶解炉からの放熱量を低減するのである。   In the glass melting apparatus according to the present invention, an exhaust gas passage is formed in the hearth wall and / or side wall of the glass melting furnace, and all or a part of the exhaust gas discharged from the exhaust port is passed through the exhaust gas passage. It is preferable to discharge. The above-mentioned exhaust gas passage is branched and connected to an exhaust system connected to the exhaust port, and all or part of the exhaust gas discharged from the exhaust port is returned to the exhaust system through the exhaust gas passage, thereby melting the glass. The amount of heat released from the furnace is reduced.

更に本発明に係るガラス溶解装置では、ガラス溶解炉の炉床壁内にヒータを設け、該ヒータへ通電することにより炉床壁部を加熱するようにするのが好ましい。かかるヒータへ通電することにより炉床壁部を加熱して、炉内の溶解ガラス、なかでも炉床部の溶解ガラスを加熱し、これによってかかる溶解ガラスからのガス抜きをより短時間で行なうことができるようにするのである。   Further, in the glass melting apparatus according to the present invention, it is preferable to provide a heater in the hearth wall of the glass melting furnace and heat the hearth wall part by energizing the heater. By energizing such a heater, the hearth wall is heated, and the molten glass in the furnace, especially the molten glass in the hearth, is heated, and thereby degassing the molten glass in a shorter time. To be able to.

更にまた本発明に係るガラス溶解装置では、前記したようにガラス原料及び副原料を混合した粉体状のガラス混合原料を気体搬送により酸素バーナへ供給する。ガラス混合原料としては、予め別の装置で混合しておいたものを用いることができるが、それぞれ別々のものを混合しながら用いることもできる。この場合、各原料の粉体を貯留しておくための二つ以上の粉体貯留用ホッパ、各粉体貯留用ホッパに接続した定量切出装置、これらの定量切出装置に接続した混合機及びこの混合機に接続した定量供給装置を備えるガラス混合原料供給系を酸素バーナへのガラス混合原料の気体搬送系に接続し、かかるガラス混合原料供給系から気体搬送系に粉体状のガラス混合原料を定量供給しつつ、更に酸素バーナへと供給するようにするのが好ましい。   Furthermore, in the glass melting apparatus according to the present invention, the powdery glass mixed raw material in which the glass raw material and the auxiliary raw material are mixed as described above is supplied to the oxygen burner by gas conveyance. As the glass mixed raw material, those mixed in advance by another apparatus can be used, but they can also be used while mixing different ones. In this case, two or more powder storage hoppers for storing powder of each raw material, a quantitative cutting device connected to each powder storage hopper, and a mixer connected to these quantitative cutting devices And a glass mixed raw material supply system provided with a quantitative supply device connected to the mixer is connected to a gas conveying system of the glass mixed raw material to the oxygen burner, and the glass powder mixing from the glass mixed raw material supplying system to the gas conveying system It is preferable to supply the raw material to the oxygen burner while quantitatively supplying the raw material.

更にまた本発明に係るガラス溶解装置では、ガラス溶解炉の排気口に接続した排気系に熱交換器を接続し、該熱交換器で排ガスの保有熱と熱交換することにより、気体搬送中の粉体状のガラス混合原料及び/又は酸素バーナの支燃ガスの全部又は一部を加熱するようにするのが好ましい。またガラス溶解炉の排気口に接続した排気系にボイラを接続し、該ボイラに発電機を接続して、排気口から排出した排ガスの保有熱によりボイラで水蒸気を発生させ、該水蒸気で発電機のタービンを動かして発電し、発電した電気を前記した酸素バーナに供給する支燃ガスの発生装置の運転及び/又は炉床壁内の前記したヒータへの通電に用いるようにするのが好ましい。共に、ガラス溶解炉の排気口から排出した排ガス、更には前記したような排ガス通路を介して排出した排ガスの保有熱を有効活用するのである。   Furthermore, in the glass melting apparatus according to the present invention, a heat exchanger is connected to the exhaust system connected to the exhaust port of the glass melting furnace, and heat exchange with the retained heat of the exhaust gas is performed by the heat exchanger, thereby It is preferable to heat all or part of the powdery glass mixed raw material and / or the combustion gas of the oxygen burner. Also, a boiler is connected to an exhaust system connected to the exhaust port of the glass melting furnace, a generator is connected to the boiler, steam is generated in the boiler by the retained heat of the exhaust gas discharged from the exhaust port, and the generator is generated with the steam. It is preferable to use this for the operation of the combustion support gas generator for supplying the generated electricity to the oxygen burner and / or for energizing the heater in the hearth wall. In both cases, the retained heat of the exhaust gas discharged from the exhaust port of the glass melting furnace and the exhaust gas discharged through the exhaust gas passage as described above is effectively utilized.

そして本発明に係るガラス溶解装置では、ガラス溶解炉の排気口に接続した排気系に、好ましくは前記した熱交換器又はボイラの下流側にて集塵装置を接続し、該集塵装置の下流側に石灰充填塔を接続して、該集塵装置で集塵処理した排ガスの全部又は一部を該石灰充填塔に通し、ガラス混合原料の一部となる炭酸カルシウムを生成させるようにするのが好ましい。これにより地球温暖化ガスであるCO放出量の低減及び資源の有効活用を図るのである。 In the glass melting apparatus according to the present invention, a dust collector is preferably connected to the exhaust system connected to the exhaust port of the glass melting furnace, preferably on the downstream side of the heat exchanger or the boiler, and downstream of the dust collector. A lime packed tower is connected to the side, and all or part of the exhaust gas collected by the dust collector is passed through the lime packed tower to generate calcium carbonate that becomes a part of the glass mixed raw material. Is preferred. This is intended to reduce the amount of CO 2 emission, which is a global warming gas, and effectively use resources.

本発明に係るガラス溶解装置によると、ガラス原料や副原料からガラス溶解物を生成させるに際してエネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも小型の、言い替えれば設置スペースの少ないガラス溶解炉を用いることができるという効果がある。   According to the glass melting apparatus according to the present invention, when generating a glass melt from a glass raw material or an auxiliary raw material, energy efficiency is good, a desired glass melt can be generated in a short time, and a small size, In other words, there is an effect that a glass melting furnace with a small installation space can be used.

図1は本発明に係るガラス溶解装置を一部縦断面で略示する全体図である。図示したガラス溶解装置で用いているガラス溶解炉11は炉内上流側に溶解ゾーン12を備えており、また炉内下流側に清澄ゾーン13を備えていて、更に炉内最下流側に作業ゾーン14を備えている。但しここでは、溶解ゾーン12と清澄ゾーン13との境界は、原料組成、粒度、運転条件等により変わるため、図示していない。溶解ゾーン12の上流側の天井壁に酸素バーナ21が下向きで取付けられており、また溶解ゾーン12の下流側の天井壁に補助酸素バーナ22が下向きに取付けられていて、清澄ゾーン13の下流側の天井壁に排気口31が設けられている。酸素バーナ21及び補助酸素バーナ22はシリンダ機構23,24を介して天井壁に取付けられており、昇降可能となっていて、それらの先端部と炉内のガラス溶解物Aの湯面との間の距離が可変となっている。   FIG. 1 is an overall view schematically showing a glass melting apparatus according to the present invention partially in a longitudinal section. The glass melting furnace 11 used in the illustrated glass melting apparatus has a melting zone 12 on the upstream side in the furnace, a clarification zone 13 on the downstream side in the furnace, and a working zone on the most downstream side in the furnace. 14 is provided. However, the boundary between the dissolution zone 12 and the fining zone 13 is not shown here because it varies depending on the raw material composition, particle size, operating conditions, and the like. An oxygen burner 21 is attached downward on the ceiling wall on the upstream side of the dissolution zone 12, and an auxiliary oxygen burner 22 is attached downward on the ceiling wall on the downstream side of the dissolution zone 12. An exhaust port 31 is provided in the ceiling wall. The oxygen burner 21 and the auxiliary oxygen burner 22 are attached to the ceiling wall via the cylinder mechanisms 23 and 24, and can be moved up and down, and between these tip portions and the molten metal surface of the glass melt A in the furnace. The distance is variable.

酸素バーナ21は前記したような複数の供給ノズルが同心円状に配列されたものからなっている。かかる酸素バーナ21には吸着式酸素発生装置41から燃焼制御ユニット42を介し酸素濃度90容量%以上の支燃ガスが供給されるようになっており、また燃料タンク43から燃焼制御ユニット42を介し燃料ガスが供給されるようになっている。更に酸素バーナ21にはガラス原料及び副原料を混合した粉体状のガラス混合原料が気体搬送で供給されるように気体搬送系51が接続されている。気体搬送系51の上流側にはドライヤ付きコンプレッサ52が接続されており、その途中にガラス混合原料供給系61が接続されている。ガラス混合原料供給系61は、ガラス混合原料貯留用のホッパ62、ホッパ62に接続された振動篩63、振動篩63に接続された定量供給装置64を備え、また振動篩63で篩分けられた粗大物を破砕して振動篩63の上流側に戻す破砕機65を備えている。ホッパ62、振動篩63及び定量供給装置64を経由し、また必要に応じ破砕機65をも経由してガラス混合原料供給系61から気体搬送系51へ粉体状のガラス混合原料を定量供給しつつ、更に酸素バーナ21へと供給するようになっている。図1に例示したガラス溶解装置では、ガラス溶解炉11における溶解ゾーン12の上流部の天井壁に下向きで取付けた酸素バーナ21へ燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させ、その火炎中に粉体状のガラス混合原料を下向きで供給して溶解し、この際に発生する排ガスを排気口31から排出するようになっている。   The oxygen burner 21 is composed of a plurality of supply nozzles arranged concentrically as described above. The oxygen burner 21 is supplied with combustion-supporting gas having an oxygen concentration of 90% by volume or more from the adsorption-type oxygen generator 41 through the combustion control unit 42, and from the fuel tank 43 through the combustion control unit 42. Fuel gas is supplied. Further, a gas conveyance system 51 is connected to the oxygen burner 21 so that a powdery glass mixed raw material obtained by mixing glass raw materials and auxiliary raw materials is supplied by gas conveyance. A compressor 52 with a dryer is connected to the upstream side of the gas transfer system 51, and a glass mixed raw material supply system 61 is connected to the compressor. The glass mixed raw material supply system 61 includes a glass mixed raw material storage hopper 62, a vibration sieve 63 connected to the hopper 62, and a quantitative supply device 64 connected to the vibration sieve 63. A crusher 65 is provided for crushing coarse materials and returning them to the upstream side of the vibrating sieve 63. The powdery glass mixed raw material is quantitatively supplied from the glass mixed raw material supply system 61 to the gas conveying system 51 via the hopper 62, the vibrating sieve 63 and the quantitative supply device 64, and also via the crusher 65 as necessary. However, it is further supplied to the oxygen burner 21. In the glass melting apparatus illustrated in FIG. 1, a fuel gas and a combustion supporting gas having an oxygen concentration of 90% by volume or more are supplied to an oxygen burner 21 mounted downward on the ceiling wall upstream of the melting zone 12 in the glass melting furnace 11. Combusting downward, the powdery glass mixed raw material is supplied downward in the flame and melted, and the exhaust gas generated at this time is discharged from the exhaust port 31.

排気口31には排気系32が接続されている。ガラス溶解炉11の炉床壁には排ガス通路34が形成されており、排ガス通路34は排気系32から分岐された分岐排気系33に接続されていて、その下流側は吸引ファン35を介し再び排気系32に合流されている。図1に例示したガラス溶解装置では、排ガス通路34は炉床壁内に形成されているが、同様の排ガス通路は側壁内にも形成することができる。排気口31から排出される高温の排ガスの全部又は一部をかかる排ガス通路へ流すことにより、ガラス溶解炉11からの放熱量を低減するようになっている。またガラス溶解炉11の炉床壁にはヒータ36が埋設されており、ヒータ36は図示しない電源設備へと接続されている。ヒータ36へ通電することにより、炉内の溶解ガラスAを底面から加熱するようになっている。   An exhaust system 32 is connected to the exhaust port 31. An exhaust gas passage 34 is formed in the hearth wall of the glass melting furnace 11, and the exhaust gas passage 34 is connected to a branch exhaust system 33 branched from the exhaust system 32, and the downstream side thereof again via the suction fan 35. The exhaust system 32 is joined. In the glass melting apparatus illustrated in FIG. 1, the exhaust gas passage 34 is formed in the hearth wall, but a similar exhaust gas passage can also be formed in the side wall. The amount of heat released from the glass melting furnace 11 is reduced by flowing all or part of the high-temperature exhaust gas discharged from the exhaust port 31 into the exhaust gas passage. A heater 36 is embedded in the hearth wall of the glass melting furnace 11, and the heater 36 is connected to a power supply facility (not shown). By energizing the heater 36, the molten glass A in the furnace is heated from the bottom surface.

排気系32の下流側には冷却塔71、集塵装置72、吸引ファン74及び煙突75がこの順で接続されており、排気口31から排出された高温の排ガスを冷却塔71で冷却し、更に集塵装置72で集塵処理して、これらで捕捉されたダスト類を受器73に回収する一方、集塵処理した排ガスを吸引ファン74を介して煙突75から大気中へ放出するようになっている。   A cooling tower 71, a dust collector 72, a suction fan 74, and a chimney 75 are connected in this order on the downstream side of the exhaust system 32, and the high-temperature exhaust gas discharged from the exhaust port 31 is cooled by the cooling tower 71. Further, the dust collecting device 72 collects dust and collects the dust trapped by these in the receiver 73, while discharging the dust-collected exhaust gas from the chimney 75 to the atmosphere via the suction fan 74. It has become.

図2は本発明に係る他のガラス溶解装置を一部縦断面で略示する全体図である。図2に例示したガラス溶解装置において、ガラス溶解炉11a、溶解ゾーン12a、清澄ゾーン13a、作業ゾーン14a、酸素バーナ21a、補助酸素バーナ22a、シリンダ機構23a,24a、排気口31a及びガラス溶解物Bについての構成は図1のガラス溶解装置と同様になっているので、ここではそれらの説明を省略する。   FIG. 2 is an overall view schematically showing a part of another glass melting apparatus according to the present invention in a longitudinal section. In the glass melting apparatus illustrated in FIG. 2, a glass melting furnace 11a, a melting zone 12a, a clarification zone 13a, a work zone 14a, an oxygen burner 21a, an auxiliary oxygen burner 22a, cylinder mechanisms 23a and 24a, an exhaust port 31a, and a glass melt B Since the structure about is the same as that of the glass melting apparatus of FIG. 1, those descriptions are omitted here.

酸素バーナ21aは前記したような複数の供給ノズルが同心円状に配列されたものからなっている。かかる酸素バーナ21aには吸着式酸素発生装置41aから燃焼制御ユニット42aを介し酸素濃度90容量%以上の支燃ガスが供給されるようになっており、また燃料タンク43aから燃焼制御ユニット42aを介し燃料ガスが供給されるようになっている。更に酸素バーナ21aにはガラス原料及び副原料を混合した粉体状のガラス混合原料が気体搬送で供給されるように気体搬送系51aが接続されている。気体搬送系51aの上流側にはドライヤ付きコンプレッサ52aが接続されており、その途中にガラス混合原料供給系61aが接続されている。ガラス混合原料供給系61aは、粉体状のガラス原料貯留用のホッパ62a、粉体状の副原料貯留用のホッパ62b、これらのホッパ62a,62bに接続された定量切出装置65a,65b、これらの定量切出装置65a,65bに接続された混合機63a、混合機63aに接続された定量供給装置64aを備えている。ホッパ62a,62b、定量切出装置65a,65b、混合機63a及び定量供給装置64aを経由してガラス混合原料供給系61aから気体搬送系51aへ粉体状のガラス混合原料を定量供給しつつ、詳しくは後述するように更に熱交換器71aを経由してから酸素バーナ21aへと供給するようになっている。図2に例示したガラス溶解装置では、ガラス溶解炉11aにおける溶解ゾーン12aの上流部の天井壁に下向きで取付けた酸素バーナ21aへ燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させ、その火炎中に粉体状のガラス混合原料を下向きで供給して溶解し、この際に発生する排ガスを排気口31aから排出するようになっている。またガラス溶解炉11aの炉床壁にはヒータ36aが埋設されており、ヒータ36aは図示しない電源設備へと接続されていて、ヒータ36aへ通電することにより、炉内の溶解ガラスBを底面から加熱するようになっている。   The oxygen burner 21a is composed of a plurality of supply nozzles arranged concentrically as described above. The oxygen burner 21a is supplied with combustion-supporting gas having an oxygen concentration of 90% by volume or more from the adsorption-type oxygen generator 41a through the combustion control unit 42a, and from the fuel tank 43a through the combustion control unit 42a. Fuel gas is supplied. Further, a gas conveyance system 51a is connected to the oxygen burner 21a so that a powdery glass mixed raw material obtained by mixing glass raw materials and auxiliary raw materials is supplied by gas conveyance. A compressor 52a with a dryer is connected to the upstream side of the gas conveying system 51a, and a glass mixed raw material supply system 61a is connected to the compressor 52a. The glass mixed raw material supply system 61a includes a powdery glass raw material storage hopper 62a, a powdery auxiliary raw material storage hopper 62b, and quantitative cutting devices 65a and 65b connected to the hoppers 62a and 62b. A mixer 63a connected to these quantitative cutting devices 65a and 65b, and a quantitative supply device 64a connected to the mixer 63a are provided. While quantitatively supplying the powdery glass mixed raw material from the glass mixed raw material supply system 61a to the gas conveying system 51a via the hoppers 62a and 62b, the quantitative cutting devices 65a and 65b, the mixer 63a and the quantitative supply device 64a, In detail, as will be described later, the oxygen is further supplied to the oxygen burner 21a after passing through the heat exchanger 71a. In the glass melting apparatus illustrated in FIG. 2, the fuel gas and the combustion supporting gas having an oxygen concentration of 90% by volume or more are supplied to the oxygen burner 21a mounted downward on the ceiling wall upstream of the melting zone 12a in the glass melting furnace 11a. Combusting downward, supplying powdery glass mixed raw material downward into the flame and melting it, exhaust gas generated at this time is discharged from the exhaust port 31a. In addition, a heater 36a is embedded in the hearth wall of the glass melting furnace 11a, and the heater 36a is connected to a power supply facility (not shown). By energizing the heater 36a, the molten glass B in the furnace is removed from the bottom surface. It comes to heat.

排気口31aには排気系32aが接続されており、排気系32aには熱交換器71a、集塵装置72a、石灰充填塔76a、吸引ファン74a及び煙突75aがこの順で接続されている。排気口31aから排出された高温の排ガスの保有熱を気体搬送中の粉体状のガラス混合原料と熱交換して気体搬送中の粉体状のガラス混合原料を加熱し(図2中のX→Y)、更に集塵装置72aで集塵処理して、これらで捕捉されたダスト類を受器73aに回収する一方、集塵処理した排ガスの一部を石灰充填塔76aへと通し、残部を吸引ファン77aを介して熱交換器71aの上流側における排気系32aに戻して、この石灰充填塔76aでガラス混合原料の一部となる炭酸カルシウムを生成させた後、吸引ファン74aを介して煙突75aから大気中へ放出するようになっている。石灰充填塔76aには、集塵処理前にどのような処理をしたかにかかわらず、集塵処理後の排ガスを通す。集塵処理後の排ガスを吸引ファン77aを介して循環するのは、排ガス中のCO濃度を高めて、石灰充填塔76aにおける反応効率を上げるためである。 An exhaust system 32a is connected to the exhaust port 31a, and a heat exchanger 71a, a dust collector 72a, a lime filling tower 76a, a suction fan 74a, and a chimney 75a are connected to the exhaust system 32a in this order. The retained heat of the high-temperature exhaust gas discharged from the exhaust port 31a is heat-exchanged with the powdery glass mixed raw material being transported by gas to heat the powdery glass mixed raw material being transported by gas (X in FIG. 2). → Y) Further, the dust collector 72a collects dust and collects the dust captured by these in the receiver 73a, while passing a part of the dust-collected exhaust gas to the lime packed tower 76a, and the remainder Is returned to the exhaust system 32a on the upstream side of the heat exchanger 71a through the suction fan 77a, and calcium carbonate which is a part of the glass mixed raw material is generated in the lime packed tower 76a, and then is passed through the suction fan 74a. The air is emitted from the chimney 75a into the atmosphere. Regardless of what kind of processing is performed before the dust collection processing, the exhaust gas after the dust collection processing is passed through the lime packed tower 76a. The reason why the exhaust gas after the dust collection treatment is circulated through the suction fan 77a is to increase the CO 2 concentration in the exhaust gas and increase the reaction efficiency in the lime packed tower 76a.

図3は本発明に係る更に他のガラス溶解装置を一部縦断面で略示する全体図である。図3に例示したガラス溶解装置において、ガラス溶解炉11b、溶解ゾーン12b、清澄ゾーン13b、作業ゾーン14b、酸素バーナ21b、補助酸素バーナ22b、シリンダ機構23b,24b、排気口31b及びガラス溶解物Cについての構成は図1のガラス溶解装置と同様になっているので、ここではそれらの説明を省略する。   FIG. 3 is an overall view schematically showing still another glass melting apparatus according to the present invention in a partly longitudinal section. In the glass melting apparatus illustrated in FIG. 3, the glass melting furnace 11b, the melting zone 12b, the clarification zone 13b, the working zone 14b, the oxygen burner 21b, the auxiliary oxygen burner 22b, the cylinder mechanisms 23b and 24b, the exhaust port 31b, and the glass melt C Since the structure about is the same as that of the glass melting apparatus of FIG. 1, those descriptions are omitted here.

酸素バーナ21bは前記したような複数の供給ノズルが同心円状に配列されたものからなっている。かかる酸素バーナ21bには吸着式酸素発生装置41bから燃焼制御ユニット42bを介し酸素濃度90容量%以上の支燃ガスが供給されるようになっており、また燃料タンク43bから燃焼制御ユニット42bを介し燃料ガスが供給されるようになっている。更に酸素バーナ21bにはガラス原料及び副原料を混合した粉体状のガラス混合原料が気体搬送で供給されるように気体搬送系51bが接続されている。気体搬送系51bの上流側にはドライヤ付きコンプレッサ52bが接続されており、その途中にガラス混合原料供給系61bが接続されている。ガラス混合原料供給系61bは、粉体状のガラス原料貯留用のホッパ62c、粉体状の副原料貯留用のホッパ62d、これらのホッパ62c,62dに接続された定量切出装置65c,65d、これらの定量切出装置65c,65dに接続された混合機63b、混合機63bに接続された定量供給装置64bを備えている。ホッパ62c,62d、定量切出装置65c,65d、混合機63b及び定量供給装置64bを経由してガラス混合原料供給系61bから気体搬送系51bへ粉体状のガラス混合原料を定量供給しつつ、更に酸素バーナ21bへと供給するようになっている。図3に例示したガラス溶解装置では、ガラス溶解炉11bにおける溶解ゾーン12bの上流部の天井壁に下向きで取付けた酸素バーナ21bへ燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させ、その火炎中に粉体状のガラス混合原料を下向きで供給して溶解し、この際に発生する排ガスを排気口31bから排出するようになっている。またガラス溶解炉11bの炉床壁にはヒータ36bが埋設されており、ヒータ36bは図示しない電源設備へと接続されていて、ヒータ36bへ通電することにより、炉内の溶解ガラスCを底面から加熱するようになっている。   The oxygen burner 21b is composed of a plurality of supply nozzles arranged concentrically as described above. The oxygen burner 21b is supplied with combustion-supporting gas having an oxygen concentration of 90% by volume or more from the adsorption-type oxygen generator 41b through the combustion control unit 42b, and from the fuel tank 43b through the combustion control unit 42b. Fuel gas is supplied. Further, a gas conveyance system 51b is connected to the oxygen burner 21b so that a powdery glass mixed raw material obtained by mixing glass raw materials and auxiliary raw materials is supplied by gas conveyance. A compressor 52b with a dryer is connected to the upstream side of the gas conveyance system 51b, and a glass mixed raw material supply system 61b is connected to the compressor 52b. The glass mixed raw material supply system 61b includes a powdery glass raw material storage hopper 62c, a powdery auxiliary raw material storage hopper 62d, and quantitative cutting devices 65c and 65d connected to the hoppers 62c and 62d, A mixer 63b connected to the fixed quantity cutting devices 65c and 65d and a fixed quantity supply device 64b connected to the mixer 63b are provided. While quantitatively supplying the powdery glass mixed raw material from the glass mixed raw material supply system 61b to the gas conveying system 51b via the hoppers 62c and 62d, the quantitative cutting devices 65c and 65d, the mixer 63b and the quantitative supply device 64b, Further, it is supplied to the oxygen burner 21b. In the glass melting apparatus illustrated in FIG. 3, the fuel gas and the combustion supporting gas having an oxygen concentration of 90% by volume or more are supplied to the oxygen burner 21b mounted downward on the ceiling wall upstream of the melting zone 12b in the glass melting furnace 11b. Combusting downward, supplying powdery glass mixed raw material downward into the flame and melting it, exhaust gas generated at this time is discharged from the exhaust port 31b. In addition, a heater 36b is embedded in the hearth wall of the glass melting furnace 11b, and the heater 36b is connected to a power supply facility (not shown). By energizing the heater 36b, the molten glass C in the furnace is removed from the bottom surface. It comes to heat.

排気系32bにはボイラ71b、集塵装置72b、石灰充填塔76b、吸引ファン74b及び煙突75bがこの順で接続されており、ボイラ71bには発電機77bのタービン77c及び復水器77dが接続されている。排気口31bから排出された高温の排ガスの保有熱によりボイラ71bで水蒸気を発生させ、この水蒸気で発電機77bのタービン77cを動かして発電した電気を吸着式酸素発生装置41bやヒータ36bの電源として利用し、更に集塵装置72bで集塵処理して、これらで捕捉されたダスト類を受器73bに回収する一方、集塵処理した排ガスを石灰充填塔76bへ通し、この石灰充填塔76bでガラス混合原料の一部となる炭酸カルシウムを生成させた後、吸引ファン74bを介して煙突75bから大気中へ放出するようになっている。   A boiler 71b, a dust collector 72b, a lime filling tower 76b, a suction fan 74b, and a chimney 75b are connected in this order to the exhaust system 32b, and a turbine 77c and a condenser 77d of a generator 77b are connected to the boiler 71b. Has been. Steam generated by the boiler 71b is generated by the retained heat of the high-temperature exhaust gas discharged from the exhaust port 31b, and electricity generated by moving the turbine 77c of the generator 77b with this steam is used as a power source for the adsorption oxygen generator 41b and the heater 36b. Then, the dust collected by the dust collecting device 72b is collected, and the dust collected by these is collected in the receiver 73b, while the exhaust gas subjected to the dust collecting is passed to the lime packed tower 76b, and the lime packed tower 76b After generating calcium carbonate as a part of the glass mixed raw material, the calcium carbonate is discharged into the atmosphere from the chimney 75b through the suction fan 74b.

本発明に係るガラス溶解装置を一部縦断面で略示する全体図。1 is an overall view schematically showing a glass melting apparatus according to the present invention in a partly longitudinal section. 本発明に係る他のガラス溶解装置を一部縦断面で略示する全体図。The whole figure which shows the other glass melting | dissolving apparatus which concerns on this invention partially in a longitudinal section. 本発明に係る更に他のガラス溶解装置を一部縦断面で略示する全体図。FIG. 5 is an overall view schematically showing still another glass melting apparatus according to the present invention in a longitudinal section.

符号の説明Explanation of symbols

11,11a,11b ガラス溶解炉
12,12a,12b 溶解ゾーン
13,13a,13b 清澄ゾーン
14,14a,14b 作業ゾーン
21,21a,21b 酸素バーナ
22,22a,22b 補助酸素バーナ
31,31a,31b 排気口
41,41a,41b 吸着式酸素発生装置
51,51a,51b 気体搬送系
62,62a〜62d ホッパ
64,64a,64b 定量供給装置
65a〜65d 定量切出装置
71 冷却塔
71a 熱交換器
71b ボイラ
72,72a,72b 集塵装置
76a,76b 石灰充填塔
77b 発電機
11, 11a, 11b Glass melting furnace 12, 12a, 12b Melting zone 13, 13a, 13b Clarification zone 14, 14a, 14b Working zone 21, 21a, 21b Oxygen burner 22, 22a, 22b Auxiliary oxygen burner 31, 31a, 31b Exhaust Port 41, 41a, 41b Adsorption-type oxygen generator 51, 51a, 51b Gas transport system 62, 62a-62d Hopper 64, 64a, 64b Fixed amount supply device 65a-65d Fixed amount cutting device 71 Cooling tower 71a Heat exchanger 71b Boiler 72 , 72a, 72b Dust collectors 76a, 76b Lime packed tower 77b Generator

Claims (9)

溶解ゾーンと清澄ゾーンとを備えるガラス溶解炉を用い、ガラス原料及び副原料からガラス溶解物を生成させるガラス溶解装置において、ガラス溶解炉の溶解ゾーンの天井壁に酸素バーナが下向きで取付けられており、該酸素バーナには酸素濃度90容量%以上の支燃ガスが供給され、またガラス原料及び副原料を混合した粉体状のガラス混合原料が気体搬送により供給されるようになっていて、該ガラス溶解炉の清澄ゾーンの天井壁又は側壁上部に排気口が開設され、酸素バーナを下向きで燃焼させると共にガラス混合原料をその火炎中に下向きで供給して溶解し、この際に炉内に発生する排ガスを排気口から排出するようにして成ることを特徴とするガラス溶解装置。   In a glass melting apparatus that uses a glass melting furnace having a melting zone and a clarification zone to generate a glass melt from a glass raw material and auxiliary raw materials, an oxygen burner is attached downward on the ceiling wall of the melting zone of the glass melting furnace. The oxygen burner is supplied with a supporting gas having an oxygen concentration of 90% by volume or more, and a powdery glass mixed raw material in which a glass raw material and an auxiliary raw material are mixed is supplied by gas conveyance, An exhaust port is opened on the ceiling wall or upper side wall of the clarification zone of the glass melting furnace, the oxygen burner is burned downward, and the glass mixed raw material is supplied downward into the flame to be melted. A glass melting apparatus characterized in that exhaust gas to be discharged is discharged from an exhaust port. 更にガラス溶解炉の溶解ゾーン及び/又は清澄ゾーンの天井壁に補助酸素バーナが下向きで取付けられており、該補助酸素バーナをこれにガラス混合原料を供給することなく下向きで燃焼させるようにした請求項1記載のガラス溶解装置。   Further, an auxiliary oxygen burner is attached downward on the ceiling wall of the melting zone and / or the refining zone of the glass melting furnace, and the auxiliary oxygen burner is combusted downward without supplying glass mixed raw material thereto. Item 2. A glass melting apparatus according to Item 1. 酸素バーナ及び/又は補助酸素バーナに昇降手段が設けられており、該昇降手段の作動により該酸素バーナ及び/又は該補助酸素バーナの先端部と炉内のガラス溶解物の湯面との間の距離が可変となるようにした請求項1記載又は2記載のガラス溶解装置。   The oxygen burner and / or the auxiliary oxygen burner is provided with lifting means, and the operation of the lifting means causes the oxygen burner and / or the auxiliary oxygen burner to move between the tip of the oxygen burner and the molten metal surface of the glass melt in the furnace. The glass melting apparatus according to claim 1 or 2, wherein the distance is variable. ガラス溶解炉の炉床壁内及び/又は側壁内に排ガス通路が形成されており、排気口から排出した排ガスの全部又は一部を該排ガス通路を介して排気系に戻すようにした請求項1〜3のいずれか一つの項記載のガラス溶解装置。   The exhaust gas passage is formed in the hearth wall and / or side wall of the glass melting furnace, and all or a part of the exhaust gas discharged from the exhaust port is returned to the exhaust system through the exhaust gas passage. The glass melting apparatus of any one of -3. ガラス溶解炉の炉床壁内にヒータが設けられており、該ヒータへ通電することにより炉床壁部を加熱するようにした請求項1〜4のいずれか一つの項記載のガラス溶解装置。   The glass melting apparatus according to any one of claims 1 to 4, wherein a heater is provided in a hearth wall of the glass melting furnace, and the hearth wall part is heated by energizing the heater. 二つ以上の粉体貯留用ホッパ、各粉体貯留用ホッパに接続された定量切出装置、これらの定量切出装置に接続された混合機及び該混合機に接続された定量供給装置を備えるガラス混合原料供給系が酸素バーナへのガラス混合原料の気体搬送系に接続されており、該ガラス混合原料供給系から該気体搬送系に粉体状のガラス混合原料を定量供給しつつ、更に酸素バーナへと供給するようにした請求項1〜5のいずれか一つの項記載のガラス溶解装置。   Two or more powder storage hoppers, a quantitative cutting device connected to each powder storage hopper, a mixer connected to these quantitative cutting devices, and a quantitative supply device connected to the mixer The glass mixed raw material supply system is connected to the gas conveying system of the glass mixed raw material to the oxygen burner. While supplying the powdery glass mixed raw material quantitatively from the glass mixed raw material supplying system to the gas conveying system, further oxygen The glass melting apparatus according to claim 1, wherein the glass melting apparatus is supplied to a burner. ガラス溶解炉の排気系に熱交換器が接続されており、該熱交換器で排ガスの保有熱と熱交換することにより、気体搬送中の粉体状のガラス混合原料及び/又は酸素バーナの支燃ガスの全部又は一部を加熱するようにした請求項1〜6のいずれか一つの項記載のガラス溶解装置。   A heat exchanger is connected to the exhaust system of the glass melting furnace, and the heat exchanger exchanges heat with the retained heat of the exhaust gas, thereby supporting the powdery glass mixed raw material and / or oxygen burner during gas transfer. The glass melting apparatus according to any one of claims 1 to 6, wherein all or part of the fuel gas is heated. ガラス溶解炉の排気系にボイラが接続されており、該ボイラに発電機が接続されていて、排気口から排出した排ガスの保有熱によりボイラで水蒸気を発生させ、該水蒸気で発電機のタービンを動かして発電し、発電した電気を酸素バーナに供給する支燃ガスの発生装置の運転及び/又は炉床壁内のヒータへの通電に用いるようにした請求項1〜6のいずれか一つの項記載のガラス溶解装置。   A boiler is connected to the exhaust system of the glass melting furnace, a generator is connected to the boiler, steam is generated in the boiler by the retained heat of the exhaust gas discharged from the exhaust port, and the turbine of the generator is generated with the steam. 7. The apparatus according to any one of claims 1 to 6, wherein the generator is used for operation of a combustion gas generator that supplies electric power to an oxygen burner and / or energization of a heater in a hearth wall. The glass melting apparatus as described. ガラス溶解炉の排気系に集塵装置が接続されており、該集塵装置に石灰充填塔が接続されていて、該集塵装置で集塵処理した排ガスの全部又は一部を該石灰充填塔に通し、ガラス混合原料の一部となる炭酸カルシウムを回収するようにした請求項1〜8のいずれか一つの項記載のガラス溶解装置。
A dust collector is connected to the exhaust system of the glass melting furnace, a lime packed tower is connected to the dust collector, and all or part of the exhaust gas collected by the dust collector is removed from the lime packed tower The glass melting apparatus according to any one of claims 1 to 8, wherein calcium carbonate that is a part of the glass mixed raw material is recovered.
JP2006283586A 2006-10-18 2006-10-18 Glass melting equipment Expired - Fee Related JP4624971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283586A JP4624971B2 (en) 2006-10-18 2006-10-18 Glass melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283586A JP4624971B2 (en) 2006-10-18 2006-10-18 Glass melting equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010208788A Division JP2011037706A (en) 2010-09-17 2010-09-17 Glass melting apparatus

Publications (2)

Publication Number Publication Date
JP2008100865A true JP2008100865A (en) 2008-05-01
JP4624971B2 JP4624971B2 (en) 2011-02-02

Family

ID=39435494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283586A Expired - Fee Related JP4624971B2 (en) 2006-10-18 2006-10-18 Glass melting equipment

Country Status (1)

Country Link
JP (1) JP4624971B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093252A (en) * 2013-11-13 2015-05-18 日本山村硝子株式会社 Heat recovery device of exhaust gas and exhaust gas treatment system using the same
KR20160096591A (en) 2013-12-13 2016-08-16 아사히 가라스 가부시키가이샤 Glass melt production device and glass article production method
CN113480141A (en) * 2021-06-30 2021-10-08 陕西彩虹工业智能科技有限公司 Kiln equipment and method for manufacturing flexible screen substrate glass

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359713A (en) * 1976-09-04 1978-05-29 Battelle Development Corp Method of melting glass in pot heated by burner and apparatus for said process
JPS5429316A (en) * 1977-08-09 1979-03-05 Nippon Oxygen Co Ltd Method of melting glass and like
JPS62246824A (en) * 1986-01-23 1987-10-28 ベタイリグンゲン・ゾルク・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲー Glass melting furnace and operation therefor
JPH07190328A (en) * 1993-12-28 1995-07-28 Nippon Sanso Kk Incinerated ash melting apparatus
JPH08312938A (en) * 1995-05-18 1996-11-26 Daido Steel Co Ltd Fusion-treatment of incinerated fly ash
JPH1111953A (en) * 1997-06-17 1999-01-19 Nippon Sanso Kk Melting of glass and device therefor
JPH1161217A (en) * 1997-08-19 1999-03-05 Sumitomo Metal Ind Ltd Production of reduced iron and device therefor
JP2002508295A (en) * 1997-12-17 2002-03-19 オウェンス コーニング Roof mounted oxygen burner for glass melting furnace and method of using oxygen burner
JP2002145627A (en) * 2000-11-01 2002-05-22 Nippon Sanso Corp Burner installation structure of glass melting furnace
JP2002168571A (en) * 2000-11-29 2002-06-14 Kyocera Corp Firing furnace and method for treating exhaust gas using it
JP2002284532A (en) * 2001-03-28 2002-10-03 Osaka Gas Co Ltd Glass melting furnace
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
JP2004238236A (en) * 2003-02-05 2004-08-26 Nippon Electric Glass Co Ltd Glass melting method and glass melting equipment
JP2004526656A (en) * 2001-05-03 2004-09-02 ザ・ビーオーシー・グループ・インコーポレーテッド Glass forming batch material melting method
JP2006199549A (en) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology Method and apparatus for dissolving glass material and glass production apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359713A (en) * 1976-09-04 1978-05-29 Battelle Development Corp Method of melting glass in pot heated by burner and apparatus for said process
JPS5429316A (en) * 1977-08-09 1979-03-05 Nippon Oxygen Co Ltd Method of melting glass and like
JPS62246824A (en) * 1986-01-23 1987-10-28 ベタイリグンゲン・ゾルク・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲー Glass melting furnace and operation therefor
JPH07190328A (en) * 1993-12-28 1995-07-28 Nippon Sanso Kk Incinerated ash melting apparatus
JPH08312938A (en) * 1995-05-18 1996-11-26 Daido Steel Co Ltd Fusion-treatment of incinerated fly ash
JPH1111953A (en) * 1997-06-17 1999-01-19 Nippon Sanso Kk Melting of glass and device therefor
JPH1161217A (en) * 1997-08-19 1999-03-05 Sumitomo Metal Ind Ltd Production of reduced iron and device therefor
JP2002508295A (en) * 1997-12-17 2002-03-19 オウェンス コーニング Roof mounted oxygen burner for glass melting furnace and method of using oxygen burner
JP2002145627A (en) * 2000-11-01 2002-05-22 Nippon Sanso Corp Burner installation structure of glass melting furnace
JP2002168571A (en) * 2000-11-29 2002-06-14 Kyocera Corp Firing furnace and method for treating exhaust gas using it
JP2002284532A (en) * 2001-03-28 2002-10-03 Osaka Gas Co Ltd Glass melting furnace
JP2004526656A (en) * 2001-05-03 2004-09-02 ザ・ビーオーシー・グループ・インコーポレーテッド Glass forming batch material melting method
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
JP2004238236A (en) * 2003-02-05 2004-08-26 Nippon Electric Glass Co Ltd Glass melting method and glass melting equipment
JP2006199549A (en) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology Method and apparatus for dissolving glass material and glass production apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093252A (en) * 2013-11-13 2015-05-18 日本山村硝子株式会社 Heat recovery device of exhaust gas and exhaust gas treatment system using the same
KR20160096591A (en) 2013-12-13 2016-08-16 아사히 가라스 가부시키가이샤 Glass melt production device and glass article production method
CN113480141A (en) * 2021-06-30 2021-10-08 陕西彩虹工业智能科技有限公司 Kiln equipment and method for manufacturing flexible screen substrate glass

Also Published As

Publication number Publication date
JP4624971B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
CN100467948C (en) Grate type waste incinerator and method of controlling combustion of same
KR101289131B1 (en) Method for gasification and a gasifier
JP6449300B2 (en) Combustion method and equipment with optimized energy recovery
JP2017223395A (en) Waste incineration equipment and waste incineration method
JP2011037706A (en) Glass melting apparatus
JP4624971B2 (en) Glass melting equipment
JP2004084981A (en) Waste incinerator
RU195412U1 (en) HEAT GENERATOR
JP2009287863A (en) Heat treatment apparatus
US6962117B2 (en) Method and apparatus for controlling combustion in a furnace
JP4693178B2 (en) Glass melting method
JP4722022B2 (en) Glass melting furnace
JPH10246428A (en) Equipment and method for heating supply air flow
JP2007078197A (en) Incinerator and incinerating method of waste
JP2005226970A (en) Fire grate type waste incinerator and its operation method
CN103596889B (en) Glass melting furnace
JP5219240B2 (en) Glass melting furnace
JP2004077013A (en) Operation method of waste incinerator, and waste incinerator
JP2008275180A (en) Waste melting treatment method and equipment
WO2000022348A1 (en) Waste disposal device
JP2015209992A (en) Waste incineration treatment equipment and waste incineration treatment method
RU2773999C1 (en) Furnace with an inclined-pushing grate for combustion of granulated and briquetted fuels
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2004020071A (en) Waste incinerator and its operation method
JP2004169931A (en) Waste treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Ref document number: 4624971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees