JP4693178B2 - Glass melting method - Google Patents

Glass melting method Download PDF

Info

Publication number
JP4693178B2
JP4693178B2 JP2006303687A JP2006303687A JP4693178B2 JP 4693178 B2 JP4693178 B2 JP 4693178B2 JP 2006303687 A JP2006303687 A JP 2006303687A JP 2006303687 A JP2006303687 A JP 2006303687A JP 4693178 B2 JP4693178 B2 JP 4693178B2
Authority
JP
Japan
Prior art keywords
glass
furnace
raw material
oxygen burner
glass melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006303687A
Other languages
Japanese (ja)
Other versions
JP2008120609A (en
Inventor
進 志村
真悟 山田
達哉 岡本
▲紘▼一郎 金藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Toyo Glass Co Ltd
AGC Inc
Original Assignee
Daido Steel Co Ltd
Asahi Glass Co Ltd
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Asahi Glass Co Ltd, Toyo Glass Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006303687A priority Critical patent/JP4693178B2/en
Publication of JP2008120609A publication Critical patent/JP2008120609A/en
Application granted granted Critical
Publication of JP4693178B2 publication Critical patent/JP4693178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

本発明はガラス溶解方法に関し、更に詳しくは加熱源としてバーナを取付けたガラス溶解炉を用いてガラス原料や副原料からガラス溶解物を生成させる方法の改良に関する。   The present invention relates to a glass melting method, and more particularly, to an improvement in a method for generating a glass melt from a glass raw material or an auxiliary raw material using a glass melting furnace equipped with a burner as a heating source.

従来、ガラス溶解炉を用いてガラス原料や副原料からガラス溶解物を生成させるガラス溶解方法として、ガラス溶解炉の最上流部から炉内に投入したガラス原料や副原料を、該ガラス溶解炉の側壁に取付けたバーナを燃焼させることにより溶解することが行なわれている(例えば特許文献1〜3参照)。しかし、これら従来のガラス溶解方法には、ガラス溶解炉の炉内に投入したガラス原料や副原料をバーナの燃焼による炉内輻射を利用して溶解するため、1)バーナとして酸素バーナを燃焼させる場合であっても、エネルギ効率が悪い、2)炉内に投入するガラス原料や副原料には融点の異なる様々なものが含まれており、これらのなかで融点の低いものは溶解が早いが、融点の高いものは溶解が遅いので、全体としての均質溶解が難しく、均質溶解にかかる時間が長い、3)ガラス溶解炉の炉内に生成するガラス溶解物の上部に未溶解のガラス原料等の低温物が存在するため、ガラス溶解物中に発生するガスが抜け難く、ガス抜きにかかる時間が長い、という問題がある。従来のガラス溶解方法には、エネルギ効率が悪く、所望通りの良好なガラス溶解物を生成させるのに長い時間がかかり、結果として大型のガラス溶解炉が必要になるという問題があるのである。
特開平11−11953号公報 特開平11−11954号公報 特開2005−15299号公報
Conventionally, as a glass melting method for generating a glass melt from a glass raw material or auxiliary material using a glass melting furnace, the glass raw material or auxiliary material charged into the furnace from the most upstream part of the glass melting furnace is used. Melting is performed by burning a burner attached to a side wall (see, for example, Patent Documents 1 to 3). However, in these conventional glass melting methods, glass raw materials and auxiliary raw materials introduced into the furnace of the glass melting furnace are melted using in-furnace radiation by burning of the burner. 1) An oxygen burner is burned as a burner. Even if it is a case, energy efficiency is poor. 2) Various materials with different melting points are included in the glass raw materials and auxiliary raw materials put into the furnace. Among these, those having a low melting point dissolve quickly. Those with a high melting point are slow to dissolve, so it is difficult to achieve homogeneous melting as a whole, and the time required for homogeneous melting is long. 3) Unmelted glass raw material etc. Therefore, there is a problem that the gas generated in the glass melt is difficult to escape and the time required for degassing is long. The conventional glass melting method has a problem that energy efficiency is low and it takes a long time to produce a desired glass melt as desired, and as a result, a large glass melting furnace is required.
JP-A-11-11953 Japanese Patent Laid-Open No. 11-11954 JP 2005-15299 A

本発明が解決しようとする課題は、エネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも小型の、言い替えれば設置スペースの少ないガラス溶解炉を用いることができるガラス溶解方法を提供する処にある。   The problem to be solved by the present invention is to use a glass melting furnace that is energy efficient, can produce a desired glass melt as desired in a short time, and in other words, has a small installation space. It is the place which provides the glass melting method which can be performed.

前記の課題を解決する本発明は、溶解ゾーンと清澄ゾーンとを備えるガラス溶解炉を用い、ガラス原料及び副原料からガラス溶解物を生成させるガラス溶解方法において、ガラス溶解炉の溶解ゾーンの天井壁に下向きで取付けた酸素バーナに酸素濃度90容量%以上の支燃ガスを供給して該酸素バーナを下向きで燃焼させ、ガラス原料及び副原料のうちで分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下である物質を含むものは酸素バーナの火炎中に供給することなくガラス溶解炉の溶解ゾーンへ直接供給し、そうでない他のガラス原料及び副原料は気体搬送により該酸素バーナ内の流路を介しその火炎中に下向きで供給して溶解し、この際に炉内に発生するガスをガラス溶解炉の清澄ゾーンの天井壁又は側壁上部に設けた排気口から炉外へ排出することを特徴とするガラス溶解方法に係る。 The present invention that solves the above-mentioned problems uses a glass melting furnace comprising a melting zone and a clarification zone, and in the glass melting method for generating a glass melt from a glass raw material and an auxiliary raw material, the ceiling wall of the melting zone of the glass melting furnace A combustion support gas having an oxygen concentration of 90% by volume or more is supplied to an oxygen burner attached downward to burn the oxygen burner downward, and the decomposition point or boiling point of the glass raw material and auxiliary raw material is 1500 ° C. or lower; Those containing substances whose boiling point is not higher than 1500 ° C. are supplied directly to the melting zone of the glass melting furnace without being supplied into the flame of the oxygen burner, and other glass raw materials and auxiliary raw materials are not transferred by gas transportation. was dissolved was supplied under direction of the flow path in the oxygen burner flame of intervention perilla, ceiling or side wall of the refining zone of a glass melting furnace gas generated in the furnace during this According from the exhaust port formed in a part on the glass melting method characterized by discharging out of the furnace.

本発明に係るガラス溶解方法でも、ガラス溶解炉を用い、ガラス原料及び副原料からガラス溶解物を生成させる。かかるガラス溶解炉は、炉内上流側に溶解ゾーンを備え、また炉内下流側に清澄ゾーンを備えており、また必要に応じて双方のゾーンの間にスロートを備え、さらに炉内最下流側にスロートを介して作業ゾーンを備えている。   Also in the glass melting method according to the present invention, a glass melt is generated from a glass raw material and auxiliary raw materials using a glass melting furnace. Such a glass melting furnace has a melting zone on the upstream side in the furnace, a clarification zone on the downstream side in the furnace, and a throat between both zones as necessary, and further on the most downstream side in the furnace Has a working zone through the throat.

本発明に係るガラス溶解方法では、ガラス溶解炉の溶解ゾーンの天井壁に酸素バーナを下向きで取付け、該酸素バーナに酸素濃度90容量%以上の支燃ガスを供給して、該酸素バーナを下向きで燃焼させる。ガラス原料及び副原料は、その一部を、通常はそれらを混合した粉体状の形態で気体搬送し、酸素バーナ内の流路を介して、該酸素バーナの下向きで燃焼する火炎中に下向きで供給し、溶解する。かかる酸素バーナそれ自体としては、公知のものを転用でき、例えば特開平8−312938号公報、特開2000−55340号公報及び特開2000−103656号公報等に記載されているような酸素バーナを転用できる。これらの酸素バーナは、先端部におけるノズル構造が、中心部から外周部に向かい、例えば燃料供給ノズル、一次支燃ガス供給ノズル、被処理物供給ノズル及び二次支燃ガス供給ノズルのように、複数の供給ノズルが同心円状に配列されたものからなっているので、本発明に係るガラス溶解方法では、ガラス原料及び副原料をかかる酸素バーナの被処理物供給ノズルを介して供給する。 In the glass melting method according to the present invention, an oxygen burner is mounted downward on the ceiling wall of the melting zone of the glass melting furnace, a combustion supporting gas having an oxygen concentration of 90% by volume or more is supplied to the oxygen burner, and the oxygen burner is directed downward. Burn with. Glass materials and auxiliary materials are a part of that, usually gas carrying with them the mixed powdered form, through the flow path in the oxygen burner, a flame burning at a downward oxygen burner Feed downward and dissolve. As such an oxygen burner itself, a known one can be used. For example, an oxygen burner described in JP-A-8-312938, JP-A-2000-55340, JP-A-2000-103656, and the like can be used. Can be diverted. In these oxygen burners, the nozzle structure at the tip is directed from the center to the outer periphery, for example, a fuel supply nozzle, a primary support gas supply nozzle, an object supply nozzle and a secondary support gas supply nozzle, Since the plurality of supply nozzles are arranged concentrically, in the glass melting method according to the present invention, the glass material and the auxiliary material are supplied through the object supply nozzle of the oxygen burner.

前記のような酸素バーナをガラス溶解炉の溶解ゾーンの天井壁に下向きで取付け、これに酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させると、火炎それ自体の温度が高くなるだけでなく、その火炎は炉内に生成するガラス溶解物の湯面をも加熱し、しかも発生する排ガス量は少なく、該排ガス中における所謂NOx濃度も低い。かかる火炎中に、酸素バーナ内の流路を介してガラス原料及び副原料を下向きで供給すると、それらは極めて短時間で溶解する。しかもこのとき、下向きで燃焼する高温の火炎中に下向きで供給したガラス原料及び副原料の水分は一気に蒸発し、炭酸化合物や水酸化化合物の形態をとる原料は分解してガスを放出するので、炉内のガラス溶解物中におけるガス発生量は著しく低くなる。ガラス原料及び副原料の溶解及び生成したガラス溶解物の清澄を短時間で行なうことができるのであり、結果として、エネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも炉長の短い、言い替えれば設置スペースの少ないガラス溶解炉を用いることができる。   If the above-mentioned oxygen burner is mounted downward on the ceiling wall of the melting zone of the glass melting furnace, and a combustion-supporting gas having an oxygen concentration of 90% by volume or more is supplied and burned downward, the temperature of the flame itself becomes high. In addition, the flame heats the molten metal surface of the glass melt generated in the furnace, and the amount of generated exhaust gas is small, so-called NOx concentration in the exhaust gas is low. When the glass raw material and the auxiliary raw material are supplied downward through the flow path in the oxygen burner, they are dissolved in a very short time. In addition, at this time, the moisture of the glass raw material and auxiliary raw material supplied downward in the high-temperature flame that burns downward evaporates all at once, and the raw material in the form of a carbonate compound or a hydroxide compound decomposes and releases gas, The amount of gas generated in the glass melt in the furnace is significantly reduced. The melting of the glass raw material and the auxiliary raw material and the clarification of the generated glass melt can be performed in a short time. As a result, it is possible to generate a desired glass melt with high energy efficiency in a short time. In addition, a glass melting furnace having a short furnace length, in other words, a small installation space can be used.

また本発明に係るガラス溶解方法では、ガラス溶解炉の清澄ゾーンの天井壁又は側壁上部に排気口を設け、該排気口から炉内に発生するガスを炉外へ排出する。前記のように酸素バーナの下向きで燃焼する高温火炎中にガラス原料及び副原料を下向きで供給して溶解すると、相応に高温のガスが発生するが、かかるガスを炉内溶解ゾーンを経由して炉内清澄ゾーンの排気口から、好ましくは炉内清澄ゾーン下流部の排気口から炉外へ排出し、その保有熱を炉や炉内に生成するガラス溶解物の湯面の加熱乃至保温に利用して、これによってもガラス溶解物の清澄をより効率良く行なうことができる。   In the glass melting method according to the present invention, an exhaust port is provided on the ceiling wall or the upper side of the clarification zone of the glass melting furnace, and the gas generated in the furnace is discharged from the exhaust port to the outside of the furnace. When the glass raw material and the auxiliary raw material are supplied downward and melted in the high-temperature flame that burns downward in the oxygen burner as described above, a correspondingly high-temperature gas is generated, but this gas passes through the melting zone in the furnace. Exhaust from the exhaust port of the clarification zone in the furnace, preferably from the exhaust port downstream of the clarification zone in the furnace, and the retained heat is used to heat or keep the surface of the glass melt generated in the furnace or furnace. This also makes it possible to clarify the glass melt more efficiently.

本発明に係るガラス溶解方法では、ガラス溶解炉の天井壁に取付けた酸素バーナよりも下流側の天井壁に補助酸素バーナを下向きで取付け、該補助酸素バーナに酸素濃度90容量%以上の支燃ガスを供給して、該補助酸素バーナをこれにガラス原料及び副原料を供給することなく下向きで燃焼させ、その火炎を炉内のガラス溶解物の湯面に衝突させるのが好ましい。火炎噴流が湯面に沿って流れ、効果的に湯面を加熱できるからである。何らかの原因で、前記した酸素バーナの燃焼量を絞り、結果として炉内のガラス溶解物に対する加熱が不足することとなるときは、補助酸素バーナを下向きで燃焼させ、その火炎を炉内のガラス溶解物の湯面に衝突させることにより不足分を補うことができる。   In the glass melting method according to the present invention, an auxiliary oxygen burner is attached to the ceiling wall downstream of the oxygen burner attached to the ceiling wall of the glass melting furnace, and the auxiliary oxygen burner has an oxygen concentration of 90% by volume or more. It is preferable to supply gas, burn the auxiliary oxygen burner downward without supplying glass raw material and auxiliary raw material thereto, and collide the flame with the molten metal surface of the glass melt in the furnace. This is because the flame jet flows along the hot water surface and can effectively heat the hot water surface. If for some reason the amount of combustion of the oxygen burner described above is reduced, resulting in insufficient heating of the glass melt in the furnace, the auxiliary oxygen burner is burned downward and the flame is melted into the glass in the furnace. The shortage can be compensated for by colliding with the surface of the object.

また本発明に係るガラス溶解方法では、前記した酸素バーナの火炎中に供給するガラス原料及び副原料のうちで分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下であるものを、そうではない他のガラス原料及び副原料よりも平均粒径が1.5倍以上大きいものとして供給するのが好ましい。前記のように酸素濃度90容量%以上の支燃ガスを供給して酸素バーナを下向きで燃焼させると、その火炎は通常2000℃以上の高温となり、かかる火炎中にガラス原料や副原料を供給しても、その火炎の温度は通常1800℃以上の高温になっている。かかる状況下で、分解点又は沸点が低く、しかも分解生成物の沸点も低いガラス原料及び副原料を、そうではないガラス原料及び副原料と同じような平均粒径の粉体状のままで酸素バーナの火炎中へ供給すると、前者のガラス原料及び副原料は蒸発してガラス化せず、それだけガラス化の歩留まりが低下する。かかる不都合を防止するため、ガラス原料及び副原料を、分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下であるものと、そうではないものとに分け、前者を後者よりも平均粒径が1.5倍以上大きいもの、すなわちそれだけ蒸発し難い大きさの形態のものとして酸素バーナの火炎中に供給する。尚、分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下であるものとは、そのような原料を主成分とするものを意味するが、そうではないもの(1500℃超のもの)を多く含む場合は溶解時間が長くなるため、分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下の原料を60質量%以上、好ましくは70質量%以上含んでいればよい。   In the glass melting method according to the present invention, the decomposition point or boiling point of the glass raw material and auxiliary raw material supplied into the flame of the oxygen burner is 1500 ° C. or lower and the boiling point of the decomposition product is 1500 ° C. or lower. It is preferable to supply those having an average particle size of 1.5 times or more larger than other glass raw materials and auxiliary raw materials that are not. As described above, when a combustion supporting gas having an oxygen concentration of 90% by volume or more is supplied and the oxygen burner is burned downward, the flame usually becomes a high temperature of 2000 ° C. or higher, and glass raw materials and auxiliary raw materials are supplied into the flame. However, the temperature of the flame is usually a high temperature of 1800 ° C. or higher. Under such circumstances, glass raw materials and secondary materials having a low decomposition point or boiling point and a low boiling point of the decomposition products are kept in the form of powder having an average particle size similar to that of glass raw materials and secondary materials that are not so. When supplied into the flame of the burner, the former glass raw material and auxiliary raw material are not evaporated and vitrified, and the vitrification yield is lowered accordingly. In order to prevent such inconvenience, the glass raw material and the auxiliary raw material are divided into those having a decomposition point or boiling point of 1500 ° C. or less and a decomposition product having a boiling point of 1500 ° C. or less, and those not so, and the former being the latter Is supplied into the flame of the oxygen burner in a form having an average particle size larger than 1.5 times, that is, in a form that does not easily evaporate. The decomposition point or boiling point is 1500 ° C. or lower and the decomposition product has a boiling point of 1500 ° C. or lower means that the main component is such a raw material, but not (1500 ° C. In the case of containing a large amount of (super), the dissolution time becomes long, so that the decomposition point or boiling point is 1500 ° C. or less and the decomposition product has a boiling point of 1500 ° C. or less of 60% by mass or more, preferably 70% by mass or more. It only has to be included.

ガラス原料及び副原料のうちで例えば、ガラス原料に相当するシリカやアルミナは沸点が2000℃以上であるので、また水酸化アルミ(Al(OH))、炭酸カルシウム(CaCO)及び消石灰(Ca(OH))は分解点が1500以下であるが、これらの分解生成物(Al又はCaO)の沸点が2000℃以上であるので、以上のガラス原料はそのまま粉体状で酸素バーナの火炎中に供給する。しかし、ガラス原料に相当する炭酸ナトリウム、更にはいずれも副原料に相当するが、酸化剤である硝酸ナトリウム、清澄剤である硫酸ナトリウム、無水亜砒酸及び酸化アンチモンは、分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500以下であるので、これらを含むガラス原料及び副原料はそうではない前記のガラス原料よりも平均粒径が1.5倍以上大きいもの、好ましくは平均粒径が1.5〜5倍大きいものとして酸素バーナの火炎中に供給する。 Among glass raw materials and auxiliary raw materials, for example, silica and alumina corresponding to glass raw materials have a boiling point of 2000 ° C. or higher, so aluminum hydroxide (Al (OH) 3 ), calcium carbonate (CaCO 3 ) and slaked lime (Ca (OH) 2 ) has a decomposition point of 1500 or less, but since these decomposition products (Al 2 O 3 or CaO) have a boiling point of 2000 ° C. or higher, the above glass raw materials are in the form of a powder and an oxygen burner. Supply during the flame. However, sodium carbonate corresponding to the glass raw material, and also all correspond to the auxiliary raw materials, but the oxidizing point of sodium nitrate, the clarifying agent of sodium sulfate, anhydrous arsenous acid and antimony oxide have a decomposition point or boiling point of 1500 ° C. or less. And the boiling point of the decomposition product is 1500 or less, the glass raw material and auxiliary raw materials containing these are those whose average particle size is 1.5 times or more larger than the glass raw material that is not, preferably the average particle size Is supplied as 1.5 to 5 times larger in the flame of the oxygen burner.

図1は、ソーダ石灰ガラス製造用のガラス原料及び副原料の混合物を様々な平均粒径のものに粉砕及び整粒し、それらを2000℃の雰囲気中に投入したときの、昇温状況を例示するグラフである。横軸に投入後の相対的な経過時間を目盛り、縦軸に温度を目盛っていて、図1中、1は平均粒径0.10mmのもの、2は平均粒径0.15mmのもの、3は平均粒径0.20mmのもの、4は平均粒径0.30mmのもの、5は平均粒径0.45mmのもの、6は平均粒径1.0mmのものについての各結果である。この図1からも、平均粒径が1.5倍になると、同じ相対経過時間に対する温度が、図1中の破線矢印で示すように、約300℃低くなることがわかる。   FIG. 1 exemplifies a temperature rise situation when a mixture of glass raw materials and auxiliary raw materials for producing soda-lime glass is pulverized and sized to various average particle diameters and put into an atmosphere of 2000 ° C. It is a graph to do. The horizontal axis indicates the relative elapsed time after injection, and the vertical axis indicates the temperature. In FIG. 1, 1 has an average particle size of 0.10 mm, 2 has an average particle size of 0.15 mm, 3 is an average particle diameter of 0.20 mm, 4 is an average particle diameter of 0.30 mm, 5 is an average particle diameter of 0.45 mm, and 6 is an average particle diameter of 1.0 mm. Also from FIG. 1, it can be seen that when the average particle diameter is 1.5 times, the temperature for the same relative elapsed time is lowered by about 300 ° C., as indicated by the dashed arrow in FIG.

本発明に係るガラス溶解方法では、ガラス原料及び副原料のうちで分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下であるものの蒸発に起因する前記したようなガラス化の歩留まり低下を防止するために、それらを酸素バーナの火炎中に供給することなくガラス溶解炉の溶解ゾーンへ直接供給する。
In the glass melting method according to the present invention, among the glass raw material and the auxiliary raw material, the decomposition point or boiling point is not higher than 1500 ° C. and the boiling point of the decomposition product is not higher than 1500 ° C. in order to prevent a reduction in yield, feed them directly to the melting zone of the glass melting furnace without supplying the flame of the oxygen burner.

更に本発明に係るガラス溶解方法では、前記した酸素バーナ及び/又は補助酸素バーナを理論酸素比よりも大きい値で燃焼させ、かかる燃焼により発生した窒素酸化物を下流側の炉内に供給した燃料やその分解ガスで還元し、残存する未燃分を更に下流側の炉内に供給した酸素及び/又は空気で二次燃焼させた後、炉外へ排出するのが好ましい。ガラス溶解炉の炉内に侵入した空気やガラス原料及び副原料の気体搬送に用いた空気に含まれるN、更には支燃ガスに含まれるNに起因して、酸素バーナや補助酸素バーナを高温で燃焼させると、所謂NOxが発生する。かかるNOxがそのまま排気口から炉外へ排出されるのを防止するため、先ず酸素バーナ及び/又は補助酸素バーナをガラスの着色を防止するために理論酸素比よりも大きい値、例えば1.1〜1.2で燃焼させて発生したNOxを下流側の炉内に供給したメタンやプロパン等の燃料及びこれらが分解したHやCO等の分解ガスで還元してNとし、最後に残存する燃料や分解ガスの未燃分を更に下流側の炉内に供給した酸素及び/又は空気で排気口出口までに二次燃焼させ、かくして処理することにより発生したN、CO、HO等の排ガスを排気口から炉外へ排出するのである。 Further, in the glass melting method according to the present invention, the above-described oxygen burner and / or auxiliary oxygen burner is burned at a value larger than the theoretical oxygen ratio, and the nitrogen oxide generated by such combustion is supplied into the downstream furnace. It is preferable that the remaining unburned gas is reduced with the cracked gas and its decomposition gas, and further subjected to secondary combustion with oxygen and / or air supplied into the furnace on the downstream side, and then discharged outside the furnace. Oxygen burner and auxiliary oxygen burner due to N 2 contained in the air used to convey the glass raw material and auxiliary raw material gas, and further N 2 contained in the combustion supporting gas. Is burned at a high temperature, so-called NOx is generated. In order to prevent such NOx from being discharged out of the furnace as it is, the oxygen burner and / or the auxiliary oxygen burner is first set to a value larger than the theoretical oxygen ratio in order to prevent coloring of the glass, for example, 1.1 to NOx generated by combustion in 1.2 is reduced to N 2 by reducing it with a fuel such as methane or propane supplied to the downstream furnace and a cracked gas such as H 2 or CO decomposed, and finally remains. N 2 , CO 2 , H 2 O generated by the secondary combustion of the unburned fuel and cracked gas to the outlet outlet with oxygen and / or air supplied into the further downstream furnace and thus processing Such exhaust gas is discharged from the exhaust port to the outside of the furnace.

更にまた本発明に係るガラス溶解方法では、炉内のガラス溶解物の下部又はガラス溶解炉の炉床壁内の上部に熱電対を設け、該熱電対で検出した温度に基づいて、ガラス原料の供給量、副原料の供給量、酸素バーナの燃焼量及び/又は補助酸素バーナの燃焼量を制御するのが好ましい。前記したような本発明に係るガラス溶解方法において、ガラス原料や副原料の供給量、また酸素バーナや補助酸素バーナの燃焼量を制御し、設定通りのガラス溶解を行なうためには、炉内のガラス溶解物の温度を測定することが重要であるが、かかる温度を測定するためにガラス溶解炉の天井壁や側壁上部から炉内へ例えば熱電対を挿入し、その先端部をガラス溶解物中へ浸漬するというのは、気体と液体の界面で熱電対保護管が損傷しやすいので、耐久性に大きな問題がある。そこで、炉床壁又は側壁下部から熱電対を挿入し、その先端部を炉床壁の上部に臨ませるか又はガラス溶解物の下部に臨ませることにより耐久性の問題を克服した上で、かかる熱電対で検出した温度に基づいて、前記のように供給量や燃焼量を制御する。その性質上、かかる熱電対はその先端部を酸素バーナの直下に臨ませるのが好ましく、また溶解ゾーンだけではなく清澄ゾーンにも設けるのが好ましい。   Furthermore, in the glass melting method according to the present invention, a thermocouple is provided in the lower part of the glass melt in the furnace or in the upper part of the hearth wall of the glass melting furnace, and based on the temperature detected by the thermocouple, It is preferable to control the supply amount, the supply amount of the auxiliary material, the combustion amount of the oxygen burner and / or the combustion amount of the auxiliary oxygen burner. In the glass melting method according to the present invention as described above, in order to control the supply amount of the glass raw material and the auxiliary raw material, the combustion amount of the oxygen burner and the auxiliary oxygen burner, and perform the glass melting as set, Although it is important to measure the temperature of the glass melt, in order to measure such temperature, for example, a thermocouple is inserted into the furnace from the ceiling wall or upper side of the glass melting furnace, and the tip of the glass melt is placed in the glass melt. Soaking in is difficult to damage the thermocouple protection tube at the interface between gas and liquid, which is a major problem in durability. Therefore, the thermocouple is inserted from the hearth wall or the lower part of the side wall, and the tip is faced to the upper part of the hearth wall or the lower part of the glass melt is overcome. Based on the temperature detected by the thermocouple, the supply amount and the combustion amount are controlled as described above. In view of its nature, such a thermocouple preferably has its tip directly under the oxygen burner, and is preferably provided not only in the dissolution zone but also in the clarification zone.

そして本発明に係るガラス溶解方法では、酸素バーナとして一次支燃ガスの供給系と二次支燃ガスの供給系とを独立して有するものを用い、該酸素バーナの双方の供給系による酸素比を、該酸素バーナに供給するガラス原料や副原料の種類及び/又は炉内のガラス溶解物の温度に基づいて制御するのが好ましい。酸素バーナに供給するガラス原料や副原料の種類、更にはこれらから炉内に生成したガラス溶解物の温度との関係で、酸素バーナの火炎形状等を最適に維持するためである。   In the glass melting method according to the present invention, an oxygen burner having a primary support gas supply system and a secondary support gas supply system independently is used, and the oxygen ratio by both supply systems of the oxygen burner is used. Is preferably controlled based on the type of glass raw material and auxiliary raw material supplied to the oxygen burner and / or the temperature of the glass melt in the furnace. This is because the flame shape and the like of the oxygen burner are optimally maintained in relation to the types of glass raw materials and auxiliary raw materials supplied to the oxygen burner, and further to the temperature of the glass melt generated in the furnace.

本発明に係るガラス溶解方法によると、ガラス原料や副原料からガラス溶解物を生成させるに際してエネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも小型の、言い替えれば設置スペースの少ないガラス溶解炉を用いることができるという効果がある。   According to the glass melting method according to the present invention, when generating a glass melt from a glass raw material or an auxiliary raw material, energy efficiency is good, a desired glass melt can be generated in a short time, and a small size, In other words, there is an effect that a glass melting furnace with a small installation space can be used.

図2は本発明に係るガラス溶解方法の実施状態を一部縦断面で略示する全体図である。ここでは便宜上、以下に説明するような複数の実施状態を同時に図示している。図示したガラス溶解方法で用いているガラス溶解炉11は炉内上流側に溶解ゾーン12を備えており、また炉内下流側に清澄ゾーン13を備えていて、更に炉内最下流側に作業ゾーン14を備えている。但しここでは、溶解ゾーン12と清澄ゾーン13との境界は、原料の組成や平均粒径、運転条件等により変わるため、図示していない。溶解ゾーン12の上流側の天井壁に酸素バーナ21が下向きで取付けられており、また溶解ゾーン12の下流側の天井壁に補助酸素バーナ22が下向きに取付けられていて、清澄ゾーン13の下流側の天井壁に排気口31が設けられている。酸素バーナ21及び補助酸素バーナ22はシリンダ機構23,24を介して天井壁に取付けられており、昇降可能となっていて、それらの先端部と炉内のガラス溶解物Aの湯面との間の距離が可変となっている。   FIG. 2 is an overall view schematically showing in part a longitudinal section an implementation state of the glass melting method according to the present invention. Here, for convenience, a plurality of implementation states as described below are shown at the same time. The glass melting furnace 11 used in the illustrated glass melting method includes a melting zone 12 on the upstream side in the furnace, a clarification zone 13 on the downstream side in the furnace, and a working zone on the most downstream side in the furnace. 14 is provided. However, the boundary between the dissolution zone 12 and the fining zone 13 is not shown here because it varies depending on the composition of the raw material, the average particle diameter, the operating conditions, and the like. An oxygen burner 21 is attached downward on the ceiling wall upstream of the dissolution zone 12, and an auxiliary oxygen burner 22 is attached downward on the ceiling wall downstream of the dissolution zone 12. An exhaust port 31 is provided in the ceiling wall. The oxygen burner 21 and the auxiliary oxygen burner 22 are attached to the ceiling wall via the cylinder mechanisms 23 and 24, and can be moved up and down, and between those tip portions and the molten metal surface of the glass melt A in the furnace. The distance is variable.

酸素バーナ21は、中心部から外周部に向かい、燃料供給ノズル、一次支燃ガス供給ノズル、被処理物(ガラス原料等)供給ノズル、二次支燃ガス供給ノズルの順で複数の供給ノズルが同心円状に配列されたものからなっており、一次支燃ガスの流路と二次支燃ガスの流路とは独立している。かかる酸素バーナ21には吸着式酸素発生装置41から燃焼制御ユニット42を介し酸素濃度90容量%以上の支燃ガスが供給されるようになっており、また燃料タンク43から燃焼制御ユニット42を介し燃料ガスが供給されるようになっている。更に酸素バーナ21にはガラス原料及び副原料を混合した粉体状のガラス混合原料が気体搬送で供給されるように気体搬送系51が接続されている。気体搬送系51の上流側にはドライヤ付きコンプレッサ52が接続されており、その途中に原料供給系61が接続されている。原料供給系61は、原料貯留用のホッパ62,63、これらのホッパ62,63に接続された定量切出装置64,65、これらの定量切出装置64,65に接続された混合機66、混合機66に接続された定量供給装置67を備えている。また排気口31には排気系32が接続されており、排気系32には冷却塔71、集塵装置72、吸引ファン74及び煙突75がこの順で接続されている。   The oxygen burner 21 has a plurality of supply nozzles in the order of a fuel supply nozzle, a primary combustion support gas supply nozzle, an object to be processed (glass raw material, etc.) supply nozzle, and a secondary combustion support gas supply nozzle. It consists of what was arranged concentrically, and the flow path of primary combustion support gas and the flow path of secondary combustion support gas are independent. The oxygen burner 21 is supplied with combustion-supporting gas having an oxygen concentration of 90% by volume or more from the adsorption-type oxygen generator 41 through the combustion control unit 42, and from the fuel tank 43 through the combustion control unit 42. Fuel gas is supplied. Further, a gas conveyance system 51 is connected to the oxygen burner 21 so that a powdery glass mixed raw material obtained by mixing glass raw materials and auxiliary raw materials is supplied by gas conveyance. A compressor 52 with a dryer is connected to the upstream side of the gas transfer system 51, and a raw material supply system 61 is connected in the middle thereof. The raw material supply system 61 includes raw material storage hoppers 62, 63, quantitative cutting devices 64, 65 connected to the hoppers 62, 63, a mixer 66 connected to the quantitative cutting devices 64, 65, A fixed amount supply device 67 connected to the mixer 66 is provided. An exhaust system 32 is connected to the exhaust port 31, and a cooling tower 71, a dust collector 72, a suction fan 74, and a chimney 75 are connected to the exhaust system 32 in this order.

以上説明した図2に基づくガラス溶解方法では、ガラス溶解炉11における溶解ゾーン12の上流部の天井壁に下向きで取付けた酸素バーナ21へ燃焼制御ユニット42を介し燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して酸素バーナ21を下向きで燃焼させ、その火炎中に、ホッパ62,63に貯留しておいた粉体状のガラス原料及び副原料を原料供給系61及び気体搬送系51を経由する気体搬送により酸素バーナ21内の前記した被処理物供給ノズルを介し下向きで供給して溶解し、この際に発生する排ガスを排気口31から排気系32を介し放出している。以上説明した本発明に係るガラス溶解方法によると、バーナの燃焼による炉内輻射を利用して炉内へ投入したガラス原料及び副原料を溶解する従来のガラス溶解方法では数十分〜数時間かかっていた溶解時間を、数秒〜数分にすることができる。また前記した図2に基づくガラス溶解方法において、ガラス溶解炉11における溶解ゾーン12の下流部の天井壁に下向きで取付けた補助酸素バーナ22へ、ガラス原料及び副原料を供給することなく、燃料制御ユニット42を介し燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して補助酸素バーナ22を下向きで燃焼させ、その火炎を炉内のガラス溶解物Aの湯面に衝突させると、上流側の酸素バーナの燃焼量/原料供給量の比を下げても、前記した従来のガラス溶解方法では数時間〜数十時間かかっていた清澄時間を、数十分〜数時間にすることができる。   In the glass melting method based on FIG. 2 described above, the fuel gas and the oxygen concentration are 90% by volume or more through the combustion control unit 42 to the oxygen burner 21 mounted downward on the ceiling wall of the glass melting furnace 11 upstream of the melting zone 12. The combustion gas is supplied to burn the oxygen burner 21 downward, and the powdery glass raw material and auxiliary raw material stored in the hoppers 62 and 63 are fed into the raw material supply system 61 and the gas transport system. By gas conveyance via 51, the object is supplied and dissolved downward through the above-mentioned object supply nozzle in the oxygen burner 21, and the exhaust gas generated at this time is discharged from the exhaust port 31 through the exhaust system 32. According to the glass melting method according to the present invention described above, it takes tens of minutes to several hours in the conventional glass melting method in which the glass raw material and the auxiliary raw material charged into the furnace are melted using the in-furnace radiation due to burner combustion. The dissolution time that has been achieved can be from a few seconds to a few minutes. Further, in the glass melting method based on FIG. 2 described above, the fuel control is performed without supplying the glass raw material and the auxiliary raw material to the auxiliary oxygen burner 22 mounted downward on the ceiling wall downstream of the melting zone 12 in the glass melting furnace 11. When fuel gas and combustion support gas having an oxygen concentration of 90 vol% or more are supplied through the unit 42 and the auxiliary oxygen burner 22 is burned downward and the flame collides with the molten metal surface of the glass melt A in the furnace, Even if the ratio of the combustion amount / raw material supply amount of the oxygen burner on the side is lowered, the refining time which has taken several hours to several tens of hours in the above-described conventional glass melting method can be made tens of minutes to several hours. .

また前記した図2に基づくガラス溶解方法において、ホッパ63に分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下であるガラス原料及び副原料を60質量%含むものを貯留し、ホッパ62にそうではない他のガラス原料及び副原料を貯留して、ホッパ63に貯留したものをホッパ62に貯留したものよりも平均粒径が1.5倍以上大きくしたものとすることもできる。かかるガラス溶解方法では、ホッパ62,63に平均粒径0.1mmのものを貯留して溶解したときに80質量%であったガラス化率を、ホッパ62に貯留しておいたものはそのまま同様にしてホッパ63に平均粒径0.15mmのものを貯留して溶解すると90質量%にすることができ、またホッパ62に貯留しておいたものはそのまま同様にしてホッパ63に平均粒径0.20mmのものを貯留して溶解すると96質量%にすることができる。   Further, in the glass melting method based on FIG. 2 described above, a hopper 63 is stored that contains 60% by mass of a glass raw material and a secondary raw material whose decomposition point or boiling point is 1500 ° C. or lower and whose decomposition product has a boiling point of 1500 ° C. or lower. In addition, other glass raw materials and auxiliary raw materials that are not so are stored in the hopper 62, and the average particle diameter is 1.5 times larger than the one stored in the hopper 62 than that stored in the hopper 62. You can also. In such a glass melting method, the vitrification rate that was 80% by mass when the hoppers 62 and 63 were stored and melted with an average particle diameter of 0.1 mm was the same as that stored in the hopper 62. If the hopper 63 stores and dissolves the one having an average particle diameter of 0.15 mm, the hopper 63 can be made 90 mass%. When 20 mm is stored and dissolved, it can be made 96% by mass.

同様に前記した図2に基づくガラス溶解方法において、ホッパ63に分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下であるガラス原料及び副原料を60質量%含むものを貯留し、ホッパ62にそうではない他のガラス原料及び副原料を貯留して、ホッパ63に貯留したものは原料供給系61及び気体搬送系51を経由することなく、したがって酸素バーナ21の火炎中に供給することなく、別の原料供給系61aを経由してガラス溶解炉11の溶解ゾーン12の上流部へ直接供給することもできる。かかるガラス溶解方法では、ホッパ62,63に貯留しておいた平均粒径0.1mmのものを酸素バーナ21の火炎中へ供給して溶解したときに80質量%であったガラス化率を、ホッパ62に貯留しておいたものはそのまま同様にしてホッパ63に貯留しておいたものをガラス溶解炉11の溶解ゾーン12へ直接供給して溶解すると90質量%にすることができる。   Similarly, in the glass melting method based on FIG. 2 described above, the hopper 63 contains 60% by mass of a glass raw material and an auxiliary raw material whose decomposition point or boiling point is 1500 ° C. or lower and whose decomposition product has a boiling point of 1500 ° C. or lower. The other glass raw materials and auxiliary raw materials that are not stored in the hopper 62 and stored in the hopper 63 are stored in the flame of the oxygen burner 21 without passing through the raw material supply system 61 and the gas transport system 51. It is also possible to supply directly to the upstream portion of the melting zone 12 of the glass melting furnace 11 via another raw material supply system 61a without being supplied to. In such a glass melting method, the vitrification rate which was 80% by mass when the one having an average particle diameter of 0.1 mm stored in the hoppers 62 and 63 was supplied into the flame of the oxygen burner 21 and melted, If the material stored in the hopper 62 is directly supplied to the melting zone 12 of the glass melting furnace 11 and melted in the same manner, it can be 90% by mass.

更に前記した図2に基づくガラス溶解方法において、酸素バーナ21及び補助酸素バーナ22を理論酸素比よりも大きい値、例えば1.1〜1.2で燃焼させ、かかる燃焼により発生した窒素酸化物を燃焼制御ユニット42及び燃料供給系44を介して下流側の炉内に供給した燃料及びその分解ガスで還元し、残存する未燃分の燃料を空気供給系45を介して更に下流側の炉内に供給した空気で二次燃焼させた後、排気口31から排気系32を介して排出することもできる。かかるガラス溶解方法によると、特にそのような燃焼、還元及び二次燃焼を行なわないときに400ppm(酸素濃度15%換算)であった排ガス中にNOx濃度を、120ppmにまで低減することができる。   Further, in the glass melting method based on FIG. 2 described above, the oxygen burner 21 and the auxiliary oxygen burner 22 are burned at a value larger than the theoretical oxygen ratio, for example, 1.1 to 1.2, and nitrogen oxides generated by such combustion are removed. The fuel supplied to the downstream furnace via the combustion control unit 42 and the fuel supply system 44 and its decomposition gas are reduced, and the remaining unburned fuel is further supplied to the downstream furnace via the air supply system 45. After being subjected to secondary combustion with the air supplied to the exhaust gas, it can be discharged from the exhaust port 31 through the exhaust system 32. According to such a glass melting method, the NOx concentration can be reduced to 120 ppm in the exhaust gas that was 400 ppm (converted to an oxygen concentration of 15%) particularly when such combustion, reduction, and secondary combustion are not performed.

更にまた前記した図2に基づくガラス溶解方法において、酸素バーナ21の直下のガラス溶解物Aの下部を臨んで炉床面に沿って熱電対81を設け、熱電対81で検出した温度に基づいて、ガラス原料及び副原料の供給量を定量供給装置67で制御し(図2中のY)、また酸素バーナ21及び補助酸素バーナ22の燃焼量を燃焼制御ユニット42で制御する(図2中のX)こともできる。同様に前記した図2に基づくガラス溶解方法において、酸素バーナ21として一次支燃ガスの供給系46と二次支燃ガスの供給系47とを独立して有するものを用い、酸素バーナ21の双方の供給系による酸素比を、熱電対81で検出したガラス溶解物の温度に基づいて制御したり(図2中のX)、また炉内の清澄ゾーン13におけるガラス溶解物Aの下部を臨んで炉床壁に別の熱電対82を設け、かかる熱電対82で検出したガラス溶解物の温度に基づいて同様に制御する(図2中のZ)こともできる。かかるガラス溶解方法によると、炉内のガラス溶解物の温度を継続して正確に検出することができるため、検出した温度に基づいて時間的なずれを生じることなく直ちに酸素バーナの燃焼やガラス原料等の供給を適切に制御することができる。   Furthermore, in the glass melting method based on FIG. 2 described above, a thermocouple 81 is provided along the hearth surface facing the lower part of the glass melt A immediately below the oxygen burner 21, and based on the temperature detected by the thermocouple 81. The supply amount of the glass raw material and the auxiliary raw material is controlled by the quantitative supply device 67 (Y in FIG. 2), and the combustion amount of the oxygen burner 21 and the auxiliary oxygen burner 22 is controlled by the combustion control unit 42 (in FIG. 2). X) can also be. Similarly, in the glass melting method based on FIG. 2 described above, an oxygen burner 21 having a primary support gas supply system 46 and a secondary support gas supply system 47 independently is used. 2 is controlled based on the temperature of the glass melt detected by the thermocouple 81 (X in FIG. 2), or facing the lower part of the glass melt A in the refining zone 13 in the furnace. Another thermocouple 82 is provided on the hearth wall, and the same control can be performed based on the temperature of the glass melt detected by the thermocouple 82 (Z in FIG. 2). According to such a glass melting method, the temperature of the glass melt in the furnace can be continuously and accurately detected, so that the combustion of the oxygen burner and the glass raw material are immediately performed without causing a time lag based on the detected temperature. Etc. can be appropriately controlled.

本発明に係るガラス溶解方法において、ガラス原料及び副原料の平均粒径による昇温状況の変化を例示するグラフ。The glass which illustrates the change of the temperature rising condition by the average particle diameter of a glass raw material and an auxiliary raw material in the glass melting method which concerns on this invention. 本発明に係るガラス溶解方法の実施状態を一部縦断面で略示する全体図。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

符号の説明Explanation of symbols

11 ガラス溶解炉
12 溶解ゾーン
13 清澄ゾーン
21 酸素バーナ
22 補助酸素バーナ
31 排気口
32 排気系
41 吸着式酸素発生装置
42 燃焼制御ユニット
44 燃料供給系
51 気体搬送系
61,61a 原料供給系
62,63 ホッパ
64,65 定量切出装置
67 定量供給装置
71 冷却塔
72 集塵装置
81,82 熱電対
DESCRIPTION OF SYMBOLS 11 Glass melting furnace 12 Melting zone 13 Clarification zone 21 Oxygen burner 22 Auxiliary oxygen burner 31 Exhaust port 32 Exhaust system 41 Adsorption-type oxygen generator 42 Combustion control unit 44 Fuel supply system 51 Gas conveyance system 61, 61a Raw material supply system 62, 63 Hopper 64, 65 Fixed amount cutting device 67 Fixed amount supply device 71 Cooling tower 72 Dust collector 81, 82 Thermocouple

Claims (5)

溶解ゾーンと清澄ゾーンとを備えるガラス溶解炉を用い、ガラス原料及び副原料からガラス溶解物を生成させるガラス溶解方法において、ガラス溶解炉の溶解ゾーンの天井壁に下向きで取付けた酸素バーナに酸素濃度90容量%以上の支燃ガスを供給して該酸素バーナを下向きで燃焼させ、ガラス原料及び副原料のうちで分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下である物質を含むものは酸素バーナの火炎中に供給することなくガラス溶解炉の溶解ゾーンへ直接供給し、そうでない他のガラス原料及び副原料は気体搬送により該酸素バーナ内の流路を介しその火炎中に下向きで供給して溶解し、この際に炉内に発生するガスをガラス溶解炉の清澄ゾーンの天井壁又は側壁上部に設けた排気口から炉外へ排出することを特徴とするガラス溶解方法。 In a glass melting method using a glass melting furnace having a melting zone and a clarification zone to generate a glass melt from a glass raw material and an auxiliary raw material, an oxygen concentration is attached to an oxygen burner mounted downward on the ceiling wall of the melting zone of the glass melting furnace. Combustion gas of 90% by volume or more is supplied and the oxygen burner is burned downward. Among the glass raw material and auxiliary raw material, the decomposition point or boiling point is 1500 ° C. or lower and the decomposition product has a boiling point of 1500 ° C. or lower. a substance intended to include supplies directly to the melting zone of the glass melting furnace without supplying into the oxygen burner flame, as well as a glass raw material and auxiliary materials otherwise to through the flow path in the oxygen burner by gas carrying was dissolved was supplied under orientation in its flame, the exhaust gas generated in the furnace when the ceiling wall or the exhaust port formed in a side wall upper portion of the refining zone of a glass melting furnace out of the furnace Glass melting method characterized by. 更にガラス溶解炉の酸素バーナよりも下流側の天井壁に下向きで取付けた補助酸素バーナにガラス原料及び副原料を供給することなく酸素濃度90容量%以上の支燃ガスを供給して該補助酸素バーナを下向きで燃焼させ、その火炎を炉内のガラス溶解物の湯面に衝突させる請求項1記載のガラス溶解方法。   Further, a supplementary oxygen burner having an oxygen concentration of 90% by volume or more is supplied to an auxiliary oxygen burner mounted downward on the ceiling wall on the downstream side of the oxygen burner of the glass melting furnace without supplying glass raw materials and auxiliary raw materials. The glass melting method according to claim 1, wherein the burner is burned downward and the flame collides with the molten metal surface of the glass melt in the furnace. 酸素バーナ及び/又は補助酸素バーナを理論酸素比よりも大きい値で燃焼させ、かかる燃焼により発生した窒素酸化物を下流側の炉内に供給した燃料及びその分解ガスで還元し、残存する未燃分を更に下流側の炉内に供給した酸素及び/又は空気で二次燃焼させた後、炉外へ排出する請求項1又は2記載のガラス溶解方法。 An oxygen burner and / or an auxiliary oxygen burner is burned at a value larger than the theoretical oxygen ratio, and nitrogen oxides generated by such combustion are reduced by the fuel supplied to the downstream furnace and its cracked gas, and remaining unburned The glass melting method according to claim 1 or 2 , wherein the portion is subjected to secondary combustion with oxygen and / or air supplied into the further downstream furnace and then discharged to the outside of the furnace. 炉内のガラス溶解物の下部又はガラス溶解炉の炉床壁内の上部に熱電対を設け、該熱電対で検出した温度に基づいて、ガラス原料の供給量、副原料の供給量、酸素バーナの燃焼量及び/又は補助酸素バーナの燃焼量を制御する請求項1〜のいずれか一つの項記載のガラス溶解方法。 A thermocouple is provided in the lower part of the glass melt in the furnace or in the upper part of the hearth wall of the glass melting furnace, and based on the temperature detected by the thermocouple, the supply amount of the glass raw material, the supply amount of the auxiliary raw material, the oxygen burner The glass melting method according to any one of claims 1 to 3 , wherein the amount of combustion and / or the amount of combustion of the auxiliary oxygen burner is controlled. 酸素バーナとして一次支燃ガスの供給系と二次支燃ガスの供給系とを独立して有するものを用い、該酸素バーナの双方の供給系による酸素比を、該酸素バーナに供給するガラス原料や副原料の種類及び/又は炉内のガラス溶解物の温度に基づいて制御する請求項1〜のいずれか一つの項記載のガラス溶解方法。 A glass raw material that uses an oxygen burner having a primary combustion support gas supply system and a secondary combustion support gas supply system independently, and supplies the oxygen burner with an oxygen ratio from both supply systems of the oxygen burner. The glass melting method according to any one of claims 1 to 4 , wherein the glass melting method is controlled based on the type of the auxiliary raw material and / or the temperature of the glass melt in the furnace.
JP2006303687A 2006-11-09 2006-11-09 Glass melting method Expired - Fee Related JP4693178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303687A JP4693178B2 (en) 2006-11-09 2006-11-09 Glass melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303687A JP4693178B2 (en) 2006-11-09 2006-11-09 Glass melting method

Publications (2)

Publication Number Publication Date
JP2008120609A JP2008120609A (en) 2008-05-29
JP4693178B2 true JP4693178B2 (en) 2011-06-01

Family

ID=39505770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303687A Expired - Fee Related JP4693178B2 (en) 2006-11-09 2006-11-09 Glass melting method

Country Status (1)

Country Link
JP (1) JP4693178B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648810B2 (en) 2009-08-20 2015-01-07 旭硝子株式会社 Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
US20110126594A1 (en) * 2009-12-01 2011-06-02 Asahi Glass Company, Limited Apparatus for producing molten glass, apparatus and process for producing glass products
CN113387543A (en) * 2021-06-23 2021-09-14 中国建材国际工程集团有限公司 Glass kiln clarification portion bottom of a pool structure convenient to blowdown

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359713A (en) * 1976-09-04 1978-05-29 Battelle Development Corp Method of melting glass in pot heated by burner and apparatus for said process
JPH1111953A (en) * 1997-06-17 1999-01-19 Nippon Sanso Kk Melting of glass and device therefor
JP2001302251A (en) * 2000-04-19 2001-10-31 Tokyo Gas Co Ltd Glass-melting furnace having oxygen combustion burner and method for treating combustion exhaust gas thereof
JP2002508295A (en) * 1997-12-17 2002-03-19 オウェンス コーニング Roof mounted oxygen burner for glass melting furnace and method of using oxygen burner
JP2002356331A (en) * 2001-03-02 2002-12-13 Boc Group Inc:The Method for heating glass melting furnace equipped with roof-mounted, staged combustion oxygen-fuel burner
JP2003040641A (en) * 2001-07-26 2003-02-13 Asahi Glass Co Ltd Mixed raw material for glass
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
JP2004526656A (en) * 2001-05-03 2004-09-02 ザ・ビーオーシー・グループ・インコーポレーテッド Glass forming batch material melting method
JP2005035826A (en) * 2003-07-18 2005-02-10 Japan Air Gases Ltd Glass melting furnace
JP2006076871A (en) * 2003-12-26 2006-03-23 Nippon Electric Glass Co Ltd Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
JP2006199549A (en) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology Method and apparatus for dissolving glass material and glass production apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359713A (en) * 1976-09-04 1978-05-29 Battelle Development Corp Method of melting glass in pot heated by burner and apparatus for said process
JPH1111953A (en) * 1997-06-17 1999-01-19 Nippon Sanso Kk Melting of glass and device therefor
JP2002508295A (en) * 1997-12-17 2002-03-19 オウェンス コーニング Roof mounted oxygen burner for glass melting furnace and method of using oxygen burner
JP2001302251A (en) * 2000-04-19 2001-10-31 Tokyo Gas Co Ltd Glass-melting furnace having oxygen combustion burner and method for treating combustion exhaust gas thereof
JP2002356331A (en) * 2001-03-02 2002-12-13 Boc Group Inc:The Method for heating glass melting furnace equipped with roof-mounted, staged combustion oxygen-fuel burner
JP2004526656A (en) * 2001-05-03 2004-09-02 ザ・ビーオーシー・グループ・インコーポレーテッド Glass forming batch material melting method
JP2003040641A (en) * 2001-07-26 2003-02-13 Asahi Glass Co Ltd Mixed raw material for glass
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
JP2005035826A (en) * 2003-07-18 2005-02-10 Japan Air Gases Ltd Glass melting furnace
JP2006076871A (en) * 2003-12-26 2006-03-23 Nippon Electric Glass Co Ltd Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
JP2006199549A (en) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology Method and apparatus for dissolving glass material and glass production apparatus

Also Published As

Publication number Publication date
JP2008120609A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
RU2301201C2 (en) Method and system for production of glass in glass-making furnace and burner used in this furnace
JP4412902B2 (en) Method for melting glass forming batch materials
CN100467948C (en) Grate type waste incinerator and method of controlling combustion of same
KR101289131B1 (en) Method for gasification and a gasifier
CN101980972B (en) Process and apparatus for making a mineral melt
US20070231761A1 (en) Integration of oxy-fuel and air-fuel combustion
US7143610B2 (en) Method and system for feeding and burning a pulverized fuel in a glass melting furnace, and burner for use in the same
ZA200503508B (en) Control system for controlling the feeding and burning of a pulverized fuel in a glass melting furnace
JP5574708B2 (en) Mineral fiber manufacturing method and manufacturing apparatus
CN101233377B (en) Method for calcination of a material with low NOx emissions
ES2372170T3 (en) PROCESS AND APPLIANCE TO PRODUCE MINERAL FIBERS.
JP4693178B2 (en) Glass melting method
JP2549635B2 (en) Method for heat treating glass batch material and method for producing glass products
US20120031307A1 (en) System and method for manufacturing cement clinker utilizing waste materials
JP4624971B2 (en) Glass melting equipment
JP2011037706A (en) Glass melting apparatus
US20210395127A1 (en) Submerged burner furnace
CN102506433A (en) L-shaped combined high-temperature electronic garbage incinerator
RU2346057C2 (en) Advanced method of melting for receiving of iron
JP4722022B2 (en) Glass melting furnace
CN110397939A (en) The melting process for the treatment of and processing unit of ultralow volatile matter carbon-based fuel
JP3764634B2 (en) Oxygen burner type melting furnace
JP2008105881A (en) Method of treating blast furnace slag and apparatus for treating blast furnace slag
JP2006343073A (en) Waste melting treatment method
JP2008285382A (en) Glass bottle production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees