JP5219240B2 - Glass melting furnace - Google Patents

Glass melting furnace

Info

Publication number
JP5219240B2
JP5219240B2 JP2007133707A JP2007133707A JP5219240B2 JP 5219240 B2 JP5219240 B2 JP 5219240B2 JP 2007133707 A JP2007133707 A JP 2007133707A JP 2007133707 A JP2007133707 A JP 2007133707A JP 5219240 B2 JP5219240 B2 JP 5219240B2
Authority
JP
Japan
Prior art keywords
glass
raw material
furnace
gas
oxygen burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007133707A
Other languages
Japanese (ja)
Other versions
JP2008285381A (en
Inventor
宏司 松井
達哉 岡本
真悟 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Toyo Glass Co Ltd
AGC Inc
Original Assignee
Daido Steel Co Ltd
Asahi Glass Co Ltd
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Asahi Glass Co Ltd, Toyo Glass Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007133707A priority Critical patent/JP5219240B2/en
Publication of JP2008285381A publication Critical patent/JP2008285381A/en
Application granted granted Critical
Publication of JP5219240B2 publication Critical patent/JP5219240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Glass Melting And Manufacturing (AREA)

Description

本発明はガラス溶解炉に関し、更に詳しくは加熱源としてバーナを取付けたガラス溶解炉の改良に関する。   The present invention relates to a glass melting furnace, and more particularly to an improvement of a glass melting furnace equipped with a burner as a heating source.

従来、ガラス原料や副原料(以下これらをガラス原料等という)からガラス溶解物を生成させるガラス溶解炉として、炉の上流部から炉内に投入したガラス原料等を、炉の側壁に取付けたバーナで溶解するようにしたものが知られている(例えば特許文献1〜3参照)。しかし、これら従来のガラス溶解炉には、炉内に投入したガラス原料等をバーナの燃焼による炉内輻射を利用して溶解するようになっているため、1)バーナとして酸素バーナを燃焼させる場合であっても、エネルギ効率が悪い、2)炉内に投入するガラス原料等には融点の異なる様々なものが含まれており、これらのなかで融点の低いものは溶解が早いが、融点の高いものは溶解が遅いので、全体としての均質溶解が難しく、均質溶解にかかる時間が長い、3)炉内に生成するガラス溶解物の上部に未溶解のガラス原料等の低温物が存在するため、ガラス溶解物中に発生するガスが抜け難く、ガス抜きにかかる時間が長い、という問題がある。従来のガラス溶解炉には、エネルギ効率が悪く、所望通りの良好なガラス溶解物を生成させるのに長い時間がかかり、結果として炉が大型になってしまうという問題があるのである。
特開平11−11953号公報 特開平11−11954号公報 特開2005−15299号公報
Conventionally, as a glass melting furnace for generating a glass melt from glass raw materials and auxiliary raw materials (hereinafter referred to as glass raw materials), a burner in which glass raw materials, etc., introduced into the furnace from the upstream portion of the furnace are attached to the side walls of the furnace It is known that it is dissolved in (see, for example, Patent Documents 1 to 3). However, in these conventional glass melting furnaces, glass raw materials and the like put into the furnace are melted by utilizing the in-furnace radiation by burning the burner. 1) When an oxygen burner is burned as a burner However, the energy efficiency is poor. 2) Various materials with different melting points are included in the glass raw materials to be put into the furnace. Among these, those having a low melting point dissolve quickly, Higher ones are slow to dissolve, so it is difficult to achieve homogeneous melting as a whole, and the time required for homogeneous melting is long. 3) Because there is a low-temperature material such as undissolved glass raw material above the glass melt produced in the furnace. There is a problem that the gas generated in the glass melt is difficult to escape and the time required for degassing is long. Conventional glass melting furnaces have a problem that energy efficiency is low and it takes a long time to produce a desired glass melt as desired, resulting in a large furnace.
JP-A-11-11953 Japanese Patent Laid-Open No. 11-11954 JP 2005-15299 A

本発明が解決しようとする課題は、エネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも小型化できる、言い替えれば設置スペースを少なくすることができるガラス溶解炉を提供する処にある。   The problem to be solved by the present invention is that it is energy efficient, can produce a desired glass melt as desired in a short time, and can be downsized, in other words, can reduce installation space. It is in the place of providing a furnace.

前記の課題を解決する本発明は、ガラス原料等からガラス溶解物を生成させるガラス溶解炉において、炉内上流部の天井壁に酸素バーナが下向きで取付けられており、該酸素バーナには酸素濃度90容量%以上の支燃ガスが供給されると共にガラス原料等が気体搬送により供給されるようになっていて、また炉内上流部の炉床壁にガス供給管が取付けられており、該ガス供給管から撹拌用ガスが供給されるようになっていて、該酸素バーナを下向きで燃焼させると共にガラス原料等をその火炎中に下向きで供給して溶解しつつ、該ガス供給管から撹拌用ガスを供給することにより、所要のガラス原料等を均質溶解するようにして成ることを特徴とするガラス溶解炉に係る。   The present invention for solving the above problems is a glass melting furnace for generating a glass melt from a glass raw material or the like, and an oxygen burner is attached downward to the ceiling wall of the upstream part in the furnace, and the oxygen burner has an oxygen concentration A supporting gas of 90% by volume or more is supplied and a glass raw material or the like is supplied by gas conveyance, and a gas supply pipe is attached to the hearth wall of the upstream part in the furnace. A gas for stirring is supplied from a supply pipe, and the gas for stirring is supplied from the gas supply pipe while the oxygen burner is burned downward and a glass raw material is supplied downward into the flame and dissolved. The glass melting furnace is characterized in that the required glass raw material and the like are homogeneously melted by supplying.

本発明に係るガラス溶解炉も、従来のガラス溶解炉と同様、加熱源としてバーナを備え、ガラス原料等からガラス溶解物を生成させるようになっている。本発明に係るガラス溶解炉は、炉内上流部の天井壁に酸素バーナが下向きに取付けられている。この酸素バーナには酸素濃度90容量%以上の支燃ガスが供給されるようになっており、またガラス原料等が気体搬送により供給されるようになっていて、この酸素バーナを下向きで燃焼させるときにガラス原料等をその火炎中に下向きで供給して溶解するようになっている。かかる酸素バーナそれ自体としては、公知のものを転用でき、例えば特開平8−312938号公報、特開2000−55340号公報及び特開2000−103656号公報等に記載されているような酸素バーナを転用できる。これらの酸素バーナは、先端部におけるノズル構造が、中心部から外周部に向かい、例えば燃料供給ノズル、一次支燃ガス供給ノズル、被処理物(ガラス原料等の粉粒状物)供給ノズル及び二次支燃ガス供給ノズルのように、複数の供給ノズルが同心円状に配列されたものからなっている。   Similarly to the conventional glass melting furnace, the glass melting furnace according to the present invention also includes a burner as a heating source, and generates a glass melt from a glass raw material or the like. In the glass melting furnace according to the present invention, an oxygen burner is attached downward on the ceiling wall in the upstream part of the furnace. The oxygen burner is supplied with a combustion support gas having an oxygen concentration of 90% by volume or more, and glass raw materials and the like are supplied by gas transportation, and the oxygen burner is burned downward. Sometimes glass raw materials and the like are supplied downward into the flame and melted. As such an oxygen burner itself, a known one can be used. For example, an oxygen burner described in JP-A-8-312938, JP-A-2000-55340, JP-A-2000-103656, and the like can be used. Can be diverted. In these oxygen burners, the nozzle structure at the tip is directed from the center to the outer periphery, for example, a fuel supply nozzle, a primary combustion gas supply nozzle, an object to be processed (powder and particulate matter such as glass raw material), and a secondary Like the combustion support gas supply nozzle, a plurality of supply nozzles are concentrically arranged.

前記のような酸素バーナをガラス溶解炉の炉内上流部の天井壁に下向きで取付け、これに酸素濃度90容量%以上の支燃ガスを供給して下向きで燃焼させると、火炎それ自体の温度が高くなるだけでなく、その火炎は炉内に生成するガラス溶解物の湯面をも加熱し、しかも発生する排ガス量は少なく、該排ガス中における所謂NO濃度も低い。かかる火炎中にガラス原料等を下向きで供給すると、該ガラス原料等は極めて短時間で溶解する。しかもこのとき、下向きで燃焼する高温の火炎中に下向きで供給したガラス原料等の水分は一気に蒸発し、ガラス原料等のうちで炭酸化合物の形態をとるものは分解してガスを放出するので、炉内に生成するガラス溶解物中のガス発生量は著しく低くなる。 When the oxygen burner as described above is mounted downward on the ceiling wall in the upstream portion of the glass melting furnace and supplied with a supporting gas having an oxygen concentration of 90 vol% or more and burned downward, the temperature of the flame itself In addition, the flame also heats the molten metal surface of the glass melt produced in the furnace, and the amount of generated exhaust gas is small, so-called NO X concentration in the exhaust gas is also low. When glass raw material or the like is supplied downward in such a flame, the glass raw material or the like dissolves in a very short time. In addition, at this time, the moisture of the glass raw material supplied downward in the high-temperature flame that burns downward evaporates all at once, and the glass raw material in the form of a carbonate compound decomposes and releases gas. The amount of gas generated in the glass melt produced in the furnace is significantly reduced.

また本発明に係るガラス溶解炉は、炉内上流部の炉床壁にガス供給管が取付けられていて、このガス供給管からは炉内上流部へ撹拌用ガスを供給するようになっている。前記したように酸素バーナを下向きで燃焼させると共にガラス原料等をその火炎中に下向きで供給して溶解しつつ、ガス供給管から炉内上流部へ撹拌用ガスを供給することにより、所要のガラス原料等を均質溶解するようになっている。   In the glass melting furnace according to the present invention, a gas supply pipe is attached to the hearth wall at the upstream part in the furnace, and the gas for stirring is supplied from the gas supply pipe to the upstream part in the furnace. . As described above, the required glass is obtained by supplying the stirring gas from the gas supply pipe to the upstream portion of the furnace while burning the oxygen burner downward and supplying the glass raw material or the like downward into the flame and melting it. The raw materials are homogeneously dissolved.

本発明に係るガラス溶解炉では、炉内上流部の天井壁に下向きで取付けた酸素バーナに酸素濃度90容量%以上の支燃ガスを供給すると共にガラス原料等のうちで低揮発性のものを気体搬送により供給するようにして、この酸素バーナを下向きで燃焼させるときにガラス原料等のうちで低揮発性のものをその火炎中に下向きで供給して溶解するようにし、その一方で炉内上流部の天井壁又は側壁に原料供給管を取付け、この原料供給管からガラス原料等のうちで高揮発性のものをコンベア搬送や気体搬送等により供給するようにして、前記したように酸素バーナを下向きで燃焼させると共にガラス原料等のうちで低揮発性のものをその火炎中に下向きで供給して溶解するとき、これと同時に炉内上流部に生成するその溶解物上に原料供給管を介してガラス原料等のうちで高揮発性のものを供給して溶解するようにするのが好ましい。   In the glass melting furnace according to the present invention, a supporting gas having an oxygen concentration of 90% by volume or more is supplied to an oxygen burner mounted downward on the ceiling wall in the upstream part of the furnace, and a low volatility glass raw material is used. When the oxygen burner is burned downward, it is supplied by gas conveyance so that a low-volatile material such as a glass raw material is supplied downward into the flame to be melted, while in the furnace A raw material supply pipe is attached to the ceiling wall or side wall of the upstream part, and a high volatility glass raw material or the like is supplied from the raw material supply pipe by a conveyor transport or a gas transport. When a glass raw material or the like is supplied and melted downward in the flame, a raw material supply pipe is placed on the melt produced in the upstream portion of the furnace at the same time. Preferably, so as to dissolve by supplying of high volatility among such glass material with.

ガラス原料等には、これを大別すると、高揮発性のもの、すなわち比較的揮発し易いものと、低揮発性のもの、すなわち比較的揮発し難いものとがある。ガラス原料等のうちで、高揮発性のものは、分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下であるものであり、具体的には、炭酸ナトリウム、硝酸ナトリウム、硫酸ナトリウム、無水亜砒酸、酸化アンチモン等が挙げられる。またガラス原料等のうちで、低揮発性のものは、前記のような高揮発性のもの以外のもので、具体的には、シリカ、アルミナ、水酸化アルミニウム、炭酸カルシウム、消石灰等が挙げられる。 Glass raw materials and the like can be broadly classified into those having high volatility, that is, those that are relatively volatile, and those having low volatility, that is, those that are relatively difficult to volatilize. Of glass raw material, the high volatility of also of the boiling point of decomposition point or boiling point of 1500 ° C. or less and degradation products also are those at 1500 ° C. or less, specifically, sodium carbonate, nitrate Examples thereof include sodium, sodium sulfate, arsenous anhydride, and antimony oxide. Also among such glass materials, the low volatility of the one other than those of the highly volatile, such as described above, specifically, include silica, alumina, aluminum hydroxide, calcium carbonate, slaked lime and the like It is done.

ガラス原料等を高揮発性のものと低揮発性のものとに分けず、高揮発性のものも、低揮発性のものと共に、前記したように酸素バーナへ気体搬送により供給し、酸素バーナの下向きで燃焼する火炎中で溶解すると、酸素バーナの高温の火炎中で、高揮発性のものの相当部が揮発してしまい、ガラス溶解物とならないため、それを見込んで、高揮発性のものについては予め多めの量を酸素バーナへ供給することとなり、全体として歩留まりが悪くなってしまう。ガラス原料等のうちで高揮発性のものの揮発を抑え、よって全体としての歩留まりを良くするためには、前記したように、ガラス原料等のうちで低揮発性のものは気体搬送により酸素バーナへ供給し、下向きで燃焼する高温の火炎中で溶解するが、高揮発性のものは別に原料供給管から供給して溶解し、かくして別々に供給した双方の溶解物の均質化を促すため、炉床壁に取付けたガス供給管から撹拌用ガスを供給するのである。   Glass raw materials etc. are not divided into high volatile and low volatile ones, and high volatile ones together with low volatile ones are supplied by gas transportation to the oxygen burner as described above. When dissolved in a flame that burns downward, the high-volatility part of the high-temperature flame of the oxygen burner volatilizes and does not become a glass melt. Will supply a large amount to the oxygen burner in advance, resulting in a poor yield as a whole. In order to suppress the volatilization of the highly volatile glass raw materials and thus improve the overall yield, as described above, the low volatile ones of the glass raw materials are transferred to the oxygen burner by gas transportation. In order to promote the homogenization of both melts supplied separately from the raw material supply pipe, the high-volatility ones are melted in a high-temperature flame that is fed and burned downward. Stirring gas is supplied from a gas supply pipe attached to the floor wall.

本発明に係るガラス溶解炉において、前記した酸素バーナ、原料供給管及びガス供給管は、いずれも炉内上流部の炉壁に取付けられている。これらはその性質上、相互に関係する位置に取付けられていることが好ましいが、酸素バーナの直下部を臨んで原料供給管が取付けられており、また該酸素バーナを直上部に臨んでガス供給管が取付けられているのが好ましい。酸素バーナの下向きで燃焼する高温の火炎の先にガラス原料等のうちで低揮発性のものの溶解物を生成させ、その上にガラス原料等のうちで高揮発性のものを供給して溶解し、これらを直下のガス供給管から供給した撹拌用ガスにより撹拌して均質化するのである。   In the glass melting furnace according to the present invention, the oxygen burner, the raw material supply pipe, and the gas supply pipe are all attached to the furnace wall in the upstream part of the furnace. Although these are preferably attached to each other in terms of their properties, a raw material supply pipe is attached facing the lower part of the oxygen burner, and a gas supply is provided facing the oxygen burner. A tube is preferably attached. At the tip of a high-temperature flame that burns downward with an oxygen burner, a low-volatile solution of glass raw material is generated, and then a high-volatile material of glass raw material is supplied and dissolved. These are stirred and homogenized by the stirring gas supplied from the gas supply pipe directly below.

ガス供給管から供給する撹拌用ガスとしては、空気や不活性ガス、例えば窒素ガスを使用できる。かかる撹拌用ガスは、室温乃至常温のものを供給することもできるが、供給した相対的に低温の撹拌用ガスにより炉内にガラス溶解物の不都合な凝固物が生成しないようにするため、ガラス溶解炉から排出される排気ガス及び/又は該ガラス溶解炉の炉壁との熱交換により加熱されたものを供給するようにするのが好ましく、具体的には300℃以上に加熱されたものを供給するようにするのがより好ましい。またガス供給管から供給する撹拌用ガスは、これによりガラス溶解物の撹拌を行なって均質化を促すため、ガラス溶解物中にてできるだけ大きい気泡径となるようにするのが好ましく、具体的には平均で2mm以上の気泡径となるようにするのがより好ましい。   As the stirring gas supplied from the gas supply pipe, air or an inert gas such as nitrogen gas can be used. Such a stirring gas can be supplied from room temperature to room temperature, but in order to prevent an undesirable solidified product of glass melt from being generated in the furnace by the supplied relatively low temperature stirring gas, It is preferable to supply the exhaust gas discharged from the melting furnace and / or the one heated by heat exchange with the furnace wall of the glass melting furnace, specifically, the one heated to 300 ° C. or higher. It is more preferable to supply. In addition, the stirring gas supplied from the gas supply pipe is preferably made to have a bubble diameter as large as possible in the glass melt in order to promote homogenization by stirring the glass melt. More preferably, the cell diameter is 2 mm or more on average.

本発明に係るガラス溶解炉では、炉内上流部に他の部分よりも炉床壁を立ち上げた小プールを形成するのが好ましい。小プールが形成された上流部の炉床壁は他の部分すなわち中流部や下流部の炉床壁よりも高い位置にあり、言い替えれば、平面状の天井壁から見て、小プールが形成された上流部の炉床壁は浅いところにあり、他の部分すなわち中流部や下流部の炉床壁は深いところにある。小プールはガラス溶解物を一時的に貯留するためのもので、一時的に貯留したガラス溶解物はオーバーフローにより流出させる。炉内上流部にかかる小プールを形成する場合、該小プールを下方に臨む天井壁に酸素バーナを取付け、また該小プールを下方に臨む天井壁又は側壁に原料供給管を取付けて、更に該小プールを形成する炉床壁にガス供給管を取付ける。これらの好ましい取付け位置については前記したことと同様である。小プールはガラス溶解物を一時的に貯留し、貯留したガラス溶解物をオーバーフローにより流出させるためのもので、これによりガラス原料等の均質溶解を更に促し、また生成したガラス溶解物からのガス抜きを促すことができる。   In the glass melting furnace which concerns on this invention, it is preferable to form the small pool which raised the hearth wall rather than the other part in the upstream part in a furnace. The upstream hearth wall where the small pool is formed is higher than the other parts, that is, the midstream and downstream hearth walls.In other words, the small pool is formed when viewed from the flat ceiling wall. The upstream hearth wall is shallow, and the other parts, that is, the midstream and downstream hearth walls are deep. The small pool is for temporarily storing the glass melt, and the temporarily stored glass melt is caused to flow out by overflow. When forming a small pool over the upstream part in the furnace, an oxygen burner is attached to the ceiling wall facing down the small pool, and a raw material supply pipe is attached to the ceiling wall or side wall facing down the small pool. A gas supply pipe is attached to the hearth wall forming a small pool. These preferred mounting positions are the same as described above. The small pool is for temporarily storing the glass melt and allowing the stored glass melt to flow out due to overflow. This further promotes homogeneous melting of the glass raw materials, etc., and degass the generated glass melt. Can be encouraged.

本発明に係るガラス溶解炉において、炉内上流部に前記したような小プールを形成する場合、炉の天井壁に小プールからオーバーフローしようとするガラス溶解物を臨んで補助酸素バーナを取付け、該補助酸素バーナをこれにガラス原料等を供給することなく燃焼させ、その火炎により小プールからオーバーフローしようとする溶解物を加熱するようにするのが好ましい。これにより生成したガラス溶解物が小プールから円滑にオーバーフローして流出するのを促すことができる。   In the glass melting furnace according to the present invention, when forming a small pool as described above in the upstream part of the furnace, an auxiliary oxygen burner is attached to the ceiling wall of the furnace facing the glass melt to be overflowed from the small pool, It is preferable that the auxiliary oxygen burner is burned without supplying glass raw material or the like, and the melt that is about to overflow from the small pool is heated by the flame. As a result, the generated glass melt can be urged to smoothly overflow and flow out of the small pool.

炉内上流部に小プールを形成する場合も、また形成しない場合も、本発明に係るガラス溶解炉では、炉内上流部よりも下流側の天井壁に炉内のガラス溶解物を臨んで副酸素バーナを下向きで取付け、該副酸素バーナをこれにガラス原料等を供給することなく下向きで燃焼させ、その火炎により炉内のガラス溶解物を加熱するようにするのが好ましい。ガラス溶解物からのガス抜きを促すと共に、何らかの原因で前記した酸素バーナの燃焼量を絞り、その結果として炉内のガラス溶解物に対する加熱が不足することとなるときは、副酸素バーナを下向きで燃焼させて不足分を補うことができるようにするのである。   In the glass melting furnace according to the present invention, whether or not the small pool is formed in the upstream part in the furnace, the glass melt in the furnace faces the ceiling wall on the downstream side of the upstream part in the furnace. It is preferable to attach the oxygen burner downward, burn the sub-oxygen burner downward without supplying glass raw material or the like, and heat the glass melt in the furnace by the flame. While promoting the degassing from the glass melt and reducing the combustion amount of the oxygen burner described above for some reason, as a result of insufficient heating of the glass melt in the furnace, the sub-oxygen burner should be turned downward. It is made to burn up so that the shortage can be compensated.

本発明に係るガラス溶解方法によると、ガラス原料等からガラス溶解物を生成させるに際してエネルギ効率が良く、所望通りの良好なガラス溶解物を短時間で生成させることができ、しかも小型の、言い替えれば設置スペースの少ないガラス溶解炉を用いることができるという効果がある。   According to the glass melting method of the present invention, when generating a glass melt from a glass raw material or the like, energy efficiency is good, a desired glass melt can be generated in a short time, and in addition, a small size, in other words, There is an effect that a glass melting furnace with a small installation space can be used.

図1は本発明に係るガラス溶解炉を一部縦断面で略示する全体図である。図1に略示したガラス溶解炉11は炉内上流部の天井壁に酸素バーナ21が下向きで取付けられており、また上流部よりも下流側の天井壁に副酸素バーナ22が下向きに取付けられていて、炉内下流部の天井壁に排気口31が設けられている。酸素バーナ21及び副酸素バーナ22はシリンダ機構24,25を介して天井壁に取付けられており、昇降可能となっていて、それらの先端部と炉内のガラス溶解物Aの湯面との間の距離が可変となっている。   FIG. 1 is an overall view schematically showing a glass melting furnace according to the present invention partially in a longitudinal section. In the glass melting furnace 11 schematically shown in FIG. 1, an oxygen burner 21 is attached downward on the ceiling wall in the upstream portion of the furnace, and a secondary oxygen burner 22 is attached downward on the ceiling wall on the downstream side of the upstream portion. In addition, an exhaust port 31 is provided in the ceiling wall in the downstream part of the furnace. The oxygen burner 21 and the sub-oxygen burner 22 are attached to the ceiling wall via the cylinder mechanisms 24 and 25, and can be moved up and down, and between these tip portions and the molten metal surface of the glass melt A in the furnace. The distance is variable.

酸素バーナ21は、中心部から外周部に向かい、燃料供給ノズル、一次支燃ガス供給ノズル、被処理物(ガラス原料等)供給ノズル、二次支燃ガス供給ノズルの順で複数の供給ノズルが同心円状に配列されたものからなっている。そして酸素バーナ21及び副酸素バーナ22には吸着式酸素発生装置41から燃焼制御ユニット42を介し酸素濃度90容量%以上の支燃ガスが供給されるようになっており、また燃料タンク43から燃焼制御ユニット42を介し燃料ガスが供給されるようになっている。更に酸素バーナ21にはガラス原料等のうちで低揮発性のものが気体搬送で供給されるように気体搬送系51が接続されている。気体搬送系51の上流側にはドライヤ付きコンプレッサ52が接続されており、その途中に原料供給系61が接続されている。原料供給系61は、ガラス原料等のうちで低揮発性のものを貯留するホッパ62、ホッパ62に接続された定量切出装置63、定量切出装置63に接続された振動篩64、振動篩64に接続された定量供給装置65、振動篩64で篩分けられた粗大物を破砕して振動篩64の上流側に戻す破砕機66を備えている。また排気口31には排気系32が接続されており、排気系32には熱交換器84、冷却塔33、集塵装置34、吸引ファン35及び煙突36がこの順で接続されている。   The oxygen burner 21 has a plurality of supply nozzles in the order of a fuel supply nozzle, a primary combustion support gas supply nozzle, an object to be processed (glass raw material, etc.) supply nozzle, and a secondary combustion support gas supply nozzle. Consists of concentric circles. The oxygen burner 21 and the sub-oxygen burner 22 are supplied with combustion-supporting gas having an oxygen concentration of 90% by volume or more from the adsorption-type oxygen generator 41 through the combustion control unit 42, and also burn from the fuel tank 43. Fuel gas is supplied through the control unit 42. Further, a gas transport system 51 is connected to the oxygen burner 21 so that a low-volatile material such as a glass raw material is supplied by gas transport. A compressor 52 with a dryer is connected to the upstream side of the gas transfer system 51, and a raw material supply system 61 is connected in the middle thereof. The raw material supply system 61 includes a hopper 62 for storing a low-volatile material among glass raw materials, a quantitative cutting device 63 connected to the hopper 62, a vibrating sieve 64 connected to the quantitative cutting device 63, a vibrating sieve A fixed quantity supply device 65 connected to 64, and a crusher 66 that crushes the coarse material sieved by the vibrating sieve 64 and returns it to the upstream side of the vibrating sieve 64. An exhaust system 32 is connected to the exhaust port 31, and a heat exchanger 84, a cooling tower 33, a dust collector 34, a suction fan 35 and a chimney 36 are connected to the exhaust system 32 in this order.

また炉内上流部の側壁に原料供給管71が酸素バーナ21の直下部を臨んで取付けられており、原料供給管71には原料供給系72が接続されている。原料供給系72は、ガラス原料等のうちで高揮発性のものを貯留するホッパ73、このホッパ73に接続されたスクリューコンベア75を備えている。   Further, a raw material supply pipe 71 is attached to the side wall of the upstream portion in the furnace so as to face directly below the oxygen burner 21, and a raw material supply system 72 is connected to the raw material supply pipe 71. The raw material supply system 72 includes a hopper 73 that stores highly volatile ones of glass raw materials and the like, and a screw conveyor 75 connected to the hopper 73.

更に炉内上流部の炉床壁にガス供給管81が酸素バーナ21を直上部に臨んで取付けられており、ガス供給管81にはガス供給系82が接続されている。ガス供給系82は、空気を送り込むためのファン83、このファン83に接続された前記の熱交換器84を備えている。   Further, a gas supply pipe 81 is attached to the hearth wall upstream of the furnace with the oxygen burner 21 facing directly above, and a gas supply system 82 is connected to the gas supply pipe 81. The gas supply system 82 includes a fan 83 for sending air and the heat exchanger 84 connected to the fan 83.

以上説明した図1のガラス溶解炉11では、炉内上流部の天井壁に下向きで取付けた酸素バーナ21へ燃焼制御ユニット42を介し燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して酸素バーナ21を下向きで燃焼させ、その火炎中に、ホッパ62に貯留しておいたガラス原料等のうちで低揮発性のものを原料供給系61及び気体搬送系51を経由する気体搬送により酸素バーナ21内の前記した被処理物供給ノズルを介し下向きで供給して溶解し、この際に発生する排ガスを排気口31から排気系32を介し放出すると共に、ホッパ73に貯留しておいたガラス原料等のうちで高揮発性のものを原料供給系72を介して原料供給管71から酸素バーナ21の直下部のガラス溶解物上へ供給して溶解し、またこれらに併せて、熱交換器84で排気ガスと熱交換して加熱した空気をガス供給系82を介しガス供給管81から酸素バーナ21を直上部に臨んで供給することによりガラス溶解物を撹拌して均質化している。   In the glass melting furnace 11 of FIG. 1 described above, the fuel gas and the combustion supporting gas having an oxygen concentration of 90% by volume or more are supplied to the oxygen burner 21 mounted downward on the ceiling wall in the upstream portion of the furnace via the combustion control unit 42. Then, the oxygen burner 21 is burned downward, and the low volatility of the glass raw material or the like stored in the hopper 62 is transferred into the flame by gas transfer via the raw material supply system 61 and the gas transfer system 51. In the oxygen burner 21, it is supplied downward and melted through the above-mentioned workpiece supply nozzle, and the exhaust gas generated at this time is discharged from the exhaust port 31 through the exhaust system 32 and stored in the hopper 73. Among the glass raw materials and the like, highly volatile ones are supplied from the raw material supply pipe 71 through the raw material supply system 72 onto the glass melt immediately below the oxygen burner 21 and melted. And homogenized by stirring a glass melt by the oxygen burner 21 is heated by exhaust gas and heat exchange air from the gas supply pipe 81 through the gas supply system 82 for supplying faces just above at 84.

図2は本発明に係る他のガラス溶解炉を一部縦断面で且つ一部省略して略示する全体図である。ここでは説明の便宜上、図1と同じものについては図1と同じ符号にaを付けて示した。また図1と同じ構成部分については図示と説明を省略した。図2に略示したガラス溶解炉11aは、炉内上流部に小プール12が形成されている。小プール12は、上流部の炉床壁13をそれよりも下流側の他の部分の炉床壁よりも立ち上げ、立ち上げた炉床壁13の下流側に堰14を立設することにより形成されている。言い替えれば、平面状の天井壁から見て、小プール12が形成された上流部の炉床壁13は浅いところにあり、下流側の他の部分の炉床壁は深いところにある。   FIG. 2 is an overall view schematically showing another glass melting furnace according to the present invention, partly in a longitudinal section and partly omitted. Here, for convenience of explanation, the same reference numerals as those in FIG. Further, illustration and description of the same components as those in FIG. 1 are omitted. In the glass melting furnace 11a schematically shown in FIG. 2, a small pool 12 is formed in the upstream part of the furnace. The small pool 12 is constructed by raising the upstream hearth wall 13 from the other part of the hearth wall downstream of the upstream pool wall and by setting up a weir 14 on the downstream side of the raised hearth wall 13. Is formed. In other words, when viewed from the flat ceiling wall, the upstream hearth wall 13 where the small pool 12 is formed is in a shallow place, and the other hearth wall in the other downstream side is in a deep place.

小プール12を直下に臨む炉内上流部の天井壁には酸素バーナ21aが下向きで取付けられており、また上流部よりも下流側の天井壁に副酸素バーナ22aが下向きで取付けられていて、更に小プール12の堰14をオーバーフローするガラス溶解物を臨んで補助酸素バーナ23が取付けられ、炉内下流部の天井壁に排気口31aが設けられている。酸素バーナ21a、副酸素バーナ22a及び補助酸素バーナ23はシリンダ機構24a,25a,26を介して天井壁に取付けられており、昇降可能となっていて、それらの先端部と炉内のガラス溶解物B,Cの湯面との間の距離が可変となっている。   An oxygen burner 21a is attached downward on the ceiling wall of the upstream portion in the furnace facing the small pool 12, and a secondary oxygen burner 22a is attached downward on the ceiling wall on the downstream side of the upstream portion, Further, an auxiliary oxygen burner 23 is attached to face the glass melt overflowing the weir 14 of the small pool 12, and an exhaust port 31a is provided in the ceiling wall at the downstream part in the furnace. The oxygen burner 21a, the sub-oxygen burner 22a, and the auxiliary oxygen burner 23 are attached to the ceiling wall via cylinder mechanisms 24a, 25a, 26, and can be moved up and down. The distance between the hot water surfaces of B and C is variable.

酸素バーナ21a、副酸素バーナ22a及び補助酸素バーナ23には酸素濃度90容量%以上の支燃ガスが供給されるようになっており、また燃料ガスが供給されるようになっている。更に酸素バーナ21aにはガラス原料等のうちで低揮発性のものが気体搬送で供給されるようになっている。また炉内上流部の小プール12を臨む側壁に原料供給管71aが酸素バーナ21aの直下部を臨んで取付けられており、原料供給管71aからはガラス原料等のうちで高揮発性のもが供給されるようになっている。更に炉内上流部の小プール12を形成する炉床壁13にガス供給管81aが酸素バーナ21aを直上部に臨んで取付けられており、ガス供給管81aはガラス溶解炉11aの側壁に密着して延設されていて、その基端部に空気を送り込むためのファン83aが接続されている。   The oxygen burner 21a, the sub-oxygen burner 22a, and the auxiliary oxygen burner 23 are supplied with a combustion-supporting gas having an oxygen concentration of 90% by volume or more, and with fuel gas. Further, the oxygen burner 21a is supplied with a low-volatile material such as a glass raw material by gas conveyance. Further, a raw material supply pipe 71a is attached to the side wall facing the small pool 12 in the upstream part of the furnace so as to face the lower part of the oxygen burner 21a. It comes to be supplied. Further, a gas supply pipe 81a is attached to the hearth wall 13 forming the small pool 12 upstream of the furnace with the oxygen burner 21a facing directly above, and the gas supply pipe 81a is in close contact with the side wall of the glass melting furnace 11a. The fan 83a for sending air to the base end part is connected.

以上説明した図2のガラス溶解炉11aでは、炉内上流部の小プール12を直下に臨む天井壁に下向きで取付けた酸素バーナ21aへ燃料ガス及び酸素濃度90容量%以上の支燃ガスを供給して酸素バーナ21aを下向きで燃焼させ、その火炎中に、ガラス原料等のうちで低揮発性のものを気体搬送により酸素バーナ21a内の前記した被処理物供給ノズルを介し下向きで供給して溶解し、この際に発生する排ガスを排気口31aから放出すると共に、ガラス原料等のうちで高揮発性のものを原料供給管71aから酸素バーナ21aの直下部における小プール12のガラス溶解物B上へ供給して溶解し、またこれらに併せて、ガラス溶解炉11aの側壁と熱交換して加熱した空気をガス供給管81aから酸素バーナ21aを直上部に臨む小プール12のガラス溶解物B中へ供給することによりガラス溶解物Bを撹拌して均質化している。   In the glass melting furnace 11a of FIG. 2 described above, fuel gas and combustion supporting gas having an oxygen concentration of 90% by volume or more are supplied to the oxygen burner 21a mounted downward on the ceiling wall facing the small pool 12 directly upstream of the furnace. Then, the oxygen burner 21a is burned downward, and a low-volatility glass raw material or the like is supplied into the flame downward through the above-described object supply nozzle in the oxygen burner 21a by gas conveyance. The exhaust gas generated at this time is dissolved and discharged from the exhaust port 31a, and the glass material B of the small pool 12 in the lower part of the oxygen burner 21a from the raw material supply pipe 71a is discharged from the raw material supply pipe 71a. At the same time, the small amount of air heated by exchanging heat with the side wall of the glass melting furnace 11a is heated from the gas supply pipe 81a to the oxygen burner 21a. And homogenized by stirring a glass melt B by supplying to the molten glass in B Le 12.

本発明に係るガラス溶解炉を一部縦断面で略示する全体図。1 is a general view partially showing a glass melting furnace according to the present invention in a longitudinal section. 本発明に係る他のガラス溶解炉を一部縦断面で且つ一部省略して略示する全体図。FIG. 3 is an overall view schematically showing another glass melting furnace according to the present invention, partially in a longitudinal section and partially omitted.

符号の説明Explanation of symbols

11,11a ガラス溶解炉
12 小プール
14 堰
21,21a 酸素バーナ
22,22a 副酸素バーナ
23 補助酸素バーナ
31,31a 排気口
32 排気系
41 吸着式酸素発生装置
42 燃焼制御ユニット
51 気体搬送系
61,72 原料供給系
62,73 ホッパ
63,74 定量切出装置
65 定量供給装置
71,71a 原料供給管
81,81a ガス供給管
83,83a ファン
84 熱交換器
11, 11a Glass melting furnace 12 Small pool 14 Weir 21, 21a Oxygen burner 22, 22a Sub-oxygen burner 23 Auxiliary oxygen burner 31, 31a Exhaust port 32 Exhaust system 41 Adsorption-type oxygen generator 42 Combustion control unit 51 Gas transport system 61, 72 Raw material supply system 62, 73 Hopper 63, 74 Fixed quantity cutting device 65 Fixed supply device 71, 71a Raw material supply pipe 81, 81a Gas supply pipe 83, 83a Fan 84 Heat exchanger

Claims (8)

ガラス原料及び副原料からガラス溶解物を生成させるガラス溶解炉において、炉内上流部の天井壁に酸素バーナが下向きで取付けられており、該酸素バーナには酸素濃度90容量%以上の支燃ガスが供給されると共にガラス原料及び副原料が気体搬送により供給されるようになっていて、また炉内上流部の炉床壁にガス供給管が取付けられており、該ガス供給管から撹拌用ガスが供給されるようになっていて、該酸素バーナを下向きで燃焼させると共にガラス原料及び副原料をその火炎中に下向きで供給して溶解しつつ、該ガス供給管から撹拌用ガスを供給することにより、所要のガラス原料及び副原料を均質溶解するようにして成ることを特徴とするガラス溶解炉。   In a glass melting furnace for generating a glass melt from a glass raw material and an auxiliary raw material, an oxygen burner is attached downward on the ceiling wall in the upstream part of the furnace, and a combustion supporting gas having an oxygen concentration of 90% by volume or more is attached to the oxygen burner. Glass raw material and auxiliary raw material are supplied by gas conveyance, and a gas supply pipe is attached to the hearth wall in the upstream part of the furnace, and a gas for stirring is supplied from the gas supply pipe. And supplying the stirring gas from the gas supply pipe while the oxygen burner is burned downward and the glass raw material and auxiliary raw material are supplied downward into the flame and dissolved. A glass melting furnace characterized in that the required glass raw material and auxiliary raw material are homogeneously melted. 炉内上流部の天井壁に下向きで取付けられた酸素バーナには酸素濃度90容量%以上の支燃ガスが供給されると共にガラス原料及び副原料のうちで低揮発性のものが気体搬送により供給されるようになっていて、更に炉内上流部の天井壁又は側壁に原料供給管が取付けられており、該原料供給管からガラス原料及び副原料のうちで分解点又は沸点が1500℃以下であり且つ分解生成物の沸点も1500℃以下である高揮発性のものが供給されるようになっていて、該酸素バーナを下向きで燃焼させると共にガラス原料及び副原料のうちで前記高揮発性のもの以外の低揮発性のものをその火炎中に下向きで供給して溶解し、これと同時に炉内上流部に生成するその溶解物上に原料供給管からガラス原料及び副原料のうちで高揮発性のものを供給して溶解しつつ、ガス供給管から撹拌用ガスを供給することにより、所要のガラス原料及び副原料を均質溶解するようにした請求項1記載のガラス溶解炉。 An oxygen burner mounted on the ceiling wall of the upstream part of the furnace facing downward is supplied with a combustion support gas with an oxygen concentration of 90% by volume or more, and low volatility among the glass and auxiliary materials is supplied by gas conveyance. Furthermore, a raw material supply pipe is attached to the ceiling wall or side wall of the upstream part in the furnace, and the decomposition point or boiling point of the glass raw material and auxiliary raw material from the raw material supply pipe is 1500 ° C. or less. In addition, a high volatility product having a boiling point of decomposition product of 1500 ° C. or less is supplied, and the oxygen burner is burned downward and the high volatility among the glass raw material and the auxiliary raw material . Low volatile substances other than those are supplied downward into the flame and melted, and at the same time, high volatility among the glass raw materials and auxiliary raw materials from the raw material supply pipe onto the dissolved matter generated in the upstream part of the furnace. Offering sex While dissolved by, by supplying a stirring gas from the gas supply tubes, glass melting furnace according to claim 1, wherein which is adapted to homogeneously dissolve the required glass raw materials and auxiliary materials. 高揮発性のものが、炭酸ナトリウム、硝酸ナトリウム、硫酸ナトリウム、無水亜砒酸及び酸化アンチモンから選ばれるものであり、また低揮発性のものが、シリカ、アルミナ、水酸化アルミニウム、炭酸カルシウム及び消石灰から選ばれるものである請求項2記載のガラス溶解炉。 High volatility is selected from sodium carbonate, sodium nitrate, sodium sulfate, arsenous anhydride and antimony oxide, and low volatility is selected from silica, alumina, aluminum hydroxide, calcium carbonate and slaked lime. glass melting furnace according to claim 2, wherein it is intended to. 炉内上流部に他の部分よりも炉床壁を立ち上げた小プールが形成されており、該小プールを下方に臨む天井壁に酸素バーナが、また該小プールを下方に臨む天井壁又は側壁に原料供給管が、更に該小プールを形成する炉床壁にガス供給管が取付けられていて、該小プールに生成する溶解物を一時的に該小プールに貯留した後、該小プールからオーバーフローにより流出させるようにした請求項2又は3記載のガラス溶解炉。 A small pool in which the hearth wall is raised from the other part is formed in the upstream part of the furnace, and an oxygen burner is formed on the ceiling wall facing down the small pool, and a ceiling wall facing down the small pool or The raw material supply pipe is attached to the side wall, and the gas supply pipe is further attached to the hearth wall forming the small pool. After the melt generated in the small pool is temporarily stored in the small pool, the small pool glass melting furnace according to claim 2 or 3 Symbol placement and so as to flow out by overflowing from. 更に炉の天井壁に小プールからオーバーフローしようとするガラス溶解物を臨んで補助酸素バーナが取付けられており、該補助酸素バーナをこれにガラス原料及び副原料を供給することなく燃焼させ、その火炎により小プールからオーバーフローしようとする溶解物を加熱するようにした請求項2〜4のいずれか一つの項記載のガラス溶解炉。 Furthermore, an auxiliary oxygen burner is attached to the ceiling wall of the furnace facing the glass melt that is about to overflow from the small pool, and the auxiliary oxygen burner is burned without supplying glass raw materials and auxiliary raw materials to the flame. The glass melting furnace according to any one of claims 2 to 4, wherein the melt that is about to overflow from the small pool is heated by the heating. 更に炉内上流部よりも下流側の天井壁に炉内のガラス溶解物を臨んで副酸素バーナが下向きに取付けられており、該副酸素バーナをこれにガラス原料及び副原料を供給することなく下向きで燃焼させ、その火炎により炉内のガラス溶解物を加熱するようにした請求項1〜のいずれか一つの項記載のガラス溶解炉。 Further, a secondary oxygen burner is attached to the ceiling wall on the downstream side of the upstream portion of the furnace so as to face the glass melt in the furnace, and the secondary oxygen burner is not supplied with the glass raw material and the secondary raw material. downward burned, the glass melting furnace of any one of the preceding of claims 1 to 5 which is adapted to heat the glass melt in the furnace by the flame. 酸素バーナの直下部を臨んで原料供給管が取付けられており、また該酸素バーナを直上部に臨んでガス供給管が取付けられた請求項2〜のいずれか一つの項記載のガラス溶解炉。 The glass melting furnace according to any one of claims 2 to 6 , wherein a raw material supply pipe is attached facing the lower part of the oxygen burner, and a gas supply pipe is attached facing the oxygen burner. . ガス供給管から供給される撹拌用ガスがガラス溶解炉から排出される排気ガス及び/又は該ガラス溶解炉の炉壁との熱交換により加熱されたものである請求項1〜のいずれか一つの項記載のガラス溶解炉。 Claim 1-7 any of agitation gas supplied from the gas supply pipe is one that was heated by the heat exchange with the exhaust gas and / or the glass melting furnace of the furnace wall is discharged from a glass melting furnace A glass melting furnace as described in one item.
JP2007133707A 2007-05-21 2007-05-21 Glass melting furnace Active JP5219240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133707A JP5219240B2 (en) 2007-05-21 2007-05-21 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133707A JP5219240B2 (en) 2007-05-21 2007-05-21 Glass melting furnace

Publications (2)

Publication Number Publication Date
JP2008285381A JP2008285381A (en) 2008-11-27
JP5219240B2 true JP5219240B2 (en) 2013-06-26

Family

ID=40145474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133707A Active JP5219240B2 (en) 2007-05-21 2007-05-21 Glass melting furnace

Country Status (1)

Country Link
JP (1) JP5219240B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110126594A1 (en) * 2009-12-01 2011-06-02 Asahi Glass Company, Limited Apparatus for producing molten glass, apparatus and process for producing glass products

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2639977C3 (en) * 1976-09-04 1979-02-15 Battelle Development Corp., Columbus, Ohio (V.St.A.) Process for melting glass in a burner-heated tank and glass melting furnace for carrying out the process
JP4095136B2 (en) * 1997-06-17 2008-06-04 大陽日酸株式会社 Glass melting method and apparatus
US6237369B1 (en) * 1997-12-17 2001-05-29 Owens Corning Fiberglas Technology, Inc. Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner
US6722161B2 (en) * 2001-05-03 2004-04-20 The Boc Group, Inc. Rapid glass melting or premelting
JP4565185B2 (en) * 2005-01-21 2010-10-20 国立大学法人東京工業大学 Glass raw material melting method and melting apparatus, and glass manufacturing apparatus

Also Published As

Publication number Publication date
JP2008285381A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
CN1245339C (en) Method for heating glass melting furnace with sectional combustion oxygen fuel burner mounted on the top
US8544298B2 (en) Glass-melting furnace, process for producing molten glass, apparatus for producing glass products and process for producing glass products
CN1777776A (en) Grate type waste incinerator and method of controlling combustion of same
RU2469961C2 (en) Furnace and combustion method with oxygen blowing for melting of glass-forming materials
JP5454808B2 (en) Glass melting furnace
CN1219172C (en) Method for incineration disposal of waste
JP2017029942A (en) Method of modifying fly ash
JP5219240B2 (en) Glass melting furnace
JP6585055B2 (en) Combustion with improved heat recovery
JP4722022B2 (en) Glass melting furnace
JP4624971B2 (en) Glass melting equipment
JP4693178B2 (en) Glass melting method
JP2011037706A (en) Glass melting apparatus
EP2891859A1 (en) Method for heating a metal material in an industrial furnace
JP5203421B2 (en) melting furnace
JP2017501957A5 (en)
CN101487593A (en) Synthetic energy-saving emission-reducing partial oxygenation combustion-supporting apparatus and method
CN103596889B (en) Glass melting furnace
JPH1111954A (en) Melting of glass
JPH1111953A (en) Melting of glass and device therefor
CN107231800A (en) The burner that is inclined upwardly in glass-melting furnace
JP2008285382A (en) Glass bottle production apparatus
CN201753307U (en) Combustion-supporting wind system for glass smelting kiln
JP2003279255A (en) Rotary hearth furnace and operation method for it
CN118388113B (en) Immersed combustion kiln for melting glassy materials and heating method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5219240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250