JP4245424B2 - Glass melting kiln - Google Patents

Glass melting kiln Download PDF

Info

Publication number
JP4245424B2
JP4245424B2 JP2003199075A JP2003199075A JP4245424B2 JP 4245424 B2 JP4245424 B2 JP 4245424B2 JP 2003199075 A JP2003199075 A JP 2003199075A JP 2003199075 A JP2003199075 A JP 2003199075A JP 4245424 B2 JP4245424 B2 JP 4245424B2
Authority
JP
Japan
Prior art keywords
oxygen
burner
kiln
glass
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003199075A
Other languages
Japanese (ja)
Other versions
JP2005035826A (en
Inventor
隆二 藤沼
哲弘 杉野
和男 英
万城 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2003199075A priority Critical patent/JP4245424B2/en
Publication of JP2005035826A publication Critical patent/JP2005035826A/en
Application granted granted Critical
Publication of JP4245424B2 publication Critical patent/JP4245424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/173Apparatus for changing the composition of the molten glass in glass furnaces, e.g. for colouring the molten glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス溶融窯に関するもので、特に、「素地流し」等の作業を効率的に行うために有用である。
【0002】
【従来の技術】
ガラス溶融窯は、窯壁面に設けられたバーナによりガラス原料を溶融し、溶融されたガラスを成形機へ連続的に供給する装置であるが、ガラスの溶融に際しては、ガラスの材質や流量の変化に対応して窯内に最適な条件を作りだす必要がある。特に溶融温度はこうした中でも最も需要な条件であり、近年においてはガラス溶融量の増加やガラス品質の向上を目的として、例えば、酸素バーナを用いた炉内の温度分布をダンパーの開度によって制御する方法が提案されている(例えば特許文献1参照)。
【0003】
また、一般に、同じ溶融窯で多種多様なガラス製品が作製されることが多く、ガラス製品の変更、色替え、その他の目的でガラスの種類を変更する場合に、一旦ガラス溶融窯内部に残留しているガラスを排出する必要がある。いわゆる「素地流し」といわれる作業であるが、従来は、押出し法や素地抜き法などによる作業が行われていた。具体的には、図8(A)に示すように、空気バーナ4の燃焼を利用し、溶解槽1および冷却槽5に残留しているガラスを出湯口7から排出するが、通常時はバーナを炊かない冷却槽5(あるいはワーキングエンド)において、素地流しのために2〜4本の空気バーナ4を燃焼させている方法が挙げられる。
【0004】
素地替えは、その後に作製されるガラスの品質にも影響することから、素地の置換促進およびガラスの均質性のため向上を目的として、ガラス溶融窯に供給される原料の攪拌手段や酸素バーナの採用などの工夫が提案されている(例えば特許文献2参照)。
【0005】
【特許文献1】
特開平10−59727号公報
【特許文献2】
特開平7−157316号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来のようなガラス溶融窯では、以下のような課題が生じることがある。
上図8(A)のようなガラス溶融窯においては、残留ガラスが窯の周辺部、具体的には溶解槽1内のA部や冷却槽5(あるいはワーキングエンド)のB部やC部に溜まることがあり、例えば、本発明者に試算では、図8(B)のような深さ(a)1.2〜1.5mのガラス溶融窯内のA〜C部に残留するガラス8は、通常0.2〜0.4m程度の厚み(b)となり、ガラス溶融窯内にあったガラスの約1/6〜1/3に相当すると推定している。つまり、約600Ton/dayのガラス生産量に対して100〜200Ton/dayに相当する分のガラスの生産性の低下が生じていることになる。従って、ガラス溶融窯に残っているガラスを如何に多く排出できるかが重要な課題となる。
【0007】
また、素地替え後において、新しいガラスを投入し残留ガラスに混入させてすべて排出するが、これらの排出ガラスは廃棄処分されるまでに、通常4日〜1週間程度の日数を要することがあり、その間操業できない状態となり、生産性の向上や生産コストの低減が重要な課題となっている。
【0008】
さらに、素地の置換促進のためには、電気ブースターなどを用いて溶融部の温度を上げる方法がとられていたが、窯部の劣化などから限界があった。
【0009】
本発明の目的は、ガラス溶融窯における残留ガラスを軽減し、素地替えに要する時間を短縮することができるガラス溶融窯であって、各種のガラスに対応可能なガラス溶融窯を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、鋭意研究を重ねた結果、以下に示すガラス溶融窯により上記目的を達成できることを見出し、本発明を完成するに到った。
【0011】
本発明は、複数のバーナを有し、各バーナの酸素噴出量を、窯内の温度分布を基に制御するガラス溶融窯であって、空気バーナと酸素バーナを併用するとともに、前記酸素バーナを素地替えのときのみに使用することを特徴とする。こうした制御機能を有するガラス溶融窯によって、窯の使用条件にあった窯内の温度分布を実現することができる。特に、素地替え時における窯の出湯部付近および周辺部の温度を最適に制御することで、素地替えに要する時間を大幅に短縮し、残留ガラスの削減することができる。また、酸素バーナを素地替えのときのみに使用することが好適である。ガラスの種類によっては、かかる場合にのみ上記の酸素噴出量の制御を行うことは、生産プロセス全体のエネルギー効率および作業効率の面から非常に優位であるといえる。
ここで、窯の中心部に用いるバーナの酸素噴出量と、窯の出湯部付近および窯の周辺部に用いるバーナの酸素噴出量と、が異なることが好適である。窯の中央部を酸素噴出量の少ないバーナを用い穏やかに加熱することによって、より効率的な窯内の温度制御を可能とし、適正な温度分布を実現することができる。
【0012】
また、本発明は、窯の中心部を前記空気バーナで加熱し、窯の出湯部付近および窯の周辺部を前記酸素バーナで加熱することを特徴とする。窯の中心部は穏やかで、かつ安定的な空気バーナを用い、窯の出湯部付近および窯の周辺部は制御しやすく、かつ局部的な加熱も可能な酸素バーナを用いることで、残留ガラスの軽減、および素地替えに要する時間短縮を、より適切に行うことができる。
【0013】
さらに、前記酸素バーナに供給する酸素濃度を可変することが好適である。酸素濃度を変化させると、炎の形状は変化せずにモーメンタムを増加させ、炎の表面温度(輝度)を変化させることができるという特性を活かし、酸素濃度を制御して加熱温度を変化させることで、ガラスの均一性を有利に確保することができる。
【0014】
このとき、前記酸素バーナが2つの助燃流体供給路を有する三重管構造であって、内管と外管との酸素噴出量が異なることが好適である。このように、内管と外管との酸素噴出量を変えることで、炎の形状や輝度を変え、ガラスの状態あるいはガラスの種類によって、最適の加熱条件を作り出すことができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本発明は、複数のバーナを有するガラス溶融窯であって、各バーナの酸素噴出量を、窯内の温度分布を基に制御することを特徴とする。本発明者は、通常の空気バーナと同程度の酸素噴出量のバーナによるガラスの溶融は対流による加熱を主とするものであり、酸素濃度を高めたバーナ(純酸素の場合は「酸素バーナ」といわれる。)ではそれに加え輻射による加熱の効果が生じることを見出すとともに、バーナの酸素噴出量による炎の形状および温度の制御が窯内のガラスの溶融に効果的であることを見出したもので、複数のバーナの酸素噴出量を、窯内の温度分布を基に制御することで、窯の使用条件にあった窯内の温度分布を実現することができる。
【0016】
ここで、酸素噴出量の増減は、燃焼補助流体中の酸素濃度を制御する方法と補助流体の流量を制御する方法あるいはこれらを組合せた方法などが挙げられる。具体的な手法および効果については後述する。
【0017】
また、燃料としては特に限定されず、天然ガスや都市ガスなどの気体燃料あるいは重油や軽油などの液体燃料などが使用可能であるが、本発明では、バーナによって燃料を変更しそれに応じた酸素供給量を制御することも可能であり、大小様々な溶融窯や各種のガラスに対応可能な幅広い用途に用いることができる。
【0018】
具体的には、図1に例示するように、ガラスを溶融する場合には、(1)窯の溶解槽1の入口2において高温に加熱し、(2)溶解槽1の中心部は、ガラスの潜熱で高温を維持しながら、対流によって攪拌して粉塊状物を溶解する温度で加熱し、(3)溶解層1の周辺部では窯壁からの熱の放出を防止しながら高温を維持できるように加熱する、ことが好ましい。従って、窯の各部の温度を実測し上記の好適条件との差異を把握するとともに、各所に必要な加熱能力を有するバーナを設け、酸素噴出量を制御することで、効率的に好適条件に近づけることができる。つまり、高温加熱が必要な箇所には、酸素噴出量の大きいバーナ(例えば酸素バーナ)の設置を行い、比較的低温加熱で十分な箇所には酸素噴出量の少ないバーナ(例えば空気バーナ)を設けることで、各部のガラス温度の分布状態を把握しながら、各バーナの酸素噴出量を調整し、それぞれの最適温度になるように制御することができる。
【0019】
また、素地替え時においては、窯の出湯部付近および周辺部に残留し蓄積されたガラスの残留の状態および、その壁面からの放熱や比較的流動的な中心部との熱交換の条件が異なり、溶融温度を最適に制御することで、素地替えに要する時間を大幅に短縮し、残留ガラスの削減することができる。具体的には、図2に例示するように、(1)溶解槽1の中央部は対流によって攪拌して粉塊状物を溶解する比較的低温で加熱し、(2)残留ガラスが発生しやすい溶解槽1内のA部、冷却槽5のB部やC部、および出湯口7を高温で加熱する、ことが好ましい。このとき、上記同様、高温加熱が必要な箇所には例えば酸素バーナを設け、比較的低温加熱で十分な箇所には例えば空気バーナを設け、各部のガラス温度の分布状態を把握しながら、各バーナの酸素噴出量を調整することで、それぞれの最適温度になるように制御することができる。
【0020】
なお、バーナの酸素噴出量を制御するに際し、加熱工程を終了後においては、燃料を停止して窯内の冷却を行うことも可能である。つまり、窯内に冷却水を導入するなどの特別な処理および設備を必要とせずに、自己空冷機能を有することが可能で、設備の効率的な使用によるコストメリットも大きい。また、窯内の状態によっては、周辺部のバーナに対しては消火後であっても酸素濃度や酸素供給量を維持または増加し、冷却時間を延ばし残留ガラスの発生を軽減するように制御することも可能である。
【0021】
本発明は、窯の中心部に用いるバーナの酸素噴出量と、窯の出湯部付近および窯の周辺部に用いるバーナの酸素噴出量と、が異なることを特徴とする。本発明者は、上記のように、酸素噴出量が多い場合には効率の良い高温加熱が可能である反面、溶融窯全体を酸素噴出量の多いバーナとすると、窯の中心部では熱の分散が悪く、また、酸素噴出量の多いバーナによる集中的な加熱によって、ガラスの煮沸による気泡の発生や混入のおそれがあることを見出したもので、窯の中央部を酸素噴出量の少ないバーナを用い穏やかに加熱することによって、より効率的な窯内の温度制御を可能とし、適正な温度分布を実現することができる。一方、ガラスが残留しやすい場所、特に窯の中央部と同じ条件では熱の届かない場所には酸素噴出量を増加させたバーナを設置することで、ガラスの残留を減少させることができる。
【0022】
具体的には、ガラスを溶融する場合、上記のように図1において、(1)窯の溶解槽1の入口2において酸素噴出量の多いバーナ3で高温に加熱し、(2)溶解槽1の中心部は、酸素噴出量の比較的少ないバーナ4(例えば、空気バーナ)を用いて対流によって攪拌して粉塊状物を溶解する温度で加熱し、(3)溶解1の周辺部では高温を維持できるように酸素噴出量の多いバーナで加熱する、ことが好ましい。このとき、最小限の注入エネルギーで、それぞれの最適温度になるように制御することができる。
【0023】
また、素地替え時においては、当初、(1)溶解槽1の中央部を酸素噴出量の少ないバーナ4で加熱して対流によって攪拌しながら粉塊状物を溶解し、窯内の温度分布がほぼ安定化した状態にする。(2)次に、図2に例示するように、継続して溶解槽1の中央部は酸素噴出量の少ないバーナ4で加熱しつつ、(3)A部、B部、C部、および出湯口7を酸素噴出量の多いバーナ3で加熱する、ことが好ましい。
【0024】
このように、窯の中心部に用いるバーナの酸素噴出量と窯の出湯部付近および窯の周辺部に用いるバーナの酸素噴出量とが異なるように制御することで、窯の損傷を生じさせることなく、ガラス溶融窯における素地替えに要する時間を短縮し、残留ガラスの削減することができる。
【0025】
さらに、バーナの酸素噴出量の増加させるに際し、助燃補助流体の流量を減少させると火炎長を長くすることができることから、窯の周辺部や隅部に対しても十分炎を当て加熱することができる点においても有効である。具体的に助燃補助流体の流量と火炎長の関係を、図3に例示する。重油を燃料として用いた場合、火炎長と流量とがほぼ比例関係にあることを示しているが、予めこうしたバーナの特性を把握し、実窯での各バーナの制御に用いることが有用である。
【0026】
つまり、酸素流量の増減によって、火炎長およびモーメンタムを制御することができることを有効に活かして、窯壁の形状に合わせたフレキシビリティの高い加熱制御が可能となり、特に狭小な形状あるいは複雑な形状の溶解窯への適用に最適である。また、ガラスの種類によって加熱方法を変更する場合にあっても、酸素流量を制御し最適な火炎長およびモーメンタムによって加熱することは、残留ガラスの軽減にも非常に有効である。さらに、後述する酸素濃度と併せて酸素流量を制御することで、より一層の精緻な制御が可能となる。
【0027】
なお、バーナの酸素噴出量の制御に関しては、上記以外にも、いくつか考慮すべき点がある。例えば、発明者の知見として、図4に例示するように、火炎長は必ずしもその熱流と一致しないことが判った。つまり、酸素噴出量を少なくして、火炎長を長くしても、熱流(Heat Flux)は変化せず、火炎の先端部での加熱効果は変化しないことから、こうした条件でバーナを使用することで、バーナからの距離の長い周辺部に対しても短い距離の中央部と同様の加熱効果を得ることができる。従って、実窯での適用に際しては、こうしたバーナの特性を把握しておくことも重要であり、窯内の温度分布の測定が難しい場合には、こうした特性から分布のシミュレーションを行い、ガラス溶融および素地替え時のバーナの酸素噴出量の制御に用いることも有用である。
【0028】
本発明は、空気バーナと酸素バーナを併用するガラス溶融窯であって、窯の中心部を空気バーナで加熱し、窯の出湯部付近および窯の周辺部を酸素バーナで加熱することを特徴とする。上述のように、窯の中心部に用いるバーナの酸素噴出量と窯の出湯部付近および窯の周辺部に用いるバーナの酸素噴出量とが異なるように制御することが好ましいが、具体的には、窯の中心部は穏やかで、かつ安定的な空気バーナを用い、窯の出湯部付近および窯の周辺部は制御しやすく、かつ局部的な加熱も可能な酸素バーナを用いることで、残留ガラスの軽減、および素地替えに要する時間短縮を、より適切に行うことができる。
【0029】
図1および図2において、酸素量の少ないバーナ4が空気バーナに相当し、酸素量の多いバーナ3が酸素バーナに相当する。素地替え時の各バーナの働きを、図5(A)および(B)に例示する。図5(A)のように、熱対流による加熱を主とする空気バーナ4、4’によって残留ガラス8を全体的に加熱するとともに、輻射による加熱を主とする酸素バーナ3、3’によって温度低下を招きやすい窯の出湯部付近および周辺部を高温加熱することで、滞留ガラス8の溶融を高めると同時にガラスの流れを促進し短時間で移動排出することが可能となる。つまり、このときの酸素バーナによる輻射の働きは、図5(B)に示すように、直接加熱による溶解したガラスの対流の促進と、コーナのガラスの溶解の促進という、2つに分けることができるが、窯内において両者がうまく機能することで非常に効率的な残留ガラスの軽減および素地替えを行うことができる。
【0030】
このとき、酸素バーナは火炎の輻射特性を最大限に利用できるようにするため、ガラス溶融窯底部(敷)へ火炎が向かうように下向きに設置することが望ましく、また、輻射によりガラス溶解を促進させる効果が大きいことを利用してこの火炎はできるだけ敷へ近づけた方がより効果が大きい。ただし、酸素バーナは火炎温度が高いため、敷煉瓦などの損傷がないような設置距離を保つ必要がある。
【0031】
また、前記酸素バーナに供給する酸素濃度を可変することが好適である。上述のように、酸素噴出量を変化させる方法の1つとして補助流体中の酸素濃度を制御する方法があり、燃焼バーナにおいて、酸素濃度を変化させると、炎の形状は変化せずにモーメンタムを変化させ、炎の表面温度(輝度)を変化させることができるという特性がある。本発明のように、複数のバーナによって窯内のガラスを加熱するに際し、窯の部分によって加熱温度を変え、かつバーナとガラス表面との距離に差異がない場合においては、酸素濃度を制御して加熱温度を変化させる方がガラスの均一性を確保するのに有利となることがある。また、ガラスの材質や流量の変化に対応して加熱温度を変更する場合ように比較的変更温度幅が小さい場合には、こうした酸素濃度を変化させる方法によって制御する方が容易であるといえる。さらに、上述の酸素流量と併せて制御することで、より一層の精緻な制御が可能となる。
【0032】
このとき、前記酸素バーナが2つの助燃流体供給路を有する三重管構造であって、内管と外管との酸素噴出量が異なることが好適である。本発明者は、酸素バーナにおいて、助燃流体が燃料噴出口に近い位置から噴出した場合と少し離れた位置から噴出した場合によって炎の形状や輝度が異なると同時に、助燃流体中の酸素濃度あるいは酸素流量によっても同様の現象が生じることを見出したもので、三重管構造における内管と外管との酸素噴出量を変えることで、最適の炎の形状や輝度得ることができる。
【0033】
具体的には、図6(A)に例示するように、燃料ガス9と内管の助燃酸素(センター酸素)10がまず混合し、その後外管の助燃酸素(アウター酸素)11が混合して炎を形成する。例えば、内管からセンター酸素を4Nm3 /hr、中管から燃料ガス(天然ガス)を17Nm3 /hr、外管から酸素濃度90〜100%のアウター酸素を36Nm3 /hr噴出し、センター酸素濃度を0〜15%に変化させたときの炎の状態を、図6(B)に例示する。センター酸素濃度を上昇させることによって、炎の形状が短くなるとともに、炎全体の輝度が高くなることがわかる。
【0034】
このように、内管と外管との酸素噴出量を制御することで、ガラスの状態あるいはガラスの種類によって、最適の加熱条件を作り出すことができる。また、両者を調整することで、火炎の安定性が高い最適燃焼条件を広い範囲で確保することができ、高輝度高輻射の火炎を得ることができる。さらに、本発明によれば、供給燃料の種類が変わっても最適燃焼条件を作り出すことが容易であり、大小様々な溶融窯や各種のガラスに対応可能な幅広い用途に用いることができる。
【0035】
また、前記酸素バーナを素地替えのときのみに使用することが好適である。通常ガラスの溶融工程においては、図1に例示したように一部酸素バーナを使用することが好ましいが、例えば、低融点ガラスのように生産工程において必ずしも高温を必要としない場合、あるいは窯内の温度差が比較的小さい熱伝導性の高いガラスの場合などにおいては、酸素バーナを必要としないことがある。しかし、こうした場合であっても、素地替えは必要であり、また、周辺部でのガラスの残留は避けがたいことから、かかる場合にのみ上記の酸素噴出量の制御を行うことは、生産プロセス全体のエネルギー効率および作業効率の面から非常に優位であるといえる。
【0036】
以上は、主としてガラス製造工程に用いられる溶融窯について述べたが、本発明の技術はこうした適用範囲に限定されるものではなく、例えば、ガラス原料分離工程や精製工程における加熱窯など各種の製造プロセスにおいて、広い範囲の応用が可能であり、広い汎用性を有する技術であるといえる。
【0037】
【実施例】
本発明の実施例として、「フロートガラスの素地流し」に対して適用した場合を示す。
【0038】
<使用材料>
建材用フロート板ガラス(ソーダライム)
【0039】
<使用溶融窯>
図7に例示するように、以下の条件で設置、実施した。
(1)ガラス引き出し量:550Ton/day
(2)燃料:天然ガス
(3)酸素バーナ
二重管タイプ純酸素バーナ 1MW:4本
三重管タイプ純酸素バーナ 50kW:2本
(4)ガラスタンク:深さ1.4m
(5)バーナの設置
二重管タイプ純酸素バーナ(1MW)を溶解槽に1本、ワーキングエンド(冷却槽)に2本設置。燃料は酸素バーナ1 本当り80Nm3 /hr〜120Nm3 /hrを供給。
三重管タイプ純酸素バーナ(50kW)を溶解槽および冷却槽の出湯口の炙りに設置。燃料は天然ガスをそれぞれ15Nm3 /hr〜20Nm3 /hrを供給。
【0040】
<結果>
空気燃焼時の残留ガラスレベルは、40cmあったが、酸素バーナ設置後の残留ガラスレベル、つまり残留素地のレベルは10cm程度に減少した。
つまり、残留ガラスの総量は酸素バーナ設置前約380Tonから酸素バーナ設置後100Tonへと約1/4に減少した。その結果、残留ガラスの吐き出し日数として約3日間の短縮を図ることができた。
【0041】
【発明の効果】
以上のように、本発明の制御機能を有するガラス溶融窯によって、窯の使用条件にあった窯内の温度分布を実現することができる。特に、素地替え時における窯の出湯部付近および周辺部の温度を最適に制御することで、素地替えに要する時間を大幅に短縮し、残留ガラスの削減することができる
ここで、窯の中心部に用いるバーナの酸素噴出量と、窯の出湯部付近および窯の周辺部に用いるバーナの酸素噴出量と、が異なることによって、より効率的な窯内の温度制御を可能とし、適正な温度分布を実現することができる。
【0042】
また、窯の中心部は穏やかで、かつ安定的な空気バーナを用い、窯の出湯部付近および窯の周辺部は制御しやすく、かつ局部的な加熱も可能な酸素バーナを用いることで、残留ガラスの軽減、および素地替えに要する時間短縮を、より適切に行うことができる。
【0043】
さらに、酸素バーナに供給する酸素濃度を変化させると、炎の形状は変化せずにモーメンタムを増加させ、炎の表面温度(輝度)を変化させることができるという特性を活かし、酸素濃度を制御して加熱温度を変化させることで、ガラスの均一性を有利に確保することができる。
【0044】
このとき、酸素バーナが2つの助燃流体供給路を有する三重管構造であって、内管と外管との酸素噴出量を変えることで、炎の形状や輝度を変え、ガラスの状態あるいはガラスの種類によって、最適の加熱条件を作り出すことができる
また、酸素バーナを素地替えのときのみに使用し、酸素噴出量の制御を行うことは、生産プロセス全体のエネルギー効率および作業効率の面から非常に優位であるといえる。
【図面の簡単な説明】
【図1】本発明に係る溶融窯におけるガラス溶融時の状態を例示する説明図
【図2】本発明に係る溶融窯における素地替え時の状態を例示する説明図
【図3】本発明に係る酸素噴出量と火炎長の関係を例示する説明図
【図4】本発明に係る火炎長と熱流との関係を例示する説明図
【図5】本発明に係る溶融窯におけるバーナの働きを例示する説明図
【図6】本発明に係る溶融窯に用いるバーナの構成例を示す説明図
【図7】本発明に係る実施例における溶融窯の状態を例示する説明図
【図8】従来技術に係る溶融窯の状態を例示する説明図
【符号の説明】
1 溶解槽
3 酸素バーナ
4 空気バーナ
5 冷却槽(ワーキングエンド)
7 出湯口
8 残留ガラス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass melting kiln, and is particularly useful for efficiently performing operations such as “base casting”.
[0002]
[Prior art]
A glass melting kiln is a device that melts the glass raw material with a burner provided on the wall of the kiln and continuously supplies the melted glass to the molding machine. It is necessary to create the optimum conditions in the kiln. In particular, the melting temperature is the most demanding condition, and in recent years, for example, the temperature distribution in the furnace using an oxygen burner is controlled by the opening degree of the damper for the purpose of increasing the glass melting amount and improving the glass quality. A method has been proposed (see, for example, Patent Document 1).
[0003]
Also, in general, a wide variety of glass products are often produced in the same melting furnace, and when the glass type is changed for the purpose of changing the glass product, changing the color, or for other purposes, it remains in the glass melting furnace once. It is necessary to discharge the glass. This is a so-called “base flushing” operation, but conventionally, an extruding method or a base stripping method has been used. Specifically, as shown in FIG. 8 (A), the combustion of the air burner 4 is utilized to discharge the glass remaining in the melting tank 1 and the cooling tank 5 from the outlet 7. In the cooling tank 5 (or the working end) that does not cook the gas, there is a method in which 2 to 4 air burners 4 are burned for flowing the substrate.
[0004]
Substrate replacement also affects the quality of the glass produced thereafter. Therefore, for the purpose of promoting the replacement of the substrate and improving the homogeneity of the glass, the stirring means of the raw material supplied to the glass melting furnace and the oxygen burner A device such as adoption has been proposed (see, for example, Patent Document 2).
[0005]
[Patent Document 1]
JP-A-10-59727 [Patent Document 2]
JP-A-7-157316 [0006]
[Problems to be solved by the invention]
However, the following problems may occur in a conventional glass melting kiln.
In the glass melting kiln as shown in FIG. 8 (A) above, the residual glass is in the periphery of the kiln, specifically, in the A part in the melting tank 1 or the B part or C part of the cooling tank 5 (or working end). For example, according to a trial calculation by the present inventor, the glass 8 remaining in the parts A to C in the glass melting furnace having a depth (a) of 1.2 to 1.5 m as shown in FIG. The thickness (b) is usually about 0.2 to 0.4 m, which is estimated to correspond to about 1/6 to 1/3 of the glass in the glass melting furnace. That is, the productivity of the glass corresponding to 100 to 200 Ton / day is reduced with respect to the glass production amount of about 600 Ton / day. Therefore, an important issue is how much glass remaining in the glass melting furnace can be discharged.
[0007]
In addition, after changing the base material, new glass is introduced and mixed into the residual glass to discharge everything, but it usually takes about 4 days to 1 week to dispose of these discharged glass. In the meantime, it becomes impossible to operate, and improvement of productivity and reduction of production cost are important issues.
[0008]
Furthermore, in order to promote the replacement of the substrate, a method of raising the temperature of the molten part using an electric booster or the like has been taken, but there is a limit due to deterioration of the kiln part or the like.
[0009]
An object of the present invention is to provide a glass melting kiln that can reduce residual glass in a glass melting kiln and reduce the time required for substrate replacement, and is compatible with various glasses. .
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above object can be achieved by a glass melting furnace shown below, and have completed the present invention.
[0011]
The present invention, have a plurality of burners, the oxygen ejection amount of each burner, a glass melting furnace to control based on the temperature distribution in the kiln, with a combination of air burner and oxygen burners, the oxygen burner It is used only when changing the substrate . With the glass melting kiln having such a control function, it is possible to realize a temperature distribution in the kiln suitable for the use condition of the kiln. In particular, by optimally controlling the temperature in the vicinity of and around the tapping part of the kiln when changing the substrate, the time required for changing the substrate can be greatly shortened, and the residual glass can be reduced. Further, it is preferable to use the oxygen burner only when changing the substrate. Depending on the type of glass, it can be said that controlling the oxygen ejection amount only in such a case is very advantageous in terms of energy efficiency and work efficiency of the entire production process.
Here, it is preferable that the oxygen ejection amount of the burner used for the center portion of the kiln is different from the oxygen ejection amount of the burner used in the vicinity of the tapping portion of the kiln and in the peripheral portion of the kiln. By gently heating the center of the kiln using a burner with a small amount of oxygen ejection, more efficient temperature control in the kiln is possible, and an appropriate temperature distribution can be realized.
[0012]
Further, the present invention is that the central portion of the kiln is heated by the air burner, characterized by heating the peripheral portion of the tapping portion and near kiln kiln by the oxygen burner. By using a gentle and stable air burner at the center of the kiln, and an oxygen burner that is easy to control and can be locally heated near the kiln tapping area and the kiln periphery, It is possible to more appropriately reduce and shorten the time required for changing the substrate.
[0013]
Furthermore, it is preferable to vary the oxygen concentration supplied to the oxygen burner. Changing the oxygen concentration makes it possible to increase the momentum without changing the shape of the flame, and to change the heating temperature by controlling the oxygen concentration, taking advantage of the fact that the surface temperature (luminance) of the flame can be changed. Thus, the uniformity of the glass can be advantageously ensured.
[0014]
At this time, it is preferable that the oxygen burner has a triple-pipe structure having two auxiliary combustion fluid supply passages, and the oxygen ejection amounts of the inner pipe and the outer pipe are different. Thus, by changing the amount of oxygen jetted between the inner tube and the outer tube, the shape and brightness of the flame can be changed, and the optimum heating condition can be created depending on the state of glass or the type of glass .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The present invention is a glass melting kiln having a plurality of burners, wherein the oxygen ejection amount of each burner is controlled based on the temperature distribution in the kiln. The present inventor found that melting of glass by a burner having an oxygen ejection amount similar to that of a normal air burner is mainly heating by convection, and a burner with an increased oxygen concentration (“oxygen burner” in the case of pure oxygen) In addition, it has been found that the effect of heating by radiation occurs, and that the shape and temperature control of the flame by the amount of oxygen blown from the burner is effective for melting the glass in the kiln. By controlling the oxygen ejection amounts of the plurality of burners based on the temperature distribution in the kiln, the temperature distribution in the kiln that matches the use conditions of the kiln can be realized.
[0016]
Here, the increase / decrease of the oxygen ejection amount includes a method for controlling the oxygen concentration in the combustion auxiliary fluid, a method for controlling the flow rate of the auxiliary fluid, or a method combining these. Specific methods and effects will be described later.
[0017]
Further, the fuel is not particularly limited, and gas fuel such as natural gas or city gas or liquid fuel such as heavy oil or light oil can be used. However, in the present invention, the fuel is changed by a burner and oxygen is supplied accordingly. It is also possible to control the amount, and it can be used in a wide range of applications that can be applied to various large and small melting kilns and various glasses.
[0018]
Specifically, as illustrated in FIG. 1, when melting glass, (1) it is heated to a high temperature at the inlet 2 of the melting tank 1 of the kiln, and (2) the center of the melting tank 1 is made of glass. While maintaining the high temperature with the latent heat of the heat, it is heated at a temperature that dissolves the lump by stirring by convection, and (3) the high temperature can be maintained while preventing the release of heat from the kiln wall at the periphery of the dissolution layer 1 It is preferable to heat so that. Therefore, by actually measuring the temperature of each part of the kiln and grasping the difference from the above preferred conditions, by providing burners having the necessary heating capacity in each place and controlling the oxygen ejection amount, the temperature is brought close to the preferred conditions efficiently. be able to. That is, a burner with a large oxygen ejection amount (for example, an oxygen burner) is installed at a location where high temperature heating is required, and a burner with a small oxygen ejection amount (for example, an air burner) is provided at a location where relatively low temperature heating is sufficient. Thus, while grasping the distribution state of the glass temperature of each part, the oxygen ejection amount of each burner can be adjusted and controlled so as to reach the optimum temperature.
[0019]
In addition, when changing the base material, the state of the remaining glass accumulated near and around the tapping part of the kiln and the conditions of heat dissipation from the wall surface and heat exchange with the relatively fluid center are different. By optimally controlling the melting temperature, the time required for substrate replacement can be greatly shortened and residual glass can be reduced. Specifically, as illustrated in FIG. 2, (1) the central portion of the dissolution tank 1 is heated at a relatively low temperature that is stirred by convection to dissolve the lump, and (2) residual glass is likely to be generated. It is preferable to heat the part A in the dissolution tank 1, the parts B and C of the cooling tank 5, and the outlet 7 at a high temperature. At this time, similarly to the above, for example, an oxygen burner is provided at a place where high temperature heating is necessary, and an air burner is provided at a place where heating at a relatively low temperature is sufficient, and each burner is grasped while grasping the glass temperature distribution state of each part. By adjusting the amount of oxygen blown out, it is possible to control so as to reach the optimum temperature.
[0020]
In controlling the amount of oxygen ejected from the burner, it is possible to stop the fuel and cool the inside of the kiln after the heating process is finished. That is, it is possible to have a self-air cooling function without requiring special treatment and equipment such as introducing cooling water into the kiln, and there is a great cost merit due to efficient use of equipment. In addition, depending on the state of the kiln, the peripheral burner is controlled so as to maintain or increase the oxygen concentration and the oxygen supply amount even after extinguishing, extend the cooling time, and reduce the generation of residual glass. It is also possible.
[0021]
The present invention is characterized in that the amount of oxygen ejected from the burner used in the center of the kiln is different from the amount of oxygen ejected from the burner used in the vicinity of the hot water outlet of the kiln and in the periphery of the kiln. As described above, the present inventor can perform efficient high-temperature heating when the amount of oxygen ejection is large. On the other hand, if the entire melting furnace is a burner with a large amount of oxygen ejection, heat is dispersed at the center of the kiln. In addition, it was found that there is a risk of bubble generation and mixing due to boiling of the glass due to intensive heating with a burner with a large oxygen ejection amount. By using it gently and heating it, it is possible to control the temperature in the kiln more efficiently and realize an appropriate temperature distribution. On the other hand, glass residue can be reduced by installing a burner with an increased oxygen ejection amount in a place where glass tends to remain, particularly where heat does not reach under the same conditions as the center of the kiln.
[0022]
Specifically, when the glass is melted, in FIG. 1 as described above, (1) the glass 2 is heated to a high temperature by the burner 3 having a large oxygen ejection amount at the inlet 2 of the melting tank 1 of the kiln, and (2) the melting tank 1 Is heated at a temperature at which the lump is melted by convection using a burner 4 (for example, an air burner) with a relatively small amount of oxygen jet, and (3) at the periphery of the dissolution tank 1 at a high temperature. It is preferable to heat with a burner having a large amount of oxygen jetting so as to maintain the above. At this time, it is possible to control each optimum temperature with a minimum implantation energy.
[0023]
In addition, at the time of changing the substrate, initially, (1) the central portion of the dissolution tank 1 is heated with a burner 4 having a small oxygen ejection amount and stirred by convection to dissolve the lump, and the temperature distribution in the kiln is almost equal. Keep it in a stable state. (2) Next, as illustrated in FIG. 2, the central portion of the dissolution tank 1 is continuously heated by the burner 4 with a small oxygen ejection amount, while (3) A portion, B portion, C portion, It is preferable that the gate 7 is heated by the burner 3 having a large oxygen ejection amount.
[0024]
Thus, damage to the kiln can be caused by controlling the amount of oxygen ejected from the burner used in the center of the kiln to be different from the amount of oxygen ejected from the burner used in the vicinity of the hot water and around the kiln. In addition, the time required for changing the substrate in the glass melting furnace can be shortened, and the residual glass can be reduced.
[0025]
Furthermore, when increasing the amount of oxygen ejected from the burner, the flame length can be increased if the flow rate of the auxiliary combustion auxiliary fluid is decreased. It is also effective in that it can Specifically, FIG. 3 illustrates the relationship between the flow rate of the auxiliary combustion assisting fluid and the flame length. When heavy oil is used as fuel, the flame length and flow rate are shown to be approximately proportional, but it is useful to know the characteristics of these burners in advance and use them to control each burner in an actual kiln. .
[0026]
In other words, by making effective use of the fact that the flame length and momentum can be controlled by increasing or decreasing the oxygen flow rate, it becomes possible to perform highly flexible heating control that matches the shape of the kiln wall, especially in narrow or complex shapes. Ideal for application to melting kilns. Even when the heating method is changed depending on the type of glass, controlling the oxygen flow rate and heating with the optimum flame length and momentum is very effective in reducing residual glass. Furthermore, by controlling the oxygen flow rate in combination with the oxygen concentration described later, further precise control becomes possible.
[0027]
In addition to the above, there are some points to be considered regarding the control of the oxygen ejection amount of the burner. For example, as the knowledge of the inventor, as illustrated in FIG. 4, it has been found that the flame length does not necessarily match the heat flow. In other words, even if the oxygen ejection amount is reduced and the flame length is increased, the heat flux does not change, and the heating effect at the tip of the flame does not change. Thus, a heating effect similar to that of the central portion having a short distance can be obtained even in the peripheral portion having a long distance from the burner. Therefore, it is also important to understand the characteristics of such burners when applying in an actual kiln. If it is difficult to measure the temperature distribution in the kiln, simulation of the distribution is performed from these characteristics, and glass melting and It is also useful to use it to control the amount of oxygen emitted from the burner when changing the substrate.
[0028]
The present invention is a glass melting kiln using both an air burner and an oxygen burner, wherein the center of the kiln is heated with an air burner, and the vicinity of the kiln hot water and the periphery of the kiln are heated with an oxygen burner. To do. As described above, it is preferable to control so that the oxygen ejection amount of the burner used in the center of the kiln and the oxygen ejection amount of the burner used in the vicinity of the kiln tapping part and in the periphery of the kiln are different, specifically, By using a gentle and stable air burner in the center of the kiln, and using an oxygen burner that is easy to control near the kiln tapping and the kiln and that can be heated locally, residual glass It is possible to more appropriately reduce the time required for changing the base material and changing the base material.
[0029]
1 and 2, the burner 4 with a small amount of oxygen corresponds to an air burner, and the burner 3 with a large amount of oxygen corresponds to an oxygen burner. The action of each burner when changing the substrate is illustrated in FIGS. 5 (A) and 5 (B). As shown in FIG. 5A, the residual glass 8 is heated as a whole by the air burners 4 and 4 ′ mainly heated by thermal convection, and the temperature is heated by the oxygen burners 3 and 3 ′ mainly heated by radiation. By heating the vicinity and the peripheral part of the kiln that tends to be lowered at high temperatures, it is possible to enhance the melting of the staying glass 8 and at the same time promote the flow of the glass and move it out in a short time. In other words, the action of radiation by the oxygen burner at this time can be divided into two types, as shown in FIG. 5B, promotion of convection of melted glass by direct heating and promotion of dissolution of corner glass. However, if both function well in the kiln, it is possible to reduce the residual glass and replace the substrate very efficiently.
[0030]
At this time, it is desirable to install the oxygen burner downward so that the flame is directed to the bottom of the glass melting furnace (the floor) in order to make the best use of the radiation characteristics of the flame, and promote the melting of the glass by radiation. Taking advantage of the large effect of making this flame, it is more effective to bring this flame as close to the floor as possible. However, since the oxygen burner has a high flame temperature, it is necessary to maintain an installation distance that does not damage the brickwork.
[0031]
It is also preferable to vary the oxygen concentration supplied to the oxygen burner. As described above, there is a method of controlling the oxygen concentration in the auxiliary fluid as one of the methods for changing the oxygen ejection amount. When the oxygen concentration is changed in the combustion burner, the momentum is changed without changing the shape of the flame. There is a characteristic that the surface temperature (luminance) of the flame can be changed by changing. When the glass in the kiln is heated by a plurality of burners as in the present invention, the heating temperature is changed depending on the kiln part, and when there is no difference in the distance between the burner and the glass surface, the oxygen concentration is controlled. Changing the heating temperature may be advantageous for ensuring the uniformity of the glass. Further, when the change temperature range is relatively small, such as when the heating temperature is changed in response to changes in the glass material or flow rate, it can be said that it is easier to control by such a method of changing the oxygen concentration. Furthermore, by controlling in combination with the above-described oxygen flow rate, even more precise control becomes possible.
[0032]
At this time, it is preferable that the oxygen burner has a triple-pipe structure having two auxiliary combustion fluid supply passages, and the oxygen ejection amounts of the inner pipe and the outer pipe are different. In the oxygen burner, the inventor determined that the shape and brightness of the flame differ depending on whether the auxiliary combustion fluid is ejected from a position close to the fuel outlet or from a position slightly away from the fuel outlet, and at the same time, the oxygen concentration or oxygen in the auxiliary combustion fluid is different. It has been found that the same phenomenon occurs depending on the flow rate, and an optimum flame shape and brightness can be obtained by changing the amount of oxygen jetted between the inner tube and the outer tube in the triple tube structure.
[0033]
Specifically, as illustrated in FIG. 6A, the fuel gas 9 and the auxiliary oxygen (center oxygen) 10 in the inner pipe are first mixed, and then the auxiliary oxygen (outer oxygen) 11 in the outer pipe is mixed. Form a flame. For example, the center oxygen from the inner tube 4 Nm 3 / hr, fuel gas (natural gas) 17 Nm 3 / hr, the oxygen concentration from 90% to 100% of the outer oxygen 36 Nm 3 / hr ejected from the outer tube from the middle tube, Center oxygen FIG. 6B illustrates the state of the flame when the concentration is changed to 0 to 15%. It can be seen that increasing the center oxygen concentration shortens the shape of the flame and increases the brightness of the entire flame.
[0034]
Thus, by controlling the amount of oxygen jetted from the inner tube and the outer tube, the optimum heating condition can be created depending on the state of the glass or the type of glass. Further, by adjusting both, it is possible to ensure optimum combustion conditions with high flame stability in a wide range, and to obtain a high-luminance and high-radiation flame. Furthermore, according to the present invention, it is easy to create optimum combustion conditions even if the type of supplied fuel changes, and it can be used in a wide range of applications that can accommodate various types of large and small melting kilns and various glasses.
[0035]
In addition, it is preferable to use the oxygen burner only when changing the substrate. Usually, in the glass melting step, it is preferable to use a partial oxygen burner as illustrated in FIG. 1, but for example, when a high temperature is not necessarily required in the production step, such as a low melting point glass, or in a kiln In the case of a glass having a relatively small temperature difference and high thermal conductivity, an oxygen burner may not be required. However, even in such a case, it is necessary to change the base material, and it is unavoidable that the glass remains in the surrounding area. It can be said that it is very advantageous in terms of overall energy efficiency and work efficiency.
[0036]
The above has described the melting kiln mainly used in the glass manufacturing process, but the technology of the present invention is not limited to such an application range, for example, various manufacturing processes such as a heating kiln in a glass raw material separation process and a purification process. Therefore, it can be said that the technology can be applied in a wide range and has wide versatility.
[0037]
【Example】
As an example of the present invention, a case where the present invention is applied to "floating glass substrate sink" is shown.
[0038]
<Materials used>
Float flat glass for building materials (soda lime)
[0039]
<Used melting kiln>
As illustrated in FIG. 7, the installation was performed under the following conditions.
(1) Glass withdrawal amount: 550 Ton / day
(2) Fuel: Natural gas (3) Oxygen burner double tube type pure oxygen burner 1 MW: 4 triple tube type pure oxygen burner 50 kW: 2 (4) Glass tank: depth 1.4 m
(5) Burner installation One double tube type pure oxygen burner (1 MW) is installed in the dissolution tank and two in the working end (cooling tank). Fuel supply oxygen burner 1 Hontori 80Nm 3 / hr~120Nm 3 / hr.
A triple-pipe type pure oxygen burner (50 kW) is installed at the outlet of the melting and cooling baths. Fuel supply natural gas respectively 15Nm 3 / hr~20Nm 3 / hr.
[0040]
<Result>
Although the residual glass level at the time of air combustion was 40 cm, the residual glass level after installing the oxygen burner, that is, the level of the residual substrate decreased to about 10 cm.
That is, the total amount of residual glass decreased from about 380 Ton before installation of the oxygen burner to about 1/4 after installation of the oxygen burner to 100 Ton. As a result, it was possible to reduce the remaining glass discharge time by about 3 days.
[0041]
【The invention's effect】
As described above, the glass melting kiln having the control function of the present invention can realize the temperature distribution in the kiln suitable for the use condition of the kiln. In particular, it is possible to greatly reduce the time required for changing the base material and reduce the residual glass by optimally controlling the temperature in the vicinity of and around the tapping part of the kiln when changing the base material. The amount of oxygen ejected from the burner used in the furnace and the amount of oxygen ejected from the burner near the kiln hot water and around the kiln are different, enabling more efficient temperature control in the kiln and proper temperature distribution Can be realized.
[0042]
In addition, the center of the kiln uses a gentle and stable air burner, and the vicinity of the kiln tapping and the kiln periphery is easy to control and uses an oxygen burner that can be heated locally. It is possible to more appropriately reduce the time required for reducing the glass and changing the substrate.
[0043]
Furthermore, changing the oxygen concentration supplied to the oxygen burner increases the momentum without changing the shape of the flame, making it possible to change the surface temperature (brightness) of the flame and control the oxygen concentration. The uniformity of the glass can be advantageously ensured by changing the heating temperature.
[0044]
At this time, the oxygen burner has a triple pipe structure having two auxiliary combustion fluid supply paths, and by changing the amount of oxygen jetted between the inner pipe and the outer pipe, the shape and brightness of the flame are changed, and the state of the glass or the glass Depending on the type, the optimum heating conditions can be created.Also, using an oxygen burner only at the time of changing the base and controlling the amount of oxygen blowout is very effective in terms of energy efficiency and work efficiency of the entire production process. It can be said that it is superior.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating the state of glass melting in the melting furnace according to the present invention. FIG. 2 is an explanatory view illustrating the state of changing the substrate in the melting furnace according to the present invention. Explanatory diagram illustrating the relationship between the oxygen ejection amount and the flame length. FIG. 4 illustrates the relationship between the flame length and the heat flow according to the present invention. FIG. 5 illustrates the function of the burner in the melting furnace according to the present invention. Explanatory drawing [FIG. 6] Explanatory drawing which shows the example of a structure of the burner used for the melting furnace which concerns on this invention. [FIG. 7] Explanatory drawing which illustrates the state of the melting furnace in the Example which concerns on this invention. Explanatory drawing illustrating the state of the melting kiln [Explanation of symbols]
1 Dissolution tank 3 Oxygen burner 4 Air burner 5 Cooling tank (working end)
7 Tap 8 Residual glass

Claims (5)

複数のバーナを有し、各バーナの酸素噴出量を、窯内の温度分布を基に制御するガラス溶融窯であって、
空気バーナと酸素バーナを併用するとともに、前記酸素バーナを素地替えのときのみに使用することを特徴とするガラス溶融窯。
Have a plurality of burners, the oxygen ejection amount of each burner, a glass melting furnace to control based on the temperature distribution in the kiln,
A glass melting furnace characterized by using an air burner and an oxygen burner in combination, and using the oxygen burner only when replacing the substrate .
窯の中心部に用いるバーナの酸素噴出量と、窯の出湯部付近および窯の周辺部に用いるバーナの酸素噴出量と、が異なることを特徴とする請求項1に記載のガラス溶融窯。2. The glass melting furnace according to claim 1, wherein an oxygen ejection amount of the burner used in the center portion of the kiln is different from an oxygen ejection amount of the burner used in the vicinity of the tapping portion of the kiln and in the peripheral portion of the kiln. 窯の中心部を前記空気バーナで加熱し、窯の出湯部付近および窯の周辺部を前記酸素バーナで加熱することを特徴とする請求項1または2に記載のガラス溶融窯。The central portion of the kiln is heated by the air burner, glass melting furnace according to claim 1 or 2 a peripheral portion of the tapping portion and near kiln kiln, characterized in that heating in the oxygen burner. 前記酸素バーナに供給する酸素濃度を可変することを特徴とする請求項1〜3のいずれかに記載のガラス溶融窯。The glass melting furnace according to any one of claims 1 to 3, wherein an oxygen concentration supplied to the oxygen burner is variable. 前記酸素バーナが2つの助燃流体供給路を有する三重管構造であって、内管と外管との酸素噴出量が異なることを特徴とする請求項1〜4のいずれかに記載のガラス溶融窯。The glass melting furnace according to any one of claims 1 to 4, wherein the oxygen burner has a triple pipe structure having two auxiliary combustion fluid supply paths, and the amount of oxygen jetted between the inner pipe and the outer pipe is different. .
JP2003199075A 2003-07-18 2003-07-18 Glass melting kiln Expired - Fee Related JP4245424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199075A JP4245424B2 (en) 2003-07-18 2003-07-18 Glass melting kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199075A JP4245424B2 (en) 2003-07-18 2003-07-18 Glass melting kiln

Publications (2)

Publication Number Publication Date
JP2005035826A JP2005035826A (en) 2005-02-10
JP4245424B2 true JP4245424B2 (en) 2009-03-25

Family

ID=34208642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199075A Expired - Fee Related JP4245424B2 (en) 2003-07-18 2003-07-18 Glass melting kiln

Country Status (1)

Country Link
JP (1) JP4245424B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693178B2 (en) * 2006-11-09 2011-06-01 大同特殊鋼株式会社 Glass melting method
FR2910594B1 (en) * 2006-12-20 2012-08-31 Air Liquide FUSION PROCESS USING COMBUSTION OF LIQUID AND GASEOUS FUELS
WO2011136086A1 (en) * 2010-04-26 2011-11-03 旭硝子株式会社 Glass melting furnace and method for melting glass
JP6592025B2 (en) 2017-03-13 2019-10-16 大陽日酸株式会社 Method and apparatus for heating object to be heated
CN108947207B (en) * 2018-07-18 2021-09-07 东旭光电科技股份有限公司 Glass melting method
CN118405831A (en) * 2024-06-28 2024-07-30 宁波旗滨光伏科技有限公司 Glass kiln and control method thereof

Also Published As

Publication number Publication date
JP2005035826A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
KR102101804B1 (en) Installation and method for melting glass
KR20010024745A (en) Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner
KR101457368B1 (en) Induction Tapping Equipment and Method for Melt
WO2011013726A1 (en) Arc melting equipment and molten metal manufacturing method using arc melting equipment
JP4245424B2 (en) Glass melting kiln
CN113754245A (en) Kiln and glass production method
CN204224427U (en) A kind of energy-saving glass kiln furnace
JP5700506B2 (en) Arc melting equipment and method for producing molten metal using arc melting equipment
JPH11100214A (en) Glass melting furnace
JPS589773B2 (en) Glass Okinshitsu Kasuruhouhou
CN207918667U (en) A kind of glass melting device
US10392286B2 (en) Vitrified material control system and method
WO2019201183A1 (en) Cokeless cupola furnace and method of melting iron using same
KR100967963B1 (en) Direct Type Electric Furnace For Manufacturing Special Glass
CN205635856U (en) Polysilicon ingot furnace
WO2023228720A1 (en) Method for producing glass article
JPH0354119Y2 (en)
KR100400689B1 (en) Cooling apparatus for feeder of glass
KR101056226B1 (en) Flow rate control method of blast furnace and wind hole
Gallagher et al. SYNCHRONIZED OXY‐FUEL BOOST BURNERS FOR ZERO‐PORT PERFORMANCE OPTIMIZATION IN FLOAT GLASS MELTING FURNACES
KR101351532B1 (en) Shaft type electric arc furnace and operation method using the same
JPH10101348A (en) Method and device for supplying color coating glass current
CN115716703A (en) Continuous basalt fiber production tank furnace and method for producing continuous basalt fiber
CZ298244B6 (en) Continuous glass melting process in a glass melting furnace and glass melting furnace per se
KR200285891Y1 (en) Glass furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071012

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Ref document number: 4245424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees