JP2008100592A - 車両の進行方向推定装置及び運転支援システム - Google Patents

車両の進行方向推定装置及び運転支援システム Download PDF

Info

Publication number
JP2008100592A
JP2008100592A JP2006284191A JP2006284191A JP2008100592A JP 2008100592 A JP2008100592 A JP 2008100592A JP 2006284191 A JP2006284191 A JP 2006284191A JP 2006284191 A JP2006284191 A JP 2006284191A JP 2008100592 A JP2008100592 A JP 2008100592A
Authority
JP
Japan
Prior art keywords
vehicle
speed
traveling direction
lateral
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006284191A
Other languages
English (en)
Other versions
JP4876847B2 (ja
Inventor
Kazuma Hashimoto
一馬 橋本
Eiji Teramura
英司 寺村
Tatsu Mizuno
龍 水野
Hideji Nakamura
秀司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006284191A priority Critical patent/JP4876847B2/ja
Publication of JP2008100592A publication Critical patent/JP2008100592A/ja
Application granted granted Critical
Publication of JP4876847B2 publication Critical patent/JP4876847B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

【課題】車両の速度ベクトルを算出することで、現時点における車両の進行方向を推定することのできる車両の進行方向推定装置、及び、これを用いた運転支援システムを提供する。
【解決手段】演算部110は、前後加速度センサ20及び横加速度センサ30によって検出される加速度を所定の周期でそれぞれサンプリングして前後加速度Ax(n)及び横加速度Ay(n)を取得する。また、演算部110は、記憶部120に記憶保持されている速度ベクトルV(n−1)及びヨーレートセンサ40のセンサ出力値βに基づいて速度ベクトルVpreを算出するとともに、この速度ベクトルVpreの各成分Vx_pre及びVy_preに、前後加速度Ax(n)と所定時間Δとの積及び横加速度Ay(n)と所定時間Δtとの積をそれぞれ加算することで速度ベクトルV(n)を算出する。
【選択図】図1

Description

本発明は、車両の進行方向推定装置及び運転支援システムに関するものである。
車両の操縦性及び安定性を車両の実際の運動状態量との関係において適正に制御したいという要望があり、その運動状態量の1つに、当該車両の実際の進行方向と当該車両の前後方向とがなす角度である、車両重心点における車体横すべり角がある。そうした車体横すべり角を推定しようとした技術として従来、例えば特許文献1に記載の技術が知られている。この技術では、当該車両の左右方向の加速度である横加速度G11を検出する第1横加速度センサが当該車両の重心点に配設され、同じく、当該車両の左右方向の加速度である横加速度G12を検出する第2横加速度センサが当該車両の重心点から所定距離sだけ離間した位置に配設されるとともに、車輪速に基づき車速Vを検出する車速センサと、車両のヨーレートγを検出するヨーレートセンサと、これら各種センサから出力される検出結果を取り込んで、車体横すべり角βを推定するコントローラと、を備えて構成されている。
詳しくは、まず、コントローラは、横加速度G11及びG12並びに所定距離sに基づきヨーイングモーメントYMを算出し、予め取得しておいたヨー慣性モーメントIzでこのヨーイングモーメントYMを除した「YM/Iz」を逐次算出する。そして、推定対象とする車体横すべり角β、及びヨーレートセンサにて検出されるγを状態変数とし、横加速度G11を車速Vで除した「G11/V」及び「YM/Iz」を入力変数とし、ヨーレートγを出力変数として、動的モデルに基づくオブザーバを設計する。こうして設計されたオブザーバを通じて、車体横すべり角βを推定しようとしている。ちなみに、車体横すべり角βは、速度ベクトルVrと次のような関係を有している。すなわち、速度ベクトルVrの当該車両の前後方向の成分をuとし、速度ベクトルVrの当該車両の左右方向の成分をvとすると、「β=ARCTAN(v/u)」となる。
特開平5−185942号公報
しかしながら、上記従来技術は、次のような課題を有している。すなわち、上記従来技術では、当該車両が水平面内を一定速度で走行することを前提とした動的モデルに基づいてオブザーバを設計している。例えばドリフト走行時など、このような前提から外れた条件下で当該車両が走行するとき、そうしたオブザーバを通じて推定される車体横すべり角βには、大きな誤差が含まれている可能性があることが懸念される。また、こうした車両の運動速度は大きいため、当該車両の進行方向を推定する周期は短い方が望ましい。しかしながら、上記従来技術では、動的モデルを用いるため、演算負荷が大きく、そうした推定周期を短くすることも難しい。さらに、こうした課題が解決され、たとえ車体横すべり角βが正確に推定することができた場合であれ、上記関係式からわかるように、車体横すべり角βから速度ベクトルVrを何の仮定もなしに算出することは難しい。
本発明は、こうした実情に鑑みてなされたものであって、その目的は、当該車両の速度ベクトルを算出することで、現時点における車両の進行方向を推定することのできる車両の進行方向推定装置、及び、これを用いた運転支援システムを提供することにある。
こうした目的を達成するため、請求項1に記載の発明では、第1所定時間毎に、車両の前後方向に作用する前後加速度を検出する前後加速度検出手段によって検出される前後加速度に基づいて、前記車両の前後方向速度を算出するとともに、前記車両の横方向に作用する横加速度を検出する横加速度検出手段によって検出される横加速度に基づいて、前記車両の横方向速度を算出することにより、前記車両の進行方向を示す速度ベクトルを求める速度ベクトル算出手段を備え、前記速度ベクトル算出手段は、前回算出した、前記前後方向速度と前記横方向速度との前回値を記憶する記憶手段と、前記第1所定時間毎に、前記前後加速度と前記横方向加速度とをサンプリングし、そのサンプリングした前記前後加速度と前記横加速度とを第1所定時間とそれぞれ乗算することにより、その第1所定時間における前後方向速度の変化分と、横方向速度の変化分とを算出し、さらに、前記記憶手段に記憶された前記前後方向速度の前回値と前記前後方向速度の変化分とを加算するとともに、前記横方向速度の前回値と前記横方向速度の変化分とを加算することにより、前記前後方向速度及び前記横方向速度の今回値を算出する演算手段とを有し、前記記憶手段は、前記演算手段によって、前記前後方向速度及び前記横方向速度の今回値が算出されると、前記前後方向速度及び前記横方向速度の今回値を記憶することとした。
車両の進行方向推定装置としてのこのような構成によれば、例えば当該車両が水平面内を一定速度で走行するといった前提を置くことなく、すなわち、当該車両の走行状態に関係なく、例えば当該車両がドリフト走行中であっても、車両の進行方向を示す速度ベクトルを直接、算出することができるようになる。すなわち、現時点における車両の進行方向を推定することができるようになる。なお、このとき、所定時間毎にサンプリングされた前後加速度と横加速度とを加算演算するため、単純な演算を通じて速度ベクトルを算出することができる。すなわち、演算負荷を軽くすることができ、演算周期を短くすることができるようになる。
上記項請求項1に記載の構成において、例えば請求項2に記載の発明によるように、前記速度ベクトル算出手段は、さらに、前記前後方向速度と前記横方向速度との前回値を成分とする速度ベクトルの向きに対する、前記前後方向速度と前記横方向速度との今回値を成分とする速度ベクトルの向きの変化に基づいて、車両の将来の進行方向を予測する予測手段を備えることとすれば、車両の将来の進行方向を予測することができるようになるため、運転者の運転にかかる負担をより低減することのできる運転支援システムの実現に供することができる。
通常、車両の走行中、その進行方向は時々刻々と変化する。例えばドリフト走行のように、車両の進行方向が第1所定時間に急激に大きく変わる走行状態にあっては、記憶手段に記憶された前後方向速度と横方向速度の前回値をそのまま利用して、前後方向速度及び横方向速度の今回値を算出すると、算出された速度ベクトルは、車両の実際の進行方向とかけ離れた方向を示すことが懸念される。
その点、上記請求項1または2に記載の構成において、例えば請求項3に記載の発明によるように、前記速度ベクトル算出手段は、前後加速度及び横加速度のサンプリングと同期して、前記第1所定時間毎に、前記車両のヨーレートを検出するヨーレートセンサによって検出されるヨーレートをサンプリングし、今回サンプリングされたヨーレートに基づいて、前記第1所定時間が経過する間における車両の進行方向の変化角度を求める変化角度算出手段を有し、前記演算手段は、前記変化角度算出手段によって算出された車両の進行方向の変化角度分だけ、前記記憶手段に記憶された前記前後方向速度と前記横方向速度との前回値を成分とする速度ベクトルの向きを補正するように、当該前後方向速度及び横方向速度を補正した上で、前記前後方向速度及び前記横方向速度の変化分とそれぞれ加算して、前記前後方向速度及び前記横方向速度の今回値を算出することとすれば、前後方向速度及び横方向速度の今回値、すなわち、速度ベクトルの算出精度を向上することができるようになる。ひいては、たとえドリフト走行のように進行方向が急激に大きく変化する走行状態であれ、車両の進行方向を精度よく推定することができるようになる。
上記請求項1〜3に記載の構成では、前後方向速度及び横方向速度の今回値を算出する際に、基本的に、記憶手段に記憶された前後方向速度の前回値と前後方向速度の変化分とを加算するとともに、記憶手段に記憶された横方向速度の前回値と横方向速度の変化分とを加算している。このような加算演算を第1所定時間毎に繰り返し実行すると、積算誤差が徐々に大きくなり、前後方向速度及び横方向速度の今回値の算出精度が低下する、すなわち、車両の進行方向の推定精度が低下することが懸念される。また、例えばドリフト走行などのように、車輪が横方向の運動を伴っているとき、横すべり角が大きくなる。そうした場合、車輪速は、車両の実際の前後方向速度とかけ離れた値を取ることが多い。しかしながら、例えば車両が水平面内を一定速度で直進走行している場合には、車輪速は、車両の実際の前後方向速度に近い値を取ることが多いことが知られている。
そこで、例えば請求項4に記載の発明では、前記速度ベクトル算出手段は、前後加速度及び横加速度のサンプリングと同期して、前記第1所定時間毎に、前記車両の車輪速を検出する車輪速センサによって検出される車輪速をサンプリングするものであって、前記車両が等速直線運動状態にあるとき、前記前後方向速度の今回値を、今回サンプリングされた車輪速に補正するとともに、前記横方向速度の今回値を、零に補正する補正手段を有する構成とした。これにより、車両が等速直線運動状態にあるとき、前後方向速度の今回値は、車両の実際の前後速度と近い値を取る車輪速を用いて補正され、横方向速度の今回値は零に補正されるため、速度ベクトルの算出精度の低下を抑制することができるようになる。ひいては、車両の進行方向の推定精度の低下を抑制することができるようになる。
なお、上記請求項4に記載の構成においては、例えば請求項5に記載の発明のように、前記補正手段は、今回サンプリングされた各車輪の車輪速と前回サンプリングされた各車輪の車輪速との差がそれぞれ第4所定値以下であり、かつ、今回サンプリングされた各車輪の車輪速のうちの最大値と最小値との差が第5所定値以下であり、かつ、今回サンプリングされた前後加速度の絶対値が第6所定値以下であり、かつ、今回サンプリングされた横加速度の絶対値が第7所定値以下であり、かつ、今回サンプリングされたヨーレートの絶対値が第8所定値以下である走行状態が、第2所定時間継続するとき、前記車両が等速直線運動状態にあると判断することとしてもよい。
一方、例えば請求項6に記載の発明では、上記請求項1〜5のいずれかに記載の車両の進行方向推定装置と、前記車両の進行方向推定装置によって求められた車両の進行方向に基づいて、当該車両を運転する運転者の運転を支援する運転支援手段とを備えることとした。これにより、求められた車両の進行方向に基づいて運転者の運転が支援されるため、車両の運転にかかる運転者への負荷を軽減することができるようになる。
そうした運転支援システムとして、例えば請求項7に記載の発明では、前記運転支援手段が、前記車両の進行方向推定装置によって求められた車両の進行方向に、前記車両の前方を照らす前照灯を指向する前照灯制御手段を含む構成を採用した。これにより、たとえ当該車両がドリフト走行中であっても、車両の進行方向を推定し、この推定した進行方向に向けて前照灯を指向するため、特に、夜間のドリフト走行中における運転者の運転を好適に支援することができるようになる。
あるいは、そうした運転支援システムとして、例えば請求項8に記載の発明では、前記運転支援手段が、前記車両の進行方向推定装置によって求められた車両の進行方向に、前記車両の周辺に存在する障害物を検出する障害物検出手段を指向する障害物検出手段制御手段と、前記障害物検出手段によって検出された障害物に車両が衝突するか否かを判定する判定手段と、車両が障害物に衝突する可能性が高い旨前記判定手段によって判定されるとき、前記車両を制動する制動手段を通じて、前記障害物との衝突の回避を図る衝突回避手段と、を含む構成とした。これにより、特に、車両が障害物に衝突する可能性が高いとき、車両の運転者の運転を好適に支援することができるようになる。なお、この構成は、先の請求項7に記載の構成と併用することも可能であり、そうした場合、車両の運転にかかる運転者の負担をさらに低減することができるようになる。
またあるいは、そうした運転支援システムとして、例えば請求項9に記載の発明では、前記運転支援手段が、前記車両の進行方向推定装置によって求められた車両の進行方向に、前記車両の周辺に存在する障害物を検出する障害物検出手段を指向する障害物検出手段制御手段と、前記障害物検出手段によって検出された障害物に車両が衝突するか否かを判定する判定手段と、車両が障害物に衝突する可能性が高い旨前記判定手段によって判定されるとき、前記車両を操舵する操舵手段を通じて、前記障害物との衝突の回避を図る衝突回避手段と、を含む構成とした。これによっても、車両が障害物に衝突する可能性が高いとき、車両の運転者の運転を好適に支援することができるようになる。なお、この構成にあっても、先の請求項7または8に記載の構成と併用することも可能であり、そうした場合、車両の運転にかかる運転者の負担をさらに低減することができるようになる。
近年、車両は、当該車両の側面から障害物に衝突するよりも、当該車両の正面から障害物に衝突した方が、車室内にいる乗員の保護性能が高まる構造を有していることが知られている。その点、上記請求項8または9に記載の構成において、例えば請求項10に記載の発明によるように、前記衝突回避手段が、前記車両と前記障害物との衝突が避けられない旨前記判定手段によって判定されるとき、前記障害物に衝突する際の前記車両の姿勢が所定の姿勢となるように、前記車両を制動する制動手段及び前記車両を操舵する操舵手段の少なくとも一方を通じて、前記車両の姿勢を制御する姿勢制御手段を含むこととすれば、前記車両が障害物に衝突した際の被害をより低減することが可能となる。
以下、本発明にかかる車両の進行方向推定装置及び運転支援システムの一実施の形態について、図1〜図5を参照して説明する。なお、本実施の形態の運転支援システムは、以下に詳述するように、車両の進行方向推定装置にて予測された当該車両の将来の進行方向に前照灯を指向することで、運転者の視認性の向上を図る、いわゆるAFSシステム(Adaptive Front−Lighting System)として具体化されている。また、本実施の形態の運転支援システムは、車両の進行方向推定装置にて予測された当該車両の将来の進行方向に障害物検出装置を指向することで、当該車両の将来の進行方向に存在する障害物を検出し、当該車両と検出した障害物との衝突の回避を図る、いわゆるPCSシステム(Pre−Crash Safety System)としても具体化されている。さらに、本実施の形態の運転支援システムは、検出された障害物に当該車両が衝突する可能性が高いときに、障害物に衝突する際の当該車両の姿勢が所定の姿勢となるように制御することで、車室内の乗員の保護を図るシステムとして具体化されてもいる。
図1は、そうした本実施の形態の全体構成を示すブロック図である。まず、この図1を参照して、本実施の形態の構成について説明する。本実施の形態の運転支援システム1は、図1に示されるように、当該車両(図示略)の走行状態を検出する各種センサとして、車両の前後方向に作用する前後加速度を検出する前後加速度センサ(前後加速度検出手段)20、車両の左右方向に作用する横加速度を検出する横加速度センサ(横加速度検出手段)30、車両のヨーレートを検出するヨーレートセンサ40、及び、車両の車輪速を検出する車輪速センサ50等々を備えている。ここで、車輪速センサ50は、本実施の形態では、当該車両の各車輪毎に、すなわち、当該車両に4つ配設されている。なお、これら各種センサ20〜50については、従来使用されている技術を利用しているため、ここでの詳しい説明を割愛する。
また、運転支援システム(車両の進行方向推定装置)1は、図1に示されるように、当該車両の前方を照らす前照灯60、当該車両の周辺に向けて当該車両からミリ波帯の電磁波を照射するとともに、当該車両の周辺に存在する障害物によって反射される反射波を受信することで、当該車両を基準とした障害物までの距離及び方向を検出するミリ波レーダ(障害物検出手段)70、当該車両を操舵するステアリングホイール(操舵手段)80、当該車両を制動するブレーキ(制動手段)90等々を備えている。また、各種センサ20〜50と同様に、上記各構成要素60〜90についても、従来使用されている技術を利用しているため、ここでの詳しい説明を割愛する。
さらに、運転支援システム1は、図1に示されるように、マイクロコンピュータ(車両の進行方向推定装置、運転支援手段)10を有している。マイクロコンピュータ10は、実際には、制御処理や演算処理を行うCPU、各種プログラムやデータを保存するための読み取り専用メモリ(ROM)や書き込み可能なメモリ(RAM)等のメモリを含む記憶装置、A/D変換器等の入力回路、出力回路、及び電源回路等によって構成される。しかし、ここでは、機能的に、以下に例示する構成要素を含むものとして、概念的に説明する。すなわち、マイクロコンピュータ10は、図1に示されるように、基本的には、上記前後加速度センサ20、横加速度センサ30、及びヨーレートセンサ40のセンサ出力値を取り込み、所定のサンプリング周期(第1所定時間)にて車両の進行方向を示す速度ベクトルを算出する速度ベクトル算出部(速度ベクトル算出手段)100、該速度ベクトル算出部100(正確には、後述する予測部150)によって予測された車両の将来の進行方向に上記前照灯60を指向する前照灯制御部160、同じく、速度ベクトル算出部100によって予測された車両の将来の進行方向に上記ミリ波レーダ70を指向するミリ波レーダ制御部170、ミリ波レーダ70によって検出された障害物に当該車両が衝突するか否かを判定する判定部(判定手段)180と、上記ステアリングホイール80を制御するステアリング制御部190及び上記ブレーキ90を制御するブレーキ制御部200からなる車両制御部(衝突回避手段、姿勢制御手段)210と、を備えている。なお、速度ベクトル算出部100は、図1に示されるように、演算部(演算手段)110、記憶部(記憶手段)120、変化角度算出部(変化角度算出手段)130、積算誤差補正部(補正手段)140、予測部(予測手段)150等々を備えている。
以下、マイクロコンピュータ10の各構成要素について詳述する。本実施の形態では、従来技術において使用されることの多い車輪速に基づき検出される車速を利用するのではなく、車両の進行方向を示す速度ベクトルを算出し、これを利用する。そして、車両の将来の進行方向を予測している。
そうした速度ベクトルを算出する手順について説明する。まず、図2に示すように、当該車両Cの前後方向をX軸(当該車両Cの前方を正とする)、当該車両Cの左右方向をY軸(当該車両Cの左方を正とする)とした、当該車両Cに固定される座標系を定義する。
同図2に示されるように、当該車両Cの走行中においては通常、当該車両Cの進行方向は時々刻々と変化し、これに伴って、当該車両Cに固定された座標系も時々刻々と変化する。そうした変化する座標系によらず、(第1)所定時間Δt毎に速度ベクトルを算出するべく、現時点において定義された座標系を「今回の座標系Sn」とし、現時点から所定時間Δt前(1サンプリング周期前)において定義された座標系を「前回の座標系Sp」としている。
図2に、今回の座標系Snで得られた現時点における当該車両Cの速度ベクトルV(n)の一例を示す。速度ベクトルV(n)は、速度ベクトルV(n)のうち当該車両Cの前後方向の成分(前後方向速度)であるVx(n)と、速度ベクトルV(n)のうち当該車両Cの左右方向の成分(横方向速度)であるVy(n)とから構成される2次元ベクトルである。なお、煩雑となるため、図2において、これらVx(n)及びVy(n)の図示を割愛しているが、前後方向速度の今回値Vx(n)は、速度ベクトルV(n)を座標系SnのX軸に投影したものに相当し、横方向速度の今回値Vy(n)は、速度ベクトルV(n)を座標系SnのY軸に投影したものに相当する。そして、速度ベクトル算出部100(正確には演算部110)は、この速度ベクトルV(n)を、正確には、Vx(n)及びVy(n)をそれぞれ算出する。
また、図2に、前回の座標系Spで得られた1サンプリング周期前における当該車両Cの速度ベクトルV(n−1)の一例を示す。端的に表現すれば、速度ベクトルV(n−1)は、速度ベクトルV(n)の前回値に相当する。なお、速度ベクトルV(n)と同様に、速度ベクトルV(n−1)は、速度ベクトルV(n−1)のうち当該車両Cの前後方向の成分(前後方向速度)であるVx(n−1)と、速度ベクトルV(n−1)のうち当該車両Cの左右方向の成分(横方向速度)であるVy(n−1)とから構成される2次元ベクトルである。また、これも速度ベクトルV(n)と同様に、煩雑となるため、図2において、これらVx(n−1)及びVy(n−1)の図示を割愛しているが、前後方向速度の前回値Vx(n−1)は、速度ベクトルV(n−1)を座標系SpのX軸に投影したものに相当し、横方向速度の前回値Vy(n−1)は、速度ベクトルV(n−1)を座標系SpのY軸に投影したものに相当する。そして、当該速度ベクトル算出部100(演算部110)は、この速度ベクトルV(n−1)を、正確には、Vx(n−1)及びVy(n−1)を用いて、左記の速度ベクトルV(n)を算出する。なお、その際、前後方向速度の前回値Vx(n−1)及び横方向速度の前回値Vy(n−1)は、記憶部12に記憶されている。
さらに、図2に、今回の座標系Snで得られた1サンプリング周期前における当該車両Cの速度ベクトルVpreの一例を示す。この速度ベクトルVpreは、図2に示されるように、前回の座標系Spで得られた1サンプリング周期前における当該車両Cの速度ベクトルV(n−1)を、そのまま、今回の座標系Snに平行移動したものに相当する。当然のことながら、速度ベクトルV(n−1)の基準である座標系Spは、速度ベクトルV(n)の基準である座標系Snと異なることが多いため、座標変換が必要となる。そうした座標変換については後述する。なお、速度ベクトルVpreのうち当該車両Cの前後方向の成分(前後方向速度)をVx_preとし、速度ベクトルVpreのうち当該車両Cの左右方向の成分(横方向速度)をVy_preとしている。そして、当該速度ベクトル算出部100(演算部110)は、この速度ベクトルVpreを、正確には、Vx_pre及びVy_preを用いて、先の速度ベクトルV(n)を算出する。
こうした前提のもと、演算部110は、まず、1サンプリング周期前における当該車両Cの速度ベクトルV(n−1)から現時点における当該車両Cの速度ベクトルV(n)への変化分ΔVを算出する。すなわち、所定時間Δtにおける前後方向速度の変化分ΔVx及び、所定時間Δtにおける横方向速度の変化分ΔVyを算出する。こうした前後方向速度の変化分ΔVxの算出にあたっては、演算部110は、下式(1)に従って、前後加速度センサ20のセンサ出力値の今回値Ax(n)と所定時間Δtとを乗算する。また、横方向速度の変化分ΔVyの算出にあたっては、下式(2)に従って、横加速度センサ30のセンサ出力値の今回値Ay(n)と所定時間Δtとを乗算する。
Figure 2008100592
そして、演算部110は、上式(1)及び(2)に基づき算出された各変化分ΔVx及びΔVyと、今回の座標系Snで得られた1サンプリング周期前における当該車両Cの速度ベクトルVpreの各成分Vx_pre及びVy_preとをそれぞれ加算することにより、今回の座標系Snにおける現時点の当該車両Cの速度ベクトルV(n)の各成分Vx(n)及びVy(n)をそれぞれ算出する。すなわち、演算部110は、下式(3)及び(4)に従って、速度ベクトルVpreの各成分Vx_pre及びVy_preに、上記変化分ΔVx及びΔVyをそれぞれ加算する。
Figure 2008100592
ちなみに、上式(3)及び(4)中の速度ベクトルVpreの各成分Vx_pre及びVy_preは、記憶部120に記憶されている、1サンプリング周期前の速度ベクトルV(n−1)の各成分Vx(n−1)及びVy(n−1)を利用して算出される。すなわち、速度ベクトルV(n−1)と、速度ベクトルVpreとの間には、下式(5)に示す関係がある。
Figure 2008100592
そのため、演算部110は、上式(3)及び(4)に基づいて上記変化分ΔVx及びΔVyを算出するに先立ち、まず、変化角度算出部130に、上記ヨーレートセンサ40からヨーレートの今回値β(当該車両Cに固定される座標系において、時計方向を正とする。)を取り込ませるとともに、上式(5)中の、変化角度「β×Δt」を算出させる。
変化角度算出部130によって、変化角度「β×Δt」が算出されると、演算部110は、上式(5)に従って、速度ベクトルV(n−1)を速度ベクトルVpreに変換している。このようにして、速度ベクトルV(n−1)を、時々刻々と変化する座標系の変化に追従させている。なお、記憶部120は、こうした速度ベクトルV(n)の各成分Vx(n)及びVy(n)が演算部110を通じて算出されると、これら各成分Vx(n)及びVy(n)を記憶している。
ところで、上式(1)〜(4)から分かるように、また、上述したように、速度ベクトルV(n)を算出する際には、基本的に、前後加速度センサ20の出力値及び横加速度センサ30の出力値をそれぞれ加算している。このような加算演算を所定時間Δt毎に繰り返し実行すると、積算誤差が徐々に大きくなり、速度ベクトルV(n)の算出精度が低下する。すなわち、車両の進行方向の推定精度が低下することが懸念される。
そこで、積算誤差補正部140では、所定の実行条件が成立するとき、速度ベクトルV(n)のうちの当該車両Cの前後方向の成分であるVx(n)を、車輪速センサ50のセンサ出力値で補正するとともに、速度ベクトルV(n)のうちの当該車両Cの横方向の成分であるVy(n)を、零に補正している。
例えばドリフト走行などのように、車輪が横方向の運動を伴っているとき、横すべり角が大きくなる。そうした場合、車輪速は、前後方向速度Vx(n)とかけ離れた値を取ることが多い。しかしながら、例えば車両が水平面内を一定速度で直進走行している場合には、車輪速は、そうした前後方向速度Vx(n)に近い値を取ることが多いことが知られている。
そのため、積算誤差をリセットする処理の実行条件として、例えば、車輪速センサ50の各センサ出力値の今回値と各センサ出力値の前回値との差がそれぞれ(第4)所定値(本実施の形態では「5km/時」)以下であり、かつ、車輪速センサ50の各センサ出力値のうちの最大値と最小値との差が(第5)所定値(本実施の形態では、「1.5km/時」)以下であり、かつ、前後加速度センサ20のセンサ出力の今回値Ax(n)の絶対値が(第6)所定値(本実施の形態では、「0.5m/s/s」)以下であり、かつ、横加速度センサ30のセンサ出力の今回値Ay(n)の絶対値が(第7)所定値(本実施の形態では、「0.5m/s/s」)、かつ、ヨーレートセンサ40のセンサ出力値βの絶対値が(第8)所定値(本実施の形態では、「1.0rad/s」以下である走行状態が、(第2)所定時間(本実施の形態では、「1秒」)継続するという条件を採用している。これにより、各種センサの出力値に基づく実行条件の成立時に、積算誤差をリセットする処理が実行されるため、速度ベクトルV(n)の算出精度の低下を抑制することができるようになる。
以上のように、演算部110によって、速度ベクトルV(n)及び速度ベクトルVpreが算出されると、予測部150は、これら両ベクトルV(n)及びVpreを用いて、将来(第3所定時間T秒後)の当該車両Cの進行方向を予測する。次に、そうした予測部150の機能について説明する。
予測部150は、まず、下式(6)に従って、速度ベクトルV(n)の角度である車体横すべり角θを算出する。この車体横すべり角θは、図3に示されるように、座標系Snにおいて、X軸と速度ベクトルV(n)とがなす角である。すなわち、この車体横すべり角θは、当該車両Cの車体が現時点において向いている方向と、当該車両Cが現時点において実際に進行する方向とがなす角を意味する。
Figure 2008100592
次に、予測部150は、下式(7)に従って、速度ベクトルVpreの角度である車体横すべり角θpreを算出する。なお、この車体横すべり角θpreは、図3に示されるように、座標系Snにおいて、X軸と速度ベクトルVpreとがなす角である。上述したように、速度ベクトルVpreは、1サンプリング周期前の速度ベクトルV(n−1)が、前回の座標系Spから今回の座標系Snに変換された速度ベクトルであった。したがって、車体横すべり角度θpreは、当該車両Cの車体が現時点において向いている方向と、当該車両Cが1サンプリング周期前において実際に進行していた方向とがなす角を意味する。
Figure 2008100592
また、予測部150は、下式(8)に従って、車体の角速度ωを算出する。すなわち、下式(8)の分子にて算出される、車体横すべり角θ及びθpreの差分値は、当該車両Cの重心を中心として、当該車両Cの進行方向が所定時間Δtに回転した回転角度を意味する。そして、この回転角度が所定時間Δtを用いて除されるため、下式(8)にて算出される角速度ωは、現時点において、当該車両Cの進行方向が、当該車両Cの重心を中心として、単位時間あたりに回転する角度を意味する。
Figure 2008100592
そして、予測部150は、下式(9)に従って、たとえばT秒後(本実施の形態では3秒後)の当該車両Cの進行方向を推定する。具体的には、予測部150によって、当該車両Cの車体が現時点において実際に向いている方向と、当該車両CがT秒後に位置すると推定される方向とがなす角度であるスイブル角φが算出される。これにより、予測部150は、当該車両CがT秒後に位置する方向を予測している。
Figure 2008100592
前照灯制御部160は、上述のようにして算出されたスイブル角φを予測部150から取り込んで、前照灯60を制御する。具体的には、当該車両Cの前方をX軸の正方向、当該車両Cの左方をY軸の正方向として設定しているため、例えばスイブル角φが正の値として算出されるとき、前照灯制御部160は、当該車両Cの左方の前照灯60の照射角度については、スイブル角φの絶対値の分だけ反時計周りに回転して変更するとともに、当該車両Cの右方の前照灯60の照射角度については、スイブル角φの絶対値の半分だけ反時計回りに回転して変更する。逆に、スイブル角φが負の値として算出されるとき、前照灯制御部160は、当該車両Cの右方の前照灯60の照射角度については、スイブル角φの絶対値の分だけ時計回りに回転して変更するとともに、当該車両Cの左方の前照灯60の照射角度については、スイブル角φの絶対値の半分だけ時計回りに回転して変更する。また、スイブル角φが零として算出されるとき、前照灯制御部160は、前照灯60の照射角度を変更しない。このようにして、前照灯制御部160は、予測部150にて算出されたスイブル角φを用いて、前照灯60を指向制御している。これにより、特に夜間のドリフト走行中における運転者の運転を好適に支援することができるようになる。
ミリ波レーダ制御部170も、先の前照灯制御部160と同様に、上述のようにして算出されたスイブル角φを予測部150から取り込んで、ミリ波レーダ70の障害物検出方向を制御する。具体的には、例えばスイブル角φが正の値として算出されるとき、ミリ波レーダ制御部170は、ミリ波レーダ70の障害物検出方向を、スイブル角φの絶対値の分だけ反時計回りに変更する。逆に、スイブル角φが負の値として算出されるとき、ミリ波レーダ制御部170は、ミリ波レーダ70の障害物検出方向を、スイブル角φの絶対値の分だけ時計回りに変更する。また、スイブル角φが零として算出されるとき、ミリ波レーダ70の障害物検出方向を変更しない。このようにして、ミリ波レーダ制御部170は、予測部150にて算出されたスイブル角φを用いて、ミリ波レーダ70の障害物検出方向を指向制御している。
判定部180は、先の前照灯制御部160及びミリ波レーダ制御部170と同様に、予測部150から当該車両Cの将来の進行方向に関する情報を取り込んでいる。また、判定部180は、ミリ波レーダ制御部170から当該車両Cの将来の進行方向の監視情報を取り込んでもいる。そして、判定部180は、こうした進行方向に関する監視情報に基づいて、当該車両Cの将来の進行方向に障害物が存在するか否かを判定する。そして、当該車両Cの進行方向に障害物が存在すると判定するとき、さらに、車速の大きさや障害物までの距離などに基づいて、当該車両Cが障害物に衝突する可能性が高いか否かを判定する。衝突する可能性が高いと判定するときには、判定部180は、図示しない適宜の警報手段を通じて、当該車両Cの運転者に対してその旨を報知するとともに、車両制御部210を通じて、障害物との衝突を回避すべく当該車両Cの軌道を制御したり、障害物との衝突の際に所定の姿勢を取るように当該車両Cの姿勢を制御したりしている。
具体的には、判定部180は、障害物との距離が十分になく、障害物との衝突が避けられないと判定されるときには、車両制御部210(正確には、ステアリング制御部190及びブレーキ制御部200)を通じて、ステアリングホイール80やブレーキ90により、障害物に衝突する際の当該車両Cの姿勢が所定の姿勢となるように姿勢制御する。すなわち、近年、車両は、当該車両Cの側面から障害物に衝突するよりも、当該車両Cの正面から障害物に衝突した方が、車室内にいる乗員の保護性能が高まる構造を有している。そのため、当該車両Cが正面から障害物に衝突するように姿勢制御することにより、車室内の乗員の保護を図っている。これにより、当該車両Cの運転者の運転にかかる負荷を軽減することができるようになる。
以上のようにして構成される本実施の形態で実行される運転支援処理の処理手順を図4に示す。以下、この図4を用いて、本実施の形態による当該車両Cの運転者の運転支援を総括する。なお、この運転支援処理は、当該車両Cのイグニッションスイッチ(図示略)のオン操作を契機に、所定時間毎に繰り返し実行される。また、これに併せて、速度ベクトルV(n)の各成分Vx(n)やVy(n)、同じく速度ベクトルV(n−1)の各成分Vx(n−1)やVy(n−1)、あるいは、速度ベクトルVpreの各成分Vx_preやVy_preなど、各種演算に用いられるパラメータも所定の初期値に初期化される。
こうした前提のもと、運転支援処理が開始されると、図4に示すように、運転支援システム1は、まず、ステップS100の処理として、前後加速度センサ20、横加速度センサ30、ヨーレートセンサ40、及び車輪速センサ50(いずれも図1)から各センサ情報を取得する。すなわち、運転支援システム1は、前後加速度センサ20から前後加速度の今回値Ax(n)を、横加速度センサ30から横加速度の今回値Ay(n)を、ヨーレートセンサ40からヨーレートの今回値βを、車輪速センサから車輪速の今回値を、それぞれ取り込んでいる。
こうしたセンサ情報取得処理を終えると、運転支援システム1(正確には、積算誤差補正部140)は、続くステップS101の判断処理として、速度ベクトルV(n)にかかる積算誤差のリセット処理の上記実行条件が成立しているか否かを判断する。
ここで、上記実行条件が成立していると判断されるとき(ステップS101の処理でYes)、当該車両Cは、例えば水平面内を一定速度で直進走行している場合であるとみなすことができる。そのため、積算誤差補正部140は、続くステップS102の処理として、速度ベクトルV(n)の積算誤差のリセット処理を実行する。具体的には、上述したように、速度ベクトルV(n)のうち当該車両Cの前後方向の成分であるVx(n)を、車輪速センサ50のセンサ出力値に補正するとともに、速度ベクトルV(n)のうち当該車両Cの横方向の成分であるVy(n)を、零に補正する。そして、運転支援システム1は、後述するステップS105の処理へ移行する。
一方、先のステップS101の判断処理において、実行条件が成立していないと判断するとき(ステップS101の処理でNo)、演算部110は、続くステップS103の処理として、速度ベクトルV(n)を算出する。具体的には、上述したように、上式(1)〜(5)に基づき、速度ベクトルV(n)のうち各成分であるVx(n)及びVy(n)を算出する。なお、演算部110は、前回の運転支援処理において算出された速度ベクトルを、今回の運転処理において使用するため、一連の運転支援処理が終了する都度、記憶部120に、今回の運転支援処理において算出された速度ベクトルを記憶させている。
こうして演算部110を通じて速度ベクトルV(n)が算出されると、続くステップS104の処理として、予測部150は、当該車両Cの所定時間後の進行方向を予測する。具体的には、上述したように、予測部150は、上式(6)〜(9)に基づいて、当該車両Cの車体が現時点において実際に向いている方向と、当該車両Cが所定時間後に位置すると推定される方向とがなす角度である上記スイブル角φを算出する。
先のステップS102の処理において、積算誤差補正部140が速度ベクトルV(n)の積算誤差のリセット処理を終える、あるいは、このステップS104の処理において、予測部150によってスイブル角φが算出されると、続くステップS105の処理として、前照灯制御部160は、当該車両Cの前照灯60を制御する。具体的には、上述したように、上記スイブル角φを用いて、前照灯60を照射方向を制御する。なお、図5に、こうして前照灯指向制御が実行された場合の照射態様の一例及び前照灯指向制御が実行されなかった場合の照射態様の一例を併せて示す。同図5に示されるように、運転支援システム1によって前照灯60の指向制御がなされなかったとき、前照灯60の照射範囲A2には、当該車両Cが3秒後に到達すると推定される位置P3は含まれていない。一方、運転支援システム1によって前照灯60の指向制御がなされたとき、前照灯60の照射範囲A1には、当該車両Cが3秒後に到達すると推定される位置が含まれている。このように、当該車両Cの運転者は、3秒後に到達すると推定される位置を予め視認することができるようになる。
また、続くステップS106の処理として、ミリ波レーダ制御部170は、ミリ波レーダ70を制御する。すなわち、ミリ波レーダ制御部170は、上記スイブル角φを用いて、ミリ波レーダ70の障害物検出方向を制御し、当該車両Cの将来の進行方向(当該車両Cが3秒後に到達すると推定される位置P3)を監視する。そして、ミリ波レーダ制御部170は、当該車両Cの将来の進行方向の監視情報を判定部180に出力する。
判定部180は、続くステップS107の判定処理として、ミリ波レーダ制御部170から取り込んだ、当該車両Cの将来の進行方向の監視情報に基づいて、当該車両Cの将来の進行方向に障害物が存在するか否かを判定する。ここで、障害物が検出されないとき(ステップS107でNo)、判定部180は、この運転支援処理を一旦終了する。
一方、ステップS107の判定処理において、当該車両Cの将来の進行方向に障害物が検出されるとき(ステップS107でYes)、判定部180は、続くステップS108の処理として、当該車両Cが検出された障害物に衝突することは避けられるか否かを判定する。ここで、障害物との衝突を避けることができると判定されると(ステップS108でYes)、判定部180は、ステップS109の処理として、車両制御部210を通じて、当該車両Cが障害物との衝突を回避することのできる軌道を通るようにすべく、車両の回避制御を実行する。他方、障害物との衝突を避けることができないと判定されると(ステップS108でNo)、判定部180は、ステップS110の処理として、車両制御部210を通じて、障害物に衝突する際の当該車両Cの姿勢が所定の姿勢となるように姿勢制御を実行する。このようにして、当該車両Cの運転者の運転を支援することができる。
(その他の実施の形態)
近年の車両は、障害物に対して側面から衝突するよりも、正面から衝突する方が、より車室内の乗員を保護することができる。そのため、上記実施の形態では、判定部180によってステップS108の判断処理において、当該車両Cが障害物に衝突することを避けることができないと判断されたとき、続くステップS110の処理として、車両制御部210を通じて、すなわち、ステアリング制御部190によるステアリングホイールの制御及びブレーキ制御部200によるブレーキ90の制御の双方を通じて、正面から障害物に衝突するように当該車両Cの姿勢を制御することとした。こうした操舵制御及び制動制御の双方を用いなくとも、少なくともいずれか一方を用いて、当該車両Cの姿勢を制御することとしてもよい。また、その際、正面から障害物に衝突するようにしなくともよい。側面から障害物に衝突する方が、より車室内の乗員を保護することができるのであれば、そのように当該車両Cの姿勢を制御するようにしてもよい。要は、障害物との衝突が避けられないと判定されたとき、車室内の乗員をより保護することの可能な姿勢に制御すればよい。また、障害物と衝突しても、車室内の乗員を保護することが可能であるならば、こうした姿勢制御手段自体を割愛した構成としてもよい。
上記実施の形態(変形例を含む)では、判定部180によってステップS108の判断処理において、当該車両Cが障害物に衝突することを避けることができると判断されたとき、続くステップS109の処理として、車両制御部210を通じて、当該車両Cが障害物との衝突を回避することのできる軌道を通るように、車両の回避制御を実行していたが、これに限られない。障害物との衝突を回避することができるのであれば、その回避態様は任意である。なお、障害物が存在しないのであれば、こうした回避制御手段自体を割愛した構成としてもよい。
上記実施の形態(変形例を含む)では、演算部110にて算出される速度ベクトルを用いた運転支援の一例として、前照灯制御、当該車両の衝突回避制御、及び当該車両の姿勢制御の3種の運転支援を行っていたが、そうした態様は、これに限られない。要は、演算部110にて算出される速度ベクトルを用いた運転支援を行うことができれば、運転支援の態様は任意である。
上記実施の形態(変形例を含む)では、障害物検出手段としてミリ波レーダを採用したが、これに限られない。他にも、赤外線レーダや超音波レーダ等を採用することができる。
上記実施の形態(変形例を含む)では、車輪速センサ50を各車輪に配設することとしたが、これに限られず、1つでも良い。その場合、車輪速センサ50の数に併せて、積算誤差補正部140における誤差リセット処理(ステップS102の処理)の実行条件も変更することとなる。すなわち、誤差リセット処理の実行条件も、上述した条件に限られず、変更可能である。要は、当該車両Cが、例えば等速直線運動のように、車輪速センサ50の出力値と速度ベクトルV(n)のうち当該車両Cの前後方向の成分であるVx(n)の値とがそれほど乖離しないような運動状態にあるとみなすことのできる実行条件とすればよい。
上記実施の形態(変形例を含む)では、積算誤差補正部140は、上記誤差リセット処理(ステップS102の処理)の実行条件が成立するとき、速度ベクトルV(n)のうち当該車両Cの前後方向の成分であるVx(n)を、車輪速センサ50のセンサ出力値で補正するとともに、速度ベクトルV(n)のうち当該車両Cの横方向の成分であるVy(n)を零に補正していたが、これに限られない。これに加えて、スイブル角φを零に補正することとしてもよい。あるいは、この誤差リセット処理自体を割愛する構成としてもよい。この場合、演算部110にて算出される速度ベクトルの算出精度はやや低下することが懸念されるものの、車両の進行方向を示す速度ベクトル自体を算出することはできる。
上記実施の形態(変形例を含む)では、演算部110は、変化角度算出部130によって算出された車両の進行方向の変化角度「β×Δt」に基づいて、速度ベクトルV(n−1)から速度ベクトルVpreへの変換(上式(8))を行っていたが、これに限られない。要は、所定時間Δtにおける車両の進行方向の変化角度分を補正することができれば、その補正態様は任意である。
上記実施の形態(変形例を含む)では、予測部150によって予測された当該車両の将来の進行方向を利用して、当該車両Cを運転する運転者にかかる負担を軽減していたが、これに限られない。予測部150を割愛した構成としても、すなわち、当該車両の将来の進行方向を利用しなくとも、当該車両の現時点の進行方向を利用することで、当該車両Cを運転する運転者にかかる負担を軽減することはできる。
上記実施の形態(変形例を含む)では、前後加速度センサ20、横加速度センサ30、ヨーレートセンサ40、車輪速センサ50、前照灯60、ミリ波レーダ70、ステアリングホイール80、ブレーキ90等々を備えて構成されているものとしていたが、必ずしもこれら構成要素を実際に備えなくともよい。要は、これら各種センサ20〜50にて検出される各種情報を取得することができるとともに、取得した情報に基づいて各種制御指令を各構成要素60〜90に対して出力することができれば、この発明は有効である。
本発明の車両の進行方向推定装置及び運転支援システムの一実施の形態について、その全体構成を示すブロック図。 同実施の形態を構成する演算部において算出される速度ベクトルを示す模式図。 同実施の形態を構成する予測部において算出されるスイブル角φを示す模式図。 同実施の形態において実行される運転支援制御処理の処理手順を示すフローチャート。 同実施の形態の前照灯指向制御を実行する場合の前照灯の照射態様の一例と、前照灯指向制御を実行しない場合の前照灯の照射態様の一例とを併せて示す模式図。
符号の説明
1…運転支援システム、10…マイクロコンピュータ(車両の進行方向推定装置、運転支援手段)、20…前後加速度センサ(前後加速度検出手段)、30…横加速度センサ(横加速度検出手段)、40…ヨーレートセンサ、50…車輪速センサ、60…前照灯、70…ミリ波レーダ(障害物検出手段)、80…ステアリングホイール(操舵手段)、90…ブレーキ(制動手段)、100…速度ベクトル算出部(速度ベクトル算出手段)、110…演算部(演算手段)、120…記憶部(記憶手段)、130…変化角度算出部(変化角度算出手段)、140…積算誤差補正部(補正手段)、150…予測部(予測手段)、160…前照灯制御部(前照灯制御手段)、170…ミリ波レーダ制御部(障害物検出手段制御手段)、180…判定部(判定手段)、190…ステアリング制御部、200…ブレーキ制御部、210…車両制御部(衝突回避手段、姿勢制御手段)。

Claims (10)

  1. 第1所定時間毎に、車両の前後方向に作用する前後加速度を検出する前後加速度検出手段によって検出される前後加速度に基づいて、前記車両の前後方向速度を算出するとともに、前記車両の横方向に作用する横加速度を検出する横加速度検出手段によって検出される横加速度に基づいて、前記車両の横方向速度を算出することにより、前記車両の進行方向を示す速度ベクトルを求める速度ベクトル算出手段を備え、
    前記速度ベクトル算出手段は、
    前回算出した、前記前後方向速度と前記横方向速度との前回値を記憶する記憶手段と、
    前記第1所定時間毎に、前記前後加速度と前記横方向加速度とをサンプリングし、そのサンプリングした前記前後加速度と前記横加速度とを第1所定時間とそれぞれ乗算することにより、その第1所定時間における前後方向速度の変化分と、横方向速度の変化分とを算出し、さらに、前記記憶手段に記憶された前記前後方向速度の前回値と前記前後方向速度の変化分とを加算するとともに、前記横方向速度の前回値と前記横方向速度の変化分とを加算することにより、前記前後方向速度及び前記横方向速度の今回値を算出する演算手段とを有し、
    前記記憶手段は、前記演算手段によって、前記前後方向速度及び前記横方向速度の今回値が算出されると、前記前後方向速度及び前記横方向速度の今回値を記憶することを特徴とする車両の進行方向推定装置。
  2. 前記速度ベクトル算出手段は、さらに、前記前後方向速度と前記横方向速度との前回値を成分とする速度ベクトルの向きに対する、前記前後方向速度と前記横方向速度との今回値を成分とする速度ベクトルの向きの変化に基づいて、車両の将来の進行方向を予測する予測手段を備えることを特徴とする請求項1に記載の車両の進行方向推定装置。
  3. 前記速度ベクトル算出手段は、前後加速度及び横加速度のサンプリングと同期して、前記第1所定時間毎に、前記車両のヨーレートを検出するヨーレートセンサによって検出されるヨーレートをサンプリングし、今回サンプリングされたヨーレートに基づいて、前記第1所定時間が経過する間における車両の進行方向の変化角度を求める変化角度算出手段を有し、
    前記演算手段は、前記変化角度算出手段によって算出された車両の進行方向の変化角度分だけ、前記記憶手段に記憶された前記前後方向速度と前記横方向速度との前回値を成分とする速度ベクトルの向きを補正するように、当該前後方向速度及び横方向速度を補正した上で、前記前後方向速度及び前記横方向速度の変化分とそれぞれ加算して、前記前後方向速度及び前記横方向速度の今回値を算出することを特徴とする請求項1または2に記載の車両の進行方向推定装置。
  4. 前記速度ベクトル算出手段は、前後加速度及び横加速度のサンプリングと同期して、前記第1所定時間毎に、前記車両の車輪速を検出する車輪速センサによって検出される車輪速をサンプリングするものであって、前記車両が等速直線運動状態にあるとき、前記前後方向速度の今回値を、今回サンプリングされた車輪速に補正するとともに、前記横方向速度の今回値を、零に補正する補正手段を有することを特徴とする請求項1〜3のいずれか一項に記載の車両の進行方向推定装置。
  5. 前記補正手段は、今回サンプリングされた各車輪の車輪速と前回サンプリングされた各車輪の車輪速との差がそれぞれ第4所定値以下であり、かつ、今回サンプリングされた各車輪の車輪速のうちの最大値と最小値との差が第5所定値以下であり、かつ、今回サンプリングされた前後加速度の絶対値が第6所定値以下であり、かつ、今回サンプリングされた横加速度の絶対値が第7所定値以下であり、かつ、今回サンプリングされたヨーレートの絶対値が第8所定値以下である走行状態が、第2所定時間継続するとき、前記車両が等速直線運動状態にあると判断する請求項4に記載の車両の進行方向推定装置。
  6. 請求項1〜5のいずれか一項に記載の車両の進行方向推定装置と、
    前記車両の進行方向推定装置によって求められた車両の進行方向に基づいて、当該車両を運転する運転者の運転を支援する運転支援手段とを備えることを特徴とする運転支援システム。
  7. 前記運転支援手段は、前記車両の進行方向推定装置によって求められた車両の進行方向に、前記車両の前方を照らす前照灯を指向する前照灯制御手段を含む請求項6に記載の運転支援システム。
  8. 前記運転支援手段は、
    前記車両の進行方向推定装置によって求められた車両の進行方向に、前記車両の周辺に存在する障害物を検出する障害物検出手段を指向する障害物検出手段制御手段と、
    前記障害物検出手段によって検出された障害物に車両が衝突するか否かを判定する判定手段と、
    車両が障害物に衝突する可能性が高い旨前記判定手段によって判定されるとき、前記車両を制動する制動手段を通じて、前記障害物との衝突の回避を図る衝突回避手段と、を含む請求項6または7に記載の運転支援システム。
  9. 前記運転支援手段は、
    前記車両の進行方向推定装置によって求められた車両の進行方向に、前記車両の周辺に存在する障害物を検出する障害物検出手段を指向する障害物検出手段制御手段と、
    前記障害物検出手段によって検出された障害物に車両が衝突するか否かを判定する判定手段と、
    車両が障害物に衝突する可能性が高い旨前記判定手段によって判定されるとき、前記車両を操舵する操舵手段を通じて、前記障害物との衝突の回避を図る衝突回避手段と、を含む請求項6〜8のいずれか一項に記載の運転支援システム。
  10. 前記衝突回避手段は、前記車両と前記障害物との衝突が避けられない旨前記判定手段によって判定されるとき、前記障害物に衝突する際の前記車両の姿勢が所定の姿勢となるように、前記車両を制動する制動手段及び前記車両を操舵する操舵手段の少なくとも一方を通じて、前記車両の姿勢を制御する姿勢制御手段を含む請求項8又は9に記載の運転支援システム。
JP2006284191A 2006-10-18 2006-10-18 車両の進行方向推定装置及び運転支援システム Expired - Fee Related JP4876847B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284191A JP4876847B2 (ja) 2006-10-18 2006-10-18 車両の進行方向推定装置及び運転支援システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284191A JP4876847B2 (ja) 2006-10-18 2006-10-18 車両の進行方向推定装置及び運転支援システム

Publications (2)

Publication Number Publication Date
JP2008100592A true JP2008100592A (ja) 2008-05-01
JP4876847B2 JP4876847B2 (ja) 2012-02-15

Family

ID=39435261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284191A Expired - Fee Related JP4876847B2 (ja) 2006-10-18 2006-10-18 車両の進行方向推定装置及び運転支援システム

Country Status (1)

Country Link
JP (1) JP4876847B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563546A (zh) * 2010-11-02 2012-07-11 株式会社小糸制作所 车辆用灯具的控制装置、系统及控制方法
CN103863174A (zh) * 2013-01-29 2014-06-18 王洪新 一种车辆前照灯预测型随动控制方法
JP2017065352A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 運転者の特性及び技量に応じた支援を行う運転支援装置
JP2018086932A (ja) * 2016-11-29 2018-06-07 株式会社デンソー 前照灯制御装置
JP2018154236A (ja) * 2017-03-17 2018-10-04 株式会社Subaru 電力供給装置
CN112731320A (zh) * 2020-12-29 2021-04-30 福瑞泰克智能系统有限公司 车载雷达误差数据的估计方法、装置、设备及存储介质
CN116626328A (zh) * 2023-07-26 2023-08-22 济南嘉宏科技有限责任公司 一种井下车辆全程测速设备及测速方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210037790A (ko) * 2019-09-27 2021-04-07 현대모비스 주식회사 자율 주행 장치 및 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233148A (ja) * 1988-03-14 1989-09-18 Nissan Motor Co Ltd アンチスキッド制御装置
JPH11281672A (ja) * 1998-03-31 1999-10-15 Toyota Motor Corp 車両用加速度センサの出力補正装置
JP2000095130A (ja) * 1998-09-21 2000-04-04 Toyota Motor Corp 車両用衝突制御装置
JP2000272489A (ja) * 1998-03-20 2000-10-03 Denso Corp 車体挙動制御装置
JP2003182555A (ja) * 2001-12-17 2003-07-03 Toyota Motor Corp 車輌制御装置
JP2004362224A (ja) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備える車両
JP2005265690A (ja) * 2004-03-19 2005-09-29 Denso Corp 確度判定システム及び確度判定装置並びにサーバ装置
JP2005313805A (ja) * 2004-04-30 2005-11-10 Koito Mfg Co Ltd 車両用照明装置
JP2006138758A (ja) * 2004-11-12 2006-06-01 Honda Motor Co Ltd 安定状態判定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233148A (ja) * 1988-03-14 1989-09-18 Nissan Motor Co Ltd アンチスキッド制御装置
JP2000272489A (ja) * 1998-03-20 2000-10-03 Denso Corp 車体挙動制御装置
JPH11281672A (ja) * 1998-03-31 1999-10-15 Toyota Motor Corp 車両用加速度センサの出力補正装置
JP2000095130A (ja) * 1998-09-21 2000-04-04 Toyota Motor Corp 車両用衝突制御装置
JP2003182555A (ja) * 2001-12-17 2003-07-03 Toyota Motor Corp 車輌制御装置
JP2004362224A (ja) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備える車両
JP2005265690A (ja) * 2004-03-19 2005-09-29 Denso Corp 確度判定システム及び確度判定装置並びにサーバ装置
JP2005313805A (ja) * 2004-04-30 2005-11-10 Koito Mfg Co Ltd 車両用照明装置
JP2006138758A (ja) * 2004-11-12 2006-06-01 Honda Motor Co Ltd 安定状態判定装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563546A (zh) * 2010-11-02 2012-07-11 株式会社小糸制作所 车辆用灯具的控制装置、系统及控制方法
CN103863174A (zh) * 2013-01-29 2014-06-18 王洪新 一种车辆前照灯预测型随动控制方法
CN103863174B (zh) * 2013-01-29 2016-03-30 王洪新 一种车辆前照灯预测型随动控制方法
JP2017065352A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 運転者の特性及び技量に応じた支援を行う運転支援装置
JP2018086932A (ja) * 2016-11-29 2018-06-07 株式会社デンソー 前照灯制御装置
JP2018154236A (ja) * 2017-03-17 2018-10-04 株式会社Subaru 電力供給装置
CN112731320A (zh) * 2020-12-29 2021-04-30 福瑞泰克智能系统有限公司 车载雷达误差数据的估计方法、装置、设备及存储介质
CN116626328A (zh) * 2023-07-26 2023-08-22 济南嘉宏科技有限责任公司 一种井下车辆全程测速设备及测速方法

Also Published As

Publication number Publication date
JP4876847B2 (ja) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4876847B2 (ja) 車両の進行方向推定装置及び運転支援システム
US10077072B2 (en) Vehicle steering device and vehicle steering control method with reduced lateral speed
US7734416B2 (en) Automatic vehicle braking device
EP1990250B1 (en) Vehicle running control method for avoiding that a vehicle collides with an obstacle
JP4997778B2 (ja) 乗員保護装置
JP4835054B2 (ja) 車両安定化制御システム
JP6409744B2 (ja) 車両の走行支援装置
EP1843174B1 (en) Obstacle detecting device, method and computer program product
JP4811075B2 (ja) 回避操作算出装置、回避制御装置、各装置を備える車両、回避操作算出方法および回避制御方法
JP5609320B2 (ja) 障害物回避支援装置及び障害物回避支援方法
JP2009096273A (ja) 衝突回避制御装置
US11338801B2 (en) Collision avoidance device
WO2017179469A1 (ja) 車両制御装置、及び車両制御方法
JP7315039B2 (ja) 自動車の回避経路を求める方法
CN111806426A (zh) 车辆控制装置
JP6642331B2 (ja) 運転支援制御装置
US9914453B2 (en) Method for predicting the travel path of a motor vehicle and prediction apparatus
JP4930167B2 (ja) 進路推定装置、および衝突緩和装置
JP4850963B1 (ja) 車両の運転支援装置
JP4063170B2 (ja) 車両用運転操作補助装置および車両用運転操作補助装置を備える車両
JP5417856B2 (ja) 操舵制御装置及びプログラム
JP4089443B2 (ja) 衝突判定装置
JP7000283B2 (ja) 車両走行制御装置
JP6247898B2 (ja) 自動制動装置
CN112810611B (zh) 用于车道变换控制的侧向轨迹追踪方法及系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4876847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees