JP2008088499A - Copper alloy sheet superior in press stampability for electric and electronic parts - Google Patents

Copper alloy sheet superior in press stampability for electric and electronic parts Download PDF

Info

Publication number
JP2008088499A
JP2008088499A JP2006270918A JP2006270918A JP2008088499A JP 2008088499 A JP2008088499 A JP 2008088499A JP 2006270918 A JP2006270918 A JP 2006270918A JP 2006270918 A JP2006270918 A JP 2006270918A JP 2008088499 A JP2008088499 A JP 2008088499A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy plate
total
elongation
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006270918A
Other languages
Japanese (ja)
Other versions
JP4157898B2 (en
Inventor
Yasuhiro Ariga
康博 有賀
Ryoichi Ozaki
良一 尾▲崎▼
Yosuke Miwa
洋介 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006270918A priority Critical patent/JP4157898B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP11004732.1A priority patent/EP2388348B1/en
Priority to KR1020127008888A priority patent/KR20120041808A/en
Priority to CN200780036755.5A priority patent/CN101522926B/en
Priority to EP11004733.9A priority patent/EP2388349B1/en
Priority to EP11004731.3A priority patent/EP2388347B1/en
Priority to KR1020097006693A priority patent/KR101158113B1/en
Priority to PCT/JP2007/068670 priority patent/WO2008041584A1/en
Priority to AT07807885T priority patent/ATE518968T1/en
Priority to EP07807885A priority patent/EP2088214B1/en
Priority to US12/441,904 priority patent/US8063471B2/en
Publication of JP2008088499A publication Critical patent/JP2008088499A/en
Application granted granted Critical
Publication of JP4157898B2 publication Critical patent/JP4157898B2/en
Priority to US13/282,915 priority patent/US20120039742A1/en
Priority to US13/282,823 priority patent/US20120039741A1/en
Priority to US13/283,012 priority patent/US20120039743A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Fe-P-based copper alloy sheet having both high strength and excellent press stampability. <P>SOLUTION: The Cu-Fe-P-based copper alloy sheet has a particular composition, has a tensile elasticity exceeding 120 GPa, which is determined by a tensile test, and has a ratio of uniform elongation to total elongation expressed by uniform elongation/total elongation of less than 0.50 to decrease a shear plane rate when measured in such a way as shown in the figure. Thus manufactured copper alloy sheet acquires high strength and improved press stampability in a stamping process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度で、かつ、スタンピング加工の際のプレス打ち抜き性に優れたCu−Fe−P系の銅合金板に関し、例えば、半導体装置用リードフレームの素材として好適な銅合金板に関する。本発明の銅合金板は、半導体装置用リードフレーム以外にも、その他の半導体部品、プリント配線板等の電気・電子部品材料、開閉器部品、ブスバー、端子・コネクタ等の機構部品など様々な電気電子部品用として好適に使用される。ただ、以下の説明では、代表的な用途例として、半導体部品であるリードフレームに使用する場合を中心に説明を進める。   The present invention relates to a Cu-Fe-P-based copper alloy plate having high strength and excellent press punchability during stamping, for example, a copper alloy plate suitable as a material for a lead frame for a semiconductor device. In addition to lead frames for semiconductor devices, the copper alloy plate of the present invention can be used for various electrical components such as other semiconductor components, electrical / electronic component materials such as printed wiring boards, switchgear components, bus bars, mechanical components such as terminals / connectors. It is suitably used for electronic parts. However, in the following description, as a typical application example, the description will be focused on the case where it is used for a lead frame which is a semiconductor component.

半導体リードフレーム用銅合金としては、従来よりFeとPとを含有する、Cu−Fe−P系の銅合金が一般に用いられている。これらCu−Fe−P系の銅合金としては、例えば、Fe:0.05〜0.15%、P:0.025〜0.040%を含有する銅合金(C19210合金)や、Fe:2.1〜2.6%、P:0.015〜0.15%、Zn:0.05〜0.20%を含有する銅合金(CDA194合金)が例示される。これらのCu−Fe−P系の銅合金は、銅母相中にFe又はFe−P等の金属間化合物を析出させると、銅合金の中でも、強度、導電性および熱伝導性に優れていることから、国際標準合金として汎用されている。   As a copper alloy for a semiconductor lead frame, a Cu—Fe—P based copper alloy containing Fe and P has been generally used. Examples of these Cu-Fe-P-based copper alloys include, for example, a copper alloy containing Fe: 0.05 to 0.15% and P: 0.025 to 0.040% (C19210 alloy), Fe: 2 An example is a copper alloy (CDA194 alloy) containing 0.1 to 2.6%, P: 0.015 to 0.15%, and Zn: 0.05 to 0.20%. These Cu-Fe-P-based copper alloys are excellent in strength, conductivity and thermal conductivity among copper alloys when an intermetallic compound such as Fe or Fe-P is precipitated in the copper matrix. Therefore, it is widely used as an international standard alloy.

近年、電子機器に用いられる半導体装置の大容量化、小型化、高機能化に伴い、半導体装置に使用されるリードフレームの小断面積化が進み、より一層の強度、導電性、熱伝導性が要求されている。これに伴い、これら半導体装置に使用されるリードフレームに用いられる銅合金板にも、より一層の高強度化、熱伝導性が求められている。   In recent years, along with the increase in capacity, size, and functionality of semiconductor devices used in electronic devices, lead frames used in semiconductor devices have become smaller in cross-sectional area, resulting in greater strength, conductivity, and thermal conductivity. Is required. Accordingly, copper alloy plates used for lead frames used in these semiconductor devices are required to have higher strength and thermal conductivity.

その一方で、これら高強度化した銅合金板には、前記小断面積化したリードフレームへの加工性も求められる。具体的には、銅合金板はリードフレームへスタンピング加工されるために、銅合金板には、優れたプレス打ち抜き性が求められる。この要求は、リードフレーム以外の用途でも、銅合金板がプレス打ち抜きされて加工される用途では同じである。   On the other hand, these high-strength copper alloy plates are also required to be workable into the lead frame having a small cross-sectional area. Specifically, since the copper alloy plate is stamped into a lead frame, the copper alloy plate is required to have excellent press punchability. This requirement is the same in applications other than lead frames in which a copper alloy plate is processed by stamping.

Cu−Fe−P系銅合金板において、プレス打ち抜き性を向上させる手段は、従来から、Pb、Caなどの微量添加や、破断の起点となる化合物を分散させるなどの化学成分を制御する手段や、結晶粒径などを制御する手段が汎用されてきた。   In the Cu-Fe-P-based copper alloy sheet, conventionally, means for improving the press punchability are conventionally means for controlling a chemical component such as addition of a small amount of Pb, Ca or the like, or dispersing a compound that is a starting point of fracture, Means for controlling the crystal grain size and the like have been widely used.

しかし、これらの手段は、制御自体が困難であったり、他の特性を劣化させたり、また、それゆえに製造コストの上昇につながるなどの問題を有していた。   However, these means have problems such as difficulty in control itself, deterioration of other characteristics, and hence an increase in manufacturing cost.

これに対して、Cu−Fe−P系銅合金板の組織に着目して、プレス打ち抜き性や曲げ加工性を向上させることが提案されている。例えば、特許文献1では、Fe:0.005〜0.5wt%、P:0.005〜0.2wt%を含み、必要に応じてさらにZn:0.01〜10wt%、Sn:0.01〜5wt%のいずれか一方又は双方を含み、残部Cuと不可避不純物からなるCu−Fe−P系銅合金板が開示されている。そして、特許文献1では、この銅合金板の結晶方位の集積度を制御することにより、プレス打抜き性を向上させている(特許文献1参照)。   On the other hand, focusing on the structure of the Cu—Fe—P-based copper alloy plate, it has been proposed to improve press punchability and bending workability. For example, Patent Document 1 includes Fe: 0.005 to 0.5 wt%, P: 0.005 to 0.2 wt%, and further Zn: 0.01 to 10 wt%, Sn: 0.01 as necessary. A Cu—Fe—P-based copper alloy plate comprising any one or both of ˜5 wt% and comprising the remaining Cu and inevitable impurities is disclosed. And in patent document 1, the press punching property is improved by controlling the accumulation degree of the crystal orientation of this copper alloy plate (refer patent document 1).

より具体的に、特許文献1では、この集積度制御を、銅合金板が再結晶し、組織の結晶粒径が大きくなるにしたがって、板表面への{200}、{311}面の集積割合が増し、圧延すると{220}面の集積割合が増してくることを利用して行なっている。そして、特徴的には、{200}、{311}面に対して、板表面への{220}面の集積割合を増してプレス打抜き性を向上させようとしている。より具体的には、この板表面における{200}面からのX線回折強度をI[200] 、{311}面からのX線回折強度をI[311] 、{220}面からのX線回折強度をI[220] としたとき、[I[200] +I[311] ]/I[220] <0.4の式を満たすこととしている。   More specifically, in Patent Document 1, the degree of integration is controlled by reintegrating the copper alloy plate and increasing the crystal grain size of the structure to increase the integration ratio of {200} and {311} planes on the plate surface. Is increased by increasing the accumulation ratio of {220} planes when rolled. Characteristically, with respect to the {200} and {311} planes, the stamping performance is improved by increasing the accumulation ratio of {220} planes on the plate surface. More specifically, the X-ray diffraction intensity from the {200} plane on this plate surface is I [200], the X-ray diffraction intensity from the {311} plane is I [311], and the X-ray from the {220} plane. When the diffraction intensity is I [220], the equation [I [200] + I [311]] / I [220] <0.4 is satisfied.

特許文献2では、プレス打ち抜き性を向上させるために、銅合金板の(200)面のX線回折強度I(200)と、(220)面のX線回折強度I(220)との比、I(200)/I(220)が0.5以上10以下であるか、または、Cube方位の方位密度:D(Cube方位)が1以上50以下であること、あるいは、Cube方位の方位密度:D(Cube方位)とS方位の方位密度:D(S方位)との比:D(Cube方位)/D(S方位)が0.1以上5以下であることが提案されている(特許文献2参照)。   In Patent Document 2, in order to improve press punchability, the ratio of the X-ray diffraction intensity I (200) of the (200) plane of the copper alloy plate to the X-ray diffraction intensity I (220) of the (220) plane, I (200) / I (220) is 0.5 or more and 10 or less, or orientation density of Cube orientation: D (Cube orientation) is 1 or more and 50 or less, or orientation density of Cube orientation: It has been proposed that the ratio of D (Cube orientation) to S orientation: D (S orientation): D (Cube orientation) / D (S orientation) is 0.1 or more and 5 or less (Patent Literature) 2).

また、特許文献3では、Cu−Fe−P系銅合金板の曲げ加工性を向上させるために、(200)面のX線回折強度と(311)面のX線回折強度との和と、(220)面のX線回折強度との比、〔I(200)+I(311)〕/I(220)を0.4以上とすることが提案されている(特許文献3参照)。   Moreover, in patent document 3, in order to improve the bending workability of a Cu-Fe-P type copper alloy plate, the sum of (200) plane X-ray diffraction intensity and (311) plane X-ray diffraction intensity, It has been proposed that the ratio [I (200) + I (311)] / I (220) to the (220) plane X-ray diffraction intensity is 0.4 or more (see Patent Document 3).

更に、特許文献4では、Cu−Fe−P系銅合金板の屈曲性を向上させるために、I(200)/I(110)を1.5以下とすることが提案されている(特許文献4参照)。   Further, Patent Document 4 proposes that I (200) / I (110) be 1.5 or less in order to improve the flexibility of the Cu-Fe-P-based copper alloy plate (Patent Document). 4).

また、他の銅合金系ではあるが、Cu−Ni−Si系銅合金(コルソン合金)板の曲げ加工性を向上させるために、銅合金板の引張特性のうちの均一伸びと全伸びとの比を0.5以上とすることは公知である(特許文献5参照)。
特開平2000−328158号公報 特開2002−339028号公報 特開2000−328157号公報 特開2006−63431号公報 特開2002−266042号公報
Moreover, in order to improve the bending workability of the Cu—Ni—Si based copper alloy (Corson alloy) plate, although it is another copper alloy type, the uniform elongation and the total elongation of the tensile properties of the copper alloy plate It is known that the ratio is 0.5 or more (see Patent Document 5).
JP 2000-328158 A JP 2002-339028 A JP 2000-328157 A JP 2006-63431 A JP 2002-266042 A

前記した特許文献1や2では、板表面への{220}面や{200}面の集積割合を増して、プレス打ち抜き性を向上させている。これらの特定面の集積割合を増すことによって、確かに、Cu−Fe−P系銅合金板のプレス打ち抜き性は向上する。   In Patent Documents 1 and 2 described above, the stamping performance is improved by increasing the accumulation ratio of {220} planes and {200} planes on the plate surface. By increasing the accumulation ratio of these specific surfaces, the press punchability of the Cu—Fe—P based copper alloy plate is certainly improved.

しかし、前記リードフレームの小断面積化は、益々進み、リード幅(0.5mm→0.3mm)や板厚(0.25mm→0.15mm)も益々小さくなって、高強度化したCu−Fe−P系銅合金板への、スタンピング加工時のプレス打ち抜き性向上の要求はより厳しくなっている。このため、前記した特許文献1や2のような組織の集積割合制御によるプレス打ち抜き性向上効果では、この要求されるプレス打ち抜き性を満たさなくなっている。   However, the reduction of the cross-sectional area of the lead frame has progressed further, and the lead width (0.5 mm → 0.3 mm) and plate thickness (0.25 mm → 0.15 mm) have become smaller and higher in strength. The demand for improving the press punchability at the time of stamping to an Fe-P based copper alloy plate is becoming more severe. For this reason, the press punchability improvement effect by the structure accumulation ratio control as described in Patent Documents 1 and 2 does not satisfy the required press punchability.

また、前記した特許文献5のような銅合金板の曲げ加工性の向上手段では、要求されるプレス打ち抜き性を向上させることはできない。特許文献5で対象とするのは、0.2%耐力が800MPaレベル、導電率が40%IACS レベルのCu−Ni−Si系銅合金(コルソン合金)であり、本発明のCu−Fe−P系銅合金とは、合金系や特性が全く異なる。また、曲げ加工性とプレス打ち抜き性とは、メカニズムが全く異なる特性であり、特許文献5のように均一伸びと全伸びとの比を0.5以上とした場合は、後述する通り、本発明のCu−Fe−P系銅合金のプレス打ち抜き性は低下する。   Further, the means for improving the bending workability of the copper alloy plate as described in Patent Document 5 cannot improve the required press punchability. The object of Patent Document 5 is a Cu—Ni—Si based copper alloy (Corson alloy) having a 0.2% proof stress of 800 MPa level and a conductivity of 40% IACS level, and the Cu—Fe—P based copper of the present invention. The alloy system and properties are completely different from the alloy. Further, the bending workability and the press punching property are completely different characteristics. When the ratio of the uniform elongation to the total elongation is 0.5 or more as in Patent Document 5, the present invention will be described later. The press punchability of the Cu—Fe—P-based copper alloy decreases.

本発明は、Cu−Fe−P系銅合金の、このような高強度化とプレス打ち抜き性向上とが両立しない課題を解決するためになされたものであって、その目的は、高強度化と優れたプレス打ち抜き性とを両立させたCu−Fe−P系銅合金板を提供することである。   The present invention has been made in order to solve the problem of the Cu-Fe-P-based copper alloy, in which such an increase in strength and an improvement in press punchability are not compatible, and the object is to increase the strength. The object is to provide a Cu-Fe-P-based copper alloy sheet having both excellent press punchability.

この目的を達成するために、プレス打ち抜き性に優れた本発明電気電子部品用銅合金板の要旨は、質量%で、Fe:0.01〜0.50%、P:0.01〜0.15%を各々含有し、残部Cuおよび不可避的不純物からなり、圧延方向に対して直交する板幅方向を長手方向として採取した試験片の引張試験により求められる、引張弾性率が120GPaを超えるとともに、均一伸びと全伸びとの比、均一伸び/全伸びが0.50未満であることとする。   In order to achieve this object, the summary of the copper alloy sheet for electrical and electronic parts of the present invention excellent in press punchability is mass%, Fe: 0.01 to 0.50%, P: 0.01 to 0.00. Each containing 15%, consisting of the remainder Cu and unavoidable impurities, and determined by a tensile test of a test piece taken with the plate width direction orthogonal to the rolling direction as the longitudinal direction, the tensile modulus exceeds 120 GPa, The ratio of uniform elongation to total elongation, uniform elongation / total elongation is less than 0.50.

本発明銅合金板は、高強度を達成するために、更に、質量%で0.005〜5.0%のSnを、あるいは、はんだ及びSnめっきの耐熱剥離性改善のために、更に、質量%で0.005〜3.0%のZnを、各々含有しても良い。   In order to achieve high strength, the copper alloy plate of the present invention further contains 0.005 to 5.0% Sn by mass, or further improves the heat-resistant peelability of solder and Sn plating. % 0.005 to 3.0% Zn may be contained.

本発明銅合金板は、更に、S:20ppm以下、Pb:20ppm以下に各々規制することが好ましい。   It is preferable that the copper alloy sheet of the present invention is further restricted to S: 20 ppm or less and Pb: 20 ppm or less.

本発明銅合金板は、高強度の目安として、引張強度が500MPa以上、硬さが150Hv以上であることが好ましい。なお、導電率は板の強度に相関するものであり、本発明でいう高導電率とは、高強度な割には導電率が比較的高いという意味である。   The copper alloy sheet of the present invention preferably has a tensile strength of 500 MPa or more and a hardness of 150 Hv or more as a measure of high strength. The electrical conductivity correlates with the strength of the plate, and the high electrical conductivity referred to in the present invention means that the electrical conductivity is relatively high for the high strength.

本発明銅合金板は、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%含有しても良い。また、これらに加えるか、あるいはこれらに代えて、更に、質量%で、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%含有しても良い。   The copper alloy sheet of the present invention may further contain 0.0001 to 1.0% of one or more of Mn, Mg, and Ca in total by mass%. Further, in addition to these, or in place of these, one or two or more of Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, and Pt in total are 0% in total. 0.001 to 1.0% may be contained.

本発明銅合金板は、更に、Hf、Th、Li、Na、K、Sr、Pd、W、Si、Nb、Al、V、Y、Mo、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素全体の合計で0.1質量%以下とすることが好ましい。   The copper alloy plate of the present invention further includes Hf, Th, Li, Na, K, Sr, Pd, W, Si, Nb, Al, V, Y, Mo, In, Ga, Ge, As, Sb, Bi, Te. , B and the content of misch metal are preferably 0.1% by mass or less in total of these elements.

本発明の銅合金板は、様々な電気電子部品用に適用可能であるが、特に、半導体部品である半導体リードフレーム用途に使用されることが好ましい。   The copper alloy plate of the present invention can be applied to various electric and electronic parts, but is particularly preferably used for a semiconductor lead frame which is a semiconductor part.

本発明では、引張強度が500MPa以上に高強度化したCu−Fe−P系銅合金板では、特許文献1や2などの集合組織制御ではなく、引張試験により求められる、引張弾性率や、均一伸びと全伸びとの比などの引張特性が、プレス打ち抜き性に大きく影響することを知見した。   In the present invention, in a Cu-Fe-P-based copper alloy plate having a tensile strength increased to 500 MPa or more, the tensile modulus and uniformity obtained by a tensile test rather than a texture control as in Patent Documents 1 and 2 are uniform. It has been found that tensile properties such as the ratio of elongation to total elongation greatly affect the press punchability.

引張試験により求められる、引張弾性率が大きいほど、プレス打ち抜き性が向上する。また、均一伸びと全伸びとの比が小さいほど、プレス打ち抜き性が向上する。ただ、本発明で規定する、これら引張特性は、現時点では、Cu−Fe−P系銅合金板の組織、即ち、析出物の状態(析出物量や析出物の大きさなど)あるいは集合組織などとの明瞭な相関関係が不明である。したがって、本発明では、プレス打ち抜き性を向上させる要件として、Cu−Fe−P系銅合金板の組織は、定性的にも定量的にも規定しにくい。   The press punchability improves as the tensile modulus determined by the tensile test increases. Further, the press punching property is improved as the ratio of the uniform elongation to the total elongation is smaller. However, these tensile properties defined in the present invention are, at present, the structure of the Cu—Fe—P-based copper alloy sheet, that is, the state of precipitates (such as the amount of precipitates and the size of the precipitates) or the texture. The clear correlation of is unknown. Therefore, in the present invention, as a requirement for improving the press punchability, the structure of the Cu—Fe—P based copper alloy sheet is difficult to define both qualitatively and quantitatively.

また、本発明で規定する、これら引張特性は、当然、Cu−Fe−P系銅合金板の成分組成によって大きな影響を受けるが、製造方法や条件によっても大きく影響され、成分組成だけでは決まらない。即ち、本発明で規定する、これら引張特性は、後述する通り、Cu−Fe−P系銅合金板の、熱延前の均質化熱処理あるいは加熱処理、熱間圧延後の水冷開始温度、中間焼鈍温度、最終連続焼鈍時の通板速度などの製造方法や条件によって、大きく影響される。   In addition, these tensile properties defined in the present invention are naturally greatly affected by the component composition of the Cu-Fe-P copper alloy sheet, but are also greatly affected by the manufacturing method and conditions, and are not determined only by the component composition. . That is, these tensile properties defined in the present invention are, as described later, the Cu-Fe-P-based copper alloy sheet, the homogenization heat treatment or heat treatment before hot rolling, the water cooling start temperature after hot rolling, and the intermediate annealing. It is greatly influenced by the manufacturing method and conditions such as the temperature and the plate passing speed during the last continuous annealing.

しかも、本発明で規定する、これら引張特性は、バッチ式の最終焼鈍では得られがたく、板(コイル)を連続的に炉内に通板しつつ処理するような連続焼鈍でなければ得られがたい。   In addition, these tensile properties defined in the present invention are difficult to obtain by batch-type final annealing, but can be obtained only by continuous annealing in which a plate (coil) is processed while being continuously passed through a furnace. It ’s hard.

このため、本発明では、Cu−Fe−P系銅合金板の良好なプレス打ち抜き性を保証するために、成分組成とともに、上記のように、引張弾性率や均一伸びと全伸びとの比などの引張特性で、Cu−Fe−P系銅合金板を規定する。   For this reason, in the present invention, in order to ensure good press punchability of the Cu-Fe-P-based copper alloy plate, together with the component composition, as described above, the tensile elastic modulus, the ratio of uniform elongation to total elongation, etc. The Cu—Fe—P-based copper alloy plate is defined by the tensile properties of

以下に、半導体リードフレーム用などとして、必要な特性を満たすための、本発明Cu−Fe−P系銅合金板における各要件の意義や実施態様を具体的に説明する。   In the following, the significance and embodiments of each requirement in the Cu—Fe—P based copper alloy sheet of the present invention for satisfying the required characteristics, such as for semiconductor lead frames, will be specifically described.

(銅合金板の成分組成)
本発明では、半導体リードフレーム用などとして、引張強度が500MPa以上の高強度や、硬さが150Hv以上などの基本特性を有する必要がある。そして、これらの基本特性を満足した上で、あるいは、これらの基本特性を低下させないことを前提に、良好なプレス打ち抜き性を達成する。このために、Cu−Fe−P系銅合金板として、質量%で、Feの含有量が0.01〜0.50%の範囲、Pの含有量が0.01〜0.15%の範囲とした、残部Cuおよび不可避的不純物からなる基本組成とする。
(Component composition of copper alloy sheet)
In the present invention, it is necessary to have basic characteristics such as high strength with a tensile strength of 500 MPa or more and hardness of 150 Hv or more for a semiconductor lead frame. Then, satisfactory press punchability is achieved after satisfying these basic characteristics or on the assumption that these basic characteristics are not deteriorated. For this reason, the Cu-Fe-P-based copper alloy sheet is in mass%, the Fe content is in the range of 0.01 to 0.50%, and the P content is in the range of 0.01 to 0.15%. The basic composition consisting of the remaining Cu and inevitable impurities.

本発明では、この基本組成に対し、後述するZn、Snなどの元素を、更に選択的に含有させても良い。また、記載する以外の元素(不純物元素)も、本発明の特性を阻害しない範囲での含有を許容する。なお、これら合金元素や不純物元素の含有量の表示%は全て質量%の意味である。   In the present invention, elements such as Zn and Sn described later may be further selectively contained in the basic composition. Further, elements other than those described (impurity elements) are allowed to be contained within a range that does not impair the characteristics of the present invention. In addition, all the indication% of content of these alloy elements and impurity elements means the mass%.

(Fe)
Feは、Fe又はFe基金属間化合物として析出し、銅合金の強度や耐熱性を向上させる主要元素である。Feの含有量が少なすぎると、製造条件によっては、上記析出粒子の生成量が少なく、導電率の向上は満たされるものの、強度向上への寄与が不足し、強度が不足する。一方、Feの含有量が多すぎると、導電率やAgメッキ性が低下する。そこで、導電率を無理に増加させるために、上記析出粒子の析出量を増やそうとすると、析出粒子の成長・粗大化を招く。このため、強度と、本発明で規定する引張特性を満足しなくなり、プレス打ち抜き性が低下する。したがって、Feの含有量は0.01〜0.50%、好ましくは0.15〜0.35%の範囲とする。
(Fe)
Fe is a main element that precipitates as Fe or an Fe-based intermetallic compound and improves the strength and heat resistance of the copper alloy. If the content of Fe is too small, depending on the production conditions, the amount of the precipitated particles produced is small and the improvement in conductivity is satisfied, but the contribution to strength improvement is insufficient and the strength is insufficient. On the other hand, when there is too much content of Fe, electrical conductivity and Ag plating property will fall. Therefore, in order to increase the conductivity forcibly, an attempt to increase the amount of precipitation of the precipitated particles leads to growth and coarsening of the precipitated particles. For this reason, the strength and the tensile properties defined in the present invention are not satisfied, and the press punchability is reduced. Therefore, the Fe content is 0.01 to 0.50%, preferably 0.15 to 0.35%.

(P)
Pは、脱酸作用がある他、Feと化合物を形成して、銅合金の高強度化させる主要元素である。P含有量が少なすぎると、製造条件によっては、化合物の析出が不十分であるため、所望の強度が得られない。一方、P含有量が多すぎると、導電性が低下するだけでなく、本発明で規定する引張特性を満足しなくなり、熱間加工性やプレス打ち抜き性が低下する。したがって、Pの含有量は0.01〜0.15%、好ましくは0.05〜0.12%の範囲とする。
(P)
In addition to deoxidizing action, P is a main element that forms a compound with Fe to increase the strength of the copper alloy. If the P content is too small, the desired strength cannot be obtained because the precipitation of the compound is insufficient depending on the production conditions. On the other hand, when the P content is too large, not only the conductivity is lowered, but also the tensile properties defined in the present invention are not satisfied, and the hot workability and the press punching property are lowered. Therefore, the P content is in the range of 0.01 to 0.15%, preferably 0.05 to 0.12%.

(Zn)
Znは、リードフレームなどに必要な、銅合金のはんだ及びSnめっきの耐熱剥離性を改善する。Znの含有量が0.005%未満の場合は所望の効果が得られない。一方、3.0%を超えるとはんだ濡れ性が低下するだけでなく、導電率の低下も大きくなる。したがって、選択的に含有させる場合のZnの含有量は、用途に要求される導電率とはんだ及びSnめっきの耐熱剥離性とのバランスに応じて(バランスを考慮して)、0.005〜3.0%の範囲から選択する。
(Zn)
Zn improves the heat-resistant peelability of copper alloy solder and Sn plating required for lead frames and the like. If the Zn content is less than 0.005%, the desired effect cannot be obtained. On the other hand, if it exceeds 3.0%, not only the solder wettability is lowered but also the conductivity is greatly lowered. Therefore, the Zn content in the case of selective inclusion is 0.005 to 3 depending on the balance between the electrical conductivity required for the application and the heat resistance peelability of the solder and Sn plating (in consideration of the balance). Select from a range of 0%.

(Sn)
Snは、銅合金の強度向上に寄与する。Snの含有量が0.001%未満の場合は高強度化に寄与しない。一方、Snの含有量が多くなると、その効果が飽和し、逆に、導電率の低下を招く。したがって、選択的に含有させる場合のSn含有量は、用途に要求される強度(硬さ)と導電率のバランスに応じて(バランスを考慮して)、0.001〜5.0%の範囲から選択して含有させることとする。
(Sn)
Sn contributes to improving the strength of the copper alloy. When the Sn content is less than 0.001%, it does not contribute to high strength. On the other hand, when the Sn content is increased, the effect is saturated, and conversely, the conductivity is lowered. Accordingly, the Sn content in the case of selective inclusion is in the range of 0.001 to 5.0% depending on the balance between strength (hardness) and conductivity required for the application (in consideration of the balance). It is supposed to be selected and contained.

(Mn、Mg、Ca量)
Mn、Mg、Caは、銅合金の熱間加工性の向上に寄与するので、これらの効果が必要な場合に選択的に含有される。Mn、Mg、Caの1種又は2種以上の含有量が合計で0.0001%未満の場合、所望の効果が得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して強度や耐熱性を低下させるだけでなく、導電率の低下も激しくなる。従って、これらの元素の含有量は総量で0.0001〜1.0%の範囲で選択的に含有させる。
(Mn, Mg, Ca content)
Since Mn, Mg and Ca contribute to the improvement of hot workability of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of Mn, Mg, and Ca is less than 0.0001% in total, a desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystals or oxides are generated, not only reducing the strength and heat resistance, but also reducing the conductivity. Therefore, the content of these elements is selectively contained in the range of 0.0001 to 1.0% in total.

(Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Pt量)
これらの成分は銅合金の強度を向上させる効果があるので、これらの効果が必要な場合に選択的に含有される。これらの成分の1種又は2種以上の含有量が合計で0.001%未満の場合、所望の効果か得られない。一方、その含有量が合計で1.0%を越えると、粗大な晶出物や酸化物が生成して、強度や耐熱性を低下させるだけでなく、導電率の低下も激しく、好ましくない。従って、これらの元素の含有量は合計で0.001〜1.0%の範囲で選択的に含有させる。なお、これらの成分を、上記Mn、Mg、Caと共に含有する場合、これら含有する元素の合計含有量は1.0%以下とする。
(Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, Pt amount)
Since these components have an effect of improving the strength of the copper alloy, they are selectively contained when these effects are required. When the content of one or more of these components is less than 0.001% in total, the desired effect cannot be obtained. On the other hand, if the total content exceeds 1.0%, coarse crystallized substances and oxides are generated, which not only lowers the strength and heat resistance, but also causes a significant decrease in conductivity, which is not preferable. Therefore, the content of these elements is selectively contained in the range of 0.001 to 1.0% in total. In addition, when these components are contained with the said Mn, Mg, and Ca, the total content of these contained elements shall be 1.0% or less.

(S、Pb)
本発明銅合金板では、更に、S:20ppm以下、Pb:20ppm以下に各々規制することが好ましい。S、Pbは、半導体リードフレーム用などとしての強度、硬さ、導電率などの基本特性を阻害するとともに、Agメッキ性なども阻害する。
(S, Pb)
In the copper alloy plate of the present invention, it is further preferable to restrict S to 20 ppm or less and Pb: 20 ppm or less. S and Pb inhibit basic characteristics such as strength, hardness, and conductivity for a semiconductor lead frame, and also inhibit Ag plating properties.

(Hf、Th、Li、Na、K、Sr、Pd、W、Si、Nb、Al、V、Y、Mo、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタル)
これらの成分は不純物元素であり、これらの元素の含有量の合計が0.1%を越えた場合、粗大な晶出物や酸化物が生成して強度や耐熱性を低下させる。従って、これらの元素の含有量は合計で0.1%以下とすることが好ましい。
(Hf, Th, Li, Na, K, Sr, Pd, W, Si, Nb, Al, V, Y, Mo, In, Ga, Ge, As, Sb, Bi, Te, B, Misch metal)
These components are impurity elements, and when the total content of these elements exceeds 0.1%, coarse crystallized products and oxides are formed, and the strength and heat resistance are lowered. Therefore, the total content of these elements is preferably 0.1% or less.

(板の引張特性)
本発明では、以上のような成分組成を前提に、Cu−Fe−P系銅合金板の圧延方向に対して直交する板幅方向(直角方向)を長手方向として採取した試験片の引張試験により求められる、引張弾性率や、均一伸びと全伸びとの比などの引張特性を上記のように規定し、Cu−Fe−P系銅合金板の良好なプレス打ち抜き性を保証する。
(Tensile properties of the plate)
In the present invention, on the premise of the component composition as described above, by a tensile test of a test piece taken with the plate width direction (perpendicular direction) orthogonal to the rolling direction of the Cu-Fe-P-based copper alloy plate as the longitudinal direction. The required tensile properties such as the tensile modulus and the ratio between uniform elongation and total elongation are defined as described above, and the good punching property of the Cu—Fe—P based copper alloy sheet is ensured.

(引張弾性率)
まず、Cu−Fe−P系銅合金板の、引張試験により求められる引張弾性率(ヤング率)を120GPaを超えるものとする。引張弾性率が大きいほど、プレス打ち抜き時に、板に負荷される応力に対する蓄積歪み量が小さくなる。このため、プレス打ち抜き時に、早期に打ち抜きの破断が生じて、せん断面率が小さくなり、プレス打ち抜き性が向上する。
(Tensile modulus)
First, the tensile elastic modulus (Young's modulus) calculated | required by the tensile test of a Cu-Fe-P type copper alloy plate shall be over 120 GPa. The larger the tensile elastic modulus, the smaller the accumulated strain with respect to the stress applied to the plate during press punching. For this reason, at the time of press punching, the punching break occurs at an early stage, the shear surface ratio is reduced, and the press punching property is improved.

一方、この引張弾性率が120GPa以下と低いと、プレス打ち抜き時に、板に負荷される応力に対する蓄積歪み量が大きくなり、打ち抜きの破断が生じずに、せん断面率が大きくなり、プレス打ち抜き性が低下する。   On the other hand, if the tensile elastic modulus is as low as 120 GPa or less, the amount of accumulated strain with respect to the stress applied to the plate at the time of press punching increases, and the shear surface ratio increases without causing punching breakage. descend.

この引張弾性率が120GPa以下と低くなる理由は、他にも理由は考えられるものの、特に、Cu−Fe−P系銅合金板においては、後述する熱延前の均質化熱処理あるいは加熱処理時に、板組織の均質化が不十分(板組織が不均一)であることや、熱延終了後の水冷開始温度が低く過ぎる、あるいはバッチで最終焼鈍をしている乃至連続で最終焼鈍しても通板速度が遅い場合などが主として挙げられる。   Although the reason why the tensile modulus of elasticity is as low as 120 GPa or less is conceivable, in particular, in a Cu-Fe-P-based copper alloy plate, during the homogenization heat treatment or heat treatment before hot rolling described later, Insufficient homogenization of the plate structure (the plate structure is non-uniform), the water cooling start temperature after hot rolling is too low, or the final annealing is performed in batch or continuous final annealing. This is mainly the case when the plate speed is low.

(均一伸び/全伸び)
次に、Cu−Fe−P系銅合金板の、引張試験により求められる、均一伸びと全伸びとの比、均一伸び/全伸びを0.50未満とする。均一伸び/全伸びが0.50以上に大きくなるほど、言い換えると、全伸びに対する均一伸びの割合が大きいほど、プレス打ち抜き時に板(材料)が延性変形する。このため、打ち抜きの破断に至るまでの板の変形量が大きくなり、せん断面率が大きくなって、プレス打ち抜き性が低下する。これに対して、均一伸び/全伸びが0.50未満では、プレス打ち抜き時に、早期に打ち抜きの破断が生じて、せん断面率が小さくなり、プレス打ち抜き性が向上する。
(Uniform elongation / total elongation)
Next, the ratio of uniform elongation to total elongation, uniform elongation / total elongation, obtained by a tensile test of the Cu—Fe—P based copper alloy plate is set to less than 0.50. The greater the uniform elongation / total elongation is 0.50 or more, in other words, the greater the ratio of uniform elongation to the total elongation, the more the plate (material) undergoes ductile deformation during press punching. For this reason, the amount of deformation of the plate up to the fracture of punching increases, the shear surface ratio increases, and the press punching performance decreases. On the other hand, if the uniform elongation / total elongation is less than 0.50, the punching breaks at an early stage during press punching, the shear surface ratio is reduced, and the press punching property is improved.

この均一伸び/全伸びが0.50以上に大きくなる理由は、Cu−Fe−P系銅合金板では、特に、熱間圧延後の水冷開始温度が高すぎて板組織中の析出物量が不足する、中間焼鈍温度が高すぎて材料の回復・再結晶が進行しすぎる、中間焼鈍時間が短すぎて板組織中の析出物量が不足する、バッチで最終焼鈍をしている乃至連続で最終焼鈍しても通板速度が遅い、などが挙げられる。   The reason why the uniform elongation / total elongation becomes larger than 0.50 is that the Cu-Fe-P-based copper alloy sheet has a particularly insufficient amount of precipitates in the sheet structure because the water cooling start temperature after hot rolling is too high. The intermediate annealing temperature is too high, so that material recovery / recrystallization progresses too much, the intermediate annealing time is too short and the amount of precipitates in the plate structure is insufficient, or the final annealing is performed in batch or continuous annealing. Even so, the plate passing speed is slow.

(引張試験)
これら規定される引張弾性率や均一伸びと全伸びとの比を求める(測定する)引張試験条件は、再現性のために、以下の試験条件で行う。試験片はJIS5号引張試験片とし、得られた(製造された)Cu−Fe−P系銅合金板より、圧延方向に対して直角の方向をその長手方向とした引張試験片を採取する。この試験片を試験機に固定してから伸び計を取り付け、引張速度10.0mm/min (試験片が破断するまで一定の速度)で引張試験を行う。試験機は、5882型インストロン社製万能試験機を用いることが好ましい。
(Tensile test)
The tensile test conditions for determining (measuring) the tensile elastic modulus and the ratio between the uniform elongation and the total elongation are performed under the following test conditions for reproducibility. The test piece is a JIS No. 5 tensile test piece. From the obtained (manufactured) Cu—Fe—P-based copper alloy plate, a tensile test piece having a direction perpendicular to the rolling direction as its longitudinal direction is taken. An extensometer is attached after fixing this test piece to a testing machine, and a tensile test is performed at a tensile speed of 10.0 mm / min (a constant speed until the test piece breaks). As the tester, it is preferable to use a 5882 type universal tester manufactured by Instron.

引張強さは、試験機の計測で得られた数値より求め、全伸びは試験後に試験片を突合せて評点間距離を測定して求める。また、引張弾性率と均一伸びは、上記伸び計で得られた数値から求める。   The tensile strength is obtained from the numerical value obtained by measurement with a testing machine, and the total elongation is obtained by abutting the test pieces after the test and measuring the distance between the scores. Moreover, a tensile elasticity modulus and uniform elongation are calculated | required from the numerical value obtained with the said extensometer.

(製造方法)
次に、銅合金板を上記本発明規定範囲内とするための、好ましい製造条件について以下に説明する。前記した通り、本発明で規定する引張弾性率や、均一伸びと全伸びとの比は、当然、Cu−Fe−P系銅合金板の成分組成によって大きな影響を受けるが、製造方法や条件によっても大きく影響され、成分組成だけでは決まらない。この点、本発明で上記のように規定する引張弾性率や、均一伸びと全伸びとの比などの引張特性を得るためには、Cu−Fe−P系銅合金板の、均質化熱処理、熱間圧延後の水冷開始温度、中間焼鈍温度、最終連続焼鈍時の通板速度などの製造方法や条件を以下に記載する通り制御する。
(Production method)
Next, preferable manufacturing conditions for bringing the copper alloy plate within the range specified in the present invention will be described below. As described above, the tensile modulus defined in the present invention and the ratio between uniform elongation and total elongation are naturally greatly influenced by the component composition of the Cu-Fe-P-based copper alloy plate, but depending on the production method and conditions. Is greatly affected and cannot be determined by the composition of the ingredients alone. In this respect, in order to obtain tensile properties such as the tensile modulus as defined above in the present invention and the ratio between uniform elongation and total elongation, a homogenized heat treatment of the Cu-Fe-P-based copper alloy plate, The manufacturing method and conditions such as the water cooling start temperature after hot rolling, the intermediate annealing temperature, and the sheet feeding speed during the last continuous annealing are controlled as described below.

即ち、先ず、上記本発明成分組成に調整した銅合金溶湯を鋳造する。溶解・鋳造は、連続鋳造、半連続鋳造などの通常の方法によって行うが、前記したS、Pbを規制するために、S、Pb含有量の少ない銅溶解原料を使用することが好ましい。鋳塊の均質化熱処理あるいは加熱処理の前に、常法により面削を行う。   That is, first, a molten copper alloy adjusted to the composition of the present invention is cast. Melting / casting is performed by a normal method such as continuous casting or semi-continuous casting. In order to regulate the above-described S and Pb, it is preferable to use a copper-melting raw material having a small S and Pb content. Prior to homogenization heat treatment or heat treatment of the ingot, chamfering is performed by a conventional method.

(均質化熱処理あるいは加熱処理)
熱延前の鋳塊の均質化熱処理時あるいは加熱処理時に、組織の均質化が不十分(板組織が不均一)であると、最終的に得られるCu−Fe−P系銅合金板組織も不均一となって、強度が低下するだけでなく、引張弾性率が120GPa以下と低くなる。このため、鋳塊の均質化熱処理あるいは加熱処理は、鋳塊の厚みや大きさに応じて、少なくとも、900℃以上の温度で、2時間以上行うことが好ましい。
(Homogenization heat treatment or heat treatment)
When the homogenization of the ingot before hot-rolling or during the heat treatment is insufficiently homogenized (the plate structure is not uniform), the finally obtained Cu-Fe-P-based copper alloy sheet structure is also obtained. Not only becomes non-uniform and the strength decreases, but also the tensile elastic modulus becomes as low as 120 GPa or less. For this reason, it is preferable to perform the homogenization heat treatment or heat treatment of the ingot at least at a temperature of 900 ° C. or more for 2 hours or more depending on the thickness and size of the ingot.

(熱間圧延)
熱延は900℃以上の温度で開始し、熱延終了後に、700〜800℃の温度範囲から熱延板の水冷を開始する。この熱延終了後の水冷開始温度が800℃よりも高いと、水冷開始温度が高すぎて板組織中の析出物が生成せず、析出物量が不足する。このため、全伸びに対する均一伸びの割合が大きくなり、均一伸びと全伸びとの比が0.50未満とならない。
(Hot rolling)
Hot rolling is started at a temperature of 900 ° C. or higher, and water cooling of the hot rolled plate is started from a temperature range of 700 to 800 ° C. after the hot rolling is finished. If the water cooling start temperature after the hot rolling is higher than 800 ° C., the water cooling start temperature is too high and precipitates in the plate structure are not generated, and the amount of precipitates is insufficient. For this reason, the ratio of the uniform elongation to the total elongation is increased, and the ratio of the uniform elongation to the total elongation does not become less than 0.50.

一方、熱延終了後の水冷開始温度が700℃よりも低くても、結晶粒が微細化しすぎ、引張弾性率が低下するだけでなく、全伸びに対する均一伸びの割合が大きくなり、やはり、均一伸びと全伸びとの比が0.50未満とならない。また、粗大な析出物が生成するため、強度が低下する。   On the other hand, even if the water cooling start temperature after the hot rolling is lower than 700 ° C., the crystal grains are excessively refined and the tensile elastic modulus is lowered, and the ratio of uniform elongation to the total elongation is increased. The ratio of elongation to total elongation is not less than 0.50. Further, since coarse precipitates are generated, the strength is lowered.

熱延終了後水冷された板を、更に、中延べと言われる一次冷間圧延して、焼鈍、洗浄後、更に仕上げ(最終)冷間圧延、最終焼鈍(低温焼鈍、仕上げ焼鈍)して、製品板厚の銅合金板などとする。これら焼鈍と冷間圧延を繰返し行ってもよい。例えば、リードフレーム等の半導体用材料に用いられる銅合金板の場合は、製品板厚が0.1〜0.4mm程度である。   After the hot rolling, the water-cooled plate is further subjected to primary cold rolling, which is said to be intermediate rolling, annealing, washing, and further finishing (final) cold rolling, final annealing (low temperature annealing, finish annealing), A copper alloy plate with a product thickness. These annealing and cold rolling may be repeated. For example, in the case of a copper alloy plate used for a semiconductor material such as a lead frame, the product plate thickness is about 0.1 to 0.4 mm.

(中間焼鈍)
上記工程において、中間焼鈍条件も均一伸び/全伸びに大きく影響する。均一伸びと全伸びとの比を0.50未満とする好適な中間焼鈍条件は、430℃以下の温度で5時間以上行う。この中間焼鈍温度が高すぎると、材料の回復・再結晶が進行しすぎて強度が低下するばかりか、全伸びに対する均一伸びの割合が大きくなり、均一伸びと全伸びとの比が0.50未満とならない。この中間焼鈍時間が短すぎると、板組織中の析出物量が不足して導電率が低下する。
(Intermediate annealing)
In the above process, the intermediate annealing conditions also greatly affect the uniform elongation / total elongation. Suitable intermediate annealing conditions for setting the ratio of uniform elongation to total elongation to less than 0.50 are performed at a temperature of 430 ° C. or lower for 5 hours or longer. If this intermediate annealing temperature is too high, not only the recovery / recrystallization of the material proceeds too much and the strength decreases, but also the ratio of uniform elongation to total elongation increases, and the ratio of uniform elongation to total elongation is 0.50. Not less than. If this intermediate annealing time is too short, the amount of precipitates in the plate structure is insufficient and the conductivity is lowered.

(最終焼鈍)
上記工程において、最終焼鈍条件も引張弾性率や均一伸び/全伸びに大きく影響する。Cu−Fe−P系銅合金板の、引張弾性率が120GPaを超え、均一伸びと全伸びとの比が0.50未満の特性を得るためには、板(コイル)を連続的に炉内に通板しつつ処理する連続焼鈍を行う必要がある。
(Final annealing)
In the above process, the final annealing conditions also greatly affect the tensile modulus and uniform / total elongation. In order to obtain a Cu-Fe-P copper alloy sheet having a tensile modulus exceeding 120 GPa and a ratio of uniform elongation to total elongation of less than 0.50, the sheet (coil) is continuously placed in the furnace. Therefore, it is necessary to perform continuous annealing while processing the sheet.

しかも、この特性を得るためには、連続焼鈍における通板速度を10〜100m/minの範囲に制御する必要がある。この通板速度が遅すぎると、材料の回復・再結晶が進行しすぎる。このため、強度が低下するだけでなく、全伸びに対する均一伸びの割合が大きくなり、均一伸びと全伸びとの比が0.50未満とならない。また、引張弾性率も120GPaを超えることができない。但し、連続焼鈍炉における設備的な制約(能力限界)や、板切れの可能性から、この通板速度を100m/minを超えて速くする必要はない。   In addition, in order to obtain this characteristic, it is necessary to control the sheet feeding speed in the continuous annealing in the range of 10 to 100 m / min. If the plate passing speed is too slow, material recovery / recrystallization proceeds excessively. For this reason, not only does the strength decrease, but the ratio of the uniform elongation to the total elongation increases, and the ratio between the uniform elongation and the total elongation does not become less than 0.50. Also, the tensile modulus cannot exceed 120 GPa. However, due to equipment limitations (capacity limits) in the continuous annealing furnace and the possibility of plate breakage, it is not necessary to increase the plate passing speed beyond 100 m / min.

これに対して、バッチ式の最終焼鈍では、連続焼鈍における通板速度が遅すぎるのと同じ理由で、本発明で上記のように規定する引張試験における引張弾性率や、均一伸びと全伸びとの比は得られない。   On the other hand, in the batch type final annealing, for the same reason that the plate passing speed in the continuous annealing is too slow, the tensile elastic modulus in the tensile test specified as described above in the present invention, uniform elongation and total elongation This ratio cannot be obtained.

以下に本発明の実施例を説明する。均質化熱処理、熱間圧延後の水冷開始温度、中間焼鈍温度、最終連続焼鈍時の通板速度などの製造条件を種々変えて、Cu−Fe−P系銅合金薄板を製造した。そして、これら各銅合金薄板の引張弾性率や均一伸びと全伸びとの比などの引張特性、あるいは引張強さ、硬さ、導電率、せん断面率などの特性を評価した。これらの結果を表2に示す。   Examples of the present invention will be described below. Cu-Fe-P-based copper alloy thin plates were produced by changing the production conditions such as homogenization heat treatment, water cooling start temperature after hot rolling, intermediate annealing temperature, and plate passing speed during final continuous annealing. Then, tensile properties such as the tensile modulus of elasticity and the ratio between uniform elongation and total elongation, or properties such as tensile strength, hardness, conductivity, and shear surface ratio of each of these copper alloy thin plates were evaluated. These results are shown in Table 2.

具体的には、表1に示す各化学成分組成の銅合金溶湯を、大気溶解炉であるコアレス炉を用いて溶製し、半連続鋳造法で厚さ70mm×幅200mm×長さ500mmの鋳塊を得た。   Specifically, the copper alloy melts having the chemical composition shown in Table 1 are melted using a coreless furnace which is an atmospheric melting furnace, and cast with a thickness of 70 mm × width 200 mm × length 500 mm by a semi-continuous casting method. A lump was obtained.

これら各鋳塊を表面を面削して、表2に示す条件(温度×時間)で加熱・均熱後、950℃の温度で熱間圧延を行って厚さ16mmの板とし、表2に示す開始温度から水中に急冷した。次に、酸化スケールを除去した後、一次冷間圧延(中延べ)を行った。この板を面削後、表2に示す温度で10時間処理する中間焼鈍を入れながら冷間圧延を4パス行なう最終冷間圧延を行い、リードフレームの薄板化に対応した厚さ0.15mmの銅合金板を得た。この銅合金板を、350℃の温度で表2に示す通板速度にて連続焼鈍を行う最終焼鈍を行って、製品銅合金板とした。   The surface of each ingot is chamfered, heated and soaked under the conditions shown in Table 2 (temperature × time), and then hot-rolled at a temperature of 950 ° C. to form a plate having a thickness of 16 mm. Quenched into water from the indicated starting temperature. Next, after removing the oxide scale, primary cold rolling (intermediate rolling) was performed. After chamfering the plate, final cold rolling is performed in which four passes of cold rolling are performed while intermediate annealing is performed at a temperature shown in Table 2 for 10 hours, and a thickness of 0.15 mm corresponding to thinning of the lead frame is performed. A copper alloy plate was obtained. This copper alloy plate was subjected to final annealing in which continuous annealing was performed at a temperature of 350 ° C. at a sheeting speed shown in Table 2 to obtain a product copper alloy plate.

なお、表1に示す各銅合金とも、記載元素量を除いた残部組成はCuであり、その他の不純物元素として、Hf、Th、Li、Na、K、Sr、Pd、W、Si、Nb、Al、V、Y、Mo、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量は、これらの元素全体の合計で0.1質量%以下であった。   In each of the copper alloys shown in Table 1, the remaining composition excluding the described element amount is Cu, and other impurity elements are Hf, Th, Li, Na, K, Sr, Pd, W, Si, Nb, The content of Al, V, Y, Mo, In, Ga, Ge, As, Sb, Bi, Te, B, and misch metal was 0.1% by mass or less in total of these elements.

また、Mn、Mg、Caのうち1種又は2種以上を含む場合は、合計量を0.0001〜1.0質量%の範囲とし、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を場合は、合計量を0.001〜1.0質量%の範囲とし、更に、これらの元素全体の合計量も1.0質量%以下とした。   Further, when one or more of Mn, Mg, and Ca are included, the total amount is in the range of 0.0001 to 1.0 mass%, and Zr, Ag, Cr, Cd, Be, Ti, Co, In the case of one or more of Ni, Au, and Pt, the total amount is in the range of 0.001 to 1.0% by mass, and the total amount of these elements is also 1.0% by mass or less. did.

このようにして得た銅合金板に対して、各例とも、銅合金板から圧延方向に対して直交する板幅方向を長手方向として試験片(試料)を切り出し、各試料の引張弾性率や均一伸びと全伸びとの比、あるいは引張強さ、硬さ、導電率、せん断面率などの特性を評価した。これらの結果を表2に各々示す。   With respect to the copper alloy plate thus obtained, in each example, a test piece (sample) was cut out from the copper alloy plate with the plate width direction orthogonal to the rolling direction as the longitudinal direction, and the tensile modulus of each sample and The ratio between uniform elongation and total elongation, or properties such as tensile strength, hardness, electrical conductivity, and shear surface ratio were evaluated. These results are shown in Table 2, respectively.

(せん断面率測定)
銅合金板のリード打ち抜きを模擬したプレス打ち抜きによって設けたリード断面のせん断面率(せん断面比率)によって、プレス打ち抜き性を評価する。このせん断面率が75%以下であれば、プレス打ち抜き性が良いと評価できる。このせん断面率による評価は、銅合金板にリードを打抜き、その際のばり高さを測定するプレス打ち抜き性の評価試験よりも、要求されるプレス打ち抜き性を正確に評価できる。
(Shear area ratio measurement)
The press punchability is evaluated based on the shear surface ratio (shear surface ratio) of the cross section of the lead provided by press punching simulating the lead punching of the copper alloy plate. If this shearing area ratio is 75% or less, it can be evaluated that the press punchability is good. The evaluation based on the shearing area ratio can more accurately evaluate the required press punchability than the press punchability evaluation test in which a lead is punched into a copper alloy plate and the flash height at that time is measured.

プレス打ち抜き試験は、打ち抜きプレス(クリアランス:5%)により、図1に示すように、幅1mm×長さ10mmのリードを、日本工作油製G−6316の潤滑油を用いて、銅合金板(試験片)1を、矢印で示す圧延方向に対して直交する板幅方向を長手方向とした打抜き穴2として順次打抜く。   In the press punching test, as shown in FIG. 1, by using a punching press (clearance: 5%), a lead having a width of 1 mm × a length of 10 mm was used with a copper alloy sheet (G-6316 made by Nippon Kogyo Oil) The test piece 1) is sequentially punched as a punching hole 2 whose longitudinal direction is the plate width direction orthogonal to the rolling direction indicated by the arrow.

これによって、打抜き穴2の中心を長さ方向に沿って切断し(切断箇所を破線3で示す)、打抜き穴2の切断面を矢印4の方向から観察し、光学式マイクロスコープを用いた切断面の表面写真から画像解析で求めた。せん断率は切断面におけるせん断面の面積比率(せん断面の面積/切断面の面積)であり、切断面の面積は銅合金板の板厚0.15mm×測定幅0.5mmとし、せん断面の面積は測定幅0.5mmの範囲内のせん断面の面積とした。1試料につき穴を3箇所打ち抜き、各穴で3箇所ずつ測定し(合計9箇所)、その平均値を求めた。   As a result, the center of the punched hole 2 is cut along the length direction (the cut portion is indicated by a broken line 3), the cut surface of the punched hole 2 is observed from the direction of the arrow 4 and cut using an optical microscope. It was obtained by image analysis from the surface photograph of the surface. The shear rate is the area ratio of the shear plane in the cut plane (the area of the shear plane / the area of the cut plane). The area of the cut plane is the thickness of the copper alloy sheet 0.15 mm × measured width 0.5 mm, The area was the area of the shear plane within the measurement width of 0.5 mm. Three holes were punched out for each sample, and three holes were measured for each hole (total of 9 points), and the average value was obtained.

(硬さ測定)
銅合金板試料の硬さ測定は、マイクロビッカース硬度計にて、0.5kgの荷重を加えて、試料の任意の3箇所について行い、硬さはそれらの平均値として算出した。
(Hardness measurement)
The hardness of the copper alloy plate sample was measured at an arbitrary three locations of the sample by applying a load of 0.5 kg with a micro Vickers hardness meter, and the hardness was calculated as an average value thereof.

(導電率測定)
銅合金板試料の導電率は、ミーリングにより、幅10mm×長さ300mm の短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。
(Conductivity measurement)
The electrical conductivity of the copper alloy sheet sample was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electric resistance with a double bridge type resistance measuring device.

表1、2から明らかな通り、本発明組成内の銅合金である発明例1〜11は、その成分組成が本発明範囲内であり、かつ、均質化熱処理、熱間圧延後の水冷開始温度、最終連続焼鈍時の通板速度などの製造条件が好ましい範囲内で製造されている。このため、発明例1〜11は、引張弾性率が120GPaを超えるとともに、均一伸び/全伸びが0.50未満である引張特性を有する。   As is apparent from Tables 1 and 2, Invention Examples 1 to 11, which are copper alloys within the composition of the present invention, have a component composition within the scope of the present invention, and water cooling start temperature after homogenization heat treatment and hot rolling. The production conditions such as the plate passing speed during the last continuous annealing are produced within a preferable range. For this reason, Invention Examples 1 to 11 have tensile properties in which the tensile modulus exceeds 120 GPa and the uniform elongation / total elongation is less than 0.50.

この結果、発明例1〜11は、引張強さが500MPa以上、硬さが150Hv以上の高強度な割りには、比較的高導電率であって、また、せん断面率が75%以下であり、プレス打ち抜き性にも優れている。   As a result, the inventive examples 1 to 11 have a relatively high electrical conductivity for a high strength of 500 MPa or higher and a hardness of 150 Hv or higher, and a shear surface area of 75% or lower. Also, it has excellent press punchability.

ただ、Feの含有量が下限近い発明例3や、Pの含有量が下限近い発明例5は、他の発明例1、2などに比して、強度が比較的低い。また、Feの含有量が上限近い発明例4や、Pの含有量が上限近い発明例6は、他の発明例1、2などに比して、せん断面率が比較的高く、導電率も比較的低い。   However, Invention Example 3 in which the Fe content is close to the lower limit and Invention Example 5 in which the P content is close to the lower limit are relatively low in strength compared to the other Invention Examples 1 and 2. Inventive Example 4 in which the Fe content is close to the upper limit, and Inventive Example 6 in which the P content is close to the upper limit, the shear surface ratio is relatively high and the conductivity is higher than those of the other Inventive Examples 1 and 2. Relatively low.

これに対して、比較例12〜17は、発明例1と同じ本発明組成内の銅合金であるものの、均質化熱処理、熱間圧延後の水冷開始温度、最終連続焼鈍時の通板速度などの製造条件が、好ましい範囲を外れる。このため、比較例12〜17は、引張弾性率が120GPa以下と低すぎるか、均一伸び/全伸びが0.50以上と高すぎる。この結果、比較例12〜17は、せん断面率が75%を超え、プレス打ち抜き性が著しく劣る。   On the other hand, Comparative Examples 12 to 17 are copper alloys within the same composition of the present invention as in Invention Example 1, but homogenization heat treatment, water cooling start temperature after hot rolling, plate passing speed during final continuous annealing, and the like. The production conditions are out of the preferred range. For this reason, Comparative Examples 12 to 17 have a tensile modulus of elasticity as low as 120 GPa or less, or uniform elongation / total elongation as too high as 0.50 or more. As a result, Comparative Examples 12 to 17 have a shear surface area exceeding 75%, and the press punchability is extremely inferior.

比較例12は均質化熱処理時の時間が短すぎる。比較例13は均質化熱処理時の温度が低すぎる。比較例14は熱間圧延後の水冷開始温度が高すぎる。比較例15は熱間圧延後の水冷開始温度が低すぎる。比較例16は中間焼鈍温度が高すぎる。比較例17は最終連続焼鈍時の通板速度が遅すぎる。   In Comparative Example 12, the time for the homogenization heat treatment is too short. In Comparative Example 13, the temperature during the homogenization heat treatment is too low. In Comparative Example 14, the water cooling start temperature after hot rolling is too high. In Comparative Example 15, the water cooling start temperature after hot rolling is too low. In Comparative Example 16, the intermediate annealing temperature is too high. In Comparative Example 17, the sheet passing speed during the last continuous annealing is too slow.

比較例18〜21の銅合金は、製造方法は好ましい条件内で製造されているものの、その成分組成が本発明範囲から外れる。このため、比較例18〜21は、引張弾性率が120GPa以下と低すぎるか、均一伸び/全伸びが0.50以上と高すぎる。この結果、比較例18〜21は、せん断面率が75%を超え、プレス打ち抜き性が著しく劣る。   Although the copper alloys of Comparative Examples 18 to 21 are manufactured under preferable conditions, the component composition is out of the scope of the present invention. For this reason, Comparative Examples 18 to 21 have a tensile modulus of elasticity as low as 120 GPa or less, or uniform elongation / total elongation as too high as 0.50 or more. As a result, Comparative Examples 18 to 21 have a shear surface ratio exceeding 75%, and the press punchability is extremely inferior.

比較例18はFeの含有量が下限0.01%を低めに外れている。このため、せん断面率が高く、プレス打ち抜き性が劣り、高強度化も達成できていない。   In Comparative Example 18, the Fe content is lower than the lower limit of 0.01%. For this reason, the shear surface ratio is high, the press punchability is inferior, and high strength cannot be achieved.

比較例19はFeの含有量が上限5.0%を高めに外れている。このため、せん断面率が高く、プレス打ち抜き性が劣り、高強度化も達成できていない。   In Comparative Example 19, the Fe content is higher than the upper limit of 5.0%. For this reason, the shear surface ratio is high, the press punchability is inferior, and high strength cannot be achieved.

比較例20の銅合金はPの含有量が下限0.01%を低めに外れている。このため、せん断面率が高く、プレス打ち抜き性が劣り、また高強度化も達成できていない。   In the copper alloy of Comparative Example 20, the P content is slightly lower than the lower limit of 0.01%. For this reason, the shear surface ratio is high, the press punchability is inferior, and the high strength cannot be achieved.

比較例21の銅合金はPの含有量が上限0.15%を高めに外れている。このため、熱間圧延中に割れが生じた。   In the copper alloy of Comparative Example 21, the P content is higher than the upper limit of 0.15%. For this reason, cracks occurred during hot rolling.

以上の結果から、高強度化させた上で、プレス打ち抜き性にも優れさせるための、本発明銅合金板の成分組成、引張弾性率、均一伸び/全伸びなどの引張特性の臨界的な意義および、このような引張特性を得るための好ましい製造条件の意義が裏付けられる。   From the above results, the critical significance of the tensile properties such as the component composition, tensile elastic modulus, uniform elongation / total elongation, etc. of the copper alloy sheet of the present invention for enhancing the strength and improving the press punchability. And the significance of preferable manufacturing conditions for obtaining such tensile properties is supported.

Figure 2008088499
Figure 2008088499

Figure 2008088499
Figure 2008088499

以上説明したように、本発明によれば、高強度化させた上で、プレス打ち抜き性にも優れ、これら特性を両立(兼備)させたCu−Fe−P系銅合金板を提供することができる。この結果、小型化及び軽量化した電気電子部品用として、半導体装置用リードフレーム以外にも、リードフレーム、コネクタ、端子、スイッチ、リレーなどの、高強度化と、厳しい曲げ加工性が要求される用途に適用することができる。   As described above, according to the present invention, it is possible to provide a Cu—Fe—P-based copper alloy sheet that is excellent in press punchability and has both of these characteristics (combined), while having high strength. it can. As a result, high-strength and severe bending workability is required for lead frames, connectors, terminals, switches, relays, etc., in addition to semiconductor device lead frames, for miniaturized and lightweight electrical and electronic components. It can be applied for use.

せん断面率の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of a shearing area rate.

符号の説明Explanation of symbols

1:銅合金板、2:打ち抜き穴、3:切断箇所 1: Copper alloy plate, 2: Punched hole, 3: Cut part

Claims (9)

質量%で、Fe:0.01〜0.50%、P:0.01〜0.15%を各々含有し、残部Cuおよび不可避的不純物からなり、圧延方向に対して直交する板幅方向を長手方向として採取した試験片の引張試験により求められる、引張弾性率が120GPaを超えるとともに、均一伸びと全伸びとの比、均一伸び/全伸びが0.50未満であることを特徴とするプレス打ち抜き性に優れた電気電子部品用銅合金板。   In mass%, Fe: 0.01 to 0.50%, P: 0.01 to 0.15%, each of which consists of the balance Cu and unavoidable impurities, the sheet width direction orthogonal to the rolling direction A press characterized by a tensile elastic modulus exceeding 120 GPa and a ratio of uniform elongation to total elongation, uniform elongation / total elongation of less than 0.50, which is obtained by a tensile test of a specimen taken as a longitudinal direction. Copper alloy sheet for electrical and electronic parts with excellent punchability. 前記銅合金板が、更に、質量%で、Sn:0.005〜5.0%を含有する請求項1に記載の電気電子部品用銅合金板。   The copper alloy plate according to claim 1, wherein the copper alloy plate further contains Sn: 0.005 to 5.0% by mass. 前記銅合金板が、更に、質量%で、Zn:0.005〜3.0%を含有する請求項1または2に記載の電気電子部品用銅合金板。   The copper alloy plate according to claim 1 or 2, wherein the copper alloy plate further contains Zn: 0.005 to 3.0% by mass. 前記銅合金板が、更に、S:20ppm以下、Pb:20ppm以下に各々規制した請求項1乃至3のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate for electric and electronic parts according to any one of claims 1 to 3, wherein the copper alloy plate is further regulated to S: 20 ppm or less and Pb: 20 ppm or less. 前記銅合金板の引張強度が500MPa以上、硬さが150Hv以上である請求項1乃至4のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate for electrical and electronic parts according to any one of claims 1 to 4, wherein the copper alloy plate has a tensile strength of 500 MPa or more and a hardness of 150 Hv or more. 前記銅合金板が、更に、質量%で、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%含有する請求項1乃至5のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate is further 0.001 to 1.0% in total of one or more of Zr, Ag, Cr, Cd, Be, Ti, Co, Ni, Au, and Pt in mass%. The copper alloy plate for electrical and electronic parts according to any one of claims 1 to 5. 前記銅合金板が、更に、質量%で、Mn、Mg、Caのうち1種又は2種以上を合計で0.0001〜1.0%と、Zr、Ag、Cr、Cd、Be、Ti、Co、Ni、Au、Ptのうち1種又は2種以上を合計で0.001〜1.0%とを各々含有するとともに、これら含有する元素の合計含有量を1.0%以下とした請求項1乃至6のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate is further, by mass%, one or more of Mn, Mg, and Ca in a total of 0.0001 to 1.0%, Zr, Ag, Cr, Cd, Be, Ti, One or two or more of Co, Ni, Au, and Pt are respectively added in a total amount of 0.001 to 1.0%, and the total content of these elements is 1.0% or less. Item 7. The copper alloy plate for electrical and electronic parts according to any one of Items 1 to 6. 前記銅合金板が、Hf、Th、Li、Na、K、Sr、Pd、W、Si、Nb、Al、V、Y、Mo、In、Ga、Ge、As、Sb、Bi、Te、B、ミッシュメタルの含有量を、これらの元素全体の合計で0.1質量%以下とした請求項1乃至7のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate is Hf, Th, Li, Na, K, Sr, Pd, W, Si, Nb, Al, V, Y, Mo, In, Ga, Ge, As, Sb, Bi, Te, B, The copper alloy plate for electrical and electronic parts according to any one of claims 1 to 7, wherein the content of misch metal is 0.1% by mass or less in total of all of these elements. 前記銅合金板が半導体リードフレーム用である請求項1乃至8のいずれか1項に記載の電気電子部品用銅合金板。   The copper alloy plate for electrical and electronic parts according to claim 1, wherein the copper alloy plate is for a semiconductor lead frame.
JP2006270918A 2006-10-02 2006-10-02 Copper alloy sheet for electrical and electronic parts with excellent press punchability Expired - Fee Related JP4157898B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2006270918A JP4157898B2 (en) 2006-10-02 2006-10-02 Copper alloy sheet for electrical and electronic parts with excellent press punchability
US12/441,904 US8063471B2 (en) 2006-10-02 2007-09-26 Copper alloy sheet for electric and electronic parts
CN200780036755.5A CN101522926B (en) 2006-10-02 2007-09-26 Copper alloy plate for electrical and electronic components
EP11004733.9A EP2388349B1 (en) 2006-10-02 2007-09-26 Copper alloy sheet for electric and electronic parts
EP11004731.3A EP2388347B1 (en) 2006-10-02 2007-09-26 Method for producing a copper alloy sheet for electric and electronic parts
KR1020097006693A KR101158113B1 (en) 2006-10-02 2007-09-26 Copper alloy plate for electrical and electronic components
PCT/JP2007/068670 WO2008041584A1 (en) 2006-10-02 2007-09-26 Copper alloy plate for electrical and electronic components
AT07807885T ATE518968T1 (en) 2006-10-02 2007-09-26 COPPER ALLOY PLATE FOR ELECTRICAL AND ELECTRONIC COMPONENTS
EP11004732.1A EP2388348B1 (en) 2006-10-02 2007-09-26 Copper alloy sheet for electric and electronic parts
KR1020127008888A KR20120041808A (en) 2006-10-02 2007-09-26 Copper alloy plate for electrical and electronic components
EP07807885A EP2088214B1 (en) 2006-10-02 2007-09-26 Copper alloy plate for electrical and electronic components
US13/282,915 US20120039742A1 (en) 2006-10-02 2011-10-27 Copper alloy sheet for electric and electronic parts
US13/282,823 US20120039741A1 (en) 2006-10-02 2011-10-27 Copper alloy sheet for electric and electronic parts
US13/283,012 US20120039743A1 (en) 2006-10-02 2011-10-27 Copper alloy sheet for electric and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270918A JP4157898B2 (en) 2006-10-02 2006-10-02 Copper alloy sheet for electrical and electronic parts with excellent press punchability

Publications (2)

Publication Number Publication Date
JP2008088499A true JP2008088499A (en) 2008-04-17
JP4157898B2 JP4157898B2 (en) 2008-10-01

Family

ID=39372957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270918A Expired - Fee Related JP4157898B2 (en) 2006-10-02 2006-10-02 Copper alloy sheet for electrical and electronic parts with excellent press punchability

Country Status (2)

Country Link
JP (1) JP4157898B2 (en)
CN (1) CN101522926B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013166454A1 (en) * 2012-05-03 2013-11-07 Sloan Valve Company Antimony-modified low-lead copper alloy
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
CN105886832A (en) * 2016-05-17 2016-08-24 安徽鑫科新材料股份有限公司 Bronze bar and production method thereof
KR20160117242A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Copper alloy sheet and press-molded product with the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5715399B2 (en) * 2010-12-08 2015-05-07 株式会社Shカッパープロダクツ Copper alloy material for electrical and electronic parts
CN102230107A (en) * 2011-06-28 2011-11-02 安徽精诚铜业股份有限公司 Diamagnetic clothing brass band and manufacturing process thereof
JP5481577B1 (en) * 2012-09-11 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier
WO2014115307A1 (en) * 2013-01-25 2014-07-31 三菱伸銅株式会社 Copper-alloy plate for terminal/connector material, and method for producing copper-alloy plate for terminal/connector material
JP6149528B2 (en) * 2013-06-17 2017-06-21 住友電気工業株式会社 Lead material
JP5690979B1 (en) 2013-07-10 2015-03-25 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP2015086452A (en) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy twisted wire, coated cable, wire harness and manufacturing method of copper alloy wire
JP6354275B2 (en) 2014-04-14 2018-07-11 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy stranded wire and automotive electric wire
CN103952587B (en) * 2014-04-30 2016-02-03 北京科技大学 A kind of complex phase Cu alloy material and preparation method thereof
JP6078024B2 (en) * 2014-06-13 2017-02-08 Jx金属株式会社 Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
JP5851000B1 (en) * 2014-08-22 2016-02-03 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
CN104250714B (en) * 2014-08-26 2016-04-20 无棣向上机械设计服务有限公司 A kind of low density shock resistance metallic substance and preparation method thereof
CN104152742B (en) * 2014-09-04 2016-04-20 安徽鑫科新材料股份有限公司 A kind of high-performance tin-phosphor bronze line and production method thereof
JP6031576B2 (en) * 2015-03-23 2016-11-24 株式会社神戸製鋼所 Copper alloy plate for heat dissipation parts
CN104726740A (en) * 2015-04-10 2015-06-24 苏州靖羽新材料有限公司 Electrical copper alloy material
JP6151813B1 (en) * 2016-03-23 2017-06-21 株式会社神戸製鋼所 Vapor chamber manufacturing method
JP6429824B2 (en) * 2016-03-31 2018-11-28 古河電気工業株式会社 Electronic device packaging tape
JP6172368B1 (en) * 2016-11-07 2017-08-02 住友電気工業株式会社 Covered wire, wire with terminal, copper alloy wire, and copper alloy twisted wire
CN113454252B (en) * 2019-03-28 2022-06-24 古河电气工业株式会社 Copper alloy strip, method for producing same, resistance material for resistor using same, and resistor
CN110306078B (en) * 2019-08-05 2020-10-23 成都云鑫有色金属有限公司 High-strength high-conductivity free-cutting C97 alloy material and preparation method thereof
CN114717445B (en) * 2022-05-10 2023-04-21 宁波金田铜业(集团)股份有限公司 Copper alloy and preparation method thereof
CN117403095A (en) * 2023-11-15 2024-01-16 铜陵学院 Copper alloy material containing rare earth Y and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041803B2 (en) * 2004-01-23 2008-02-06 株式会社神戸製鋼所 High strength and high conductivity copper alloy
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181606B2 (en) 2010-10-29 2015-11-10 Sloan Valve Company Low lead alloy
WO2013166454A1 (en) * 2012-05-03 2013-11-07 Sloan Valve Company Antimony-modified low-lead copper alloy
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
KR20160117242A (en) 2015-03-30 2016-10-10 제이엑스금속주식회사 Copper alloy sheet and press-molded product with the same
CN105886832A (en) * 2016-05-17 2016-08-24 安徽鑫科新材料股份有限公司 Bronze bar and production method thereof

Also Published As

Publication number Publication date
CN101522926B (en) 2011-12-21
CN101522926A (en) 2009-09-02
JP4157898B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4157898B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
EP2339039B1 (en) Copper alloy sheet for electric and electronic part
KR101027840B1 (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP6762438B2 (en) Resistor materials for resistors, their manufacturing methods, and resistors
KR102327539B1 (en) Copper alloy for electronic and electric equipment, copper alloy plate for electronic and electric equipment, electronic and electric equipment parts, terminal, bus bar, and movable piece for relay
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
WO2008041584A1 (en) Copper alloy plate for electrical and electronic components
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
KR102348993B1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP2006219733A (en) Copper alloy sheet for electric-electronic component having reduced anisotropy
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JP2007291518A (en) Cu-Fe-P-Mg BASED COPPER ALLOY, ITS PRODUCTION METHOD, AND CONDUCTIVE COMPONENT
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP2001049369A (en) Copper alloy for electronic material and its production
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP4177221B2 (en) Copper alloy for electronic equipment
JP2006299409A (en) High-strength/high-conductivity copper alloy having excellent workability, and copper alloy member using the same
JP4197717B2 (en) Copper alloy plate for electrical and electronic parts with excellent plating properties
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees