JP2006299409A - High-strength/high-conductivity copper alloy having excellent workability, and copper alloy member using the same - Google Patents

High-strength/high-conductivity copper alloy having excellent workability, and copper alloy member using the same Download PDF

Info

Publication number
JP2006299409A
JP2006299409A JP2006079032A JP2006079032A JP2006299409A JP 2006299409 A JP2006299409 A JP 2006299409A JP 2006079032 A JP2006079032 A JP 2006079032A JP 2006079032 A JP2006079032 A JP 2006079032A JP 2006299409 A JP2006299409 A JP 2006299409A
Authority
JP
Japan
Prior art keywords
heat treatment
copper alloy
less
rolling
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079032A
Other languages
Japanese (ja)
Other versions
JP5098096B2 (en
Inventor
Yuichi Kanemitsu
裕一 金光
Hiroto Narueda
宏人 成枝
Ryoji Kasahara
亮司 笠原
Takao Tomitani
隆夫 冨谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2006079032A priority Critical patent/JP5098096B2/en
Publication of JP2006299409A publication Critical patent/JP2006299409A/en
Application granted granted Critical
Publication of JP5098096B2 publication Critical patent/JP5098096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new copper alloy material in which strength, bending workability, press blanking properties, stress relaxation resistance and the anisotropy thereof are simultaneously improved to high levels while maintaining its high conductivity level of ≥70%IACS. <P>SOLUTION: The copper alloy has a composition comprising, by mass, 0.1 to 0.3% Fe, 0.05 to 0.3% Ni, 0.04 to 0.2% P and 0.03 to 0.15% Sn, and in which the total content of elements other than Cu and the above elements is ≤0.1%, and the balance Cu, and has a structure where, regarding crystal grains in the cross-section parallel to the rolling direction and the sheet thickness direction, the average aspect ratio (major axis/minor axis) A is ≥10, and the ratio between the maximum value A<SB>max</SB>and the minimum value A<SB>min</SB>of the aspect ratio, A<SB>max</SB>/A<SB>min</SB>is 1.0 to 3.0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車用コネクタ端子、バスバー、電気・電子部品の端子等の通電部材に適した銅合金であって、特に導電性、強度、曲げ加工性、プレス打抜き性を高いレベルでバランスさせた銅合金に関する。   The present invention is a copper alloy suitable for current-carrying members such as connector terminals for automobiles, bus bars, and terminals for electric / electronic parts, and particularly has a high level of balance between conductivity, strength, bending workability, and press punchability. It relates to a copper alloy.

従来、自動車用ジャンクションボックス(以下「J/B」)等、極間の狭いバスバーには、強度、プレス打抜き性、コストに優れる黄銅が使用されていた。ただし、J/Bの小型化・高密度化が進むに伴いバスバー通電部も細線化されるようになり、黄銅では導電率が低い(約28%IACS)ことによるジュール熱の発生等、諸問題が生じた。   Conventionally, brass having excellent strength, press punchability, and cost has been used for narrow bus bars such as a junction box for automobiles (hereinafter referred to as “J / B”). However, as the J / B becomes smaller and more dense, the current-carrying part of the bus bar becomes thinner, and brass has various problems such as generation of Joule heat due to low conductivity (about 28% IACS). Occurred.

このような問題に対応するため、導電率が45〜70%IACS程度で、中強度を有する合金、例えば、Cu−1Ni−0.5Sn−0.05P(C19020合金)、Cu−0.7Mg−0.005P(C18605合金)、Cu−2.2Fe−0.13Zn−0.03P(C19400合金)等の銅合金が開発され、使用されている。この他にも、特許文献1〜4に示されるような高導電型の高強度銅合金が提案されている。   In order to cope with such a problem, an alloy having a conductivity of about 45 to 70% IACS and a medium strength, such as Cu-1Ni-0.5Sn-0.05P (C19020 alloy), Cu-0.7Mg- Copper alloys such as 0.005P (C18605 alloy) and Cu-2.2Fe-0.13Zn-0.03P (C19400 alloy) have been developed and used. In addition, high-conductivity type high-strength copper alloys as disclosed in Patent Documents 1 to 4 have been proposed.

特開平10−130755号公報Japanese Patent Laid-Open No. 10-130755 特開平11−343527号公報JP-A-11-343527 特開2000−54043号公報JP 2000-54043 A 特開2000−239812号公報JP 2000-239812 A

しかしながら近年、自動車の軽量化・高性能化により電装品の回路数が増大する傾向が見られ、上記の既存銅合金(C19020合金、C18605合金、C19400合金)では導電率の面で対応できなくなってきている。   However, in recent years, there has been a tendency for the number of circuits of electrical components to increase due to weight reduction and high performance of automobiles, and the existing copper alloys (C19020 alloy, C18605 alloy, C19400 alloy) cannot be used in terms of conductivity. ing.

また、バスバーの低コスト化・軽量化・小型化等の目的から、中継端子レス化の技術が主流となっている。中継端子レス化とは、従来バスバーとヒューズを接続させるために使用していた中継端子を無くし、新たにバスバー側に圧接方式のメス端子機能(音叉端子)を持たせたものである。つまりこの音叉端子は、バスバー側のプレスで打抜かれた端面を直接ヒューズに接触させて電気的な接続を維持するものであるため、バスバーに使用される材料には、プレスで打抜かれた後の端面の形状が安定して良好であることが望まれる。この点、上記既存銅合金や特許文献1〜4の銅合金では、プレス打抜き性(端面の形状)について十分な配慮がなされていない。また、これらは導電性、強度、曲げ加工性のバランスにおいても、必ずしも満足できるものではない。
さらに、音叉タイプのJ/Bや端子に使用される場合には、耐応力緩和特性に優れ、かつ耐応力緩和特性の異方性が従来より小さいものが必要であることがわかってきた。
In addition, for the purpose of reducing the cost, weight, and size of bus bars, the technology of eliminating relay terminals has become the mainstream. The relay terminal-less means that the relay terminal that has been used to connect the bus bar and the fuse is eliminated, and a new press-fitting female terminal function (tuning fork terminal) is provided on the bus bar side. In other words, this tuning fork terminal maintains the electrical connection by directly contacting the end face punched out by the bus bar side press with the fuse, so that the material used for the bus bar is the one after being punched out by the press. It is desired that the shape of the end face is stable and good. In this regard, the existing copper alloys and the copper alloys of Patent Documents 1 to 4 do not give sufficient consideration to press punchability (end face shape). Further, these are not always satisfactory in terms of the balance of conductivity, strength and bending workability.
Furthermore, it has been found that when used for tuning fork type J / B and terminals, it is necessary to have a stress relaxation resistance superior and anisotropy smaller than that of the conventional stress relaxation characteristics.

本発明はこのような現状に鑑み、70%IACS以上の高い導電性レベルを有しながら、強度、曲げ加工性、プレス打抜き性、耐応力緩和特性およびその異方性を同時に改善した新たな銅合金材料を提供しようというものである。   In view of the current situation, the present invention is a new copper that has improved strength, bending workability, press punchability, stress relaxation resistance and anisotropy at the same time while having a high conductivity level of 70% IACS or higher. It is intended to provide alloy materials.

上記目的は、質量%で、Fe:0.1〜0.3%、Ni:0.05〜0.3%、P:0.04〜0.2%、Sn:0.03〜0.15%、Cuと上記元素とを除く元素の合計含有量:0.1%以下、残部Cuからなる組成を有し、導電率70%IACS以上の導電性、引張強さ400N/mm2以上の強度、板厚の1/2の曲げ半径で90°曲げを行った際に割れが生じない曲げ加工性、プレス打抜きした際の欠損率が5%以下となるプレス打抜き性を具備する銅合金によって達成される。 The purpose is mass%, Fe: 0.1-0.3%, Ni: 0.05-0.3%, P: 0.04-0.2%, Sn: 0.03-0.15. %, The total content of elements excluding Cu and the above elements: 0.1% or less, the composition consisting of the balance Cu, conductivity 70% IACS or more conductivity, tensile strength 400N / mm 2 or more strength Achieved by a copper alloy having a bending workability that does not cause cracking when bending at 90 ° with a bending radius that is a half of the plate thickness, and a press punching property that provides a defect rate of 5% or less when press punching. Is done.

ここで、代表的な組成として「質量%で、Fe:0.1〜0.3%、Ni:0.05〜0.3%、P:0.04〜0.2%、Sn:0.03〜0.15%、残部Cuおよび不可避的不純物(ただし、不可避的不純物の合計が0.1%以下に抑えられているもの)」が挙げられる。
引張強さは、長手方向が圧延方向に平行なJIS 5号引張試験片を用いてJIS Z2241に準拠した引張試験を行って求めた値が採用できる。
「板厚の1/2の曲げ半径で90°曲げを行った際に割れが生じない曲げ加工性」とは、長手方向が圧延方向に対し直角方向の曲げ試験片を用いてJIS H3110に準じた90°曲げ試験を行い、曲げ加工部の曲げ軸に垂直な断面を光学顕微鏡観察したとき、割れが観察されないことをいう。
Here, as a typical composition, “in mass%, Fe: 0.1 to 0.3%, Ni: 0.05 to 0.3%, P: 0.04 to 0.2%, Sn: 0.00. 03 to 0.15%, the balance Cu and unavoidable impurities (however, the total of unavoidable impurities is suppressed to 0.1% or less) ".
As the tensile strength, a value obtained by conducting a tensile test based on JIS Z2241 using a JIS No. 5 tensile test piece whose longitudinal direction is parallel to the rolling direction can be adopted.
“Bending workability that does not cause cracking when bending at 90 ° with a bending radius of ½ of the plate thickness” is in accordance with JIS H3110 using a bending specimen whose longitudinal direction is perpendicular to the rolling direction. When a 90 ° bending test was performed and a cross section perpendicular to the bending axis of the bent portion was observed with an optical microscope, no cracks were observed.

プレス打抜きした際の欠損率は、図1に示すとおりである。すなわち、図1にはプレス打抜き部分の断面写真を例示してある。欠損率とは、図1にAと示したような破断面に対応する部分の欠損の大きさ(幅)を板厚tで除した値をパーセントに直したものである。この値を求めるための打抜き試験は、クリアランス3〜10%(例えば8%)の条件で打ち抜いた場合の値が採用できる。ただし、
クリアランス=(パンチとダイの隙間)/(材料の板厚)×100
である。
The defect rate at the time of press punching is as shown in FIG. That is, FIG. 1 illustrates a cross-sectional photograph of the press punched portion. The defect rate is obtained by dividing the value obtained by dividing the size (width) of the defect corresponding to the fractured surface as indicated by A in FIG. In the punching test for obtaining this value, a value obtained by punching under the condition of a clearance of 3 to 10% (for example, 8%) can be adopted. However,
Clearance = (Gap between punch and die) / (Material thickness) x 100
It is.

また本発明の銅合金は、前記組成を有する熱間圧延材または冷間圧延後に熱処理された材料に対し、圧延率50%以上の仕上前冷間圧延、400〜525℃×5〜20hの仕上前熱処理、圧延率30%以上の仕上冷間圧延、250〜750℃×5sec〜10hの仕上熱処理を施して得られる金属組織をもつ、導電率70%IACS以上、引張強さ400N/mm2以上の銅合金として捉えることができる。
その金属組織は特に、熱間圧延材または冷間圧延後に熱処理された材料に対し「仕上前冷間圧延→仕上前熱処理→仕上冷間圧延→仕上熱処理」のプロセスにおいて、仕上前熱処理前後における硬さHV値の低下率が20%以下となり、仕上前熱処理後の金属組織において、再結晶組織の面積率が15%以下、かつその再結晶組織の平均結晶粒径が20μm以下となるように処理された組織として特徴付けられる。なお、再結晶組織以外の残部は圧延組織である。
Further, the copper alloy of the present invention is a hot rolled material having the above composition or a material heat-treated after cold rolling, cold rolling before finishing at a rolling rate of 50% or more, finishing at 400 to 525 ° C. × 5 to 20 h. Pre-heat treatment, finish cold rolling with a rolling rate of 30% or more, and having a metal structure obtained by finishing heat treatment at 250 to 750 ° C. × 5 sec to 10 h, conductivity of 70% IACS or more, tensile strength of 400 N / mm 2 or more It can be understood as a copper alloy.
The metal structure is particularly hard before and after the pre-finish heat treatment in the process of “pre-finish cold rolling → pre-finish heat treatment → finish cold rolling → finish heat treatment” for the hot-rolled material or the material heat-treated after cold rolling. The reduction rate of the HV value is 20% or less, the area ratio of the recrystallized structure is 15% or less, and the average crystal grain size of the recrystallized structure is 20 μm or less in the metal structure after the heat treatment before finishing. Characterized as an organized tissue. The balance other than the recrystallized structure is a rolled structure.

ここで、「仕上冷間圧延」は材料に板厚を決定づける最終の冷間圧延であり、「仕上熱処理」は仕上冷間圧延後に行われる最終の熱処理である。「仕上前冷間圧延」は仕上冷間圧延の前に行われる最後の冷間圧延であり、「仕上前熱処理」は仕上前冷間圧延と仕上冷間圧延の間で行われる熱処理である。「仕上前熱処理前後における硬さHV値の低下率が20%以下」とは、仕上前熱処理前の硬さをa(HV)、仕上前熱処理後の硬さをb(HV)とすると、
(a−b)/a×100≦20
となることを意味する。
Here, “finish cold rolling” is the final cold rolling that determines the sheet thickness of the material, and “finish heat treatment” is the final heat treatment performed after finish cold rolling. “Pre-finish cold rolling” is the last cold rolling performed before the finish cold rolling, and “pre-finish heat treatment” is a heat treatment performed between the pre-finish cold rolling and the finish cold rolling. “The decrease rate of the hardness HV value before and after the heat treatment before finishing is 20% or less” means that the hardness before the heat treatment before finishing is a (HV) and the hardness after the heat treatment before finishing is b (HV).
(Ab) / a × 100 ≦ 20
Means that

また金属組織的に見ると、本発明の銅合金は、圧延工程を経て製造された板状銅合金であって、圧延方向と板厚方向に平行な断面における結晶粒について平均アスペクト比Aが10以上、アスペクト比の最大値Amaxと最小値Aminの比Amax/Aminが1.0〜3.0である組織を有するものである。 From the viewpoint of metal structure, the copper alloy of the present invention is a plate-like copper alloy manufactured through a rolling process, and the average aspect ratio A is 10 for crystal grains in a cross section parallel to the rolling direction and the plate thickness direction. As described above, the structure has a structure in which the ratio A max / A min of the maximum value A max and the minimum value A min of the aspect ratio is 1.0 to 3.0.

結晶粒のアスペクト比は、前記断面に現れている結晶粒について、長径と短径の比をとったものである。長径は結晶粒の圧延方向の長さ、短径は結晶粒の板厚方向に最も長い部分の長さとして、顕微鏡観察画像上で測定される。測定手法としては、板厚方向に表面から1/8深さまでの表層部を除いた領域(以下「板厚中央領域」という)において、圧延方向100μm×板厚方向30μmの観察領域をランダムに5箇所選択し、各観察領域中に存在する結晶粒のうち、一部が観察領域の境界からはみ出している結晶粒を除いた各結晶粒について、その結晶粒のアスペクト比を測定する。平均アスペクト比Aは、5箇所の観察領域においてアスペクト比を測定した全粒子のアスペクト比を平均値を算出することによって定まる。アスペクト比の最大値Amaxと最小値Aminの比Amax/Aminは、5箇所の観察領域においてアスペクト比を測定した全粒子のうち、最もアスペクト比が大きい結晶粒のアスペクト比Amaxと、最もアスペクト比が小さい結晶粒のアスペクト比Aminの比を採ることによって定まる。 The aspect ratio of the crystal grains is the ratio of the major axis to the minor axis for the crystal grains appearing in the cross section. The major axis is measured on the microscope observation image as the length of the crystal grain in the rolling direction and the minor axis is the length of the longest part in the thickness direction of the crystal grain. As a measuring method, in an area excluding the surface layer portion from the surface to 1/8 depth in the sheet thickness direction (hereinafter referred to as “sheet thickness central area”), an observation area of 100 μm in the rolling direction × 30 μm in the sheet thickness direction is randomly selected. A part is selected, and the aspect ratio of each crystal grain is measured for each crystal grain excluding the crystal grains that partially protrude from the boundary of the observation area among the crystal grains existing in each observation area. The average aspect ratio A is determined by calculating the average value of the aspect ratios of all particles whose aspect ratios were measured in five observation regions. The ratio A max / A min between the maximum value A max and the minimum value A min of the aspect ratio is the aspect ratio A max of the crystal grains having the largest aspect ratio among all the grains whose aspect ratios were measured in the five observation regions. It is determined by taking the ratio of the aspect ratio A min of the crystal grains having the smallest aspect ratio.

さらに本発明では、上記銅合金を用いた端子またはバスバーが提供される。   Furthermore, in this invention, the terminal or bus bar using the said copper alloy is provided.

本発明によれば、70%IACS以上の高い導電性と400N/mm2以上の高い強度を有し、曲げ加工性とプレス打抜き性が良好で、かつ耐応力緩和特性に優れ、その異方性の少ない銅合金が提供可能になった。したがって本発明は、J/Bに代表される自動車用バスバーや、端子など、各種電気・電子部品用通電材料として極めて優れたものである。 According to the present invention, it has a high conductivity of 70% IACS or more and a high strength of 400 N / mm 2 or more, a good bending workability and press punching property, and excellent stress relaxation resistance, and its anisotropy. A copper alloy with a small amount can be provided. Therefore, the present invention is extremely excellent as a current-carrying material for various electric / electronic parts such as automobile bus bars represented by J / B and terminals.

発明者らの検討によれば、本発明の目的に叶う銅合金は、Cuマトリクス中においてP化合物を形成する金属元素(Fe、Ni)を適量含有したCu−Fe−Ni−Sn−P系合金において達成できることがわかった。このような時効析出型の銅合金は通常「冷間圧延→熱処理」を1回または2回以上行う工程で製造される。ただし、単に「冷間圧延→熱処理」の工程を経るだけでは導電性、強度、曲げ加工性、プレス打抜き性を同時に改善する組織状態は得られない。それには工夫が必要である。   According to the study by the inventors, the copper alloy that fulfills the object of the present invention is a Cu—Fe—Ni—Sn—P alloy containing an appropriate amount of metal elements (Fe, Ni) that form a P compound in a Cu matrix. Was found to be achievable. Such an aging precipitation type copper alloy is usually produced by a process of performing “cold rolling → heat treatment” once or twice or more. However, a structure state that simultaneously improves the conductivity, strength, bending workability, and press punchability cannot be obtained simply by going through the process of “cold rolling → heat treatment”. It requires some ingenuity.

発明者らは詳細な研究により、Cu−Fe−Ni−Sn−P系合金材料を「熱間圧延→(冷間圧延→熱処理;必要に応じて1回以上)→仕上前冷間圧延→時効処理を兼ねた仕上前熱処理→仕上冷間圧延→仕上熱処理」のプロセスで製造するに際し、その仕上前熱処理後の組織状態を適切にコントロールすることにより、上記特性の同時付与が可能になることを見出した。すなわち、
i) 仕上前熱処理前後における硬さHV値の低下率を20%以下に抑えること、
ii) 仕上前熱処理後の金属組織において、再結晶組織の面積率が15%以下、かつその再結晶組織の平均結晶粒径が20μm以下となるようにすること、
が極めて有効であることが明らかになった。
The inventors have studied Cu—Fe—Ni—Sn—P based alloy materials by “hot rolling → (cold rolling → heat treatment; at least once if necessary) → cold rolling before finishing → aging”. When manufacturing by the process of pre-finish heat treatment → finish cold rolling → finish heat treatment that also serves as a treatment, it is possible to simultaneously give the above characteristics by appropriately controlling the structure state after the pre-finish heat treatment I found it. That is,
i) To suppress the decrease rate of the hardness HV value before and after the heat treatment before finishing to 20% or less,
ii) In the metal structure after heat treatment before finishing, the area ratio of the recrystallized structure is 15% or less, and the average crystal grain size of the recrystallized structure is 20 μm or less,
Was found to be extremely effective.

このような処理を経て製造された銅合金において上記特性が高レベルにバランスされるメカニズムについては現時点で未解明であるが、上記i)ii)を外れる条件で製造されたものとは明らかに特性が異なることから、工程途中の上記i)ii)の処理により何らかの特徴ある組織状態が実現されているものと考えられる。   The mechanism by which the above properties are balanced at a high level in copper alloys manufactured through such treatment is not yet elucidated, but it is clearly different from those manufactured under conditions that deviate from i) ii) above. Therefore, it is considered that some characteristic organization state is realized by the process i) ii) in the middle of the process.

本発明合金の化学組成について説明する。
〔Fe〕
Feは、PとFe−P系化合物形成し、またはNi、PとFe−Ni−P系化合物を形成して、導電率、強度、耐熱性の向上に寄与する。ただし、Fe含有量が0.1質量%未満ではその効果は十分でなく、0.3質量%を超えると導電率の低下が大きくなり目標とする値が得られない。したがってFe含有量は0.1〜0.3質量%とする必要がある。0.15〜0.25質量%が一層好ましい。
The chemical composition of the alloy of the present invention will be described.
[Fe]
Fe forms an Fe—P-based compound with P, or forms an Ni—P and Fe—Ni—P-based compound, thereby contributing to improvement in conductivity, strength, and heat resistance. However, when the Fe content is less than 0.1% by mass, the effect is not sufficient. When the Fe content exceeds 0.3% by mass, the decrease in conductivity becomes large and the target value cannot be obtained. Therefore, the Fe content needs to be 0.1 to 0.3% by mass. 0.15-0.25 mass% is still more preferable.

〔Ni〕
Niは、Fe、PとFe−Ni−P系化合物を形成して導電率、強度、耐熱性の向上に寄与する他、固溶強化により強度向上に寄与する。ただし、Ni含有量が0.05質量%未満ではその効果が十分でなく、0.3質量%を超えると導電率の低下が大きくなり目標とする値が得られない。したがってNi含有量は0.05〜0.3質量%とする必要がある。0.10〜0.20質量%が一層好ましい。
[Ni]
Ni forms Fe, P and Fe—Ni—P-based compounds to contribute to the improvement of conductivity, strength and heat resistance, and also contributes to the improvement of strength by solid solution strengthening. However, if the Ni content is less than 0.05% by mass, the effect is not sufficient, and if it exceeds 0.3% by mass, the decrease in the conductivity becomes large and the target value cannot be obtained. Therefore, the Ni content needs to be 0.05 to 0.3% by mass. 0.10 to 0.20% by mass is more preferable.

〔P〕
Pは、FeとFe−P系化合物を形成し、またはFe、NiとFe−Ni−P系化合物を形成して、導電率、強度、耐熱性の向上に寄与する。ただし、P含有量が0.04質量%未満では化合物の形成が不十分となり、十分な効果が得られない。0.2質量%を超えると導電率の低下が大きくなるばかりでなく、鋳造欠陥や熱間割れの発生等、製造面での問題が顕在化する。したがってP含有量は0.05〜0.2質量%とする必要がある。0.06〜0.12質量%が一層好ましい。
[P]
P forms an Fe—P compound with Fe, or forms an Fe—Ni—P compound with Fe, Ni, and contributes to improvement in conductivity, strength, and heat resistance. However, if the P content is less than 0.04 mass%, the formation of the compound becomes insufficient, and a sufficient effect cannot be obtained. If it exceeds 0.2% by mass, not only will the decrease in conductivity increase, but problems in production such as the occurrence of casting defects and hot cracks will become apparent. Therefore, the P content needs to be 0.05 to 0.2% by mass. 0.06 to 0.12% by mass is more preferable.

〔Sn〕
Snは、Cuマトリックス中に固溶して強度向上に寄与する。ただし、Sn含有量が0.03質量%未満ではその効果が不十分であり、0.15質量%を超えると導電率の低下が大きく目標とする特性を得られない。このため、Sn含有量は0.03〜0.15質量%とする必要がある。0.05〜0.10質量%が一層好ましい。
[Sn]
Sn is dissolved in the Cu matrix and contributes to strength improvement. However, if the Sn content is less than 0.03% by mass, the effect is insufficient, and if it exceeds 0.15% by mass, the decrease in conductivity is large and the target characteristics cannot be obtained. For this reason, Sn content needs to be 0.03-0.15 mass%. 0.05-0.10 mass% is still more preferable.

〔その他の元素〕
本発明では、合金の導電性や、曲げ加工性を低下させる要因をできるだけ排除することが好ましい。そのために、Cu、Fe、Ni、Sn、P以外の元素の合計含有量(不可避的不純物を含む)は0.1質量%以下に抑えることが望ましい。具体的には、Zn、Ti、Al、B、As、Sb、Ag、Pb、Be、Zr、Si、Cr、Mn、Inの含有量を調べ、これらの合計が0.1質量%以下に低減されていれば、これら以外の元素を特段添加しない限りCu、Fe、Ni、Sn、P以外の元素の合計含有量(不可避的不純物を含む)が0.1質量%以下であるとみなして構わない。Cu、Fe、Ni、Sn、P以外の元素の合計含有量(不可避的不純物を含む)は0.05質量%以下であることが一層好ましい。
[Other elements]
In the present invention, it is preferable to eliminate as much as possible the factors that reduce the conductivity and bending workability of the alloy. Therefore, the total content (including inevitable impurities) of elements other than Cu, Fe, Ni, Sn, and P is desirably suppressed to 0.1% by mass or less. Specifically, the contents of Zn, Ti, Al, B, As, Sb, Ag, Pb, Be, Zr, Si, Cr, Mn, and In were examined, and the total of these was reduced to 0.1% by mass or less. If not, unless the elements other than these are added, the total content of elements other than Cu, Fe, Ni, Sn, and P (including inevitable impurities) may be considered to be 0.1% by mass or less. Absent. The total content (including inevitable impurities) of elements other than Cu, Fe, Ni, Sn, and P is more preferably 0.05% by mass or less.

次に、本発明の銅合金の特性について説明する。
〔導電率〕
電気・電子部品(特にバスバー)の小型化・高密度化に伴う発熱量増加に対応するため、導電率は70%IACS以上あることが望ましく、73%IACS以上、さらには75%IACS以上であることが一層好ましい。
Next, the characteristics of the copper alloy of the present invention will be described.
〔conductivity〕
The electrical conductivity is preferably 70% IACS or more, more preferably 73% IACS or more, and even 75% IACS or more in order to cope with an increase in the amount of heat generated due to miniaturization and high density of electric / electronic parts (especially bus bars). More preferably.

〔引張強さ〕
中継端子レス化に伴う音叉端子の導入により、音叉端子とヒューズ間で安定した接圧を維持するために、バスバーに使用される銅合金には一定以上の強度が必要である。具体的には400N/mm2以上、より好ましくは450N/mm2以上であることが望まれる。
〔Tensile strength〕
In order to maintain a stable contact pressure between the tuning fork terminal and the fuse due to the introduction of the tuning fork terminal accompanying the elimination of the relay terminal, the copper alloy used for the bus bar needs to have a certain strength or more. Specifically, 400 N / mm 2 or more, and more preferably is desired to be at 450 N / mm 2 or more.

〔曲げ加工性〕
端子やバスバー等に代表される電気・電子部品は、通常銅または銅合金の板条をプレスで打抜いた後、曲げ加工等を施して最終製品に成形する。したがって、曲げ加工によって割れが生じると製品として重大な欠陥を生むことになるため、当該素材には良好な曲げ加工性が要求される。具体的には板厚の1/2の曲げ半径で90°曲げした際に割れが生じなければ実用に供することができるが、昨今の通電部品に対する厳しい要求に余裕を持って対処するためには、曲げ半径0で割れない優れた曲げ加工性を具備することが一層好ましい。
[Bending workability]
Electrical / electronic parts such as terminals and bus bars are usually formed into final products by punching copper or copper alloy strips with a press and then bending them. Therefore, since a serious defect is produced as a product when a crack is generated by bending, the material is required to have good bending workability. Specifically, if cracking does not occur when bending 90 ° with a bending radius of 1/2 the plate thickness, it can be put to practical use. It is more preferable to have excellent bending workability that does not break at a bending radius of 0.

〔プレス打抜き性〕
良好なプレス打抜き性を有するためには銅合金をプレスで打抜いた際、打抜いた面の断面形状において破断部分の前述した欠損率が5%以下であればよく、3%以下であることが一層好ましい。この欠損率が5%を超えるような材料だと、例えばバスバーの音叉端子用として使用される場合に、ヒューズとの接触部分となる端面の形状が安定しないため、電気的な接続に信頼性が得られず、J/B等の性能に悪影響を及ぼす。すなわち、プレス打抜き面の平坦性が重要である。また欠損率が5%を超えるような材料だと、打抜きカスの量も多くなり、金型のメンテナンス回数が増える、金型の寿命が短くなるなどのコスト面での問題も顕在化してくる。なお、この欠損率は一般的なクリアランス3〜10%の打抜きにおいて調べることができ、特にクリアランス8%の条件で試験することができる。
[Press punchability]
In order to have good press punchability, when the copper alloy is punched with a press, the above-mentioned defect rate of the fractured portion in the cross-sectional shape of the punched surface may be 5% or less, and 3% or less. Is more preferable. If the material has a defect rate exceeding 5%, for example, when used for a tuning fork terminal of a bus bar, the shape of the end surface that will be in contact with the fuse is not stable, so the electrical connection is reliable. It is not obtained and the performance of J / B etc. is adversely affected. That is, the flatness of the press punched surface is important. Further, if the material has a defect rate exceeding 5%, the amount of punching waste increases, the number of die maintenance increases, and the cost problems such as shortening the life of the die become obvious. This defect rate can be examined by punching with a general clearance of 3 to 10%, and can be particularly tested under the condition of a clearance of 8%.

〔結晶粒のアスペクト比〕
打抜き性の改善のためには、圧延方向と板厚方向に平行な断面における結晶粒の平均アスペクト比を10以上、好ましくは15以上にコントロールすることが極めて有効である。応力緩和特性の異方性を低減するためには、前記アスペクト比の最大と最小の比を1.0〜3.0、好ましくは1.0〜2.0、より好ましくは1.0〜1.5にすることが極めて有効である。
[Aspect ratio of crystal grains]
In order to improve the punchability, it is extremely effective to control the average aspect ratio of crystal grains in a cross section parallel to the rolling direction and the plate thickness direction to 10 or more, preferably 15 or more. In order to reduce the anisotropy of the stress relaxation characteristics, the maximum and minimum ratio of the aspect ratio is 1.0 to 3.0, preferably 1.0 to 2.0, more preferably 1.0 to 1. .5 is extremely effective.

以上のような特性を有する本発明の銅合金は、一般的な銅合金の溶製法にしたがって鋳片を製造し、以下のような工程を経て製造することができる。
〔熱間圧延〕
鋳片を800〜950℃×1〜10h保持したのち抽出して、例えば50〜95%の圧延率で熱間圧延し、その後、急冷(例えば水中浸漬等)を行う方法で実施できる。仕上温度(最終パス終了直後の温度)は500℃以上を維持することが望ましい。
The copper alloy of this invention which has the above characteristics can manufacture a slab according to the melting method of a general copper alloy, and can manufacture it through the following processes.
(Hot rolling)
The slab can be extracted after being held at 800 to 950 ° C. for 1 to 10 hours, hot rolled at a rolling rate of, for example, 50 to 95%, and then rapidly cooled (for example, immersed in water). It is desirable to maintain the finishing temperature (the temperature immediately after the end of the final pass) at 500 ° C. or higher.

〔中間での冷間圧延および熱処理〕
その後、以下の仕上前冷間圧延に供してもよいが、所定の板厚を達成する上で必要があれば中間工程として「冷間圧延→熱処理」の工程を1回または2回以上行ったのち仕上前冷間圧延に供することができる。この場合も、各中間での冷間圧延および熱処理では、それぞれ後述の仕上前冷間圧延および仕上前熱処理と同様の配慮をもって行うことが好ましい。
[Cold rolling and heat treatment in the middle]
Thereafter, it may be subjected to the following pre-finishing cold rolling, but if necessary to achieve a predetermined plate thickness, the process of “cold rolling → heat treatment” was performed once or twice or more as an intermediate step. It can be used for cold rolling before finishing. Also in this case, it is preferable to perform the cold rolling and the heat treatment in the middle with the same considerations as the cold rolling before finishing and the heat treatment before finishing, which will be described later.

〔仕上前冷間圧延〕
仕上前冷間圧延では、銅合金中に析出物生成の起点となる格子欠陥を導入する。そのためには50%以上の圧延率を確保することが望ましい。それより圧延率が小さいと続く仕上前熱処理において析出物の生成が十分に促進されず、その結果最終的に所望の導電率を得ることが困難となる。60%以上の圧延率とすることが一層好ましい。圧延率の上限については特に規定する必要はなく、設備面での制約において許容される範囲で行えばよいが、通常、90%以下の範囲で良好な結果が得られる。
[Cold rolling before finishing]
In the cold rolling before finishing, lattice defects are introduced into the copper alloy as starting points for precipitate formation. For that purpose, it is desirable to secure a rolling rate of 50% or more. If the rolling rate is smaller than that, the formation of precipitates is not sufficiently accelerated in the subsequent heat treatment before finishing, and as a result, it becomes difficult to finally obtain a desired conductivity. More preferably, the rolling rate is 60% or more. The upper limit of the rolling rate does not need to be specified in particular, and may be performed within a range that is allowable in terms of facilities, but usually good results are obtained within a range of 90% or less.

〔仕上前熱処理〕
この工程では、時効析出を促進させ、本発明の目的とする各特性を付与するための基本的な組織状態を形成する。
発明者らは鋭意研究を重ねた結果、仕上前熱処理後の硬さおよび組織形態とプレス打抜き性に強い相関があることを見出した。すなわち仕上前熱処理前後での硬さの低下率が初期硬さの20%未満であり、かつ仕上前熱処理後の材料における金属組織のうち、再結晶組織の面積率が全体の15%未満であり、さらにその再結晶組織の部分における平均結晶粒径が20μm以下であるとき、その材料に仕上冷間圧延および仕上熱処理を施して得た最終製品において、優れたプレス打抜き性(破断部分の欠損率5%以下)が実現できるのである。仕上前熱処理前後の硬さの低下率は10%以下であることが一層好ましい。また、仕上前熱処理後の再結晶組織における平均結晶粒径は10μmであることが一層好ましい。その再結晶組織の面積率は10%以下であることがより好ましく、7%以下さらには5%以下であることが一層好ましい。
[Heat treatment before finishing]
In this step, aging precipitation is promoted, and a basic structure state for imparting the respective characteristics targeted by the present invention is formed.
As a result of intensive studies, the inventors have found that there is a strong correlation between the hardness and structure after heat treatment before finishing and the press punchability. That is, the rate of decrease in hardness before and after the heat treatment before finishing is less than 20% of the initial hardness, and the area ratio of the recrystallized structure is less than 15% of the entire metal structure in the material after the heat treatment before finishing. In addition, when the average crystal grain size in the recrystallized structure portion is 20 μm or less, excellent press punchability (breakage ratio of fracture portion) in the final product obtained by subjecting the material to finish cold rolling and finish heat treatment (5% or less) can be realized. More preferably, the rate of decrease in hardness before and after the heat treatment before finishing is 10% or less. The average crystal grain size in the recrystallized structure after the heat treatment before finishing is more preferably 10 μm. The area ratio of the recrystallized structure is more preferably 10% or less, and further preferably 7% or less, and further preferably 5% or less.

このような硬さの低下率や再結晶組織の状態は、仕上前冷間圧延の圧延率と、仕上前熱処理の温度、時間によってコントロールすることができる。具体的には、50%以上の圧延率で仕上前冷間圧延を行った材料に対し、例えば400〜525℃×5〜20hの範囲で仕上前熱処理を施せばよい。温度が400℃未満または時間が5h未満では、上記所望の導電率、および曲げ加工性の両立が難しくなる。一方、温度が525℃を超えると硬さの低下が生じるとともに、再結晶組織の結晶粒粗大化および再結晶組織の面積率増大を招きやすく、好ましくない。この場合、結果としてプレス打抜き性が低下する。さらに、熱処理時間が20hを超えると、再結晶組織の結晶粒が粗大化してプレス打抜き性の低下を招きやすい。仕上前熱処理の温度は425〜475℃の範囲とすることが一層好ましく、時間は6〜10hとすることが一層好ましい。   Such a reduction rate of hardness and the state of the recrystallized structure can be controlled by the rolling rate of cold rolling before finishing, the temperature and time of heat treatment before finishing. Specifically, pre-finish heat treatment may be performed, for example, in a range of 400 to 525 ° C. × 5 to 20 h for a material that has been cold-rolled before finishing at a rolling rate of 50% or more. When the temperature is less than 400 ° C. or the time is less than 5 hours, it is difficult to achieve both the desired conductivity and the bending workability. On the other hand, when the temperature exceeds 525 ° C., the hardness is lowered, and the crystal grains of the recrystallized structure are coarsened and the area ratio of the recrystallized structure is easily increased. In this case, the press punchability is lowered as a result. Furthermore, when the heat treatment time exceeds 20 h, the crystal grains of the recrystallized structure are coarsened and the press punchability is liable to be reduced. The temperature of the heat treatment before finishing is more preferably in the range of 425 to 475 ° C., and the time is more preferably 6 to 10 hours.

〔仕上冷間圧延〕
仕上冷間圧延では加工硬化によって強度を向上させるため、30%以上の圧延率を確保することが好ましく、50%以上とすることが一層好ましい。ただし、過剰に高い圧延率とすることは不経済である。通常、80%以下の圧延率で良好な結果が得られる。
[Finish cold rolling]
In finish cold rolling, in order to improve the strength by work hardening, it is preferable to secure a rolling rate of 30% or more, and more preferably 50% or more. However, an excessively high rolling rate is uneconomical. Usually, good results are obtained at a rolling rate of 80% or less.

〔仕上熱処理〕
仕上熱処理では歪取りを主目的とし、延性の回復つまり曲げ加工性の向上を狙う。250〜750℃×5sec〜10hの範囲で実施できるが、あまり高温、長時間の条件を採用することは不経済となり好ましくない。一般的には350〜600℃×30sec〜2hの範囲で良好な結果が得られる。
[Finish heat treatment]
In finishing heat treatment, the main purpose is to remove strain and aim to restore ductility, that is, improve bending workability. Although it can be carried out in the range of 250 to 750 ° C. × 5 sec to 10 h, it is not preferable to employ conditions of a very high temperature and a long time because it is uneconomical. In general, good results are obtained in the range of 350 to 600 ° C. × 30 sec to 2 h.

表1に示す組成の銅合金を、高周波溶解炉を用いて溶解し、カーボン鋳型中へ鋳込んで40×40×150mmのインゴットを作製した。鋳造はAr雰囲気下で行った。次いで、インゴットから切り出した鋳片を、800〜950℃で30min保持した後に、圧延率63%で熱間圧延し、水中浸漬して冷却した。冷却後、表面の酸化物を除去した後に圧延率66%で仕上前冷間圧延を行い、次いで、480℃×8hの仕上前熱処理を行った。さらに圧延率60%で仕上冷間圧延を行い、その後、400℃×1hの歪取り焼鈍として仕上熱処理を実施して板厚0.64mmの供試材とした。製造条件はいずれも適正条件である。なお、比較例12を除き、Zn、Ti、Al、B、As、Sb、Ag、Pb、Be、Zr、Si、Cr、Mn、Inの合計含有量は0.1質量%以下に抑えられている。   The copper alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace and cast into a carbon mold to produce a 40 × 40 × 150 mm ingot. Casting was performed in an Ar atmosphere. Next, the slab cut out from the ingot was held at 800 to 950 ° C. for 30 minutes, and then hot-rolled at a rolling rate of 63%, immersed in water and cooled. After cooling, the surface oxide was removed, and then cold rolling before finishing was performed at a rolling rate of 66%, followed by heat treatment before finishing at 480 ° C. × 8 h. Further, finish cold rolling was performed at a rolling rate of 60%, and then finish heat treatment was performed as strain relief annealing at 400 ° C. × 1 h to obtain a specimen having a thickness of 0.64 mm. The manufacturing conditions are all appropriate conditions. Except for Comparative Example 12, the total content of Zn, Ti, Al, B, As, Sb, Ag, Pb, Be, Zr, Si, Cr, Mn, and In is suppressed to 0.1% by mass or less. Yes.

得られた銅合金について、引張強さ、導電率、曲げ加工性、プレス打抜き性、結晶粒の平均アスペクト比、アスペクト比の最大値と最小値の比、応力緩和特性を調べた。
引張強さは、JIS Z2201の5号試験片を用いて、JIS Z2241に基づいて圧延方向に平行方向の引張試験を行って求めた。
導電率は、JIS H0505に基づいて測定した。
曲げ加工性は、JIS H3110に準拠して、長手方向が圧延方向に対し直角方向となる幅10mm×長さ60mmの試験片を用いて、曲げ半径Rを板厚の1/2とする90°曲げ試験を行い、加工後の曲げ部について曲げ軸に垂直な断面を金属顕微鏡で観察して割れの有無を調べ、割れが認められなかったものを○(良好)、割れが認められたものを×(不良)として評価した。
The obtained copper alloy was examined for tensile strength, electrical conductivity, bending workability, press punchability, average aspect ratio of crystal grains, maximum / minimum aspect ratio, and stress relaxation characteristics.
The tensile strength was obtained by conducting a tensile test parallel to the rolling direction based on JIS Z2241, using a JIS Z2201 No. 5 test piece.
The conductivity was measured based on JIS H0505.
The bending workability is 90 ° in which the bending radius R is ½ of the plate thickness using a test piece having a width of 10 mm and a length of 60 mm in which the longitudinal direction is perpendicular to the rolling direction in accordance with JIS H3110. Bending test was performed, and the cross section perpendicular to the bending axis of the bent part after processing was observed with a metal microscope to check for cracks, where no cracks were observed (good), cracks were observed It evaluated as x (defect).

プレス打抜き性の試験は、JCBA(日本伸銅協会)の銅及び銅合金薄板条のせん断試験方法に準拠して行った。供試材に対してクリアランスを8%とし、抜き穴の断面形状を図1に示すように観察して、破断面部分の欠損率を前述の手法で測定した。なお、欠損率の測定にはN=20の平均値を用いた。   The press punchability test was performed in accordance with the shear test method for copper and copper alloy sheet strips of JCBA (Japan Copper and Brass Association). The clearance was set to 8% with respect to the test material, the cross-sectional shape of the punched hole was observed as shown in FIG. Note that an average value of N = 20 was used for the measurement of the defect rate.

仕上熱処理後の銅合金板材について、圧延方向と板厚方向に平行な断面が露出するように銅合金板材を切断した後、その断面を研磨、エッチングしてSEM(走査型電子顕微鏡)で結晶粒を観察し、結晶粒のアスペクト比を測定した。測定は前述のように板厚中央領域に5箇所の観察領域を設け、前述した手法により平均アスペクト比A、およびアスペクト比の最大値Amaxと最小値Aminの比Amax/Aminを求めた。 For the copper alloy sheet after the finish heat treatment, the copper alloy sheet is cut so that a section parallel to the rolling direction and the sheet thickness direction is exposed, and then the section is polished and etched, and crystal grains are obtained by SEM (scanning electron microscope). And the aspect ratio of the crystal grains was measured. As described above, five observation regions are provided in the central region of the plate thickness as described above, and the average aspect ratio A and the ratio A max / A min between the maximum value A max and the minimum value A min of the aspect ratio are obtained by the method described above. It was.

応力緩和特性は以下のようにして調べた。仕上熱処理後の銅合金板材から図2に示すような形状の音叉端子をプレス打抜きにより作製した。その際、各銅合金板材につき、図2(a)に示す長手方向が圧延方向に平行方向となる音叉端子と、同長手方向が圧延方向に直角方向となる音叉端子を要しした。各音叉端子のギャップに銅合金製のタブを挿入した状態で大気中150℃×500hの加熱試験に供し、加熱試験後にタブを取り去った後のギャップの間隔が、元のギャップの間隔(初期間隔)と比べ、どの程度変化しているかによって応力緩和率を求めることによって調べた。図2(b)は加熱試験前の状態であり、音叉端子の初期寸法の概略を示してある。初期間隔は0.7mmである。図2(c)は加熱試験に供するためにタブを挿入した状態である。挿入したタブの厚さは0.8mmである。図2(d)は加熱試験終了後にタブを取り除いたときの状態である。応力緩和率R(%)は下記の式で定義される。
応力緩和率R(%)=(Z−X)/(Y−X)×100
ここで、X:加熱試験前のギャップの間隔=0.7mm
Y:挿入タブ厚=0.8mm
Z:加熱試験後のギャップの間隔(mm)
なお、図2(c)、(d)において、挿入タブ厚および加熱試験後のギャップの間隔Zは誇張して描いてある。
The stress relaxation characteristics were examined as follows. A tuning fork terminal having a shape as shown in FIG. 2 was produced by press punching from the copper alloy sheet after the finish heat treatment. At that time, for each copper alloy plate material, a tuning fork terminal in which the longitudinal direction shown in FIG. 2A was parallel to the rolling direction and a tuning fork terminal in which the longitudinal direction was perpendicular to the rolling direction were required. The gap between each tuning fork terminal is subjected to a heating test at 150 ° C. × 500 h in the atmosphere with a copper alloy tab inserted, and the gap interval after removing the tab after the heating test is the original gap interval (initial interval). ), The stress relaxation rate was determined by determining how much it changed. FIG. 2B shows a state before the heating test and shows an outline of initial dimensions of the tuning fork terminal. The initial interval is 0.7 mm. FIG. 2C shows a state in which a tab is inserted for use in the heating test. The thickness of the inserted tab is 0.8 mm. FIG. 2D shows a state when the tab is removed after the heating test is completed. The stress relaxation rate R (%) is defined by the following formula.
Stress relaxation rate R (%) = (Z−X) / (Y−X) × 100
Here, X: gap interval before the heating test = 0.7 mm
Y: Insert tab thickness = 0.8 mm
Z: Gap interval after the heating test (mm)
2C and 2D, the insertion tab thickness and the gap interval Z after the heating test are exaggerated.

長手方向が圧延方向に平行方向となる音叉端子における応力緩和率をRL(%)、長手方向が圧延方向に直角方向となる音叉端子における応力緩和率をRT(%)とするとき、RL/RTの比を算出することによって応力緩和特性の異方性を評価した。J/B、端子が小型化するに伴い、特に製品の発熱量というものが課題となるが、応力緩和特性が優れていれば、音叉部(端子間)の開きが少なく接圧を維持できるため、接点部の温度上昇も少なく小型化に対応可能である。また異方性が少なければ、特にJ/BのようなLD方向とTD方向の両方向で音叉を使用する場合に、1枚の製品の中での特性バラツキ、温度上昇の差が少なく製品の安定性につながる。これらの用途を考慮したとき、ここで実施した応力緩和特性の評価方法において、RLおよびRTが共に25%以下であり、かつ異方性を表すRL/RTが0.75〜1.25の範囲になる銅合金板材が、良好な応力緩和特性を有しているとして合格と判定される。
これらの結果を表2に示す。
When the stress relaxation rate in a tuning fork terminal whose longitudinal direction is parallel to the rolling direction is R L (%), and the stress relaxation rate in a tuning fork terminal whose longitudinal direction is perpendicular to the rolling direction is R T (%), R R The anisotropy of stress relaxation characteristics was evaluated by calculating the ratio of L / RT . As J / B and terminals become smaller, the amount of heat generated from the product becomes a problem. However, if the stress relaxation characteristics are excellent, the contact pressure can be maintained with little opening of the tuning fork (between terminals). Therefore, it is possible to cope with downsizing with little temperature rise of the contact portion. If the anisotropy is small, especially when using a tuning fork in both the LD and TD directions, such as J / B, there is little difference in characteristics and temperature rise in one product, and the product is stable. Leads to sex. In consideration of these uses, in the stress relaxation property evaluation method performed here, both R L and R T are 25% or less, and R L / R T representing anisotropy is 0.75 to 1. A copper alloy sheet material in the range of .25 is determined to be acceptable as having good stress relaxation characteristics.
These results are shown in Table 2.

表2から判るように、適正な化学組成を有する発明例の銅合金では、平均アスペクト比Aが10以上、アスペクト比の最大値Amaxと最小値Aminの比Amax/Aminが1.0〜3.0を満たす板材が製造でき、導電率70%IACS以上、引張強さ400N/mm2以上を有し、かつ優れた曲げ加工性、プレス打抜き性を有し、耐応力緩和性にも優れていた。これらは、バスバーや端子に代表される電気・電子部品用の材料として好適なものである。 As can be seen from Table 2, in the copper alloy of the inventive example having an appropriate chemical composition, the average aspect ratio A is 10 or more, and the ratio A max / A min between the maximum value A max and the minimum value A min of the aspect ratio is 1. A plate material satisfying 0 to 3.0 can be manufactured, having an electrical conductivity of 70% IACS or more, a tensile strength of 400 N / mm 2 or more, excellent bending workability, press punching ability, and stress relaxation resistance. Was also excellent. These are suitable as materials for electric and electronic parts represented by bus bars and terminals.

これに対し、比較例No.7はSn含有量が多すぎ、No.8はFe含有量が多すぎ、No.9はP含有量が多すぎたため、これらはいずれも導電性に劣った。No.9ではさらに熱間圧延時に割れが生じた。No.10はNi含有量が少なすぎ、No.11はSn含有量が少なすぎたため、これらはいずれも強度(引張強さ)に劣った。特にNo.10ではNi量不足に起因して十分な耐熱性が得られておらず、仕上前熱処理によって硬さの低下率が大きくなって、結果としてプレス打抜き性に劣った。No.12は不純物元素としてZn含有量が0.1質量%を超えたため、導電性に劣った。   On the other hand, Comparative Example No. 7 had too much Sn content, No. 8 had too much Fe content, and No. 9 had too much P content. In No. 9, cracks occurred during hot rolling. Since No. 10 had too little Ni content and No. 11 had too little Sn content, these were all inferior in strength (tensile strength). In particular, in No. 10, sufficient heat resistance was not obtained due to insufficient Ni amount, and the rate of decrease in hardness was increased by heat treatment before finishing, resulting in poor press punchability. No. 12 was inferior in conductivity because Zn content exceeded 0.1% by mass as an impurity element.

表1の発明例1に相当する組成の熱間圧延材を実施例1と同様の方法で製造し、その熱間圧延材に対して、表3に示す種々の条件で仕上前冷間圧延、仕上前熱処理、仕上冷間圧延、仕上熱処理を施し、板厚0.64mmの供試材を得た。ただし発明例21と22についてはついては、仕上冷間圧延前に表3に示す条件で中間での冷間圧延および中間での熱処理を施した。その中間での熱処理前後の硬さ低下率はいずれの試料においてもほとんどなく、また中間での熱処理後の再結晶組織の面積率はいずれの試料でも0%であった。なお、No.13は実施例1と同様の製造条件を採用したものである。   A hot-rolled material having a composition corresponding to Invention Example 1 in Table 1 was produced in the same manner as in Example 1, and the hot-rolled material was cold-rolled before finishing under various conditions shown in Table 3. Pre-finish heat treatment, finish cold rolling, and finish heat treatment were performed to obtain a specimen having a thickness of 0.64 mm. However, with respect to Invention Examples 21 and 22, intermediate cold rolling and intermediate heat treatment were performed under the conditions shown in Table 3 before finish cold rolling. There was almost no decrease in hardness before and after the intermediate heat treatment in any sample, and the area ratio of the recrystallized structure after the intermediate heat treatment was 0% in any sample. In addition, No. 13 employs the same manufacturing conditions as in Example 1.

各例について、仕上前熱処理前後の硬さ低下率、仕上前熱処理後の再結晶組織における平均結晶粒径、その再結晶組織の面積率、得られた板材の引張強さ、導電率、曲げ加工性、プレス打抜き性、平均アスペクト比、アスペクト比の最大値と最小値の比、応力緩和特性を調べた。
仕上前熱処理前後の硬さはビッカース硬さをJIS Z2244に準拠して測定し、仕上前熱処理前の硬さに対する低下率を求めた。
For each example, the hardness reduction rate before and after the heat treatment before finishing, the average crystal grain size in the recrystallized structure after the heat treatment before finishing, the area ratio of the recrystallized structure, the tensile strength of the obtained plate material, the electrical conductivity, the bending process Properties, press punchability, average aspect ratio, maximum / minimum aspect ratio, and stress relaxation characteristics were investigated.
The hardness before and after the heat treatment before finishing was measured by measuring the Vickers hardness in accordance with JIS Z2244, and the reduction rate with respect to the hardness before the heat treatment before finishing was determined.

仕上前熱処理後の再結晶組織における平均結晶粒径は、仕上前熱処理後の試料の表面(圧延面)、および圧延方向と板厚方向に平行な断面(L断面)をそれぞれ研磨後エッチングして光学顕微鏡写真を撮影し、その組織写真からJIS H0501に規定される求積法により測定した。その際、同一試料について表面およびL断面を各10視野観察し、その平均値を平均結晶粒径とした。
また、その再結晶組織の面積率は、上記の組織写真を画像解析装置で解析して測定した。
曲げ加工性、プレス打抜き性、引張強さ、導電率、平均アスペクト比、アスペクト比の最大値と最小値の比、応力緩和特性は実施例1と同様の方法で調べた。
結果を表4に示す。
The average crystal grain size in the recrystallized structure after the heat treatment before finishing is obtained by polishing and etching the surface (rolled surface) of the sample after the heat treatment before finishing and the cross section (L cross section) parallel to the rolling direction and the plate thickness direction, respectively. An optical microscope photograph was taken and measured from the structure photograph by the quadrature method defined in JIS H0501. At that time, the surface and the L cross section of the same sample were observed in 10 fields, and the average value was defined as the average crystal grain size.
Further, the area ratio of the recrystallized structure was measured by analyzing the above-described structure photograph with an image analyzer.
The bending workability, press punchability, tensile strength, electrical conductivity, average aspect ratio, aspect ratio maximum / minimum ratio, and stress relaxation characteristics were examined in the same manner as in Example 1.
The results are shown in Table 4.

表4から判るように、適正な条件で製造した発明例のものでは、平均アスペクト比Aが10以上、アスペクト比の最大値Amaxと最小値Aminの比Amax/Aminが1.0〜3.0を満たす板材が製造でき、70%IACS以上の高い導電性を有しながら、強度、曲げ加工性、プレス打抜き性、応力緩和特性のすべてがバランスよく高レベルに改善され、音叉タイプのJ/Bや端子をはじめとする電気・電子用部品用材料として好適なものであった。 As can be seen from Table 4, in the example of the invention manufactured under appropriate conditions, the average aspect ratio A is 10 or more, and the ratio A max / A min between the maximum value A max and the minimum value A min of the aspect ratio is 1.0. A plate material satisfying ~ 3.0 can be manufactured, and the strength, bending workability, press punchability, and stress relaxation characteristics are all improved to a high level in a balanced manner while having high conductivity of 70% IACS or higher. It was suitable as a material for electric / electronic parts including J / B and terminals.

これに対し、比較例No.23は仕上前冷間圧延の圧延率が低すぎたため、結果的に導電性に劣った。No.24は仕上前熱処理の温度が低すぎ、No.28は仕上前熱処理の時間が短すぎたため、いずれも曲げ加工性および導電性に劣った。No.25、26および27は仕上前熱処理の温度が高すぎたため、仕上前熱処理前後の硬さ低下率が大きく、再結晶組織の面積率が多くなった。それにより、平均アスペクト比が十分に大きい結晶粒組織が得られず、結果としてプレス打抜き性および応力緩和特性に劣った。No.29は仕上前熱処理の時間が長すぎたため、仕上前熱処理後の再結晶組織における結晶粒が粗大化した。それにより、平均アスペクト比が十分に大きい結晶粒組織が得られず、結果としてプレス打抜き性および応力緩和特性に劣った。No.30は仕上冷間圧延の圧延率が低すぎたため、十分に強度向上が図れなかった。また、アスペクト比の最大値と最小値の比が3.0を超える結晶粒組織となり、応力緩和率の異方性に劣った。No.31は仕上熱処理の温度が低すぎ、No.33は仕上熱処理の時間が短すぎたため、いずれも曲げ加工性に劣った。No.32は仕上熱処理の温度が高すぎ、No.34は仕上熱処理の時間が長すぎたため、いずれも強度に劣った。   On the other hand, Comparative Example No. 23 was inferior in conductivity as a result of the rolling ratio of the cold rolling before finishing being too low. In No. 24, the temperature of the heat treatment before finishing was too low, and in No. 28, the time of the heat treatment before finishing was too short, so that both were inferior in bending workability and conductivity. In Nos. 25, 26 and 27, since the temperature of the heat treatment before finishing was too high, the hardness reduction rate before and after the heat treatment before finishing was large, and the area ratio of the recrystallized structure was increased. As a result, a crystal grain structure having a sufficiently large average aspect ratio could not be obtained, and as a result, press punchability and stress relaxation characteristics were inferior. In No. 29, since the pre-finish heat treatment time was too long, the crystal grains in the recrystallized structure after the pre-finish heat treatment became coarse. As a result, a crystal grain structure having a sufficiently large average aspect ratio could not be obtained, and as a result, press punchability and stress relaxation characteristics were inferior. In No. 30, the rolling ratio of finish cold rolling was too low, so the strength could not be improved sufficiently. Further, the ratio of the maximum value and the minimum value of the aspect ratio became a crystal grain structure exceeding 3.0, and the anisotropy of the stress relaxation rate was inferior. No. 31 had a finish heat treatment temperature too low, and No. 33 had a finish heat treatment time too short. In No. 32, the temperature of the finish heat treatment was too high, and in No. 34, the time for the finish heat treatment was too long.

プレス打抜き部の断面写真の一例を示した図。The figure which showed an example of the cross-sectional photograph of a press punching part. 応力緩和特性の評価に使用した音叉端子の形状を模式的に示した図。The figure which showed typically the shape of the tuning fork terminal used for evaluation of a stress relaxation characteristic.

Claims (5)

質量%で、Fe:0.1〜0.3%、Ni:0.05〜0.3%、P:0.04〜0.2%、Sn:0.03〜0.15%、Cuと上記元素とを除く元素の合計含有量:0.1%以下、残部Cuからなる組成を有し、導電率70%IACS以上の導電性、引張強さ400N/mm2以上の強度、板厚の1/2の曲げ半径で90°曲げを行った際に割れが生じない曲げ加工性、プレス打抜きした際の欠損率が5%以下となるプレス打抜き性を具備する銅合金。 In mass%, Fe: 0.1-0.3%, Ni: 0.05-0.3%, P: 0.04-0.2%, Sn: 0.03-0.15%, Cu and Total content of elements excluding the above elements: 0.1% or less, balance Cu composition, conductivity 70% IACS or more conductivity, tensile strength 400N / mm 2 or more strength, plate thickness A copper alloy having bending workability that does not cause cracking when bending at 90 ° with a bending radius of ½, and press punching ability in which a defect rate when press punching is 5% or less. 質量%で、Fe:0.1〜0.3%、Ni:0.05〜0.3%、P:0.04〜0.2%、Sn:0.03〜0.15%、Cuと上記元素とを除く元素の合計含有量:0.1%以下、残部Cuからなる組成の熱間圧延材または冷間圧延後に熱処理された材料に対し、圧延率50%以上の仕上前冷間圧延、400〜525℃×5〜20hの仕上前熱処理、圧延率30%以上の仕上冷間圧延、250〜750℃×5sec〜10hの仕上熱処理を施して得られる組織をもつ、導電率70%IACS以上、引張強さ400N/mm2以上の銅合金。 In mass%, Fe: 0.1-0.3%, Ni: 0.05-0.3%, P: 0.04-0.2%, Sn: 0.03-0.15%, Cu and Total content of elements excluding the above elements: 0.1% or less, cold rolling before finishing with a rolling rate of 50% or more for a hot-rolled material having a composition consisting of the balance Cu or a material heat-treated after cold rolling Conductivity 70% IACS having a structure obtained by applying pre-finish heat treatment at 400 to 525 ° C. for 5 to 20 hours, finish cold rolling at a rolling rate of 30% or more, and finish heat treatment at 250 to 750 ° C. for 5 seconds to 10 hours. As described above, a copper alloy having a tensile strength of 400 N / mm 2 or more. 質量%で、Fe:0.1〜0.3%、Ni:0.05〜0.3%、P:0.04〜0.2%、Sn:0.03〜0.15%、Cuと上記元素とを除く元素の合計含有量:0.1%以下、残部Cuからなる組成の熱間圧延材または冷間圧延後に熱処理された材料に対し「仕上前冷間圧延→仕上前熱処理→仕上冷間圧延→仕上熱処理」の加工・熱履歴を受けた合金であって、仕上前熱処理前後における硬さHV値の低下率が20%以下となり、仕上前熱処理後の金属組織において、再結晶組織の面積率が15%以下、かつその再結晶組織の平均結晶粒径が20μm以下となるように処理された組織をもつ、導電率70%IACS以上、引張強さ400N/mm2以上の銅合金。 In mass%, Fe: 0.1-0.3%, Ni: 0.05-0.3%, P: 0.04-0.2%, Sn: 0.03-0.15%, Cu and Total content of elements excluding the above-mentioned elements: 0.1% or less, hot-rolled material having a composition composed of the balance Cu or a material heat-treated after cold-rolling, “cold rolling before finishing → heat treatment before finishing → finishing An alloy that has undergone the processing and thermal history of “cold rolling → finish heat treatment”, and the decrease rate of the hardness HV value before and after the heat treatment before finishing is 20% or less, and the recrystallized structure in the metal structure after the heat treatment before finishing. A copper alloy having an electrical conductivity of 70% IACS or more and a tensile strength of 400 N / mm 2 or more, having a structure that is processed so that the area ratio is 15% or less and the average crystal grain size of the recrystallized structure is 20 μm or less. . 質量%で、Fe:0.1〜0.3%、Ni:0.05〜0.3%、P:0.04〜0.2%、Sn:0.03〜0.15%、Cuと上記元素とを除く元素の合計含有量:0.1%以下、残部Cuからなる組成を有し、圧延方向と板厚方向に平行な断面における結晶粒について平均アスペクト比(長径/短径)Aが10以上、アスペクト比の最大値Amaxと最小値Aminの比Amax/Aminが1.0〜3.0である組織を有する銅合金。 In mass%, Fe: 0.1-0.3%, Ni: 0.05-0.3%, P: 0.04-0.2%, Sn: 0.03-0.15%, Cu and Total content of elements excluding the above elements: 0.1% or less, balance Cu: average aspect ratio (major axis / minor axis) A for crystal grains in a cross section parallel to the rolling direction and the plate thickness direction Is a copper alloy having a structure in which the ratio A max / A min of the maximum value A max and the minimum value A min of the aspect ratio is 1.0 to 3.0. 請求項1〜4のいずれかに記載の銅合金を用いた端子またはバスバー。   A terminal or bus bar using the copper alloy according to claim 1.
JP2006079032A 2005-03-22 2006-03-22 Copper alloy, terminal or bus bar, and method for producing copper alloy Active JP5098096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079032A JP5098096B2 (en) 2005-03-22 2006-03-22 Copper alloy, terminal or bus bar, and method for producing copper alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005081067 2005-03-22
JP2005081067 2005-03-22
JP2006079032A JP5098096B2 (en) 2005-03-22 2006-03-22 Copper alloy, terminal or bus bar, and method for producing copper alloy

Publications (2)

Publication Number Publication Date
JP2006299409A true JP2006299409A (en) 2006-11-02
JP5098096B2 JP5098096B2 (en) 2012-12-12

Family

ID=37468048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079032A Active JP5098096B2 (en) 2005-03-22 2006-03-22 Copper alloy, terminal or bus bar, and method for producing copper alloy

Country Status (1)

Country Link
JP (1) JP5098096B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231492A (en) * 2007-03-20 2008-10-02 Dowa Metaltech Kk Cu-Ni-Sn-P BASED COPPER ALLOY SHEET AND ITS MANUFACTURING METHOD
JP2009203510A (en) * 2008-02-27 2009-09-10 Kobe Steel Ltd Copper alloy having both of high strength and high electroconductivity
JP2010121166A (en) * 2008-11-19 2010-06-03 Kobe Steel Ltd Copper alloy having high strength and high electric conductivity
JP2012001781A (en) * 2010-06-18 2012-01-05 Hitachi Cable Ltd Copper alloy material for electric/electronic component, and method of manufacturing the same
WO2015012079A1 (en) * 2013-07-24 2015-01-29 株式会社オートネットワーク技術研究所 Connector terminal for automobile
JP7483217B2 (en) 2018-08-21 2024-05-15 住友電気工業株式会社 Insulated wires, terminal-attached wires, copper alloy wires, and copper alloy stranded wires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104956A (en) * 1995-10-09 1997-04-22 Dowa Mining Co Ltd Production of high strength and high electric conductivity copper alloy
JP2000328158A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd Copper alloy sheet excellent in press punchability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104956A (en) * 1995-10-09 1997-04-22 Dowa Mining Co Ltd Production of high strength and high electric conductivity copper alloy
JP2000328158A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd Copper alloy sheet excellent in press punchability

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231492A (en) * 2007-03-20 2008-10-02 Dowa Metaltech Kk Cu-Ni-Sn-P BASED COPPER ALLOY SHEET AND ITS MANUFACTURING METHOD
JP2009203510A (en) * 2008-02-27 2009-09-10 Kobe Steel Ltd Copper alloy having both of high strength and high electroconductivity
JP2010121166A (en) * 2008-11-19 2010-06-03 Kobe Steel Ltd Copper alloy having high strength and high electric conductivity
JP2012001781A (en) * 2010-06-18 2012-01-05 Hitachi Cable Ltd Copper alloy material for electric/electronic component, and method of manufacturing the same
WO2015012079A1 (en) * 2013-07-24 2015-01-29 株式会社オートネットワーク技術研究所 Connector terminal for automobile
JP7483217B2 (en) 2018-08-21 2024-05-15 住友電気工業株式会社 Insulated wires, terminal-attached wires, copper alloy wires, and copper alloy stranded wires

Also Published As

Publication number Publication date
JP5098096B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
EP2957646B1 (en) High-strength cu-ni-co-si base copper alloy sheet, process for producing same, and current-carrying component
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5075447B2 (en) Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP5619389B2 (en) Copper alloy material
JP2009242890A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
WO2010016428A1 (en) Copper alloy material for electrical/electronic component
JP2010007174A (en) Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP2007039735A (en) Method for producing copper alloy sheet with deformed cross section
WO2018186230A1 (en) Cu-co-si system copper alloy sheet material and method for producing same, and part using the sheet material
JP2019178366A (en) Copper alloy sheet material and manufacturing method therefor
JP2010031379A (en) Electronic component composed of copper alloy sheet having excellent bending workability
KR20190077011A (en) Copper alloy sheet and manufacturing method thereof
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2007169764A (en) Copper alloy
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP5002766B2 (en) High strength copper alloy sheet with excellent bending workability and manufacturing method
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250