JP2008085309A - Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module - Google Patents

Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module Download PDF

Info

Publication number
JP2008085309A
JP2008085309A JP2007213807A JP2007213807A JP2008085309A JP 2008085309 A JP2008085309 A JP 2008085309A JP 2007213807 A JP2007213807 A JP 2007213807A JP 2007213807 A JP2007213807 A JP 2007213807A JP 2008085309 A JP2008085309 A JP 2008085309A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
conversion element
end side
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007213807A
Other languages
Japanese (ja)
Inventor
Akira Nakabeppu
明 中別府
Masato Miyahara
眞人 宮原
Junichiro Kabayama
淳一郎 樺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okano Electric Wire Co Ltd
Original Assignee
Okano Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okano Electric Wire Co Ltd filed Critical Okano Electric Wire Co Ltd
Priority to JP2007213807A priority Critical patent/JP2008085309A/en
Publication of JP2008085309A publication Critical patent/JP2008085309A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module having high long term reliability by suppressing the deterioration of thermal performance caused by the usage and breakage of the thermoelectric conversion module. <P>SOLUTION: A plurality of P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are connected via a solder 9 and an electrode 2 to form a circuit of the thermoelectric conversion elements 5 (5a, 5b). For example, a Peltier module wherein one end side of the thermoelectric conversion elements 5 (5a, 5b) is made to be an endothermic side surface and the other end side is made to be a heat-dissipating side surface according to the direction of a current fed through the circuit is formed. The thermoelectric conversion elements 5 (5a, 5b) are formed by adding at least one of Ag and Cu to a thermoelectric conversion material which contains Bi and Te as main raw materials and at least one of Se and Sb is added thereto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば光通信用部品、理化学機器、携帯用クーラ、半導体プロセス中でのプロセス温度管理等に用いられて冷却や加熱を行ったり、ゼーベック効果を利用して発電を行ったりする、熱電変換モジュールおよびその製造方法ならびに熱電変換モジュールに用いられる熱電変換材料に関するものである。   The present invention is used for, for example, optical communication parts, physics and chemistry equipment, portable coolers, process temperature management in semiconductor processes, etc. to cool and heat, or to generate electricity using the Seebeck effect, The present invention relates to a conversion module, a manufacturing method thereof, and a thermoelectric conversion material used for the thermoelectric conversion module.

熱電変換モジュールであるペルチェモジュールは、光通信分野等の様々な分野に用いられている(例えば、特許文献1、2、参照)。   Peltier modules, which are thermoelectric conversion modules, are used in various fields such as the optical communication field (for example, see Patent Documents 1 and 2).

図7(a)には、ペルチェモジュールの一例が模式的な断面図により示されており、図7(b)には、このペルチェモジュールの分解斜視図が模式図により示されている。これらの図に示されるペルチェモジュールは、上下に互いに間隔を介して対向配置された基板6,7の間に、複数の熱電変換素子5(5a,5b)を立設配置して形成されている。   FIG. 7A shows an example of a Peltier module by a schematic cross-sectional view, and FIG. 7B shows an exploded perspective view of the Peltier module by a schematic view. The Peltier module shown in these drawings is formed by arranging a plurality of thermoelectric conversion elements 5 (5a, 5b) between a plurality of substrates 6 and 7 which are vertically opposed to each other with a space therebetween. .

基板6,7は、電気絶縁性を有するアルミナ(Al)等のセラミック製の基板である。基板6,7の対向表面には複数の導通用の電極2が互いに間隔を介し、かつ、その位置を互いにずらした状態で形成されている。熱電変換素子5は、半田9によって電極2に固定され、導電材としての半田9と電極2とを介して複数直列に接続されており、熱電変換素子5の回路が形成されている。 The substrates 6 and 7 are ceramic substrates such as alumina (Al 2 O 3 ) having electrical insulation. A plurality of conductive electrodes 2 are formed on the opposing surfaces of the substrates 6 and 7 in a state where the electrodes are spaced apart from each other and spaced from each other. A plurality of thermoelectric conversion elements 5 are fixed to the electrode 2 by solder 9 and connected in series via the solder 9 and the electrode 2 as a conductive material, and a circuit of the thermoelectric conversion element 5 is formed.

熱電変換素子5(5a,5b)は、ペルチェ素子として一般的に知られており、P型半導体により形成されたP型(p型)の熱電変換素子5aと、N型半導体により形成されたN型(n型)の熱電変換素子5bとを有する。   The thermoelectric conversion element 5 (5a, 5b) is generally known as a Peltier element, and a P-type (p-type) thermoelectric conversion element 5a formed of a P-type semiconductor and an N-type semiconductor formed of N-type semiconductor. Type (n-type) thermoelectric conversion element 5b.

P型の熱電変換素子5aとN型の熱電変換素子5bは、それぞれ、例えばビスマス(Bi)・テルル(Te)の金属間化合物(BiTe)を主原料とし、アンチモン(Sb)、セレン(Se)等の元素を添加した熱電変換材料により形成されている。熱電変換素子5は、例えば円柱状や角柱状に形成され、その径は0.6〜3mm程度、長さ0.5〜3mm程度である。熱電変換素子5(5a,5b)の端面には、導電材としてのNiメッキ(図示せず)が設けられている。 The P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b are mainly composed of an intermetallic compound (Bi 2 Te 3 ) of bismuth (Bi) / tellurium (Te), for example, antimony (Sb), selenium. It is formed of a thermoelectric conversion material to which an element such as (Se) is added. The thermoelectric conversion element 5 is formed in a columnar shape or a prismatic shape, for example, and has a diameter of about 0.6 to 3 mm and a length of about 0.5 to 3 mm. The end surface of the thermoelectric conversion element 5 (5a, 5b) is provided with Ni plating (not shown) as a conductive material.

P型の熱電変換素子5aとN型の熱電変換素子5bは交互に配置され、電極2を介して直列に接続されてPN素子対が形成されている。また、基板7に形成された、熱電変換素子5の接続回路の端部に位置する電極2(2a)にはリード線28が半田10により接続されており、通電手段(図示せず)によってリード線28から電極2aに電流を流すと、P型の熱電変換素子5aとN型の熱電変換素子5bに電流が流れる。   P-type thermoelectric conversion elements 5a and N-type thermoelectric conversion elements 5b are alternately arranged and connected in series via the electrode 2 to form a PN element pair. In addition, a lead wire 28 is connected to the electrode 2 (2a) formed on the substrate 7 at the end of the connection circuit of the thermoelectric conversion element 5 by a solder 10, and the lead wire 28 is connected by an energizing means (not shown). When a current flows from the line 28 to the electrode 2a, a current flows through the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b.

そして、熱電変換素子5(5a,5b)と電極2との接合部(界面)で冷却・加熱効果が生じる。つまり、前記接合部を流れる電流の方向によって熱電変換素子5(5a,5b)の一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるいわゆるペルチェ効果が生じる。   And a cooling and heating effect arises in the junction part (interface) of thermoelectric conversion element 5 (5a, 5b) and electrode 2. FIG. That is, a so-called Peltier effect is generated in which one end portion of the thermoelectric conversion element 5 (5a, 5b) is heated while the other end portion is cooled depending on the direction of the current flowing through the junction.

このペルチェ効果によって熱電変換素子5(5a,5b)の一端側は吸熱側の面と成し、他端側は放熱側(発熱側)の面と成す。例えば図7(a)において、熱電変換素子5(5a,5b)の上端部が吸熱側の面と成すと、基板6の上側に設けられた部材の冷却(吸熱)が行われ、このとき、熱電変換素子5(5a,5b)の下端側が放熱側の面と成して、基板7側から放熱される。また、その逆に、ペルチェ効果によって熱電変換素子5(5a,5b)の上端部が放熱側の面と成すと、基板6を介し、基板6の上側に設けられた部材の加熱が行われる。   Due to the Peltier effect, one end side of the thermoelectric conversion element 5 (5a, 5b) forms a heat absorption side surface, and the other end side forms a heat dissipation side (heat generation side) surface. For example, in FIG. 7A, when the upper end portion of the thermoelectric conversion element 5 (5a, 5b) forms a heat absorption side surface, cooling of the member provided on the upper side of the substrate 6 (heat absorption) is performed. The lower end side of the thermoelectric conversion element 5 (5a, 5b) forms a heat radiating surface, and heat is radiated from the substrate 7 side. On the contrary, when the upper end portion of the thermoelectric conversion element 5 (5a, 5b) forms a heat radiation side surface by the Peltier effect, the member provided on the upper side of the substrate 6 is heated via the substrate 6.

なお、ペルチェモジュールには、上記例の他に、例えば、図7(c)の側面図に示すように、熱電変換素子5(5a,5b)の上下に基板を設けないタイプのモジュールも提案されている。この図に示すペルチェモジュールは、複数の貫通の素子嵌合孔3を形成した絶縁性基板30に、P型とN型の熱電変換素子5(5a,5b)を嵌合して形成されており、熱電変換素子5(5a,5b)の素子嵌合孔3への貫通方向の一端側(ここでは上側)と他端側(ここでは下側)には、それぞれ電極2が配置され、電極2と熱電変換素子5(5a,5b)とが半田9により接合されている。   In addition to the above example, as a Peltier module, for example, as shown in the side view of FIG. 7C, a module in which no substrate is provided above and below the thermoelectric conversion elements 5 (5a, 5b) is proposed. ing. The Peltier module shown in this figure is formed by fitting P-type and N-type thermoelectric conversion elements 5 (5a, 5b) to an insulating substrate 30 in which a plurality of penetrating element fitting holes 3 are formed. The electrode 2 is disposed on one end side (upper side here) and the other end side (lower side here) of the thermoelectric conversion element 5 (5a, 5b) in the penetration direction to the element fitting hole 3, respectively. And thermoelectric conversion element 5 (5a, 5b) are joined by solder 9.

電極2は、対応するP型の熱電変換素子5aの端面とN型の熱電変換素子5bの端面と同一方向に伸張し、熱電変換素子5(5a,5b)の端面間に掛け渡して設けられ、前記P型とN型の熱電変換素子5(5a,5b)を直列に接続している。熱電変換素子5(5a,5b)の回路は、図示されていないリード端子とリード線とを介して電源回路等に接続されており、このタイプのペルチェモジュールも、図7(a)に示したペルチェモジュールと同様に、ペルチェ効果による加熱と冷却の動作を行う。   The electrode 2 extends in the same direction as the end face of the corresponding P-type thermoelectric conversion element 5a and the end face of the N-type thermoelectric conversion element 5b, and is provided across the end faces of the thermoelectric conversion elements 5 (5a, 5b). The P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are connected in series. The circuit of the thermoelectric conversion element 5 (5a, 5b) is connected to a power supply circuit or the like via lead terminals and lead wires (not shown), and this type of Peltier module is also shown in FIG. 7 (a). As with the Peltier module, heating and cooling operations are performed using the Peltier effect.

特開平9−181362号公報JP-A-9-181362 特開平10−178216号公報JP-A-10-178216

ところで、上記ペルチェモジュール等の熱電変換モジュールは、使用していくうちに、その使用環境の変化によって内部抵抗値の上昇が生じ、それに伴い、熱特性の性能劣化が生じたり、ときには熱電変換モジュールの破損に至ったりすることがあった。   By the way, the thermoelectric conversion module such as the Peltier module has an increase in internal resistance value due to changes in the use environment of the thermoelectric conversion module and the like. In some cases, it could lead to damage.

本発明は、上記従来の課題を解決するために成されたものであり、その目的は、使用に伴う熱特性の劣化や熱電変換モジュールの破損を抑制でき、長期信頼性の高い熱電変換モジュールおよびその製造方法ならびに熱電変換モジュールに用いられる熱電変換材料を提供することにある。   The present invention has been made in order to solve the above-described conventional problems, and its purpose is to suppress deterioration of thermal characteristics and breakage of the thermoelectric conversion module due to use, and a thermoelectric conversion module with high long-term reliability and The manufacturing method and the thermoelectric conversion material used for a thermoelectric conversion module are provided.

上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明の熱電変換モジュールは、P型とN型の熱電変換素子を互いに導電材を介して複数接続して熱電変換素子の回路を形成し、該回路に流す電流の向きに応じて前記熱電変換素子の一端側を吸熱側の面と成し他端側を放熱側の面と成す機能と、前記熱電変換素子の一端側と他端側との温度差を用いて発電を行う機能との少なくとも一方を備えた熱電変換モジュールにおいて、前記熱電変換素子はBiとTeを主原料とし、SeとSbの少なくとも一方を添加して成る熱電変換材料に、Ag(銀)とCu(銅)の少なくとも一方を添加して形成した構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the thermoelectric conversion module according to the first aspect of the present invention forms a circuit of thermoelectric conversion elements by connecting a plurality of P-type and N-type thermoelectric conversion elements to each other through a conductive material, and according to the direction of the current flowing through the circuit. Then, power generation is performed using the function of forming one end side of the thermoelectric conversion element as a heat absorption side surface and the other end side as a heat dissipation side surface and the temperature difference between the one end side and the other end side of the thermoelectric conversion element. In the thermoelectric conversion module having at least one of the functions, the thermoelectric conversion element is made of Bi and Te as main raw materials, and at least one of Se and Sb is added to Ag (silver) and Cu (copper). ) Is added as a means for solving the problem.

また、第2の発明の熱電変換モジュールは、P型とN型の熱電変換素子を互いに導電材を介して複数接続して熱電変換素子の回路を形成し、該回路に流す電流の向きに応じて前記熱電変換素子の一端側を吸熱側の面と成し他端側を放熱側の面と成す機能と、前記熱電変換素子の一端側と他端側との温度差を用いて発電を行う機能との少なくとも一方を備えた熱電変換モジュールにおいて、前記導電材は半田とNiメッキの少なくとも一方を有して、これら半田とNiメッキの少なくとも一方にAgとCuの少なくとも一方が添加されている構成をもって課題を解決する手段としている。   Further, the thermoelectric conversion module of the second invention forms a circuit of the thermoelectric conversion element by connecting a plurality of P-type and N-type thermoelectric conversion elements to each other through a conductive material, and according to the direction of the current flowing through the circuit. Then, power generation is performed using the function of forming one end side of the thermoelectric conversion element as a heat absorption side surface and the other end side as a heat dissipation side surface and the temperature difference between the one end side and the other end side of the thermoelectric conversion element. In the thermoelectric conversion module having at least one of the functions, the conductive material has at least one of solder and Ni plating, and at least one of Ag and Cu is added to at least one of the solder and Ni plating As a means to solve the problem.

さらに、第3の発明の熱電変換モジュールの製造方法は、上記第2の発明の熱電変換モジュールを設定温度で設定時間エージングすることにより、導電材に含まれているAgとCuを熱電変換素子内に拡散させることを特徴とする。   Furthermore, the manufacturing method of the thermoelectric conversion module of the third invention is such that Ag and Cu contained in the conductive material are contained in the thermoelectric conversion element by aging the thermoelectric conversion module of the second invention at a set temperature for a set time. It is characterized by diffusing.

さらに、第4の発明の熱電変換材料は、上記第1または第2の発明の熱電変換モジュールの熱電変換素子を形成する熱電変換材料であって、BiとTeを主原料とし、SeとSbの少なくとも一方を添加して成る熱電変換材料に、AgとCuの少なくとも一方を添加したことを特徴とする。   Further, the thermoelectric conversion material of the fourth invention is a thermoelectric conversion material forming the thermoelectric conversion element of the thermoelectric conversion module of the first or second invention, wherein Bi and Te are main raw materials, and Se and Sb It is characterized in that at least one of Ag and Cu is added to the thermoelectric conversion material obtained by adding at least one.

本発明の熱電変換モジュールにおいて、熱電変換素子が、BiとTeを主原料としてSeとSbの少なくとも一方を添加して成る熱電変換材料に、AgとCuの少なくとも一方を添加して形成されているものにおいては、AgやCuの添加によって、熱電変換素子の電気伝導性を高めることができ、電気抵抗値を小さくできるので、熱電変換モジュールの内部抵抗値の上昇を抑制することができ、熱特性の劣化や熱電変換モジュールの破損を抑制できる。   In the thermoelectric conversion module of the present invention, the thermoelectric conversion element is formed by adding at least one of Ag and Cu to a thermoelectric conversion material obtained by adding at least one of Se and Sb using Bi and Te as main raw materials. In addition, by adding Ag or Cu, the electrical conductivity of the thermoelectric conversion element can be increased and the electrical resistance value can be reduced, so that the increase in the internal resistance value of the thermoelectric conversion module can be suppressed, and the thermal characteristics. Degradation and damage to the thermoelectric conversion module can be suppressed.

また、本発明において、対応する熱電変換素子同士を接続する導電材が半田とNiメッキの少なくとも一方を有して、これら半田とNiメッキの少なくとも一方にAgとCuの少なくとも一方が添加されているものにおいては、熱電変換モジュールの使用に伴い、熱電変換素子の一端側または他端側が加熱される毎に、導電材に含まれるAgやCuが熱電変換素子内に拡散される(熱電変換素子を形成する熱電変換材料の隙間に入り込んでいく)ので、熱電変換素子の電気伝導性を高めることができ、電気抵抗値を小さくでき、熱電変換モジュールの内部抵抗値の上昇を抑制することができ、熱特性の劣化や熱電変換モジュールの破損を抑制できる。   In the present invention, the conductive material for connecting the corresponding thermoelectric conversion elements has at least one of solder and Ni plating, and at least one of Ag and Cu is added to at least one of the solder and Ni plating. In one, with the use of the thermoelectric conversion module, whenever one end side or the other end side of the thermoelectric conversion element is heated, Ag or Cu contained in the conductive material is diffused in the thermoelectric conversion element (the thermoelectric conversion element is So that the electric conductivity of the thermoelectric conversion element can be increased, the electric resistance value can be reduced, and the increase in the internal resistance value of the thermoelectric conversion module can be suppressed, Deterioration of thermal characteristics and breakage of thermoelectric conversion module can be suppressed.

また、本発明の熱電変換モジュールの製造方法によれば、導電材にAgとCuの少なくとも一方が含まれている熱電変換モジュールを設定温度で設定時間エージングすることにより、導電材に含まれているAgとCuを熱電変換素子内に拡散させることにより、AgとCuによる熱電変換素子の電気伝導性向上効果をより一層高めることができ、電気抵抗値をより一層小さくできるので、熱電変換モジュールの内部抵抗値の上昇をより一層効率的に抑制することができ、熱特性の劣化や熱電変換モジュールの破損を抑制できる。   Moreover, according to the manufacturing method of the thermoelectric conversion module of the present invention, the thermoelectric conversion module in which at least one of Ag and Cu is contained in the conductive material is included in the conductive material by aging for a set time at a set temperature. By diffusing Ag and Cu into the thermoelectric conversion element, the effect of improving the electrical conductivity of the thermoelectric conversion element by Ag and Cu can be further increased, and the electric resistance value can be further reduced. An increase in resistance value can be further effectively suppressed, and deterioration of thermal characteristics and breakage of the thermoelectric conversion module can be suppressed.

さらに、本発明の熱電変換モジュールの熱電変換素子を形成する熱電変換材料は、BiとTeを主原料とし、SeとSbの少なくとも一方を添加して成る熱電変換材料に、AgとCuの少なくとも一方を添加することにより、上記のように、熱電変換素子の電気伝導性を高めることができ、熱電変換モジュールの熱特性の劣化や熱電変換モジュールの破損を抑制できる。   Further, the thermoelectric conversion material forming the thermoelectric conversion element of the thermoelectric conversion module of the present invention is a thermoelectric conversion material comprising Bi and Te as main raw materials and at least one of Se and Sb, and at least one of Ag and Cu. As described above, the electrical conductivity of the thermoelectric conversion element can be increased, and the deterioration of the thermal characteristics of the thermoelectric conversion module and the breakage of the thermoelectric conversion module can be suppressed.

以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same name portions as those in the conventional example, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱電変換モジュールの第1実施形態例が模式的な断面図により示されている。本実施形態例の熱電変換モジュールは、図7(a)、(b)に示した従来例の熱電変換モジュールとほぼ同様に構成されており、本実施形態例が従来例と異なる特徴的なことは、熱電変換素子5(5a,5b)を形成する熱電変換材料に、AgとCuの少なくとも一方の添加材1を添加して形成したことである。なお、図1では、熱電変換素子5(5a,5b)に添加材1が添加されている状態を模式的に示している。   FIG. 1 is a schematic sectional view showing a first embodiment of a thermoelectric conversion module according to the present invention. The thermoelectric conversion module of the present embodiment is configured in substantially the same manner as the thermoelectric conversion module of the conventional example shown in FIGS. 7A and 7B, and this embodiment is different from the conventional example. Is that it is formed by adding at least one additive 1 of Ag and Cu to the thermoelectric conversion material for forming the thermoelectric conversion element 5 (5a, 5b). In addition, in FIG. 1, the state in which the additive 1 is added to the thermoelectric conversion element 5 (5a, 5b) is shown typically.

熱電変換素子5(5a,5b)は、熱電変換材料を周知の単結晶製造方法または周知の焼結材製造方法を用いて製造されるものである。本実施形態例では、BiとTeを主原料とし、この主成分に、SeとSbの少なくとも一方を添加する際、AgやCuを微量添加して熱電変換材料を形成し、その後、単結晶製造方法または焼結材製造方法等の適宜の方法により加熱して熱電変換素子5(5a,5b)を製造している。   The thermoelectric conversion element 5 (5a, 5b) is manufactured by using a known single crystal manufacturing method or a known sintered material manufacturing method for a thermoelectric conversion material. In this embodiment example, Bi and Te are used as main raw materials, and when adding at least one of Se and Sb to this main component, a small amount of Ag or Cu is added to form a thermoelectric conversion material, and then a single crystal is manufactured. The thermoelectric conversion element 5 (5a, 5b) is manufactured by heating by an appropriate method such as a method or a sintered material manufacturing method.

本実施形態例は以上のように構成されており、熱電変換素子5(5a,5b)を形成する熱電変換材料にAgとCuの少なくとも一方の添加材1を添加することにより、熱電変換素子5(5a,5b)の電気伝導性を高めることができ、電気抵抗値を小さくできるので、熱電変換モジュールの内部抵抗値の上昇を抑制することができ、熱特性の劣化や熱電変換モジュールの破損を抑制できる。   The present embodiment is configured as described above, and the thermoelectric conversion element 5 is obtained by adding at least one additive 1 of Ag and Cu to the thermoelectric conversion material forming the thermoelectric conversion element 5 (5a, 5b). Since the electrical conductivity of (5a, 5b) can be increased and the electrical resistance value can be reduced, the increase in the internal resistance value of the thermoelectric conversion module can be suppressed, and the deterioration of the thermal characteristics and the damage of the thermoelectric conversion module can be prevented. Can be suppressed.

図2には、本発明に係る熱電変換モジュールの第2実施形態例が模式的な断面図により示されている。第2実施形態例の熱電変換モジュールは、図7(a)、(b)に示した従来例の熱電変換モジュールとほぼ同様に構成されており、第2実施形態例が従来例と異なる特徴的なことは、半田9に、AgとCuの少なくとも一方の添加材1を添加して形成したことである。   FIG. 2 is a schematic sectional view showing a second embodiment of the thermoelectric conversion module according to the present invention. The thermoelectric conversion module of the second embodiment is configured in substantially the same manner as the conventional thermoelectric conversion module shown in FIGS. 7A and 7B, and the second embodiment is different from the conventional example. What is important is that the solder 9 is formed by adding at least one additive 1 of Ag and Cu.

半田9は、Sn(スズ)を主原料としており、第2実施形態例では、この半田9に対して0.1wt%以上の適宜の量の添加材1を半田9に添加している。なお、図2は、熱電変換素子5(5a,5b)に添加材1が添加されている状態を模式的に示している。   The solder 9 is mainly made of Sn (tin). In the second embodiment, an appropriate amount of the additive 1 of 0.1 wt% or more is added to the solder 9 with respect to the solder 9. FIG. 2 schematically shows a state in which the additive 1 is added to the thermoelectric conversion element 5 (5a, 5b).

また、第2実施形態例の熱電変換モジュールは、設定温度で設定時間エージングすることにより、導電材に含まれている添加材1を熱電変換素子内に拡散させて製造されている。   In addition, the thermoelectric conversion module of the second embodiment is manufactured by aging the set material for a set time to diffuse the additive 1 contained in the conductive material into the thermoelectric conversion element.

図3に示すように、熱電変換素子5(5a,5b)の端面には、Niメッキ11が設けられており、上記エージングを行うと、半田9に添加されている添加材1が、図の矢印に示すように、Niメッキ11の谷間から熱電変換素子5(5a,5b)の熱電変換材料の隙間に入り込んでいく。なお、図3は、Niメッキ11の谷間が分かりやすくなるように、Niメッキ11や半田9の凹凸を誇張して示している。   As shown in FIG. 3, Ni plating 11 is provided on the end face of the thermoelectric conversion element 5 (5a, 5b). When the aging is performed, the additive 1 added to the solder 9 is As indicated by the arrows, the Ni plating 11 enters the gap of the thermoelectric conversion material of the thermoelectric conversion element 5 (5a, 5b) from the valley. 3 exaggerates the unevenness of the Ni plating 11 and the solder 9 so that the valleys of the Ni plating 11 can be easily understood.

また、熱電変換モジュールの使用に伴い、熱電変換素子5(5a,5b)の一端側または他端側が加熱される毎に、Niメッキ11の谷間から添加材1が熱電変換素子5(5a,5b)の熱電変換材料の隙間に入り込んでいく。そのため、第2実施形態例の熱電変換モジュールは、該熱電変換モジュールを使用することによって、熱電変換素子5(5a,5b)の電気伝導性を使用前に比べて高めることができ、電気抵抗値を小さくできるので、熱電変換モジュールの内部抵抗値の上昇を抑制することができ、熱特性の劣化や熱電変換モジュールの破損を抑制できる。   In addition, each time one end or the other end of the thermoelectric conversion element 5 (5a, 5b) is heated with the use of the thermoelectric conversion module, the additive 1 is transferred from the valley of the Ni plating 11 to the thermoelectric conversion element 5 (5a, 5b). ) Enters the gap between the thermoelectric conversion materials. Therefore, the thermoelectric conversion module of the second embodiment can increase the electrical conductivity of the thermoelectric conversion element 5 (5a, 5b) compared to before use by using the thermoelectric conversion module. Therefore, it is possible to suppress an increase in the internal resistance value of the thermoelectric conversion module, and it is possible to suppress deterioration of thermal characteristics and breakage of the thermoelectric conversion module.

本発明者は、前記エージングによる効果を確認するために、以下の実験を行った。つまり、Snの半田9に、AgとCuの少なくとも一方を添加して熱電変換モジュールを形成した場合と、半田9に、AgとCuのいずれも添加せずに、代わりにSbを添加して熱電変換モジュールを形成した場合(比較例)とについて、150℃で1000時間エージング処理を行い、エージング処理時間と内部抵抗値との関係について検討した。   The present inventor conducted the following experiment in order to confirm the effect of the aging. That is, when the thermoelectric conversion module is formed by adding at least one of Ag and Cu to the solder 9 of Sn, and without adding either Ag or Cu to the solder 9, Sb is added instead and the thermoelectric conversion module is formed. When the conversion module was formed (comparative example), aging treatment was performed at 150 ° C. for 1000 hours, and the relationship between the aging treatment time and the internal resistance value was examined.

なお、この検討は、表1に示す各組成のサンプルについて行った。つまり、半田9のSnにCuのみ0.7重量%添加した(Sn99.3%)サンプルA1〜A3と、SnにAgのみ3.5重量%添加した(Sn96.5%)サンプルB1〜B3と、SnにAgを0.5重量%とCuを3.0重量%添加した(Sn96.5%)サンプルC1〜C3を用いて、熱電変換モジュールをそれぞれ作成し、前記エージングテストを行った。また、第2実施形態例の比較例として、半田9のSnにSbを5%添加したサンプルD1〜D3を用いて熱電変換モジュールを形成した場合についても、同様のエージングテストを行った。なお、サンプルD1〜D3の組成は、従来、一般的に使用されている半田9の組成である。   This examination was performed on samples having respective compositions shown in Table 1. That is, samples A1 to A3 in which only 0.7% by weight of Cu was added to Sn of solder 9 (Sn 99.3%), and samples B1 to B3 in which only 3.5% by weight of Ag was added to Sn (Sn 96.5%) Thermoelectric conversion modules were prepared using samples C1 to C3 in which 0.5 wt% of Ag and 3.0 wt% of Cu were added to Sn (Sn96.5%), and the aging test was performed. In addition, as a comparative example of the second embodiment, the same aging test was performed when the thermoelectric conversion module was formed using samples D1 to D3 in which 5% of Sb was added to Sn of the solder 9. The compositions of the samples D1 to D3 are those of the solder 9 that is generally used conventionally.

Figure 2008085309
Figure 2008085309

前記エージングテスト結果が、図4に示されている。なお、図4において、□は、サンプルA1〜A2を用いた結果を示し、●は、サンプルB1〜B3を用いた結果を示し、○は、サンプルC1〜C3を用いた結果を示し、×は、サンプルD1〜D3を用いた結果を示している。   The aging test result is shown in FIG. In FIG. 4, □ indicates the results using the samples A1 to A2, ● indicates the results using the samples B1 to B3, ○ indicates the results using the samples C1 to C3, and x indicates the results. The results using samples D1 to D3 are shown.

図4から明らかなように、比較例のサンプルD1〜D3を用いた場合(比較例)は、いずれも、エージング時間が長くなるにつれて、内部抵抗値が上昇したが、AgとCuの少なくとも一方を添加したサンプルA1〜C3を用いた場合(第2実施形態例)は、いずれも、エージングによる内部抵抗値の上昇が抑制できることが分かった。特に、Agのみを添加したサンプルB1〜B3および、AgとCuの両方を添加したサンプルC1〜C3を用いた場合は、エージング時間が長くなるにつれて、いずれもサンプルにおいても、内部抵抗値が下降した。   As is clear from FIG. 4, in the case where the samples D1 to D3 of the comparative example were used (comparative example), the internal resistance value increased as the aging time increased, but at least one of Ag and Cu was used. In the case of using the added samples A1 to C3 (second embodiment example), it was found that any increase in the internal resistance value due to aging can be suppressed. In particular, when samples B1 to B3 to which only Ag was added and samples C1 to C3 to which both Ag and Cu were added were used, the internal resistance value decreased in all samples as the aging time increased. .

つまり、この実験により、第2実施形態例の熱電変換モジュールは、内部抵抗値の上昇を抑制することができ、熱特性の劣化や熱電変換モジュールの破損を抑制できることが確認できた。   That is, from this experiment, it was confirmed that the thermoelectric conversion module of the second embodiment example can suppress an increase in internal resistance value, and can suppress deterioration of thermal characteristics and breakage of the thermoelectric conversion module.

また、本発明者は、前記エージングによる効果を確認するために、さらに、以下の実験を行った。つまり、Snの半田9に、AgとCuの少なくとも一方を添加したサンプルを用いた熱電変換モジュールと、Sn100%とした半田のサンプル(比較例)を用いた熱電変換モジュールについて、それぞれ、150℃で1000時間エージング処理を行い、予め定めた一定の電流を流した際の、吸熱面温度と吸熱量(最大吸熱量)とについて、エージング処理前とエージング処理後の値を測定し、それぞれの変化率について求めた。その結果が、表2、表3に、それぞれ示されている。また、表2の結果が図5(a)に、表3の結果が図5(b)にそれぞれグラフとして示されている。   In addition, the present inventor further conducted the following experiment in order to confirm the effect of the aging. That is, a thermoelectric conversion module using a sample obtained by adding at least one of Ag and Cu to Sn solder 9 and a thermoelectric conversion module using a solder sample (comparative example) made of Sn 100% at 150 ° C., respectively. Measure the values before and after the aging treatment for the endothermic surface temperature and the endothermic amount (maximum endothermic amount) when a predetermined constant current is applied for 1000 hours, and the rate of change for each. Asked about. The results are shown in Table 2 and Table 3, respectively. The results of Table 2 are shown as a graph in FIG. 5A, and the results of Table 3 are shown as a graph in FIG. 5B.

Figure 2008085309
Figure 2008085309

Figure 2008085309
Figure 2008085309

なお、表2に示すように、吸熱面温度についての検討は、AgとCuの少なくとも一方を添加したサンプルを用いた熱電変換モジュールについて3つずつ検討を行い、比較例のサンプルEを用いた熱電変換モジュールについては、2つ検討を行った。また、表3に示すように、吸熱量についての検討は、各組成について、いずれも、2つずつ検討を行った。   As shown in Table 2, the endothermic surface temperature was examined three by three for the thermoelectric conversion module using the sample to which at least one of Ag and Cu was added, and the thermoelectric using the sample E of the comparative example was used. Two conversion modules were examined. As shown in Table 3, the endothermic amount was examined for each composition in two.

これらの結果から、AgとCuのいずれも添加せずに熱電変換モジュールを形成した場合に比べ、AgとCuの少なくとも一方を添加して熱電変換モジュールを形成した場合には、吸熱面温度の変化率と吸熱量の変化率とが共に高めであり、性能向上が顕著であった。吸熱面温度の変化率は、AgとCuの両方を添加して熱電変換モジュールを形成した場合に特に大きく、また、吸熱量の変化率は、Cuのみを添加したサンプルA1、A2と、AgとCuの両方を添加したサンプルC1、C2を用いた熱電変換モジュールは、Ag、Cuの添加無しのサンプルE1、E2を用いた熱電変換モジュールに比べ、10倍以上の大きな変化率となった。   From these results, when the thermoelectric conversion module is formed by adding at least one of Ag and Cu, compared to the case where the thermoelectric conversion module is formed without adding both Ag and Cu, the change in the endothermic surface temperature. The rate of change and the rate of change of the endothermic amount were both high, and the performance improvement was remarkable. The rate of change of the endothermic surface temperature is particularly large when both of Ag and Cu are added to form a thermoelectric conversion module, and the rate of change of the endothermic amount is the samples A1, A2, and Ag, to which only Cu is added. The thermoelectric conversion module using the samples C1 and C2 to which both of Cu were added had a large change rate of 10 times or more compared to the thermoelectric conversion module using the samples E1 and E2 without the addition of Ag and Cu.

これらの結果は、半田9に含まれているAgとCuがエージングによって熱電変換素子5(5a,5b)内に入り込んでいくための効果と考えられ、第2実施形態例の性能向上効果が確認された。   These results are considered to be the effect of Ag and Cu contained in the solder 9 entering the thermoelectric conversion element 5 (5a, 5b) by aging, and the performance improvement effect of the second embodiment was confirmed. It was done.

なお、本発明は上記実施形態例に限定されることはなく、様々な態様を採り得る。例えば、上記第1実施形態例では、熱電変換素子5(5a,5b)を形成する熱電変換材料に微量のAgやCuを添加し、第2実施形態例では、半田9に対して表1に示した添加量のAgやCuを添加したが、AgやCuの添加量は特に限定されるものでなく、適宜設定されるものである。例えば熱電変換素子5(5a,5b)を形成する熱電変換材料に微量のAgやCuを添加する場合、AgやCuの添加量と電気抵抗値とペルチェ効果との相関データ等に基づいて添加量を決定するとよい。   In addition, this invention is not limited to the said embodiment, It can take various aspects. For example, in the first embodiment, a small amount of Ag or Cu is added to the thermoelectric conversion material for forming the thermoelectric conversion element 5 (5a, 5b). Although the indicated addition amounts of Ag and Cu were added, the addition amounts of Ag and Cu are not particularly limited, and are appropriately set. For example, when a small amount of Ag or Cu is added to the thermoelectric conversion material forming the thermoelectric conversion element 5 (5a, 5b), the addition amount is based on correlation data between the addition amount of Ag or Cu, the electrical resistance value, and the Peltier effect. It is good to decide.

また、上記第1実施形態例のように、熱電変換素子5(5a,5b)の熱電変換材料に添加材11を添加する場合は、Ag、Cuの代わりに、または、これらと共に、Auを添加しても同様の効果を奏することができる。さらに、熱電変換素子5(5a,5b)を形成するBiとTe、SeとSbを有する材料に対し、電気伝導性を高める他の材料を添加してもよい。   Further, when the additive 11 is added to the thermoelectric conversion material of the thermoelectric conversion element 5 (5a, 5b) as in the first embodiment, Au is added instead of or together with Ag and Cu. However, the same effect can be obtained. Furthermore, you may add the other material which raises electrical conductivity with respect to the material which has Bi and Te and Se and Sb which form the thermoelectric conversion element 5 (5a, 5b).

さらに、上記第1実施形態例のように、熱電変換素子5(5a,5b)の熱電変換材料に添加材11を添加し、かつ、上記第2実施形態例のように、半田9にAgやCuを添加してもよい。また、Niメッキ11にCuとAgの少なくとも一方を添加してもよい。   Further, the additive 11 is added to the thermoelectric conversion material of the thermoelectric conversion element 5 (5a, 5b) as in the first embodiment, and Ag or the like is added to the solder 9 as in the second embodiment. Cu may be added. Further, at least one of Cu and Ag may be added to the Ni plating 11.

さらに、上記各実施形態例は、上下に基板6,7を有するタイプの熱電変換モジュールとしたが、本発明は、例えば、図7(c)に示したようなタイプの熱電変換モジュールに適用してもよいし、図6に示すようなタイプの熱電変換モジュールに適用してもよく、様々なタイプの熱電変換モジュールに適用される。また、その大きさや形状も適宜設定されるものである。   Furthermore, although each said embodiment was made into the type of thermoelectric conversion module which has the board | substrates 6 and 7 on the upper and lower sides, this invention is applied to the type of thermoelectric conversion module as shown in FIG.7 (c), for example. Alternatively, it may be applied to a thermoelectric conversion module of the type as shown in FIG. 6, and may be applied to various types of thermoelectric conversion modules. The size and shape are also set as appropriate.

なお、図6に示すタイプの熱電変換モジュールは、熱電変換素子5(5a,5b)の端面に形成したNiメッキ11を介してP型とN型の熱電変換素子5(5a,5b)を交互に接合して形成されるものであり、熱電変換素子5(5a,5b)の間に介設したフィン15により、冷暖房を行う用途等に用いられる。   In the thermoelectric conversion module of the type shown in FIG. 6, P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are alternately arranged via Ni plating 11 formed on the end face of the thermoelectric conversion elements 5 (5a, 5b). The fins 15 are interposed between the thermoelectric conversion elements 5 (5a, 5b) and used for applications such as air conditioning.

さらに、上記説明は熱電変換モジュールとしてのペルチェモジュールについて述べたが、本発明の熱電変換モジュールは、ゼーベック効果を利用して発電を行う発電モジュールとしても適用できるものである。   Furthermore, although the above description described the Peltier module as a thermoelectric conversion module, the thermoelectric conversion module of the present invention can also be applied as a power generation module that generates power using the Seebeck effect.

本発明に係る熱電変換モジュールの第1実施形態例を模式的に示す断面図である。1 is a cross-sectional view schematically showing a first embodiment of a thermoelectric conversion module according to the present invention. 本発明に係る熱電変換モジュールの第2実施形態例を模式的に示す断面図である。It is sectional drawing which shows typically the example of 2nd Embodiment of the thermoelectric conversion module which concerns on this invention. 第2実施形態例の熱電変換モジュールの半田と熱電変換素子との接合面の状態と添加材拡散形態を模式的に示す説明図である。It is explanatory drawing which shows typically the state of the joint surface of the solder of the thermoelectric conversion module of a 2nd embodiment, and a thermoelectric conversion element, and an additive material diffusion form. 熱電変換モジュールのエージングによる内部抵抗値の変化状況例を示すグラフである。It is a graph which shows the example of a change condition of the internal resistance value by the aging of a thermoelectric conversion module. 熱電変換モジュールのエージングによる熱的特性変化例を示すグラフである。It is a graph which shows the example of a thermal characteristic change by the aging of a thermoelectric conversion module. 本発明の熱電変換モジュールの他の実施形態例を模式的に示す説明図である。It is explanatory drawing which shows typically the other embodiment example of the thermoelectric conversion module of this invention. 熱電変換モジュールの代表例を模式的に示す説明図である。It is explanatory drawing which shows typically the representative example of a thermoelectric conversion module.

符号の説明Explanation of symbols

1 添加材
2 電極
5,5a,5b 熱電変換素子
6,7 基板
9 半田
11 Niメッキ
30 絶縁性基板
DESCRIPTION OF SYMBOLS 1 Additive material 2 Electrode 5,5a, 5b Thermoelectric conversion element 6,7 Board | substrate 9 Solder 11 Ni plating 30 Insulating board

Claims (4)

P型とN型の熱電変換素子を互いに導電材を介して複数接続して熱電変換素子の回路を形成し、該回路に流す電流の向きに応じて前記熱電変換素子の一端側を吸熱側の面と成し他端側を放熱側の面と成す機能と、前記熱電変換素子の一端側と他端側との温度差を用いて発電を行う機能との少なくとも一方を備えた熱電変換モジュールにおいて、前記熱電変換素子はBiとTeを主原料とし、SeとSbの少なくとも一方を添加して成る熱電変換材料に、AgとCuの少なくとも一方を添加して形成したことを特徴とする熱電変換モジュール。   A plurality of P-type and N-type thermoelectric conversion elements are connected to each other through a conductive material to form a circuit of the thermoelectric conversion element, and one end side of the thermoelectric conversion element is connected to the heat absorption side according to the direction of current flowing through the circuit. In a thermoelectric conversion module provided with at least one of a function of forming a surface and forming the other end side as a heat dissipation side surface and a function of generating power using a temperature difference between one end side and the other end side of the thermoelectric conversion element The thermoelectric conversion element is formed by adding at least one of Ag and Cu to a thermoelectric conversion material comprising Bi and Te as main raw materials and adding at least one of Se and Sb. . P型とN型の熱電変換素子を互いに導電材を介して複数接続して熱電変換素子の回路を形成し、該回路に流す電流の向きに応じて前記熱電変換素子の一端側を吸熱側の面と成し他端側を放熱側の面と成す機能と、前記熱電変換素子の一端側と他端側との温度差を用いて発電を行う機能との少なくとも一方を備えた熱電変換モジュールにおいて、前記導電材は半田とNiメッキの少なくとも一方を有して、これら半田とNiメッキの少なくとも一方にAgとCuの少なくとも一方が添加されていることを特徴とする熱電変換モジュール。   A plurality of P-type and N-type thermoelectric conversion elements are connected to each other through a conductive material to form a circuit of the thermoelectric conversion element, and one end side of the thermoelectric conversion element is connected to the heat absorption side according to the direction of current flowing through the circuit. In a thermoelectric conversion module provided with at least one of a function of forming a surface and forming the other end side as a heat dissipation side surface and a function of generating power using a temperature difference between one end side and the other end side of the thermoelectric conversion element The thermoelectric conversion module, wherein the conductive material includes at least one of solder and Ni plating, and at least one of Ag and Cu is added to at least one of the solder and Ni plating. 請求項2記載の熱電変換モジュールを設定温度で設定時間エージングすることにより、導電材に含まれているAgとCuを熱電変換素子内に拡散させることを特徴とする熱電変換モジュールの製造方法。   A method for producing a thermoelectric conversion module, comprising: aging the thermoelectric conversion module according to claim 2 at a set temperature for a set time to diffuse Ag and Cu contained in the conductive material into the thermoelectric conversion element. 請求項1または請求項2記載の熱電変換モジュールの熱電変換素子を形成する熱電変換材料であって、BiとTeを主原料とし、SeとSbの少なくとも一方を添加して成る熱電変換材料に、AgとCuの少なくとも一方を添加したことを特徴とする熱電変換材料。   A thermoelectric conversion material for forming a thermoelectric conversion element of the thermoelectric conversion module according to claim 1 or 2, wherein Bi and Te are main raw materials, and at least one of Se and Sb is added. A thermoelectric conversion material characterized by adding at least one of Ag and Cu.
JP2007213807A 2006-08-29 2007-08-20 Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module Pending JP2008085309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213807A JP2008085309A (en) 2006-08-29 2007-08-20 Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006232348 2006-08-29
JP2007213807A JP2008085309A (en) 2006-08-29 2007-08-20 Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2008085309A true JP2008085309A (en) 2008-04-10

Family

ID=39355780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213807A Pending JP2008085309A (en) 2006-08-29 2007-08-20 Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2008085309A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024641A3 (en) * 2008-08-29 2010-07-01 주식회사 엘지화학 New thermoelectric material, method of manufacture thereof and thermoelectric component using the same
WO2011119149A1 (en) * 2010-03-23 2011-09-29 Hewlett-Packard Development Company Thermoelectric device
WO2013094952A1 (en) * 2011-12-21 2013-06-27 Lg Innotek Co., Ltd. Method of manufacturing thermoelectric device and thermoelectric cooling module and device using the same
US9660165B2 (en) 2008-08-29 2017-05-23 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620696B2 (en) 2008-08-28 2017-04-11 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
CN103178202B (en) * 2008-08-29 2016-06-01 Lg化学株式会社 Novel thermo-electric converting material and its preparation method, and use the thermoelectric conversion element of this thermo-electric converting material
US8535637B2 (en) 2008-08-29 2013-09-17 Lg Chem, Ltd. Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same
KR101128304B1 (en) * 2008-08-29 2012-03-23 주식회사 엘지화학 New thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
US8173097B2 (en) 2008-08-29 2012-05-08 Lg Chem, Ltd. Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion device using the same
US8226843B2 (en) 2008-08-29 2012-07-24 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
CN101960627B (en) * 2008-08-29 2013-03-27 Lg化学株式会社 New thermoelectric material, method of manufacture thereof and thermoelectric component using the same
US8029703B2 (en) 2008-08-29 2011-10-04 Lg Chem, Ltd. Compound semiconductor and its manufacturing method, and thermoelectric conversion device using the same
US9660165B2 (en) 2008-08-29 2017-05-23 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof, and thermoelectric conversion element using the same
WO2010024641A3 (en) * 2008-08-29 2010-07-01 주식회사 엘지화학 New thermoelectric material, method of manufacture thereof and thermoelectric component using the same
US8715538B2 (en) 2008-08-29 2014-05-06 Lg Chem, Ltd. Thermoelectric conversion material and producing method thereof; and thermoelectric conversion element using the same
WO2011119149A1 (en) * 2010-03-23 2011-09-29 Hewlett-Packard Development Company Thermoelectric device
CN104247062A (en) * 2011-12-21 2014-12-24 Lg伊诺特有限公司 Method of manufacturing thermoelectric device and thermoelectric cooling module and device using the same
WO2013094952A1 (en) * 2011-12-21 2013-06-27 Lg Innotek Co., Ltd. Method of manufacturing thermoelectric device and thermoelectric cooling module and device using the same
KR20130071531A (en) * 2011-12-21 2013-07-01 엘지이노텍 주식회사 Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same
KR102067647B1 (en) * 2011-12-21 2020-01-17 엘지이노텍 주식회사 Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same

Similar Documents

Publication Publication Date Title
JP4728745B2 (en) Thermoelectric device and thermoelectric module
JP3862179B2 (en) Manufacture and production of thermoelectric modules
KR20000006412A (en) Improved thermoelectric module and method of manufacturing the same
JP5671569B2 (en) Thermoelectric conversion module
CN101477981A (en) Light source module and manufacturing process thereof
KR20150130168A (en) Device using thermoelectric moudule
KR20120080820A (en) Thermoelectric module
JP2008085309A (en) Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module
JP5638329B2 (en) Thermoelectric element and thermoelectric module including the same
JP2007035907A (en) Thermoelectric module
JP2004221504A (en) Thermoelectric conversion device and its manufacturing method
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
KR102510123B1 (en) Thermoelectric element
JP2015076607A (en) Semiconductor chip structure
JP2010287729A (en) Heating/cooling test apparatus
JP5865721B2 (en) Thermoelectric module
KR20150123055A (en) Device using thermoelectric moudule
KR102456680B1 (en) Thermoelectric element
JP6311121B2 (en) Thermoelectric conversion module
JP2018032687A (en) Thermoelectric module
JP2007329349A (en) Thermoelectric conversion device and manufacturing method thereof
JP4294965B2 (en) Thermoelectric conversion module
WO2019082928A1 (en) Thermoelectric module
JP3583112B2 (en) Thermoelectric module and cooling device
JP2003347607A (en) Board for thermoelectric conversion module and thermoelectric conversion module