JP2003347607A - Board for thermoelectric conversion module and thermoelectric conversion module - Google Patents

Board for thermoelectric conversion module and thermoelectric conversion module

Info

Publication number
JP2003347607A
JP2003347607A JP2002156287A JP2002156287A JP2003347607A JP 2003347607 A JP2003347607 A JP 2003347607A JP 2002156287 A JP2002156287 A JP 2002156287A JP 2002156287 A JP2002156287 A JP 2002156287A JP 2003347607 A JP2003347607 A JP 2003347607A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
wiring conductor
insulating substrate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002156287A
Other languages
Japanese (ja)
Other versions
JP3588355B2 (en
Inventor
Koichi Tanaka
広一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002156287A priority Critical patent/JP3588355B2/en
Publication of JP2003347607A publication Critical patent/JP2003347607A/en
Application granted granted Critical
Publication of JP3588355B2 publication Critical patent/JP3588355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module and a wiring board for the module which prevents the breakdown of bond zones of an insulation board and wiring conductors and is superior in long reliability. <P>SOLUTION: An insulation board for comprising a plurality of thermoelectric conversion elements 5 and wiring conductors 3 on its surface has a linear expansion coefficient of 4×0<SP>-6</SP>/K or more, a ratio of the long side of the conductor 3 to a mean distance between the conductors 3 is 15 or less, and especially the area occupied by the wiring conductors 3 on a main surface of the board 2 is preferably 50-85%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温度制御用、保冷
用として好適に使用される熱電変換モジュールに使用さ
れる絶縁基板およびそれを用いた熱電変換モジュール用
基板及び熱電変換モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating substrate used for a thermoelectric conversion module suitably used for temperature control and cooling, a substrate for a thermoelectric conversion module using the same, and a thermoelectric conversion module.

【0002】[0002]

【従来技術】ペルチェ効果を利用した熱電変換モジュー
ルは、構造が簡単で、取り扱いが容易でありかつ、安定
な特性を維持することが出来るため、広範囲にわたる利
用が注目されている。特に、局所冷却ができ、室温付近
の精密な温度制御が可能であるため、半導体レーザや光
集積回路等に代表される一定温度に精密制御される装置
や小型冷蔵庫等に利用されている。
2. Description of the Related Art A thermoelectric conversion module utilizing the Peltier effect has attracted attention for its wide use because it has a simple structure, is easy to handle, and can maintain stable characteristics. In particular, since local cooling is possible and precise temperature control near room temperature is possible, it is used in devices that are precisely controlled to a constant temperature, such as semiconductor lasers and optical integrated circuits, and in small refrigerators.

【0003】このような熱電変換モジュールは、例えば
図1に示したように、絶縁基板2、6の表面に、それぞ
れ配線導体3a、3bが形成され、N型熱電変換素子5
aとP型熱電変換素子5bからなる複数の熱電変換素子
5が挟持されるように、半田で接合されている。
In such a thermoelectric conversion module, as shown in FIG. 1, for example, wiring conductors 3a and 3b are formed on the surfaces of insulating substrates 2 and 6, respectively.
a and the P-type thermoelectric conversion elements 5b are joined by solder so as to be sandwiched.

【0004】これらのN型熱電変換素子5a及びP型熱
電変換素子5bは、電気的に直列になるように配線導体
3a、3bで接続され、さらに外部接続端子4に接続し
ており、半田8によって外部接続端子4に固定された外
部配線7を通じて、外部から熱電素子5に電力が供給さ
れる。
The N-type thermoelectric conversion element 5a and the P-type thermoelectric conversion element 5b are connected by wiring conductors 3a and 3b so as to be electrically connected in series, further connected to an external connection terminal 4, and As a result, electric power is supplied to the thermoelectric element 5 from the outside through the external wiring 7 fixed to the external connection terminal 4.

【0005】上記の配線導体3a、3bには銅電極が用
いられるが、熱電変換素子5との半田接合を強固なもの
とするため、熱電変換素子5と半田の濡れ性を改善し、
半田成分の拡散を防止するため、銅電極表面に金メッキ
を施したり、熱電変換素子5の接続面にはNiメッキ及
び金メッキ等を施し、密着性と半田との濡れ性を改善し
ていても良い。
Although copper electrodes are used for the wiring conductors 3a and 3b, wettability between the thermoelectric conversion element 5 and solder is improved in order to make the solder joint with the thermoelectric conversion element 5 strong.
In order to prevent the diffusion of the solder component, the surface of the copper electrode may be plated with gold, or the connection surface of the thermoelectric conversion element 5 may be plated with Ni or gold to improve the adhesion and the wettability with the solder. .

【0006】従来、熱電変換モジュールの冷却面と放熱
面が最大温度差になるときの電流値(Imax)の通電
をON/OFFさせる出力サイクル試験や温度サイクル
試験において、熱応力によって、絶縁基板2と配線導体
3の接合部分において破損するという問題があった。
Conventionally, in an output cycle test or a temperature cycle test for turning ON / OFF a current value (Imax) when the cooling surface and the heat radiation surface of the thermoelectric conversion module have a maximum temperature difference, the insulating substrate 2 is caused by thermal stress. And the wiring conductor 3 is damaged at the joint.

【0007】最大温度差の状態では、熱電変換モジュー
ルの低温側基板と高温側基板との温度差及び熱膨張率の
差によって寸法差が大きくなり、中心から外側になるほ
ど熱電変換素子の接合部に生ずる引っ張り応力が大きく
なる。
In the state of the maximum temperature difference, the dimensional difference increases due to the difference in temperature and the coefficient of thermal expansion between the low-temperature side substrate and the high-temperature side substrate of the thermoelectric conversion module. The resulting tensile stress increases.

【0008】この引っ張り応力は、熱電変換モジュール
の組み込み圧縮応力によって緩和されているが、片側が
急激に冷却された場合、絶縁基板、配線導体、半田層、
熱電変換素子の熱膨張率が異なるため、夫々の接合界面
において、破壊、亀裂が生じ、特性低下の原因となって
いた。
[0008] This tensile stress is relieved by the built-in compressive stress of the thermoelectric conversion module, but when one side is rapidly cooled, the insulating substrate, the wiring conductor, the solder layer,
Since the coefficients of thermal expansion of the thermoelectric conversion elements are different, breaks and cracks are generated at the respective joint interfaces, which causes deterioration of characteristics.

【0009】また高温側基板では基板とその表面に形成
した配線導体の熱膨張率が異なるために、基板と配線導
体の接合部に繰り返し応力が発生し、接合界面のクラッ
ク、剥がれを発生させることがあった。
On the other hand, the thermal expansion coefficient of the substrate and the wiring conductor formed on the surface of the substrate on the high-temperature side substrate are different from each other. was there.

【0010】このため、接合面の構成および厚みを改善
し、接合界面の機械的強度を向上させる事が知られてい
る。例えば、熱電変換素子の電極端面に施すニッケルメ
ッキ層の厚さtを、熱電変換素子断面の1片の長さをb
としたとき、b/t≦100を満たすように厚くするこ
とによって、接合界面の機械的強度を向上させることが
特開平4−249385号公報に記載されている。
For this reason, it is known that the structure and thickness of the joint surface are improved and the mechanical strength of the joint interface is improved. For example, the thickness t of the nickel plating layer applied to the electrode end surface of the thermoelectric conversion element is represented by the length of one piece of the cross section of the thermoelectric conversion element, b.
Japanese Patent Application Laid-Open No. Hei 4-249385 describes that by increasing the thickness so as to satisfy b / t ≦ 100, the mechanical strength of the bonding interface is improved.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、特開平
4−249385号公報に記載の熱電変換モジュール
は、メッキ強度を向上させる効果はあるものの、根本的
に接合面の熱応力を緩和するものではなく、対策として
は不十分であった。
However, although the thermoelectric conversion module described in Japanese Patent Application Laid-Open No. Hei 4-249385 has the effect of improving the plating strength, it does not fundamentally reduce the thermal stress on the joint surface. However, it was insufficient as a measure.

【0012】したがって、本発明は、絶縁基板と配線導
体との接合部の破壊するのを防ぎ、長期信頼性に優れた
熱電変換モジュール用配線基板及び熱電変換モジュール
を提供することを目的とする。
Accordingly, an object of the present invention is to provide a thermoelectric conversion module wiring board and a thermoelectric conversion module that prevent the joint between the insulating substrate and the wiring conductor from being broken, and have excellent long-term reliability.

【0013】[0013]

【課題を解決するための手段】本発明は、配線導体間の
間隔に対する配線導体の長さを小さくすることにより、
電極と絶縁基板の熱膨張率の差に起因する伸びの差を小
さくし、絶縁基板と配線導体の接合部に発生する応力を
低減し、破壊を防止することができるという知見に基づ
くものである。
According to the present invention, the length of a wiring conductor with respect to the distance between wiring conductors is reduced.
It is based on the finding that the difference in elongation caused by the difference in the coefficient of thermal expansion between the electrode and the insulating substrate can be reduced, the stress generated at the joint between the insulating substrate and the wiring conductor can be reduced, and destruction can be prevented. .

【0014】即ち、本発明の熱電変換モジュール用基板
は、複数の熱電変換素子を実装し、電気的に接続するた
めの配線導体を主面に形成してなる絶縁基板であって、
該絶縁基板の線膨張係数が4×10-6/K以上、前記配
線導体間の平均距離に対する配線導体の長辺の比が15
以下であることを特徴とする。
That is, the thermoelectric conversion module substrate of the present invention is an insulating substrate on which a plurality of thermoelectric conversion elements are mounted and wiring conductors for electrical connection are formed on a main surface,
The coefficient of linear expansion of the insulating substrate is at least 4 × 10 −6 / K, and the ratio of the long side of the wiring conductor to the average distance between the wiring conductors is 15
It is characterized by the following.

【0015】また、前記絶縁基板の主面の面積に対する
前記配線導体の占有する面積の割合が50〜85%であ
ることが好ましい。これにより絶縁基板と配線導体の熱
膨張差によって発生する接合部の応力を低減し、破損を
低減することができる。
It is preferable that the ratio of the area occupied by the wiring conductor to the area of the main surface of the insulating substrate is 50 to 85%. Thereby, the stress at the joint generated due to the difference in thermal expansion between the insulating substrate and the wiring conductor can be reduced, and breakage can be reduced.

【0016】さらに、前記絶縁基板が、200MPa以
上の強度を有することが好ましい。これによって、熱膨
張差によってある程度応力が発生しても破壊しないよう
にできる。
Further, it is preferable that the insulating substrate has a strength of 200 MPa or more. Thereby, even if stress is generated to some extent due to the difference in thermal expansion, it is possible to prevent breakage.

【0017】また、前記絶縁基板が、アルミナ、窒化ア
ルミニウムのうち少なくとも1種を主成分とする焼結体
からなることが好ましい。これによって、良好な素子保
持性、熱伝導性、耐振動、衝撃性、絶縁性が期待でき
る。
Preferably, the insulating substrate is made of a sintered body containing at least one of alumina and aluminum nitride as a main component. Thereby, good element retention, thermal conductivity, vibration resistance, impact resistance, and insulation can be expected.

【0018】さらに、前記配線導体がCu、Al、A
u、Pt、Ni及びWのうち少なくとも1種からなるこ
とが好ましい。これにより、接合部の破損をさらに低減
することができる。
Further, the wiring conductor is made of Cu, Al, A
It is preferable to be made of at least one of u, Pt, Ni and W. Thereby, the breakage of the joint can be further reduced.

【0019】また、本発明の熱電変換モジュールは、対
向する一対の絶縁基板と、該一対の絶縁基板に挟持され
るように設けられ、複数配列された熱電変換素子と、該
複数の熱電変換素子間を電気的に接続するために前記一
対の絶縁基板の表面に設けられた配線導体と、前記絶縁
基板上に設けられ、該配線導体と電気的に連結された外
部接続端子とを具備する熱電変換モジュールにおいて、
前記一対の絶縁基板の少なくとも一方が、本発明の熱電
変換モジュール用基板であることを特徴とする。これに
より、高信頼性で、長寿命の熱電変換モジュールを提供
することができる。
Further, the thermoelectric conversion module of the present invention is provided with a pair of opposed insulating substrates, a plurality of arranged thermoelectric conversion elements provided so as to be sandwiched between the pair of insulating substrates, and the plurality of thermoelectric conversion elements. A thermoelectric device comprising: a wiring conductor provided on a surface of the pair of insulating substrates for electrically connecting the wiring substrate; and an external connection terminal provided on the insulating substrate and electrically connected to the wiring conductor. In the conversion module,
At least one of the pair of insulating substrates is a substrate for a thermoelectric conversion module of the present invention. Thereby, a highly reliable and long-life thermoelectric conversion module can be provided.

【0020】特に、前記熱電変換モジュールの熱電変換
素子が、Bi、Te、Se及びSb元素のうち少なくと
も2種の元素からなることが好ましい。これによって、
常温付近において優れた熱電変換性能を得ることができ
る。
In particular, it is preferable that the thermoelectric conversion element of the thermoelectric conversion module is made of at least two of Bi, Te, Se and Sb. by this,
Excellent thermoelectric conversion performance can be obtained at around normal temperature.

【0021】[0021]

【発明の実施の形態】本発明の熱電変換モジュール用基
板は、複数の熱電変換素子を実装し、電気的に接続する
ための配線導体を主面に形成してなる絶縁基板である。
例えば、図2は、熱電モジュールを示した図1の平面図
であり、一部の絶縁基板を除去して内部が見えるように
描かれている。
BEST MODE FOR CARRYING OUT THE INVENTION A thermoelectric conversion module substrate according to the present invention is an insulating substrate on which a plurality of thermoelectric conversion elements are mounted and wiring conductors for electrical connection are formed on a main surface.
For example, FIG. 2 is a plan view of FIG. 1 showing the thermoelectric module, in which a part of the insulating substrate is removed so that the inside can be seen.

【0022】この図によれば、絶縁基板12の主面に配
線導体13aが設けられ、さらにその上にN型熱電変換
素子15a及びP型熱電変換素子15bが設けられてい
る。なお、これらの熱電変換素子5と絶縁基板16との
間にも、図示はしてないが、配線導体が設けられ、N型
熱電変換素子15a及びP型熱電変換素子15bが電気
的に直列に接続している。
According to this figure, a wiring conductor 13a is provided on a main surface of an insulating substrate 12, and an N-type thermoelectric conversion element 15a and a P-type thermoelectric conversion element 15b are further provided thereon. Although not shown, a wiring conductor is provided between the thermoelectric conversion element 5 and the insulating substrate 16, and the N-type thermoelectric conversion element 15a and the P-type thermoelectric conversion element 15b are electrically connected in series. Connected.

【0023】本発明の熱電変換モジュール用基板は、図
2における絶縁基板12とその主面に設けられた配線導
体13aからなり、配線導体13aの線膨張係数が4×
10 -6/K以上であることが重要である。線膨張係数が
4×10-6/Kより小さい場合、絶縁基板12と配線導
体13aとの熱膨張率の差が大きくなるため、150〜
320℃で半田付け後に冷却すると、絶縁基板12と配
線導体13aとの接合部に過大な応力が発生し、クラッ
クや剥離が発生する。また長期の高温環境下、あるいは
温度変動環境下での使用によっても絶縁基板12と配線
導体13aとの接合部に過大な応力が発生し、クラック
や剥離が発生する。
The thermoelectric conversion module substrate of the present invention is shown in FIG.
2 and the wiring conductors provided on the main surface thereof.
The conductor 13a has a coefficient of linear expansion of 4 ×
10 -6/ K or more is important. Linear expansion coefficient
4 × 10-6/ K is smaller than / K
Since the difference in the coefficient of thermal expansion from the body 13a becomes large,
When cooled after soldering at 320 ° C.,
Excessive stress is generated at the joint with the wire conductor 13a,
Cracks and peeling occur. In a long-term high-temperature environment, or
Wiring with insulating substrate 12 even when used under temperature fluctuation environment
Excessive stress is generated at the joint with the conductor 13a, and cracks occur.
And peeling occur.

【0024】この絶縁基板12と配線導体13aの接合
部に生じる応力を低減し、さらに信頼性を高めるため、
絶縁基板12の熱膨張係数は、特に4.5×10-6/K
以上、好ましくは5×10-6/K以上であることが好ま
しい。また、その上限は、熱膨張係数の差を小さくする
ため、10×10-6/K、特に9×10-6/Kが好まし
い。
In order to reduce the stress generated at the joint between the insulating substrate 12 and the wiring conductor 13a and further enhance the reliability,
The thermal expansion coefficient of the insulating substrate 12 is particularly 4.5 × 10 −6 / K.
As described above, it is preferably 5 × 10 −6 / K or more. Further, the upper limit is preferably 10 × 10 −6 / K, particularly preferably 9 × 10 −6 / K in order to reduce the difference in thermal expansion coefficient.

【0025】また、本発明によれば、前記配線導体間の
距離に対する配線導体の長辺の比が15以下であること
が重要である。即ち、図2の一部を拡大した図3によれ
ば、絶縁基板22の主面に設けられた配線導体23aの
上にN型熱電変換素子25aとP型熱電変換素子25b
とが配列して搭載することができ、この時、配線導体2
3aの長辺Lと配線導体間の平均距離Dが、L/D≦1
5の関係を満足することを意味する。L/D>15であ
る場合には、基板と配線導体との膨張率差が大きく異な
るため、絶縁基板と配線導体との接合部に過大な応力が
発生し、クラックや剥離が発生する。
According to the present invention, it is important that the ratio of the long side of the wiring conductor to the distance between the wiring conductors is 15 or less. That is, according to FIG. 3, which is an enlarged view of a part of FIG. 2, an N-type thermoelectric conversion element 25a and a P-type thermoelectric conversion element 25b are placed on a wiring conductor 23a provided on a main surface of an insulating substrate 22.
Can be mounted in an array, and at this time, the wiring conductor 2
3a, the average distance D between the long side L and the wiring conductor is L / D ≦ 1
5 is satisfied. When L / D> 15, the difference in expansion coefficient between the substrate and the wiring conductor is greatly different, so that excessive stress is generated at the joint between the insulating substrate and the wiring conductor, and cracks and peeling occur.

【0026】この絶縁基板と配線導体の接合部に生じる
応力を低減し、さらに信頼性を高めるため、LとDとの
関係は、特にL/D≦14、好ましくはL/D≦13で
あることが望ましい。
The relationship between L and D is particularly L / D ≦ 14, preferably L / D ≦ 13, in order to reduce the stress generated at the joint between the insulating substrate and the wiring conductor and further enhance the reliability. It is desirable.

【0027】なお、図3のように、配線導体間の平均距
離Dが、横と縦とで異なる場合、横の平均距離D1と縦
の平均距離D2とを平均してDを算出すれば良い。
As shown in FIG. 3, when the average distance D between the wiring conductors is different in the horizontal and vertical directions, D is calculated by averaging the horizontal average distance D 1 and the vertical average distance D 2. Good.

【0028】また、配線導体及び熱電変換素子が設けら
れた絶縁基板の主面において、配線導体の占める面積が
主面の大きさの50〜85%であることが好ましい。配
線導体の占有率を上記の範囲に設定することにより、絶
縁基板の単位面積当りの冷熱効率を低下させることな
く、熱膨張の差に起因する発生応力を低減して基板と配
線導体との接合部に発生するクラックや剥離を抑制でき
る。
Further, it is preferable that the area occupied by the wiring conductor on the main surface of the insulating substrate provided with the wiring conductor and the thermoelectric conversion element is 50 to 85% of the size of the main surface. By setting the occupancy of the wiring conductor in the above range, the stress generated due to the difference in thermal expansion is reduced without lowering the cooling efficiency per unit area of the insulating substrate, and the bonding between the substrate and the wiring conductor is performed. Cracks and peeling occurring in the part can be suppressed.

【0029】さらに、発生する応力を低減するため、上
記配線導体の面積占有率の上限を、特に80%、更には
75%とすることが好ましく、また、絶縁基板の単位面
積当りの冷熱効率を高めるため、配線導体の面積占有率
の下限を、特に55%、更には60%とすることが好ま
しい。
Further, in order to reduce the generated stress, the upper limit of the area occupancy of the wiring conductor is preferably set to 80%, more preferably 75%, and the cooling / heating efficiency per unit area of the insulating substrate is reduced. In order to increase the area occupancy, the lower limit of the area occupancy of the wiring conductor is preferably set to 55%, more preferably 60%.

【0030】絶縁基板の強度は、200MPa以上、特
に250MPa以上にすることが好ましく、これによ
り、応力集中が起こっても基板の破損を防止する効果を
高め、より高い信頼性を得ることができる。
The strength of the insulating substrate is preferably at least 200 MPa, especially at least 250 MPa, whereby the effect of preventing damage to the substrate even when stress concentration occurs can be enhanced, and higher reliability can be obtained.

【0031】絶縁基板は、耐振動、衝撃性、配線導体の
密着強度を大きく、また、冷却面と放熱面の熱抵抗を小
さくする必要があることから、アルミナ、窒化アルミニ
ウム、窒化珪素、炭化珪素が強度及び熱伝導性などの理
由から好適に使用される。特にコストの点からアルミナ
を、熱伝導率の点で窒化アルミニウムを、衝撃性や強度
の点で窒化珪素を好適に使用できる。
The insulating substrate is required to have high vibration resistance, shock resistance, and high adhesion strength of the wiring conductor, and to reduce the thermal resistance between the cooling surface and the heat radiating surface. Therefore, alumina, aluminum nitride, silicon nitride, and silicon carbide are required. Is preferably used for reasons such as strength and thermal conductivity. In particular, alumina can be suitably used in terms of cost, aluminum nitride in terms of thermal conductivity, and silicon nitride in terms of impact resistance and strength.

【0032】なお、本発明の絶縁基板は、公知の粉体プ
ロセス及び焼結方法によって作製することができる。
The insulating substrate of the present invention can be manufactured by a known powder process and sintering method.

【0033】本発明の熱電変換素子は、Bi、Sb、T
e、Seのうち少なくとも2種を含むことが好ましい。
このような材料は性能指数に優れ、特に、A23型金属
間化合物であることが好ましく、例えばAがBi及び/
又はSb、BがTe及び/又はSeからなる半導体結晶
であって、組成比B/Aが1.4〜1.6であること
が、室温における性能指数を高めるために好ましい。
The thermoelectric conversion element according to the present invention is composed of Bi, Sb, T
It is preferable to include at least two of e and Se.
Such a material has an excellent figure of merit, and is particularly preferably an A 2 B 3 type intermetallic compound, for example, when A is Bi and / or
Alternatively, it is preferable that Sb and B are semiconductor crystals made of Te and / or Se, and the composition ratio B / A is 1.4 to 1.6 in order to increase the performance index at room temperature.

【0034】また、金属間化合物を効率よく半導体化す
るために、不純物をドーパントとして添加することがで
きる。例えば、原料粉末にI、Cl及びBr等のハロゲ
ン元素を含む化合物を含有せしめることにより、N型半
導体を製造することができる。例えば、AgI粉末、C
uBr粉末、SbI3粉末、SbCl3粉末、SbBr 3
粉末、HgBr2粉末等を単独または複数加えることに
より、金属間化合物半導体中のキャリア濃度を調整する
ことができ、その結果、性能指数を高めることが可能と
なる。上記のハロゲン元素は、効率的な半導体化の点
で、0.01〜5重量%、特に0.05〜4重量%の割
合で含むことが好ましい。
Further, the intermetallic compound can be efficiently converted into a semiconductor.
Therefore, impurities can be added as dopants.
Wear. For example, halogens such as I, Cl and Br are added to the raw material powder.
N-type semiconductors
Conductors can be manufactured. For example, AgI powder, C
uBr powder, SbIThreePowder, SbClThreePowder, SbBr Three
Powder, HgBrTwoAdding powder or other powder alone
The carrier concentration in the intermetallic compound semiconductor
As a result, it is possible to increase the figure of merit
Become. The above halogen elements are important for efficient semiconductor conversion.
Of 0.01 to 5% by weight, particularly 0.05 to 4% by weight.
It is preferable to include them in combination.

【0035】さらに、P型半導体を製造する場合には、
キャリア濃度調整のためにTeを添加することができ、
N型半導体と同様に、性能指数を高めることができる。
これにより、常温付近において良好な冷熱性能が得られ
る。
Further, when manufacturing a P-type semiconductor,
Te can be added for adjusting the carrier concentration,
As with the N-type semiconductor, the figure of merit can be increased.
Thereby, good cooling performance near normal temperature is obtained.

【0036】また配線導体がCu、Al、Au、Pt、
Ni及びWのうち少なくとも1種からなることが望まし
い。これにより良好な電気電導性および密着強度が得ら
れ、性能、信頼性に優れたモジュールが提供できる。
The wiring conductor is made of Cu, Al, Au, Pt,
Desirably, it is made of at least one of Ni and W. Thereby, good electric conductivity and adhesion strength can be obtained, and a module excellent in performance and reliability can be provided.

【0037】本発明の熱電変換モジュールは、図1のよ
うに、絶縁基板2、6の上に配線導体3a、3bを形成
し、配線導体3aと接続するように絶縁基板2、6で上
記の熱電変換素子5を挟持する。この熱電変換素子5
は、N型熱電変換素子(5a)及びP型熱電変換素子
(5b)からなり、配線導体3a、3bによりP、N、
P、Nの順に交互に且つ電気的に直列に接続される。さ
らに、配線導体3a、3bは外部接続端子4に接続し、
外部から動作電源を供給する。
In the thermoelectric conversion module of the present invention, as shown in FIG. 1, the wiring conductors 3a and 3b are formed on the insulating substrates 2 and 6, and The thermoelectric conversion element 5 is sandwiched. This thermoelectric conversion element 5
Consists of an N-type thermoelectric conversion element (5a) and a P-type thermoelectric conversion element (5b), and P, N,
P and N are connected alternately and electrically in series in this order. Further, the wiring conductors 3a and 3b are connected to the external connection terminals 4,
Supply operating power from outside.

【0038】このような構成にすることにより、温度制
御に好適に応用される熱電変換モジュールを作製するこ
とができ、これによって、長寿命で、特性が安定性した
熱電変換モジュールが実現できる。
By adopting such a configuration, a thermoelectric conversion module suitably applied to temperature control can be manufactured, thereby realizing a thermoelectric conversion module having a long life and stable characteristics.

【0039】本発明は、絶縁基板の少なくとも一方が上
記熱電変換素子であることが重要である。即ち、本発明
の絶縁基板の表面に熱電変換素子をP型、N型交互に複
数対直列に配列し、これを配線導体を用いて電気的に接
続してモジュール化し、温度制御に好適に応用される熱
電変換モジュールを作製することができる。
In the present invention, it is important that at least one of the insulating substrates is the thermoelectric conversion element. That is, P-type and N-type thermoelectric conversion elements are alternately arranged in series on the surface of the insulating substrate of the present invention, and are electrically connected using wiring conductors to form a module, which is suitably applied to temperature control. The thermoelectric conversion module to be manufactured can be manufactured.

【0040】上記の絶縁基板を用いた熱電変換モジュー
ルは、熱電変換素子と配線導体との接合界面の破壊を防
ぎ、長期信頼性に優れるため、半導体レーザや光集積回
路などの恒温化、小型冷蔵庫として好適に使用すること
ができる。
The thermoelectric conversion module using the above-described insulating substrate prevents the destruction of the bonding interface between the thermoelectric conversion element and the wiring conductor and has excellent long-term reliability. Can be suitably used.

【0041】[0041]

【実施例】出発原料には、純度99.99%以上のビス
マス、テルル、およびセレンをn型としてBi2Te
2.85Se0.15となるように秤量し、これらの混合粉末を
それぞれパイレックス(R)ガラス管に真空封入しロッキ
ング炉にて溶融・攪拌後冷却することにより熱電半導体
材料インゴットを作製した。
EXAMPLES As starting materials, bismuth, tellurium, and selenium having a purity of 99.99% or more as n-type Bi 2 Te
2.85 Se was weighed to 0.15 , each of these mixed powders was vacuum-sealed in a Pyrex (R) glass tube, melted and stirred in a rocking furnace, and then cooled to produce a thermoelectric semiconductor material ingot.

【0042】その後スタンプミルを用いて粗粉砕し、得
られた粗粉砕原料に対して、SbI 3及びHgBr2をそ
れぞれ0.1質量%ずつ加えて再度パイレックス(R)ガ
ラス管に真空封入し、溶融・攪拌後、一端から徐々に冷
却、固化させた。
Thereafter, the mixture is roughly pulverized using a stamp mill to obtain
SbI ThreeAnd HgBrTwoTo
Pyrex (R) gas
Vacuum sealed in a glass tube, and after melting and stirring, gradually cool from one end
And solidified.

【0043】冷却後ガラス管から取り出し、スライスし
た。このようにして得られたウエハーを無電解メッキ法
にて、10μmのNi層及び0.5μmのAu層を形成
した。その後、1mm角にダイシングし、熱電変換素子
とした。
After cooling, it was taken out of the glass tube and sliced. A 10 μm Ni layer and a 0.5 μm Au layer were formed on the wafer thus obtained by electroless plating. Thereafter, the resultant was diced into 1 mm square to obtain a thermoelectric conversion element.

【0044】得られた熱電変換素子の線膨張係数αを、
TMAを用いて−100〜400℃で測定した。
The linear expansion coefficient α of the obtained thermoelectric conversion element is
It measured at -100-400 degreeC using TMA.

【0045】絶縁基板は、テープ成形法、プレス法、鋳
込み法、排泥法などの成形法、常圧焼成、加圧焼成、H
IP焼成、ホットプレス焼成などの焼成法などのアルミ
ナ、窒化アルミを製造する通常の製造方法で作製でき
る。配線導体の形成は、メタライズ法、メッキ法などの
常法が適応できる。
The insulating substrate is formed by a forming method such as a tape forming method, a pressing method, a casting method, a mud discharging method, normal pressure firing, pressure firing, H
It can be manufactured by a normal manufacturing method for manufacturing alumina and aluminum nitride, such as a firing method such as IP firing and hot press firing. Conventional methods such as a metallizing method and a plating method can be applied to the formation of the wiring conductor.

【0046】このようにして得られた絶縁基板の配線導
体上に、半田ペーストを印刷し、その上に素子を並べ、
絶縁基板の反対面から過熱し、素子を固定する。素子の
数は、N型熱電変換素子及びP型熱電変換素子を同数ず
つ、合計で表1に素子数として示す数だけ用いた。
A solder paste is printed on the wiring conductor of the insulating substrate thus obtained, and the elements are arranged thereon.
The element is fixed by overheating from the opposite surface of the insulating substrate. As the number of elements, the same number of N-type thermoelectric conversion elements and P-type thermoelectric conversion elements were used, and the total number shown in Table 1 as the number of elements was used.

【0047】同様にしてもう一面の絶縁基板と素子を固
定してサーモモジュールが得られる。リード線は、1面
の絶縁基板接合と同時に接合してもよく、また両面の絶
縁基板を接合した後に接合しても構わない。配線導体の
密着強度は、配線導体にリード線を半田接合し、引っ張
って強度を測定する。
Similarly, the thermo module is obtained by fixing the element on the other side of the insulating substrate. The lead wires may be bonded together with the one-sided insulating substrate, or may be bonded after the two-sided insulating substrate is bonded. The adhesive strength of the wiring conductor is measured by soldering a lead wire to the wiring conductor and pulling the lead.

【0048】作製した熱電変換モジュールにおいて、絶
縁基板の寸法、配線導体の長辺L、配線導体間の平均距
離D及び電極面積を測定し、電極占有率Sを算出した。
In the manufactured thermoelectric conversion module, the dimensions of the insulating substrate, the long side L of the wiring conductor, the average distance D between the wiring conductors, and the electrode area were measured, and the electrode occupancy S was calculated.

【0049】次に、熱電変換モジュールの信頼試験を行
った。即ち、電圧を1.5分間印加(ON)した後、印
加電圧を停止して(OFF)4.5分保持するON−O
FFの通電サイクル試験(5000サイクル)を行った
後に外観検査及び抵抗変化(ΔR)を交流4端子法によ
り測定し、△Rが5%を超えるものはNGとした。
Next, a reliability test of the thermoelectric conversion module was performed. That is, after the voltage is applied (ON) for 1.5 minutes, the applied voltage is stopped (OFF) and held for 4.5 minutes.
After conducting a current cycle test (5000 cycles) of the FF, the appearance inspection and the resistance change (ΔR) were measured by an AC four-terminal method, and those having ΔR exceeding 5% were regarded as NG.

【0050】[0050]

【表1】 [Table 1]

【0051】本発明の範囲の試料No.1〜2、4〜
6、8〜10、12〜13、15〜20は、信頼性試験
後の外観も良好で、試験前後の抵抗変化△Rも4.5%
以下で、良好な耐久性を示した。
Sample No. within the scope of the present invention. 1-2, 4-
6, 8 to 10, 12 to 13, and 15 to 20 have good appearance after the reliability test, and the resistance change ΔR before and after the test is 4.5%.
Below, good durability was shown.

【0052】一方、L/D>15で本発明の範囲外の試
料No.3、7、11、14は信頼性試験後の電極剥が
れが確認され、抵抗変化△Rも5%を超え、劣化が大き
かった。
On the other hand, when L / D> 15, sample no. In 3, 7, 11, and 14, electrode peeling after the reliability test was confirmed, and the resistance change ΔR also exceeded 5%, and the deterioration was large.

【0053】[0053]

【発明の効果】絶縁基板と配線導体との線膨張係数の差
を低減するとともに、配線導体間の間隔Dに対する配線
導体の長さLを小さくする(L/D≦15)ことによ
り、絶縁基板と配線導体の接合部に発生する応力を低減
し、破壊を防止することができる。
According to the present invention, the difference in the linear expansion coefficient between the insulating substrate and the wiring conductor is reduced, and the length L of the wiring conductor with respect to the distance D between the wiring conductors is reduced (L / D ≦ 15). The stress generated at the joint between the wire and the wiring conductor can be reduced, and destruction can be prevented.

【0054】[0054]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱電変換モジュールを示す斜視図であ
る。
FIG. 1 is a perspective view showing a thermoelectric conversion module of the present invention.

【図2】熱電変換モジュールを示す一部を示す平面図で
ある。
FIG. 2 is a plan view showing a part of the thermoelectric conversion module.

【図3】熱電変換モジュールの一部を示す平面図であ
る。
FIG. 3 is a plan view showing a part of the thermoelectric conversion module.

【符号の説明】[Explanation of symbols]

2、6、12、16、22・・・絶縁基板 3a、3b、13a、23a・・・配線導体 4・・・外部接続端子 5・・・熱電変換素子 5a、15a、25a・・・N型熱電変換素子 5b、15b、25b・・・P型熱電変換素子 7・・・外部配線 8・・・半田 2, 6, 12, 16, 22 ... insulating substrate 3a, 3b, 13a, 23a ... wiring conductor 4: External connection terminal 5 ... thermoelectric conversion element 5a, 15a, 25a... N-type thermoelectric conversion element 5b, 15b, 25b ... P-type thermoelectric conversion element 7 ... External wiring 8 ... Solder

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】複数の熱電変換素子を実装し、電気的に接
続するための配線導体を主面に形成してなる絶縁基板で
あって、該絶縁基板の線膨張係数が4×10-6/K以
上、前記配線導体間の平均距離に対する配線導体の長辺
の比が15以下であることを特徴とする熱電変換モジュ
ール用基板。
An insulating substrate on which a plurality of thermoelectric conversion elements are mounted and a wiring conductor for electrical connection is formed on a main surface, wherein the insulating substrate has a linear expansion coefficient of 4 × 10 -6. / K, and the ratio of the long side of the wiring conductor to the average distance between the wiring conductors is 15 or less.
【請求項2】前記絶縁基板の主面の面積に対する前記配
線導体の占有する面積の割合が50〜85%であること
を特徴とする請求項1に記載の熱電変換モジュール用基
板。
2. The thermoelectric conversion module substrate according to claim 1, wherein the ratio of the area occupied by the wiring conductor to the area of the main surface of the insulating substrate is 50 to 85%.
【請求項3】前記絶縁基板が、200MPa以上の強度
を有することを特徴とする請求項1又は2記載の熱電変
換モジュール用基板。
3. The thermoelectric conversion module substrate according to claim 1, wherein the insulating substrate has a strength of 200 MPa or more.
【請求項4】前記絶縁基板が、アルミナ、窒化アルミニ
ウムのうち少なくとも1種を主成分とする焼結体からな
ることを特徴とする請求項1乃至3のいずれかに記載の
熱電変換モジュール用基板。
4. The thermoelectric conversion module substrate according to claim 1, wherein the insulating substrate is made of a sintered body containing at least one of alumina and aluminum nitride as a main component. .
【請求項5】前記配線導体がCu、Al、Au、Pt、
Ni及びWのうち少なくとも1種からなることを特徴と
する請求項1乃至4のいずれかに記載の熱電変換モジュ
ール用基板。
5. The wiring conductor according to claim 1, wherein said conductor is Cu, Al, Au, Pt,
The thermoelectric conversion module substrate according to any one of claims 1 to 4, comprising at least one of Ni and W.
【請求項6】対向する一対の絶縁基板と、該一対の絶縁
基板に挟持されるように設けられ、複数配列された熱電
変換素子と、該複数の熱電変換素子間を電気的に接続す
るために前記一対の絶縁基板の表面に設けられた配線導
体と、前記絶縁基板上に設けられ、該配線導体と電気的
に連結された外部接続端子とを具備する熱電変換モジュ
ールにおいて、前記一対の絶縁基板の少なくとも一方
が、請求項1乃至5のいずれかに記載の熱電変換モジュ
ール用基板であることを特徴とする熱電変換モジュー
ル。
6. A pair of opposing insulating substrates, a plurality of thermoelectric conversion elements provided so as to be sandwiched between the pair of insulating substrates, and electrically connecting the plurality of thermoelectric conversion elements. A thermoelectric conversion module comprising: a wiring conductor provided on a surface of the pair of insulating substrates; and an external connection terminal provided on the insulating substrate and electrically connected to the wiring conductor. A thermoelectric conversion module, wherein at least one of the substrates is the thermoelectric conversion module substrate according to any one of claims 1 to 5.
【請求項7】前記熱電変換モジュールの熱電変換素子
が、Bi、Te、Se及びSb元素のうち少なくとも2
種の元素からなることを特徴とする請求項6記載の熱電
変換モジュール。
7. The thermoelectric conversion element of the thermoelectric conversion module has at least two elements of Bi, Te, Se and Sb.
The thermoelectric conversion module according to claim 6, wherein the thermoelectric conversion module is made of a kind of element.
JP2002156287A 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module Expired - Fee Related JP3588355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156287A JP3588355B2 (en) 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156287A JP3588355B2 (en) 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2003347607A true JP2003347607A (en) 2003-12-05
JP3588355B2 JP3588355B2 (en) 2004-11-10

Family

ID=29772576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156287A Expired - Fee Related JP3588355B2 (en) 2002-05-29 2002-05-29 Thermoelectric conversion module substrate and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP3588355B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085639A (en) * 2011-01-24 2012-08-01 삼성전자주식회사 Thermoelectric material comprising nano-inclusions, thermoelectric module and thermoelectric apparatus comprising same
WO2012127710A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Electrostatic atomizer device and method for producing same
KR20130047321A (en) * 2011-10-31 2013-05-08 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric efficiency
KR20130047322A (en) * 2011-10-31 2013-05-08 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric characteristics
US11659767B2 (en) 2017-02-15 2023-05-23 Ngk Spark Plug Co., Ltd. Package with built-in thermoelectric element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120085639A (en) * 2011-01-24 2012-08-01 삼성전자주식회사 Thermoelectric material comprising nano-inclusions, thermoelectric module and thermoelectric apparatus comprising same
KR101980194B1 (en) * 2011-01-24 2019-05-21 삼성전자주식회사 Thermoelectric material comprising nano-inclusions, thermoelectric module and thermoelectric apparatus comprising same
WO2012127710A1 (en) * 2011-03-23 2012-09-27 パナソニック株式会社 Electrostatic atomizer device and method for producing same
KR20130047321A (en) * 2011-10-31 2013-05-08 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric efficiency
KR20130047322A (en) * 2011-10-31 2013-05-08 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric characteristics
KR101952358B1 (en) * 2011-10-31 2019-02-26 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric characteristics
KR101952883B1 (en) * 2011-10-31 2019-05-31 엘지이노텍 주식회사 The thermoelectric device having improved thermoelectric efficiency
US11659767B2 (en) 2017-02-15 2023-05-23 Ngk Spark Plug Co., Ltd. Package with built-in thermoelectric element

Also Published As

Publication number Publication date
JP3588355B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
EP3352233B1 (en) Thermoelectric conversion module and thermoelectric conversion device
US20090188542A1 (en) Thermoelectric Module
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
KR20000006412A (en) Improved thermoelectric module and method of manufacturing the same
CN104508846A (en) Thermoelectric conversion module
WO2010050455A1 (en) Thermoelectric module
JP3550390B2 (en) Thermoelectric conversion element and thermoelectric module
US20220181533A1 (en) Thermoelectric conversion module
JP2004031697A (en) Thermoelectric module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JP3588355B2 (en) Thermoelectric conversion module substrate and thermoelectric conversion module
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
WO2017047627A1 (en) Thermoelectric conversion module and thermoelectric conversion device
JP2004235367A (en) Thermoelectric module
JP4005937B2 (en) Thermoelectric module package
JP3840132B2 (en) Peltier device mounting circuit board
JP2005136075A (en) Thermoelectric conversion module and its manufacturing method
JP3457958B2 (en) Package for optical transmission module
JP3583112B2 (en) Thermoelectric module and cooling device
JP3763107B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
TW202002341A (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2000188429A (en) Thermo-electric conversion module
JP2003017761A (en) Thermo-electric conversion module for surface mounting and thermo-electric conversion module integrated package

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3588355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees