JP2008082171A - Fuel injection control device for multiple-kind fuel engine - Google Patents

Fuel injection control device for multiple-kind fuel engine Download PDF

Info

Publication number
JP2008082171A
JP2008082171A JP2006259501A JP2006259501A JP2008082171A JP 2008082171 A JP2008082171 A JP 2008082171A JP 2006259501 A JP2006259501 A JP 2006259501A JP 2006259501 A JP2006259501 A JP 2006259501A JP 2008082171 A JP2008082171 A JP 2008082171A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
map
injection control
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006259501A
Other languages
Japanese (ja)
Other versions
JP5095973B2 (en
Inventor
Shiro Kokubu
志朗 國府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38462347&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2008082171(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006259501A priority Critical patent/JP5095973B2/en
Priority to ES07014937T priority patent/ES2322822T3/en
Priority to DE602007000770T priority patent/DE602007000770D1/en
Priority to EP07014937A priority patent/EP1905990B1/en
Priority to CO07094034A priority patent/CO5960136A1/en
Priority to MX2007011202A priority patent/MX2007011202A/en
Priority to CN2007101422890A priority patent/CN101153565B/en
Priority to ARP070104131A priority patent/AR062892A1/en
Priority to US11/903,047 priority patent/US7475683B2/en
Priority to BRPI0703701A priority patent/BRPI0703701B8/en
Priority to PE2007001281A priority patent/PE20081048A1/en
Publication of JP2008082171A publication Critical patent/JP2008082171A/en
Publication of JP5095973B2 publication Critical patent/JP5095973B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • F02D19/088Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device for a multiple-kind fuel engine configured to change over maps in response to alcohol concentration. <P>SOLUTION: This fuel injection control device used in the multiple-kind fuel engine 1 is configured to include: a memory region 26 which stores a plurality of fuel injection control maps 30 in which a state of the engine 1 and a basic fuel injection time Ti are made to correspond to each other in response to the concentration of alcohol contained in the fuel; a basic fuel injection time determination part 22 which determines the basic fuel injection time Ti using the currently selected fuel injection control map 30 of the concentration of alcohol; a fuel injection quantity determination part 25 which determines a fuel injection quantity based on the basic fuel injection time Ti and an air-fuel ratio correction coefficient K<SB>O2</SB>; and a map changeover part 21 which selects the fuel injection control map 30 of the concentration of alcohol close to the concentration of alcohol of the fuel based on the air-fuel ratio correction coefficient K<SB>O2</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガソリンだけでなく、アルコールのみの燃料や、ガソリンとアルコールを混合した燃料により運転可能な多種類燃料エンジンに用いられる燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device used for a multi-type fuel engine that can be operated not only with gasoline but also with alcohol-only fuel or with fuel mixed with gasoline and alcohol.

近年、ガソリンを燃料とするだけでなく、アルコール(エタノール)のみ、或いは、ガソリンとアルコールが混合された燃料でも運転可能な多種類燃料エンジンを搭載したFFV(Flexible Fuel Vehicle)が開発されている。燃焼時の酸素に対する量論係数の違いからアルコールはガソリンに比べて燃料中のアルコール濃度が高くなるに従い、同一の吸入空気量に対し、より多くの燃料を供給する必要が生じる。そのため、このような多種類燃料エンジンにおいては、最適な空燃比となるように、基本燃料噴射時間を燃料中のアルコール濃度により補正する制御が行われている(例えば、特許文献1参照)。このとき、燃料中のアルコール濃度は、排気ガスに含まれる酸素濃度を測定する酸素濃度センサ(以下、「O2センサ」と呼ぶ)の検出値を用いて求められる空燃比補正係数から推定される。 In recent years, FFVs (Flexible Fuel Vehicles) have been developed that are equipped not only with gasoline as fuel but also with alcohol (ethanol) alone or a fuel fuel that can be operated with a fuel in which gasoline and alcohol are mixed. Due to the difference in stoichiometric coefficient with respect to oxygen during combustion, alcohol needs to supply more fuel for the same intake air amount as the alcohol concentration in the fuel becomes higher than gasoline. Therefore, in such a multi-type fuel engine, control is performed to correct the basic fuel injection time based on the alcohol concentration in the fuel so as to obtain an optimum air-fuel ratio (see, for example, Patent Document 1). At this time, the alcohol concentration in the fuel is estimated from an air-fuel ratio correction coefficient obtained using a detection value of an oxygen concentration sensor (hereinafter referred to as “O 2 sensor”) that measures the oxygen concentration contained in the exhaust gas. .

特開昭63−5131号公報JP 63-5131 A

しかしながら、従来の制御方法では、基本燃料噴射時間は、例えば、エンジン回転数と吸気圧とを測定してこれらの値からマップを検索して求められる。そのため、燃料中のアルコール濃度が変化しても、基本燃料噴射時間は、エンジン回転数と吸気圧に対して予め設定された値であるため、アルコール濃度に対する燃料噴射量の調整範囲が狭いという課題があった。   However, in the conventional control method, the basic fuel injection time is obtained, for example, by measuring the engine speed and the intake pressure and searching a map from these values. Therefore, even if the alcohol concentration in the fuel changes, the basic fuel injection time is a value set in advance for the engine speed and the intake pressure, so that the adjustment range of the fuel injection amount with respect to the alcohol concentration is narrow. was there.

本発明はこのような課題に鑑みてなされたものであり、エンジンの状態に応じて基本燃料噴射時間を決定するためのマップを複数有し、アルコール濃度に応じてこのマップを切り替えるように構成した多種類燃料エンジン用燃料噴射制御装置を提供することを目的とする。   The present invention has been made in view of such problems, and has a plurality of maps for determining the basic fuel injection time according to the state of the engine, and is configured to switch this map according to the alcohol concentration. An object of the present invention is to provide a fuel injection control device for various types of fuel engines.

前記課題を解決するために、第1の本発明に係る多種類燃料エンジン用燃料噴射制御装置は、エンジンの状態および基本燃料噴射時間が対応付けられた燃料噴射制御マップを、燃料に含まれるアルコール濃度に応じて複数記憶する記憶手段(例えば、実施形態における記憶領域26)と、燃料に含まれるアルコール濃度を検出するアルコール濃度検出手段(例えば、実施形態における補正係数決定部24)と、アルコール濃度検出手段で検出されたアルコール濃度に応じて記憶手段に記憶された複数の燃料噴射制御マップから最適な燃料噴射制御マップを選択するマップ切替手段(例えば、実施形態におけるマップ切替部21)と、エンジンの状態に応じて、記憶手段に記憶された複数の燃料噴射制御マップのうち、現在選択されているアルコール濃度の燃料噴射制御マップを用いて基本燃料噴射時間を決定し、この基本燃料噴射時間から燃料噴射量を決定する燃料噴射量決定手段(例えば、実施形態における燃料噴射量決定部25)とを有して構成される。   In order to solve the above-described problem, a fuel injection control device for a multi-type fuel engine according to the first aspect of the present invention provides a fuel injection control map in which the engine state and the basic fuel injection time are associated with alcohol contained in fuel. A plurality of storage means (for example, the storage area 26 in the embodiment) for storing the concentration according to the concentration, an alcohol concentration detection means (for example, the correction coefficient determination unit 24 in the embodiment) for detecting the alcohol concentration contained in the fuel, and the alcohol concentration Map switching means (for example, the map switching unit 21 in the embodiment) for selecting an optimal fuel injection control map from a plurality of fuel injection control maps stored in the storage means according to the alcohol concentration detected by the detection means, and the engine Of the plurality of fuel injection control maps stored in the storage means according to the state of A fuel injection amount determination means (for example, a fuel injection amount determination unit 25 in the embodiment) that determines a basic fuel injection time using a fuel injection control map of a fuel concentration and determines a fuel injection amount from the basic fuel injection time; It is comprised.

また、第2の本発明に係る多種類燃料エンジン用燃料噴射制御装置は、エンジンの状態および基本燃料噴射時間が対応付けられた燃料噴射制御マップを、燃料に含まれるアルコール濃度に応じて複数記憶する記憶手段(例えば、実施形態における記憶領域26)と、排気管に配設され、排気ガス中の酸素濃度を検出する酸素濃度センサ(例えば、実施形態におけるO2センサ15)と、基本燃料噴射時間を、記憶手段に記憶された複数の燃料噴射制御マップのうち、現在選択されているアルコール濃度の燃料噴射制御マップを用いて決定する基本燃料噴射時間決定手段(例えば、実施形態における基本燃料噴射制御時間決定部22)と、酸素濃度センサからの検出値により、エンジンの空燃比が目標空燃比になるように基本燃料噴射時間を補正するための空燃比補正係数を決定する空燃比補正係数決定手段(例えば、実施形態における補正係数決定部24)と、基本燃料噴射時間決定手段により決定された基本燃料噴射時間、および、空燃比補正係数決定手段により決定された空燃比補正係数により、燃料噴射量を決定する燃料噴射量決定手段(例えば、実施形態における燃料噴射量決定部25)と、空燃比補正係数から、燃料のアルコール濃度に近いアルコール濃度の燃料噴射制御マップを選択するマップ切替手段(例えば、実施形態におけるマップ切替部21)とを有して構成される。 The fuel injection control apparatus for a multi-type fuel engine according to the second aspect of the present invention stores a plurality of fuel injection control maps in which the engine state and the basic fuel injection time are associated according to the concentration of alcohol contained in the fuel. Storage means (for example, the storage area 26 in the embodiment), an oxygen concentration sensor (for example, the O 2 sensor 15 in the embodiment) that is disposed in the exhaust pipe and detects the oxygen concentration in the exhaust gas, and basic fuel injection Basic fuel injection time determining means (for example, basic fuel injection in the embodiment) for determining the time using a fuel injection control map of the currently selected alcohol concentration among a plurality of fuel injection control maps stored in the storage means. The basic fuel injection time is compensated so that the air-fuel ratio of the engine becomes the target air-fuel ratio by the detection value from the control time determination unit 22) and the oxygen concentration sensor. An air-fuel ratio correction coefficient determining means for determining an air-fuel ratio correction coefficient (for example, the correction coefficient determining unit 24 in the embodiment), a basic fuel injection time determined by the basic fuel injection time determining means, and an air-fuel ratio correction The fuel injection amount determination means (for example, the fuel injection amount determination unit 25 in the embodiment) that determines the fuel injection amount based on the air-fuel ratio correction coefficient determined by the coefficient determination means, and the alcohol concentration of the fuel from the air-fuel ratio correction coefficient. It has a map switching means (for example, the map switching unit 21 in the embodiment) for selecting a fuel injection control map having a close alcohol concentration.

このような第1および第2の多種類燃料エンジン用燃料噴射制御装置は、吸気管に配設され、吸気圧を検出する吸気管絶対圧センサと、エンジン回転数を検出するエンジン回転数検出手段(例えば、実施形態におけるクランク角センサ16およびエンジン回転数検出部23)とを有し、エンジンの状態として、吸気圧とエンジン回転数とから決定される空気量に基づいて基本燃料噴射時間を決定するように構成されることが好ましい。   Such first and second fuel injection control devices for multi-type fuel engines are provided in an intake pipe, and an intake pipe absolute pressure sensor for detecting intake pressure, and an engine speed detecting means for detecting engine speed. (For example, the crank angle sensor 16 and the engine speed detector 23 in the embodiment), and the basic fuel injection time is determined based on the air amount determined from the intake pressure and the engine speed as the engine state. It is preferable to be configured to do so.

このとき、第1および第2の本発明に係る多種類燃料エンジン用燃料噴射制御装置が、スロットルバルブのスロットル開度を検出するスロットル開度センサを有し、また、記憶手段が、アルコール濃度毎に、吸気圧およびエンジン回転数と基本燃料噴射時間とが対応付けられた燃料噴射制御マップであるPbマップと、スロットル開度およびエンジン回転数と基本燃料噴射時間とが対応付けられた燃料噴射制御マップであるスロットルマップとの燃料噴射制御マップの組(例えば、実施形態におけるマップセット40)を有し、アルコール濃度に応じて選択されたPbマップおよびスロットルマップのいずれか一方を、エンジンの状態に応じて選択して用いるように構成されることが好ましい。   At this time, the fuel injection control apparatus for multi-type fuel engines according to the first and second aspects of the present invention has a throttle opening sensor for detecting the throttle opening of the throttle valve, and the storage means is provided for each alcohol concentration. Pb map which is a fuel injection control map in which intake pressure, engine speed and basic fuel injection time are associated with each other, and fuel injection control in which throttle opening, engine speed and basic fuel injection time are associated with each other It has a set of fuel injection control maps (for example, the map set 40 in the embodiment) with a throttle map that is a map, and either the Pb map or the throttle map selected according to the alcohol concentration is set to the engine state. It is preferable to be configured to be selected and used accordingly.

なお、このような第1および第2の本発明に係る多種類燃料エンジン用燃料噴射制御装置において、記憶手段が、少なくとも3つ以上の異なるアルコール濃度に対応した燃料噴射制御マップを記憶することが好ましい。   In the fuel injection control apparatus for multi-type fuel engines according to the first and second aspects of the present invention, the storage means may store a fuel injection control map corresponding to at least three different alcohol concentrations. preferable.

第1および第2の本発明に係る多種類燃料エンジン用燃料噴射制御装置を以上のように構成すると、燃料に含まれるアルコール濃度に応じて基本燃料噴射時間を変えることができるため、アルコール濃度に対する燃料噴射量の調整範囲が広くなり、燃料に含まれるアルコールの濃度が変わっても、このエンジンを安定して運転することができる。特に、第2の本発明に係る多種類燃料エンジン用燃料噴射制御装置によると、燃料に含まれるアルコール濃度を空燃比補正係数から推定することができるので、燃料タンク内にアルコール濃度センサを設ける必要がなく、この燃料噴射制御装置のコストダウンを行うことができる。   If the fuel injection control device for multi-type fuel engines according to the first and second aspects of the present invention is configured as described above, the basic fuel injection time can be changed according to the alcohol concentration contained in the fuel. Even if the concentration range of the fuel injection amount is widened and the concentration of alcohol contained in the fuel changes, the engine can be operated stably. In particular, according to the fuel injection control device for a multi-type fuel engine according to the second aspect of the present invention, the alcohol concentration contained in the fuel can be estimated from the air-fuel ratio correction coefficient, so that it is necessary to provide an alcohol concentration sensor in the fuel tank. Therefore, the cost of the fuel injection control device can be reduced.

このとき、基本燃料噴射時間を吸気圧とエンジン回転数とから決定するように構成することにより、特にアイドリング回転付近のエンジン回転数を安定させることができる。また、アルコール濃度毎に、吸気圧とエンジン回転数とから基本燃料噴射時間を決定する燃料噴射制御マップと、スロットル開度とエンジン回転数とから基本燃料噴射時間を決定する燃料噴射制御マップとの組を有し、エンジンの状態によりこれらのマップを切り替えるように構成することにより、アイドリング時の安定性を確保するとともに、高負荷時のレスポンスを向上させることができる。   At this time, by configuring the basic fuel injection time to be determined from the intake pressure and the engine speed, it is possible to stabilize the engine speed particularly near the idling speed. Further, for each alcohol concentration, a fuel injection control map for determining the basic fuel injection time from the intake pressure and the engine speed, and a fuel injection control map for determining the basic fuel injection time from the throttle opening and the engine speed. By having a set and switching these maps according to the state of the engine, it is possible to ensure stability during idling and improve response during high loads.

なお、少なくとも3つ以上のアルコール濃度に対応した吸入空気温度、大気圧、エンジン冷却水温度などによる環境補正係数テーブルや、加速補正を切り替えることにより良好な運転性能を得るマップセットを記憶することにより、次の始動とマップセットを切り替え制御できるまでの運転をそのまま記憶したマップセットと環境補正係数、加速補正、点火時期マップで運転することができる。   By storing an environment correction coefficient table based on intake air temperature, atmospheric pressure, engine coolant temperature, etc. corresponding to at least three alcohol concentrations, and a map set that obtains good driving performance by switching acceleration correction Then, it is possible to operate with a map set in which the operation until the next start and the map set can be switched and controlled, the environment correction coefficient, the acceleration correction, and the ignition timing map.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1において、エンジン1は、燃焼室2に連通する吸気管3および排気管4を有し、吸気管3に、吸入する空気の量を調整するスロットルバルブ5と、燃料を噴射するインジェクタ6が設けられている。また、このエンジン1には、スロットルバルブ5の開度を検出するスロットル開度センサ11、吸気管3内の圧力(吸気圧)を検出する吸気管絶対圧センサ12、吸気管3を通って燃焼室2に流れ込む空気の温度(吸気温)を検出する吸気温センサ13、エンジン1のシリンダヘッドおよびシリンダブロックに形成されたウォータジャケットを流れてこれらを冷却した冷却水の温度(水温)を検出する水温センサ14、排気管4に設けられ、燃焼室2から排出された排気ガスの酸素濃度を検出するO2センサ15、および、クランクシャフトの回転角度(クランク角)を検出するクランク角センサ16を有し、これらのセンサの検出値はエンジン制御ユニット(ECU)20に入力され、このECU20により、これらの検出値に基づいて、インジェクタ6からの燃料噴射量が制御される。なお、本実施例においては水冷エンジンの場合で説明するが、空冷エンジンでも同様の制御を行うことができる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In FIG. 1, an engine 1 has an intake pipe 3 and an exhaust pipe 4 that communicate with a combustion chamber 2. A throttle valve 5 that adjusts the amount of air to be sucked into the intake pipe 3 and an injector 6 that injects fuel. Is provided. The engine 1 is combusted through a throttle opening sensor 11 that detects the opening of the throttle valve 5, an intake pipe absolute pressure sensor 12 that detects the pressure (intake pressure) in the intake pipe 3, and the intake pipe 3. The temperature (water temperature) of the cooling water flowing through the water jacket formed in the intake air temperature sensor 13 for detecting the temperature of the air flowing into the chamber 2 (intake air temperature), the cylinder head of the engine 1 and the cylinder block and cooling them is detected. A water temperature sensor 14, an O 2 sensor 15 provided in the exhaust pipe 4 for detecting the oxygen concentration of the exhaust gas discharged from the combustion chamber 2, and a crank angle sensor 16 for detecting the rotation angle (crank angle) of the crankshaft are provided. And the detected values of these sensors are input to an engine control unit (ECU) 20, which is based on these detected values, Fuel injection quantity from Njekuta 6 is controlled. In the present embodiment, the case of a water-cooled engine will be described. However, the same control can be performed with an air-cooled engine.

次に、ECU20による燃料噴射量の決定方法について説明する。このエンジン1は、空気量検出方式として、スピードデンシティ方式を採用しており、クランク角センサ16から出力されるパルス信号をECU20のエンジン回転数検出部23でカウントして求められるエンジン回転数Neと、吸気管絶対圧センサ12により検出される吸気管3内の吸気圧Pbとによって決定される運転状態での空気質量に応じて、ある標準大気条件下と標準暖機状態で実験的に求められた所定目標空燃比(通常は理論空燃比)を得るための必要燃料噴射量を決定し、この燃料噴射量を供給するためのインジェクタ6の開弁時間(これを以降の説明では「基本燃料噴射時間Ti」と呼ぶ)を決定している。具体的には、ECU20の記憶領域26(ROM等)に、吸気圧Pbとエンジン回転数Neとを引数とし、これらの引数に対応するそれぞれの基本燃料噴射時間が設定された2次元マップである燃料噴射制御マップ30を記憶させておき、基本燃料噴射時間決定部22にて、上述の検出値から対応する基本燃料噴射時間Tiを求めるように構成されている。   Next, a method for determining the fuel injection amount by the ECU 20 will be described. The engine 1 employs a speed density method as an air amount detection method, and the engine speed Ne obtained by counting the pulse signal output from the crank angle sensor 16 by the engine speed detection unit 23 of the ECU 20 is obtained. In accordance with the air mass in the operating state determined by the intake pressure Pb in the intake pipe 3 detected by the intake pipe absolute pressure sensor 12, it is experimentally obtained under certain standard atmospheric conditions and standard warm-up conditions. The required fuel injection amount for obtaining the predetermined target air-fuel ratio (usually the theoretical air-fuel ratio) is determined, and the valve opening time of the injector 6 for supplying this fuel injection amount (this will be referred to as “basic fuel injection” in the following description). Called time Ti). Specifically, it is a two-dimensional map in which the intake pressure Pb and the engine speed Ne are used as arguments in the storage area 26 (ROM or the like) of the ECU 20 and the respective basic fuel injection times corresponding to these arguments are set. The fuel injection control map 30 is stored, and the basic fuel injection time determination unit 22 is configured to obtain the corresponding basic fuel injection time Ti from the above-described detection value.

このように燃料噴射制御マップ30に記憶された基本燃料噴射時間Tiは、大気条件を決めて実験的に求められているため、エンジン1が運転されているときの大気条件が異なれば、目標空燃比を得ることができない。そのため、このような環境条件に応じて、ECU20は基本燃料噴射時間Tiを補正するように構成されている。このような環境補正項としては、吸気温TAが変わることによる空気密度の変化分を補正する吸気温補正係数KTAがあり、吸気温センサ13により検出された吸気温TAからECU20の補正係数決定部24により求められる。 Since the basic fuel injection time Ti stored in the fuel injection control map 30 is determined experimentally by determining atmospheric conditions, if the atmospheric conditions when the engine 1 is operating differ, The fuel ratio cannot be obtained. Therefore, the ECU 20 is configured to correct the basic fuel injection time Ti according to such environmental conditions. As such an environmental correction term, there is an intake air temperature correction coefficient KTA for correcting a change in air density due to a change in the intake air temperature TA, and the correction coefficient of the ECU 20 is determined from the intake air temperature TA detected by the intake air temperature sensor 13. Determined by the unit 24.

また、エンジン1は、様々な条件下での運転が要求され、その運転条件下で最適な結果が得られるよう目標空燃比を補正する必要がある。このような目標空燃比補正項としては、エンジン1の温度が低く燃焼が不安定になり、ドライバビリティが悪化するのを防止するための水温補正係数KTWや、高回転高負荷運転時に、エンジン1に大きなトルクが要求されているときの出力空燃比を実現するための全開補正係数KWOTがあり、ECU20はこれらの補正係数により基本燃料噴射時間Tiを補正するように構成されている。ここで、水温補正係数KTWは、ECU20の補正係数決定部24により、水温センサ14により検出される冷却水の水温TWから求められ、また、全開補正係数KWOTは、スロットル開度センサ11により検出されるスロットル開度THからを求められる。 Further, the engine 1 is required to operate under various conditions, and it is necessary to correct the target air-fuel ratio so that an optimum result can be obtained under the operating conditions. As such a target air-fuel ratio correction term, the temperature of the engine 1 is low and combustion becomes unstable, and the water temperature correction coefficient K TW for preventing the drivability from deteriorating, There is a fully open correction coefficient KWOT for realizing the output air-fuel ratio when a large torque is required, and the ECU 20 is configured to correct the basic fuel injection time Ti by these correction coefficients. Here, the water temperature correction coefficient K TW is obtained from the coolant temperature TW detected by the water temperature sensor 14 by the correction coefficient determination unit 24 of the ECU 20, and the fully open correction coefficient K WOT is calculated by the throttle opening sensor 11. It is obtained from the detected throttle opening TH.

さらに、このようなエンジン1においては、排気ガスに含まれる炭化水素および一酸化炭素を酸化させ、また、窒素酸化物を還元するために三元触媒が設けられているが、この三元触媒の浄化能力を有効に使用するためには、このエンジン1における空燃比を精度良く理論空燃比に維持する必要がある。このような制御は、上述の環境補正項や目標空燃比補正項のようなフィードフォワード制御では対応することができない。そのため、ECU20の補正係数決定部24は、O2センサ15による排気管4内の酸素濃度から理論空燃費を維持するための空燃比補正係数KO2を求め、フィードバック制御により基本燃料噴射時間Tiを補正する。 Further, in such an engine 1, a three-way catalyst is provided to oxidize hydrocarbons and carbon monoxide contained in the exhaust gas and reduce nitrogen oxides. In order to use the purification capacity effectively, it is necessary to maintain the air-fuel ratio in the engine 1 at the stoichiometric air-fuel ratio with high accuracy. Such control cannot be handled by feedforward control such as the above-described environment correction term and target air-fuel ratio correction term. Therefore, the correction coefficient determination unit 24 of the ECU 20 obtains the air-fuel ratio correction coefficient K O2 for maintaining the theoretical air-fuel ratio from the oxygen concentration in the exhaust pipe 4 by the O 2 sensor 15 and determines the basic fuel injection time Ti by feedback control. to correct.

以上より、補正後の燃料噴射時間Toutは、次式(1)により求められる。   As described above, the corrected fuel injection time Tout is obtained by the following equation (1).

Tout = Ti × KTA × KWOT × KTW × KO2 …(1) Tout = Ti x K TA x K WOT x K TW x K O2 (1)

ところで、ガソリンにアルコールが混合された燃料、若しくは、アルコールのみの燃料の場合、上述のように、量論係数の違いから同一の吸入空気量に対しアルコールはガソリンに比べて多くの燃料を要求する。そのため、空燃比補正係数KO2が大きいときは、燃料噴射量が少ない状態、すなわち、アルコール濃度が濃い状態であることを示し、空燃比補正係数KO2が小さいときは、燃料噴射量が多い状態、すなわち、アルコール濃度が薄い状態であることを示している。図6に示すように、燃料に含まれるアルコール濃度と空燃費補正係数KO2とはほぼ比例することが知られている。そこで、本実施例に係るECU20は、異なるアルコール濃度に対応した複数の燃料噴射制御マップ30を記憶しておき、空燃比補正係数KO2の値に応じて最適な燃料噴射制御マップ30を選択するように構成されている。 By the way, in the case of a fuel in which alcohol is mixed with gasoline, or a fuel containing only alcohol, as described above, alcohol requires more fuel than gasoline because of the difference in stoichiometric coefficient. . Therefore, when the air-fuel ratio correction coefficient K O2 is large, it indicates that the fuel injection amount is small, that is, the alcohol concentration is high, and when the air-fuel ratio correction coefficient K O2 is small, the fuel injection amount is large. That is, the alcohol concentration is low. As shown in FIG. 6, it is known that the concentration of alcohol contained in the fuel and the air fuel efficiency correction coefficient K O2 are substantially proportional. Therefore, the ECU 20 according to the present embodiment stores a plurality of fuel injection control maps 30 corresponding to different alcohol concentrations, and selects an optimal fuel injection control map 30 according to the value of the air-fuel ratio correction coefficient K O2. It is configured as follows.

次に、ECU20のマップ切替部21によるマップセット切替処理S100について図2を用いて説明する。なお、以降の説明においては、アルコール濃度に応じた燃料噴射制御マップ30をマップセット40と呼び、本実施例では、燃料全体に対してアルコール濃度が0%のときのマップセット(これを「E0マップセット」と呼ぶ)、30%のときのマップセット(これを「E30マップセット」と呼ぶ)、70%のときのマップセット(これを「E70マップセット」と呼ぶ)、および、100%のときのマップセット(これを「E100マップセット」と呼ぶ)からなる4組のマップセットを有している場合について説明する。   Next, the map set switching process S100 by the map switching unit 21 of the ECU 20 will be described with reference to FIG. In the following description, the fuel injection control map 30 corresponding to the alcohol concentration is referred to as a map set 40. In this embodiment, the map set when the alcohol concentration is 0% with respect to the entire fuel (this is referred to as “E0”). Map set), 30% map set (referred to as “E30 map set”), 70% map set (referred to as “E70 map set”), and 100% A case will be described in which there are four map sets including the current map set (referred to as “E100 map set”).

また、本実施例においては、アルコール濃度に応じた上述の燃料噴射制御マップ30、すなわち、マップセット40(E0〜E100)に対応させて、アルコール濃度に応じて環境補正項(KTA)、目標空燃比補正項(KTW,KWOT)や加速補正等の補正係数、始動時の燃料噴射量、また、点火時期等を記憶領域26に記憶させておき、マップセット40の切り替え時にこれらの補正係数等もアルコール濃度に応じて切り替えるようして、より、良好な燃料供給、燃焼制御を行うように構成した場合について説明する。 In the present embodiment, the environment correction term (K TA ) and the target are set according to the alcohol concentration in correspondence with the fuel injection control map 30 according to the alcohol concentration, that is, the map set 40 (E0 to E100). The air-fuel ratio correction terms (K TW , K WOT ), correction coefficients such as acceleration correction, fuel injection amount at start-up, ignition timing, etc. are stored in the storage area 26, and these corrections are made when the map set 40 is switched. A description will be given of a case in which the coefficient and the like are switched in accordance with the alcohol concentration so as to perform better fuel supply and combustion control.

ところで、本実施例においては、空燃比補正係数KO2からアルコール濃度を推定するが、エンジン1の運転中、空燃比補正係数KO2は、図3に示すように、エンジン1の経時変動又は外的影響によって振動する。そのため、マップセット切替処理S100においては、空燃比補正係数KO2の学習平均値Krefを求め、この学習平均値Krefにより、マップセット40を選択をするように構成されている。このマップセット切替処理S100が実行されると、まず、マップセット切替部21は、各センサから信号を読み出し、エンジン回転数Ne、吸気温TA、および、水温TWを算出し、また、O2センサ15の活性状態を検出し、これらの状態から以降の処理を続行するか否かを判断する(ステップS101)。具体的には、エンジン回転数Neの変動幅が所定の設定範囲を超えているとき、および、吸気温TAや水温TWが所定の設定値より低いとき、あるいは、O2センサ15が活性状態になっていいないときはマップセット40の切替判断を行わずに終了する。一方、エンジン回転数Ne、吸気温TA、および、水温TWが所定の条件を満たすときは、次に、平均学習係数Krefが所定の学習領域にあることを確認する(ステップS102)。 Incidentally, in the present embodiment, the estimated alcohol concentration from air-fuel ratio correction coefficient K O2, in the operation of the engine 1, air-fuel ratio correction coefficient K O2 is as shown in FIG. 3, change over time or outside of the engine 1 Vibrates due to mechanical effects. Therefore, in the map set changeover processing S100, it obtains the learned average value Kref of the air-fuel ratio correction coefficient K O2, by learning the average value Kref, is configured to selectively the map set 40. When this map set switching process S100 is executed, first, the map set switching unit 21 reads signals from each sensor, calculates the engine speed Ne, the intake air temperature TA, and the water temperature TW, and also the O 2 sensor. 15 active states are detected, and it is determined whether or not to continue the subsequent processing from these states (step S101). Specifically, when the fluctuation range of the engine speed Ne exceeds a predetermined set range, and when the intake air temperature TA and the water temperature TW are lower than predetermined set values, or the O 2 sensor 15 is in an active state. If not, the process ends without determining whether to switch the map set 40. On the other hand, when the engine speed Ne, the intake air temperature TA, and the water temperature TW satisfy predetermined conditions, it is next confirmed that the average learning coefficient Kref is within a predetermined learning region (step S102).

そして、所定の時間、空燃比補正係数KO2の値を積分的に平均処理し、これにより、平均学習係数Krefを更新する(ステップS103)。例えば、前回の平均学習係数をKrefn-1とし、今回の空燃比補正係数をKO2nとしたとき、今回の平均学習係数Krefnを次式(2)により求め、この処理を所定の時間(所定のサイクル)繰り返す。なお、この式(2)において、βは平均化係数を表わしており、通常0.1程度の値に設定される。 Then, the value of the air-fuel ratio correction coefficient K O2 is integrated and averaged for a predetermined time, thereby updating the average learning coefficient Kref (step S103). For example, when the previous average learning coefficient is Kref n−1 and the current air-fuel ratio correction coefficient is K O2n , the current average learning coefficient Kref n is obtained by the following equation (2), and this processing is performed for a predetermined time ( Repeat for a predetermined cycle). In the equation (2), β represents an averaging coefficient and is usually set to a value of about 0.1.

Krefn = β・Ko2n + (1−β)・Krefn-1 …(2) Kref n = β · K o2n + (1-β) · Kref n-1 (2)

このようにして更新された空燃比補正係数の平均学習係数Kref(ステップS103で最終的に求められたKrefn)が、現在設定されているマップセット40の上限値を超えているか、若しくは、下限値以下であるかを判断し(ステップS104)、範囲内にあるときはそのまま処理を終了する(これにより、現在選択されているマップセット40が、基本燃料噴射時間Tiの算出に用いられる)。一方、平均学習係数Krefが上限値を超えているときは、アルコール濃度が高いマップセット40(一つ上のマップセットであって、例えば現在のマップセットがE30のときは、E70マップセット)に切り替え、下限値以下のときは、アルコール濃度が低いマップセット40(一つ下のマップセットであって、例えば現在のマップセットがE30のときはE0マップセット)に切り替える(ステップS105)。 It is this way the average learning coefficient of the air-fuel ratio correction coefficient updated by Kref (Kref n obtained finally in step S103) exceeds the upper limit of the map set 40 which is currently set, or, lower It is determined whether the value is equal to or smaller than the value (step S104). If the value is within the range, the process is terminated as it is (the currently selected map set 40 is used for calculating the basic fuel injection time Ti). On the other hand, when the average learning coefficient Kref exceeds the upper limit value, the map set 40 having a high alcohol concentration (a map set that is one higher, for example, E70 map set when the current map set is E30) is displayed. When the switching is below the lower limit value, the map is switched to a map set 40 having a low alcohol concentration (a map set one level lower, for example, E0 map set when the current map set is E30) (step S105).

ここで、マップセット40(E0〜E100)は、平均学習係数Krefが1.0のとき(目標空燃比と一致しているとき、すなわち、選択されているマップセット40とアルコール濃度が一致しているとき)を中心に、その上下限値がそれぞれ個別に設定されている。例えば、図4に示すように、E0マップセットは、上限値として1.1が設定され、E30マップセットは、上限値として1.08が、下限値として0.85が設定され、E70マップセットは、上限値として1.1が、下限値として0.85が設定され、E100マップセットは、下限値として0.80が設定されている。なお、空燃比がリッチになるようにマップセット40(燃料噴射制御マップ30)を切り替えてもドラバビリティが悪化する虞は少ないが、リーンになるように切り替えるとドライバビリティが悪化する可能性があるため、上限値はドライバビリティ確保を重視するように設定され、下限値は確実性を重視するように設定されている。   Here, the map set 40 (E0 to E100) is obtained when the average learning coefficient Kref is 1.0 (when it matches the target air-fuel ratio, that is, when the alcohol concentration is the same as that of the selected map set 40). The upper and lower limit values are set individually. For example, as shown in FIG. 4, 1.1 is set as the upper limit value for the E0 map set, 1.08 is set as the upper limit value for the E30 map set, and 0.85 is set as the lower limit value. 1.1 is set as the upper limit value and 0.85 is set as the lower limit value, and 0.80 is set as the lower limit value in the E100 map set. Note that drivability is unlikely to deteriorate even if the map set 40 (fuel injection control map 30) is switched so that the air-fuel ratio becomes rich, but drivability may deteriorate if switched so as to be lean. Therefore, the upper limit value is set so as to place importance on ensuring drivability, and the lower limit value is set so as to place importance on certainty.

また、このマップセット40の切り替えと同様に、平均学習係数Krefが上限値を超えているかまたは下限値以下であるかに応じて、環境補正項・目標空燃比補正項を切り替え(ステップS106)、加速補正を切り替え(ステップS107)、点火時期マップを切り替える(ステップS108)。そして、このようにしてアルコール濃度に応じて選択されたマップセット40を記憶領域26に記憶する(ステップS109)。このように選択されたマップセット40をECU20の記憶領域26に記憶しておくことにより、次回の始動において、前回エンジン1を停止したときのマップセット40が用いられるため、適切な始動噴射燃料量を供給することが可能となる。   Similarly to the switching of the map set 40, the environmental correction term / target air-fuel ratio correction term is switched according to whether the average learning coefficient Kref exceeds the upper limit value or is lower than the lower limit value (step S106), The acceleration correction is switched (step S107), and the ignition timing map is switched (step S108). The map set 40 thus selected according to the alcohol concentration is stored in the storage area 26 (step S109). By storing the map set 40 selected in this manner in the storage area 26 of the ECU 20, the map set 40 obtained when the engine 1 was previously stopped is used at the next start, so that an appropriate starting injection fuel amount is used. Can be supplied.

以上より、ECU20における燃料噴射量(時間)の決定は、図5に示すような処理となる。まず、マップ切替部21が、上述のマップセット切替処理S100を実行し、マップセット40の切り替え判断を行う(ステップS100)。そして、このようにして決定されたマップセット40の燃料噴射制御マップ30を用いて、基本燃料噴射時間決定部22が、エンジン回転数Neと吸気圧Pbとから基本燃料噴射時間Tiを決定する(ステップS110)。また、補正係数決定部24が、上述の補正係数(吸気温補正係数KTA、水温補正係数KTW、全開補正係数KWOT、空燃比補正係数KO2(または、平均学習係数Kref))を算出する(ステップS120)。最後に、燃料噴射量決定部25が、上述の式(1)により補正後の燃料噴射時間Toutを算出し、インジェクタ無効時間等を考慮して最終的な燃料噴射量(時間)を決定し、インジェクタ6を制御する(ステップS130)。 From the above, the determination of the fuel injection amount (time) in the ECU 20 is performed as shown in FIG. First, the map switching unit 21 executes the map set switching process S100 described above, and determines whether to switch the map set 40 (step S100). Then, using the fuel injection control map 30 of the map set 40 determined in this manner, the basic fuel injection time determination unit 22 determines the basic fuel injection time Ti from the engine speed Ne and the intake pressure Pb ( Step S110). Further, the correction coefficient determination unit 24 calculates the above-described correction coefficients (intake air temperature correction coefficient K TA , water temperature correction coefficient K TW , fully open correction coefficient K WOT , air-fuel ratio correction coefficient K O2 (or average learning coefficient Kref)). (Step S120). Finally, the fuel injection amount determination unit 25 calculates the corrected fuel injection time Tout by the above equation (1), determines the final fuel injection amount (time) in consideration of the injector invalid time, etc. The injector 6 is controlled (step S130).

なお、メインスイッチがオンされてエンジン1が始動したときは、ECU20は、初期設定を行い、センサ出力を読み込んでフェイル判定を行った後、上述のステップS109で最後に記憶領域26に記憶されたマップセット40を読み出すとともに、このマップセット40に対応した始動時の噴射量、環境補正項、目標空燃比補正項、加速補正、点火時期マップを記憶領域26から読み込んで燃料噴射量を決定してこのエンジン1を運転するように構成されている。また、その後は上述のように、ECU20は、吸気温TA、水温TW、エンジン回転数Ne、スロットル開度Thを検出するとともに、O2センサ15の活性状態を検出し、これらの状態から、マップセットの切り替えを行えるか否かを判断し、条件を満たした段階で上述の処理によりマップセット40を切り替えてエンジン1を運転するように構成されている。 When the main switch is turned on and the engine 1 is started, the ECU 20 performs initial setting, reads the sensor output, makes a fail determination, and is finally stored in the storage area 26 in step S109 described above. While reading the map set 40, the fuel injection amount is determined by reading the start injection amount, environment correction term, target air-fuel ratio correction term, acceleration correction, and ignition timing map corresponding to the map set 40 from the storage area 26. The engine 1 is configured to operate. Thereafter, as described above, the ECU 20 detects the intake air temperature TA, the water temperature TW, the engine speed Ne, and the throttle opening degree Th, detects the active state of the O 2 sensor 15, and maps from these states. It is configured to determine whether or not the set can be switched, and to operate the engine 1 by switching the map set 40 by the above-described process when the condition is satisfied.

以上説明したように、アルコール濃度に応じた燃料噴射制御マップ30の組であるマップセット40を複数(E0〜E100)記憶しておき、空燃比補正係数KO2(平均学習係数Kref)に応じて切り替えることにより、図6に示すように、アルコール濃度(混合比)に応じて最適な燃料噴射制御マップ30を選択することができる(空燃比補正係数KO2が1.0近傍(図6における太い実線で囲まれた領域)になるように制御される)ので、この燃料噴射制御マップ30から選択される基本燃料噴射時間Tiに対する補正量(上述の補正係数)も小さくすることができる。そのため、運転条件の違いによる補正量のズレを低減可能となり、より精度の高い空燃比を実現することができる。特に、上述のように、燃料噴射制御マップ30を、スピードデンシティ方式に基づく吸気圧とエンジン回転数を基準とした燃料噴射制御マップ(これを「Pbマップ31」と呼ぶ)にすることにより、エンジン1のアイドリング回転数付近でのエンジン回転を安定させることができる。 As described above, a plurality of map sets 40 (E0 to E100) which are sets of fuel injection control maps 30 corresponding to the alcohol concentration are stored, and according to the air-fuel ratio correction coefficient K O2 (average learning coefficient Kref). By switching, the optimum fuel injection control map 30 can be selected according to the alcohol concentration (mixing ratio) as shown in FIG. 6 (the air-fuel ratio correction coefficient K02 is near 1.0 (the thicker in FIG. 6). Therefore, the correction amount (the correction coefficient described above) for the basic fuel injection time Ti selected from the fuel injection control map 30 can also be reduced. Therefore, it is possible to reduce the deviation of the correction amount due to the difference in operating conditions, and it is possible to realize a more accurate air-fuel ratio. In particular, as described above, the fuel injection control map 30 is made a fuel injection control map (referred to as “Pb map 31”) based on the intake pressure and the engine speed based on the speed density method. It is possible to stabilize the engine rotation around the idling speed of 1.

また、以上の実施例では、燃料に含まれるアルコールの濃度に応じて4組のマップセット40(E0〜E100マップセット)を設定した場合について説明したが、このマップセット40は4組に限られない。例えばインジェクタ6の流量誤差やその他のシステム誤差などの相対的精度の向上に応じてマップセットを3つの組としても良い。   In the above embodiment, the case where four sets of map sets 40 (E0 to E100 map sets) are set according to the concentration of alcohol contained in the fuel has been described. However, this map set 40 is limited to four sets. Absent. For example, the map set may be divided into three groups according to improvement in relative accuracy such as a flow rate error of the injector 6 and other system errors.

なお、以上の説明においては、空気量検出方式としてスピードデンシティ方式を採用した場合について説明したが、スピードスロットル方式を併用し、それぞれの方式に対応した燃料噴射制御マップ30を切り替えるように構成することも可能である。ここで、スピードスロットル方式とは、エンジン回転数Neと、スロットル開度センサ11により検出されるスロットル開度THとによって決定される運転状態での空気質量に応じて、ある大気条件下で実験的に求められた所定目標空燃比を得るための必要燃料噴射量を決定し、この燃料噴射量を供給するためのインジェクタ6の開弁時間(基本燃料噴射時間Ti)を決定する方式であり、スロットルバルブ5の開度に対する高レスポンスを得ることができる。このスピードスロットル方式においても、スロットル開度THとエンジン回転数Neとを引数とし、これらの引数に対応するそれぞれの基本燃料噴射時間が設定された2次元マップである燃料噴射制御マップ30(これを「スロットルマップ32」と呼ぶ)がECU20の記憶領域26に記憶されている。そのため、予め設定されたアルコール濃度に応じたPbマップ31とスロットルマップ32の組が、上述の実施例の場合、E0〜E100の4枚のマップセット40に対応してECU20に記憶される。   In the above description, the case where the speed density method is adopted as the air amount detection method has been described. However, the speed throttle method is used together, and the fuel injection control map 30 corresponding to each method is switched. Is also possible. Here, the speed throttle system is experimental under certain atmospheric conditions according to the air mass in the operating state determined by the engine speed Ne and the throttle opening TH detected by the throttle opening sensor 11. The required fuel injection amount for obtaining the predetermined target air-fuel ratio determined in the above is determined, and the valve opening time (basic fuel injection time Ti) of the injector 6 for supplying this fuel injection amount is determined. A high response to the opening degree of the valve 5 can be obtained. Also in this speed throttle system, a fuel injection control map 30 (this is a two-dimensional map) in which the throttle opening TH and the engine speed Ne are used as arguments and the respective basic fuel injection times corresponding to these arguments are set. (Referred to as “throttle map 32”) is stored in the storage area 26 of the ECU 20. Therefore, a set of a Pb map 31 and a throttle map 32 corresponding to a preset alcohol concentration is stored in the ECU 20 corresponding to the four map sets 40 of E0 to E100 in the case of the above-described embodiment.

このように、スピードデンシティ方式とスピードスロットル方式とを併用するときのECU20における燃料噴射量(時間)の決定は、図7に示すような処理となる。まず、図5の場合と同様に、上述のマップセット切替処理S100を実行し、アルコール濃度に応じたマップセット(E0〜E100マップ)40の切り替え判断を行う(ステップS100)。また、運転状態に応じて、空気量検出方式を、スピードデンシティ方式とするか、若しくは、スピードスロットル方式とするかを決定する(ステップS105)。この空気量検出方式の選択としては、アイドリング時、定速時、緩やかな加・減速時、および、低負荷時には、スピードデンシティ方式(吸気圧とエンジン回転数を基準とした燃料噴射制御マップ)を選択し、急加速・急減速時、高負荷時にはスピードスロットル方式(スロットル開度とエンジン回転数を基準とした燃料噴射制御マップ)を選択する。そして、ステップS100で決定されたマップセット40において、ステップS105で選択された吸気量検出方式に対応した燃料噴射制御マップ30(Pbマップ31若しくはスロットルマップ32)を用いて基本燃料噴射時間Tiを決定する(ステップS110)。さらに、上述の補正係数(吸気温補正係数KTA、水温補正係数KTW、全開補正係数KWOT、空燃比補正係数KO2(または、平均学習係数Kref))を算出し(ステップS120)、最後に、燃料噴射量決定部25が、上述の式(1)により補正後の燃料噴射時間Toutを算出し、インジェクタ無効時間等を考慮して最終的な噴射量(時間)を決定し、インジェクタ6を制御する(ステップS130)。 Thus, the determination of the fuel injection amount (time) in the ECU 20 when the speed density method and the speed throttle method are used together is a process as shown in FIG. First, as in the case of FIG. 5, the above-described map set switching process S100 is executed to determine whether to switch the map set (E0 to E100 map) 40 according to the alcohol concentration (step S100). Further, it is determined whether the air amount detection method is the speed density method or the speed throttle method according to the operating state (step S105). This air volume detection method can be selected from the speed density method (fuel injection control map based on intake pressure and engine speed) during idling, constant speed, moderate acceleration / deceleration, and low load. Select the speed throttle method (fuel injection control map based on the throttle opening and engine speed) during rapid acceleration / deceleration and high load. Then, in the map set 40 determined in step S100, the basic fuel injection time Ti is determined using the fuel injection control map 30 (Pb map 31 or throttle map 32) corresponding to the intake air amount detection method selected in step S105. (Step S110). Further, the above-described correction coefficients (intake air temperature correction coefficient K TA , water temperature correction coefficient K TW , fully open correction coefficient K WOT , air-fuel ratio correction coefficient K O2 (or average learning coefficient Kref)) are calculated (step S120), and finally In addition, the fuel injection amount determination unit 25 calculates the corrected fuel injection time Tout by the above equation (1), determines the final injection amount (time) in consideration of the injector invalid time, etc., and the injector 6 Is controlled (step S130).

このように、空気量検出方式を切り替え、それに応じて、Pbマップ31とスロットルマップ32とを切り替えることにより、それぞれの燃料噴射制御マップ30における高精度な領域を使ったより正確な燃料量の供給を可能とするとともに、パーシャル域から全開までのスロットルの動きに対応する燃料量の素早い追従性を得ることができる。そのため、アイドリング時等における安定性を確保するとともに、高負荷時等におけるレスポンスを向上させることができる。   In this way, by switching the air amount detection method and switching the Pb map 31 and the throttle map 32 accordingly, more accurate fuel supply using the high-accuracy region in each fuel injection control map 30 can be achieved. In addition, it is possible to obtain a quick follow-up of the fuel amount corresponding to the movement of the throttle from the partial range to the fully open position. For this reason, it is possible to ensure stability during idling and improve the response during high loads.

なお、以上の実施例では、アルコール濃度の判定に空燃比補正係数KO2を用いているが、このエンジン1にアルコール濃度センサを設けて構成することも可能である。また、環境補正項、目標空燃比補正項、加速補正、始動時の燃料噴射量、および、点火時期等は、アルコール濃度に応じて変更せずに、予め定められた値を用いても良い(その場合、図2におけるステップS106〜S108は実装されない)。 In the above embodiment, the air-fuel ratio correction coefficient K O2 is used for the determination of the alcohol concentration. However, the engine 1 may be provided with an alcohol concentration sensor. In addition, the environmental correction term, the target air-fuel ratio correction term, the acceleration correction, the fuel injection amount at start-up, the ignition timing, and the like may be set to predetermined values without being changed according to the alcohol concentration ( In that case, steps S106 to S108 in FIG. 2 are not implemented).

本発明に係る燃料噴射制御装置が適用されるエンジンの構成を示すブロック図である。1 is a block diagram showing a configuration of an engine to which a fuel injection control device according to the present invention is applied. マップセット切替処理の内容を示すフローチャートである。It is a flowchart which shows the content of a map set switching process. 空燃比補正係数の振る舞いと平均学習係数の関係を示す説明図である。It is explanatory drawing which shows the relationship between the behavior of an air fuel ratio correction coefficient, and an average learning coefficient. 平均学習係数によるマップセットの切り換えを示す説明図である。It is explanatory drawing which shows switching of the map set by an average learning coefficient. 燃料噴射量の決定方法を示すフローチャートである。It is a flowchart which shows the determination method of fuel injection quantity. マップセット毎のアルコール濃度と空燃比補正係数との関係を示すグラフである。It is a graph which shows the relationship between the alcohol concentration for every map set, and an air fuel ratio correction coefficient. スピードデンシティ方式とスピードスロットル方式とを併用したときの燃料噴射量の決定方法を示すフローチャートである。It is a flowchart which shows the determination method of the fuel injection quantity when using a speed density system and a speed throttle system together.

符号の説明Explanation of symbols

1 エンジン
3 吸気管
4 排気管
5 スロットルバルブ
11 スロットル開度センサ
12 吸気管絶対圧センサ
15 O2センサ(酸素濃度センサ)
16 クランク角センサ(エンジン回転数検出手段)
20 ECU
21 マップ切替部(マップ切替手段)
22 基本燃料噴射時間決定部(基本燃料噴射量決定手段)
23 エンジン回転数検出部(エンジン回転数検出手段)
24 補正係数決定部(アルコール濃度検出手段,空燃比補正係数決定手段)
25 燃料噴射量決定部(燃料噴射量決定手段)
26 記憶領域(記憶手段)
30 燃料噴射制御マップ
31 Pbマップ
32 スロットルマップ
40 マップセット(燃料噴射制御マップの組)
1 Engine 3 Intake pipe 4 Exhaust pipe 5 Throttle valve 11 Throttle opening sensor 12 Intake pipe absolute pressure sensor 15 O 2 sensor (oxygen concentration sensor)
16 Crank angle sensor (engine speed detection means)
20 ECU
21 Map switching unit (map switching means)
22 Basic fuel injection time determining unit (basic fuel injection amount determining means)
23 Engine speed detector (engine speed detector)
24 correction coefficient determination unit (alcohol concentration detection means, air-fuel ratio correction coefficient determination means)
25 Fuel injection amount determination unit (fuel injection amount determination means)
26 Storage area (storage means)
30 Fuel Injection Control Map 31 Pb Map 32 Throttle Map 40 Map Set (Fuel Injection Control Map Set)

Claims (5)

エンジンの状態および基本燃料噴射時間が対応付けられた燃料噴射制御マップを、燃料に含まれるアルコール濃度に応じて複数記憶する記憶手段と、
前記燃料に含まれるアルコール濃度を検出するアルコール濃度検出手段と、
前記アルコール濃度検出手段で検出された前記アルコール濃度に応じて前記記憶手段に記憶された複数の前記燃料噴射制御マップから最適な前記燃料噴射制御マップを選択するマップ切替手段と、
前記エンジンの状態に応じて、前記記憶手段に記憶された複数の前記燃料噴射制御マップのうち、現在選択されているアルコール濃度の前記燃料噴射制御マップを用いて前記基本燃料噴射時間を決定し、前記基本燃料噴射時間から燃料噴射量を決定する燃料噴射量決定手段とを有する多種類燃料エンジン用燃料噴射制御装置。
Storage means for storing a plurality of fuel injection control maps in which engine states and basic fuel injection times are associated with each other according to the concentration of alcohol contained in the fuel;
Alcohol concentration detecting means for detecting the alcohol concentration contained in the fuel;
Map switching means for selecting the optimum fuel injection control map from the plurality of fuel injection control maps stored in the storage means in accordance with the alcohol concentration detected by the alcohol concentration detection means;
According to the state of the engine, the basic fuel injection time is determined using the fuel injection control map of the currently selected alcohol concentration among the plurality of fuel injection control maps stored in the storage means, A fuel injection control device for a multi-type fuel engine, comprising fuel injection amount determination means for determining a fuel injection amount from the basic fuel injection time.
エンジンの状態および基本燃料噴射時間が対応付けられた燃料噴射制御マップを、燃料に含まれるアルコール濃度に応じて複数記憶する記憶手段と、
排気管に配設され、排気ガス中の酸素濃度を検出する酸素濃度センサと、
前記基本燃料噴射時間を、前記記憶手段に記憶された複数の前記燃料噴射制御マップのうち、現在選択されているアルコール濃度の前記燃料噴射制御マップを用いて決定する基本燃料噴射時間決定手段と、
前記酸素濃度センサからの検出値により、前記エンジンの空燃比が目標空燃比になるように前記基本燃料噴射時間を補正するための空燃比補正係数を決定する空燃比補正係数決定手段と、
前記基本燃料噴射時間決定手段により決定された前記基本燃料噴射時間、および、前記空燃比補正係数決定手段により決定された前記空燃比補正係数により、燃料噴射量を決定する燃料噴射量決定手段と、
前記空燃比補正係数から、前記燃料のアルコール濃度に近いアルコール濃度の前記燃料噴射制御マップを選択するマップ切替手段とを有する多種類燃料エンジン用燃料噴射制御装置。
Storage means for storing a plurality of fuel injection control maps in which engine states and basic fuel injection times are associated with each other according to the concentration of alcohol contained in the fuel;
An oxygen concentration sensor disposed in the exhaust pipe for detecting the oxygen concentration in the exhaust gas;
Basic fuel injection time determination means for determining the basic fuel injection time using the fuel injection control map of the currently selected alcohol concentration among the plurality of fuel injection control maps stored in the storage means;
An air-fuel ratio correction coefficient determining means for determining an air-fuel ratio correction coefficient for correcting the basic fuel injection time so that the air-fuel ratio of the engine becomes a target air-fuel ratio based on a detection value from the oxygen concentration sensor;
Fuel injection amount determination means for determining a fuel injection amount based on the basic fuel injection time determined by the basic fuel injection time determination means and the air-fuel ratio correction coefficient determined by the air-fuel ratio correction coefficient determination means;
A fuel injection control device for a multi-type fuel engine, comprising map switching means for selecting the fuel injection control map having an alcohol concentration close to the alcohol concentration of the fuel from the air-fuel ratio correction coefficient.
吸気管に配設され、吸気圧を検出する吸気管絶対圧センサと、
エンジン回転数を検出するエンジン回転数検出手段とを有し、
前記エンジンの状態として、前記吸気圧と前記エンジン回転数とから決定される空気量に基づいて前記基本燃料噴射時間を決定するように構成された請求項1または2に記載の多種類燃料エンジン用燃料噴射制御装置。
An intake pipe absolute pressure sensor that is disposed in the intake pipe and detects intake pressure;
An engine speed detecting means for detecting the engine speed,
The multi-fuel engine according to claim 1 or 2, wherein the basic fuel injection time is determined based on an air amount determined from the intake pressure and the engine speed as the engine state. Fuel injection control device.
スロットルバルブのスロットル開度を検出するスロットル開度センサを有し、
前記記憶手段が、前記アルコール濃度毎に、吸気圧およびエンジン回転数と基本燃料噴射時間とが対応付けられた前記燃料噴射制御マップであるPbマップと、スロットル開度およびエンジン回転数と基本燃料噴射時間とが対応付けられた前記燃料噴射制御マップであるスロットルマップとの燃料噴射制御マップの組を有し、
アルコール濃度に応じて選択された前記Pbマップおよび前記スロットルマップのいずれか一方を、前記エンジンの状態に応じて選択して用いるように構成された請求項3に記載の多種類燃料エンジン用燃料噴射制御装置。
A throttle opening sensor for detecting the throttle opening of the throttle valve;
The storage means includes, for each alcohol concentration, a Pb map that is the fuel injection control map in which the intake pressure, the engine speed, and the basic fuel injection time are associated, and the throttle opening, the engine speed, and the basic fuel injection. A fuel injection control map set with a throttle map, which is the fuel injection control map associated with time,
4. The fuel injection for a multi-type fuel engine according to claim 3, wherein either one of the Pb map and the throttle map selected according to the alcohol concentration is selected and used according to the state of the engine. Control device.
前記記憶手段が、少なくとも3つ以上の異なるアルコール濃度に対応した前記燃料噴射制御マップを記憶する請求項1〜4のいずれか一項に記載の多種類燃料エンジン用燃料噴射制御装置。   The fuel injection control device for a multi-type fuel engine according to any one of claims 1 to 4, wherein the storage means stores the fuel injection control map corresponding to at least three different alcohol concentrations.
JP2006259501A 2006-09-25 2006-09-25 Fuel injection control device for various types of fuel engines Expired - Fee Related JP5095973B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2006259501A JP5095973B2 (en) 2006-09-25 2006-09-25 Fuel injection control device for various types of fuel engines
ES07014937T ES2322822T3 (en) 2006-09-25 2007-07-30 FUEL INJECTION CONTROL DEVICE FOR A MULTIPLE FUEL TYPE ENGINE.
DE602007000770T DE602007000770D1 (en) 2006-09-25 2007-07-30 Apparatus for controlling fuel injection into a multiple fuel engine
EP07014937A EP1905990B1 (en) 2006-09-25 2007-07-30 Multiple-kind fuel engine fuel injection control device
CO07094034A CO5960136A1 (en) 2006-09-25 2007-09-12 FUEL INJECTION CONTROL DEVICE OF A MULTI-FUEL ENGINE
MX2007011202A MX2007011202A (en) 2006-09-25 2007-09-13 Multiple-kind fuel engine fuel injection control device .
CN2007101422890A CN101153565B (en) 2006-09-25 2007-09-14 Multiple-kind fuel engine fuel injection control device
ARP070104131A AR062892A1 (en) 2006-09-25 2007-09-19 FUEL INJECTION CONTROL DEVICE OF A MULTI-FUEL ENGINE
US11/903,047 US7475683B2 (en) 2006-09-25 2007-09-20 Fuel injection control device for a variable-fuel engine and engine incorporating same
BRPI0703701A BRPI0703701B8 (en) 2006-09-25 2007-09-20 multiple type fuel engine fuel injection control device
PE2007001281A PE20081048A1 (en) 2006-09-25 2007-09-21 FUEL INJECTION CONTROL DEVICE OF A MULTI-FUEL ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259501A JP5095973B2 (en) 2006-09-25 2006-09-25 Fuel injection control device for various types of fuel engines

Publications (2)

Publication Number Publication Date
JP2008082171A true JP2008082171A (en) 2008-04-10
JP5095973B2 JP5095973B2 (en) 2012-12-12

Family

ID=38462347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259501A Expired - Fee Related JP5095973B2 (en) 2006-09-25 2006-09-25 Fuel injection control device for various types of fuel engines

Country Status (11)

Country Link
US (1) US7475683B2 (en)
EP (1) EP1905990B1 (en)
JP (1) JP5095973B2 (en)
CN (1) CN101153565B (en)
AR (1) AR062892A1 (en)
BR (1) BRPI0703701B8 (en)
CO (1) CO5960136A1 (en)
DE (1) DE602007000770D1 (en)
ES (1) ES2322822T3 (en)
MX (1) MX2007011202A (en)
PE (1) PE20081048A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106719A (en) * 2008-10-29 2010-05-13 Honda Motor Co Ltd Fuel injection control device of multi-fuel engine
WO2011077907A1 (en) * 2009-12-24 2011-06-30 株式会社マキタ Engine for working machine
JP2011144706A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Fuel alcohol concentration determining device for internal combustion engine
JP2013253558A (en) * 2012-06-07 2013-12-19 Mitsubishi Motors Corp Control device of internal combustion engine
KR20140083109A (en) * 2012-12-24 2014-07-04 두산인프라코어 주식회사 Equipment and method for controlling diesel engine according to bio-diesel content
JP2016176447A (en) * 2015-03-20 2016-10-06 本田技研工業株式会社 Vehicular fuel consumption calculation device
US10337433B2 (en) 2014-09-12 2019-07-02 Isuzu Motors Limited Exhaust purification system
JP2023151113A (en) * 2022-03-31 2023-10-16 本田技研工業株式会社 fuel injection control device

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892769B1 (en) * 2005-11-03 2007-12-14 Renault Sas STRATEGY FOR RECOGNIZING EXOTIC FUEL RATES IN THE MAIN TANK
JP2009068446A (en) * 2007-09-14 2009-04-02 Yamaha Motor Co Ltd Fuel injection control device for internal combustion engine and saddle ride type vehicle provided with same
FR2923863B1 (en) * 2007-11-20 2010-02-26 Renault Sas METHOD FOR DIAGNOSING THE STATE OF A FUEL SUPPLY SYSTEM OF AN ENGINE
JP5042105B2 (en) * 2008-03-31 2012-10-03 本田技研工業株式会社 Multi-fuel engine fuel injection control system
DE102008031597B4 (en) * 2008-07-03 2021-10-07 Man Energy Solutions Se Switchable multi-fuel engine and method for switching fuel in such a multi-fuel engine
JP4603606B2 (en) * 2008-09-05 2010-12-22 株式会社日本自動車部品総合研究所 Fuel supply device
US7826957B2 (en) 2009-01-26 2010-11-02 Ford Global Technologies, Llc Engine control responsive to varying amounts of alcohol in fuel
US8165788B2 (en) 2009-05-22 2012-04-24 Ford Global Technlogies, Llc Fuel-based injection control
JP5197548B2 (en) * 2009-11-05 2013-05-15 本田技研工業株式会社 Fuel injection control device for internal combustion engine
JP5443195B2 (en) * 2010-02-12 2014-03-19 本田技研工業株式会社 General-purpose engine air-fuel ratio control device
JP5395698B2 (en) * 2010-02-12 2014-01-22 本田技研工業株式会社 General-purpose engine air-fuel ratio control device
DE102010008289A1 (en) * 2010-02-17 2011-08-18 FEV Motorentechnik GmbH, 52078 Method for operating an internal combustion engine with two different fuels
WO2012014328A1 (en) * 2010-07-27 2012-02-02 トヨタ自動車株式会社 Fuel-injection-quantity control device for internal combustion engine
EP2423492B1 (en) * 2010-08-31 2013-07-31 Caterpillar Motoren GmbH & Co. KG Controlling multifuel common rail engines
US8447496B2 (en) * 2010-09-17 2013-05-21 Ford Global Technologies, Llc Fuel-based injection control
JP5616274B2 (en) * 2011-03-31 2014-10-29 本田技研工業株式会社 Air-fuel ratio control device
US8594907B2 (en) * 2011-05-23 2013-11-26 GM Global Technology Operations LLC Robust estimation of biodiesel blend ratio for alternative fuel combustion
US8893665B2 (en) * 2011-08-17 2014-11-25 Ford Global Technologies, Llc Method and system for compensating for alcohol concentration in fuel
KR20130064309A (en) * 2011-12-08 2013-06-18 현대자동차주식회사 Estimating method of water content of etanol and compensating method of fuel for ffv
US9353696B2 (en) * 2012-05-24 2016-05-31 Cummins Ip, Inc. Combustion controller for internal combustion engine
CN102877971B (en) * 2012-09-29 2015-04-01 安徽江淮汽车股份有限公司 Alcohol fuel alcohol content detection method and module
KR101855752B1 (en) * 2012-10-31 2018-06-25 현대자동차 주식회사 Gasolin engine control system and control mehtod for the same
FR2998925A3 (en) * 2012-11-30 2014-06-06 Renault Sa Method for computer-aided learning of ethanol level in petrol of thermal engine of vehicle, involves monitoring signal richness of probe such that ethanol level in richness loop is corrected for returning to stoichiometric level
US9638117B2 (en) * 2013-03-15 2017-05-02 Honda Motor Co., Ltd. Method for controlling an amount of fuel and vehicle including same
CN105209735B (en) * 2013-03-15 2018-10-30 沃尔布罗发动机使用有限责任公司 Engine control strategy and reponse system
CN104712447B (en) * 2014-12-31 2017-05-17 安徽江淮汽车集团股份有限公司 Combustion parameter adjusting method and device for engine using ethanol fuel
US10401398B2 (en) 2017-03-03 2019-09-03 Woodward, Inc. Fingerprinting of fluid injection devices
CN111486013B (en) * 2019-01-28 2021-10-22 比亚迪股份有限公司 Engine combustion control method and device, storage medium and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751923A (en) * 1980-09-16 1982-03-27 Honda Motor Co Ltd Electronically operated fuel injection controller
JPS635131A (en) * 1986-06-24 1988-01-11 Honda Motor Co Ltd Air-fuel ratio control method for multi-fuel engine
JP2004245097A (en) * 2003-02-13 2004-09-02 Nissan Motor Co Ltd Device for fuel-property estimation for internal combustion engine
JP2005220820A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Control device of gasoline/alcohol mixed fuel direct injection engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391253A (en) * 1980-10-29 1983-07-05 Toyota Jidosha Kogyo Kabushiki Kaisha Electronically controlling, fuel injection method
JPH0331548A (en) * 1989-06-29 1991-02-12 Japan Electron Control Syst Co Ltd Mixed fuel supply device of internal combustion engine
US5233944A (en) * 1989-08-08 1993-08-10 Fuji Jukogyo Kabushiki Kaisha Control apparatus for alcohol engine
JPH03275954A (en) * 1990-03-26 1991-12-06 Japan Electron Control Syst Co Ltd Control device for air-fuel ratio of internal combustion engine using fuel of different kind
JPH04234542A (en) * 1990-12-28 1992-08-24 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine
US5170763A (en) * 1990-12-28 1992-12-15 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines
JPH04301152A (en) * 1991-03-28 1992-10-23 Honda Motor Co Ltd Air-fuel ratio control device
US5941217A (en) * 1997-10-29 1999-08-24 Chrysler Corporation Method of compensating for changing fuels in a flexible fueled vehicle using a fuel composition sensor
JP2004052596A (en) * 2002-07-17 2004-02-19 Keihin Corp Control device for plunger type fuel feed pump
US6975933B2 (en) * 2003-02-13 2005-12-13 Nissan Motor Co., Ltd. Fuel properties estimation for internal combustion engine
JP2004353598A (en) * 2003-05-30 2004-12-16 Keihin Corp Air fuel ratio control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751923A (en) * 1980-09-16 1982-03-27 Honda Motor Co Ltd Electronically operated fuel injection controller
JPS635131A (en) * 1986-06-24 1988-01-11 Honda Motor Co Ltd Air-fuel ratio control method for multi-fuel engine
JP2004245097A (en) * 2003-02-13 2004-09-02 Nissan Motor Co Ltd Device for fuel-property estimation for internal combustion engine
JP2005220820A (en) * 2004-02-05 2005-08-18 Toyota Motor Corp Control device of gasoline/alcohol mixed fuel direct injection engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106719A (en) * 2008-10-29 2010-05-13 Honda Motor Co Ltd Fuel injection control device of multi-fuel engine
WO2011077907A1 (en) * 2009-12-24 2011-06-30 株式会社マキタ Engine for working machine
JP2011144706A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Fuel alcohol concentration determining device for internal combustion engine
JP2013253558A (en) * 2012-06-07 2013-12-19 Mitsubishi Motors Corp Control device of internal combustion engine
KR20140083109A (en) * 2012-12-24 2014-07-04 두산인프라코어 주식회사 Equipment and method for controlling diesel engine according to bio-diesel content
KR101961957B1 (en) * 2012-12-24 2019-03-25 두산인프라코어 주식회사 Equipment and method for controlling diesel engine according to bio-diesel content
US10337433B2 (en) 2014-09-12 2019-07-02 Isuzu Motors Limited Exhaust purification system
JP2016176447A (en) * 2015-03-20 2016-10-06 本田技研工業株式会社 Vehicular fuel consumption calculation device
JP2023151113A (en) * 2022-03-31 2023-10-16 本田技研工業株式会社 fuel injection control device

Also Published As

Publication number Publication date
AR062892A1 (en) 2008-12-10
DE602007000770D1 (en) 2009-05-07
US20080072878A1 (en) 2008-03-27
ES2322822T3 (en) 2009-06-29
BRPI0703701B1 (en) 2018-11-06
CN101153565B (en) 2011-06-29
CN101153565A (en) 2008-04-02
BRPI0703701A (en) 2008-05-13
US7475683B2 (en) 2009-01-13
MX2007011202A (en) 2009-02-03
JP5095973B2 (en) 2012-12-12
BRPI0703701B8 (en) 2019-09-17
EP1905990B1 (en) 2009-03-25
CO5960136A1 (en) 2008-09-30
EP1905990A1 (en) 2008-04-02
PE20081048A1 (en) 2008-09-08

Similar Documents

Publication Publication Date Title
JP5095973B2 (en) Fuel injection control device for various types of fuel engines
JP4835497B2 (en) Air-fuel ratio control device for internal combustion engine
US6975933B2 (en) Fuel properties estimation for internal combustion engine
JP3903943B2 (en) Fuel property estimation device for internal combustion engine
JP2007009903A (en) Fuel injection quantity control device for internal combustion engine
JP4007384B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007113437A (en) Air-fuel ratio control device of internal combustion engine
JP5783015B2 (en) Air-fuel ratio control device, air-fuel ratio control method and program for internal combustion engine for outboard motor
JP3903925B2 (en) Fuel property estimation device for internal combustion engine
JP2010053759A (en) Fuel supply control apparatus
JP2006226234A (en) Air-fuel ratio controller for internal combustion engine for outboard motor
JP2011252400A (en) Device, method and program for controlling air-fuel ratio of internal combustion engine for outboard motor
JP4349438B2 (en) Air-fuel ratio control device for internal combustion engine
JP3966202B2 (en) Control device for internal combustion engine
JP4010256B2 (en) Control device for internal combustion engine
JP4419952B2 (en) Air-fuel ratio control device for internal combustion engine
JPH08158915A (en) Air fuel ratio control device for internal combustion engine
JPH11229930A (en) Internal combustion engine controller
JP2004293349A (en) Controlling device of internal combustion engine
JP4321406B2 (en) Fuel supply control device for internal combustion engine
JP2004308429A (en) Controller for internal combustion engine
JP4906887B2 (en) Control device for internal combustion engine
JP2011247241A (en) Device, method and program for controlling air-fuel ratio of internal combustion engine for outboard motor
JP2010019227A (en) Air-fuel ratio control device for internal combustion engine
JP2006083795A (en) Air fuel ratio controller for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees