JPS635131A - Air-fuel ratio control method for multi-fuel engine - Google Patents

Air-fuel ratio control method for multi-fuel engine

Info

Publication number
JPS635131A
JPS635131A JP14622286A JP14622286A JPS635131A JP S635131 A JPS635131 A JP S635131A JP 14622286 A JP14622286 A JP 14622286A JP 14622286 A JP14622286 A JP 14622286A JP S635131 A JPS635131 A JP S635131A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sensor
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14622286A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suga
須賀 稔之
Toyohei Nakajima
中島 豊平
Shinichi Kitajima
真一 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14622286A priority Critical patent/JPS635131A/en
Publication of JPS635131A publication Critical patent/JPS635131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To optimize an air-fuel ratio, by a method wherein a reference value for regulating an air-fuel ratio responding to an engine load is corrected by means of a correction factor depending upon an output from an O2 sensor, based on the correction factor, an alcohol content is detected, and a target value of air-fuel ratio, on which feedback control is applied, is corrected. CONSTITUTION:An electronic control device 1 computes a fundamental injection time, based on detecting valves from an intake air absolute pressure sensor 12 and a crank angle sensor. 14. The electronic control device multiplies a correction factor responding to a deviation between a detecting value from an O2 sensor 15 and a target air-fuel ratio to control the opening time of an injector 5. Further, when an average learning of the correction factors is fluctuated and exceeds a given range, a target air-fuel ratio, on which feedback control is applied, is corrected by means of the correction factor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明rよ、・燃料としてガンIJ 7又は任意の混合
比重のアルコール混合ガソリンが供給されても、最適の
空燃比で運転できるようにした内燃、エンジンの空燃比
制御方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention allows operation at the optimum air-fuel ratio even when Gun IJ 7 or alcohol-mixed gasoline of any mixed specific gravity is supplied as fuel. Related to internal combustion and engine air-fuel ratio control methods.

(従来の技術) 内燃エンジンを運転するために、固体電解買と用い几酸
素ポンプ及び酸素濃淡電池からなる酸素製置センサによ
って排ガス中の酸素濃度全検出し、この検出値によって
空燃比上側−することは特開昭59−192955号に
よジ公卸である。
(Prior art) In order to operate an internal combustion engine, the total oxygen concentration in exhaust gas is detected by an oxygen sensor consisting of a solid electrolyte, a solid oxygen pump, and an oxygen concentration battery, and the detected value is used to determine the upper air-fuel ratio. This is disclosed in Japanese Unexamined Patent Publication No. 192955/1983.

(発明が解決しようとする問題点) 前記の従来技術は、理論空燃比でエンジン金運転する几
めには利用できるが、ガソリン中に混入されるアルコー
ルの混合比に応じてエンジンの谷穏制御ノにラメータを
最適1直に市1j御することはできない。
(Problems to be Solved by the Invention) The above-mentioned conventional technology can be used to operate the engine at a stoichiometric air-fuel ratio, but it is difficult to control the engine's trough mode depending on the mixing ratio of alcohol mixed in gasoline. However, it is not possible to control the parameters directly in the city.

(問題点を解決するための手段) 本発明は、エンジンの運転’d: j!fil ’$1
1するマイクロコンピュータにおけるフィードバック補
正係数の大きさがアルコール混合比率に比例することに
着目して発明し友ものであシ、該係数によって最適のを
燃比に制御しようとするもので、その手段はアルコール
を含む多種燃料エンジンの排気係に排ガス中の酸素mW
に比例した出力を発生する酸素濃度センナを備え、エン
ジン負荷に関する複数のニンジン運転パラメータに応じ
て空燃比調節の基準at段設定、設定し九基準til?
前記センサの出力と目標空燃比との@差に応じた補正係
数によシ補正して目標空燃比に対する出力値を決定し、
該出力値に応じて空燃比を調整する内燃エンジンの空燃
比制御方法において、前記補正係数の大きさからアルコ
ール混合比gt検出し、該検出値に応じて前記目標空燃
比を修正することを特徴とする。
(Means for Solving the Problems) The present invention provides engine operation 'd: j! fil '$1
This invention was invented by focusing on the fact that the magnitude of the feedback correction coefficient in a microcomputer that uses alcohol is proportional to the alcohol mixing ratio. Oxygen mW in the exhaust gas for the exhaust system of multi-fuel engines including
Equipped with an oxygen concentration sensor that generates an output proportional to the engine load, the air-fuel ratio adjustment standard AT stage is set according to multiple operating parameters related to the engine load.
determining an output value for the target air-fuel ratio by correcting it with a correction coefficient according to the difference between the output of the sensor and the target air-fuel ratio;
The air-fuel ratio control method for an internal combustion engine that adjusts the air-fuel ratio according to the output value is characterized in that the alcohol mixture ratio gt is detected from the magnitude of the correction coefficient, and the target air-fuel ratio is corrected according to the detected value. shall be.

(実施例) 第1図は本発明を実施するエンジン制御装置で、エンジ
ン11’lは、吸気管(2)、エヤクリーナ(3)、絞
り弁(4)、インジェクタ(5)、進角装置t(6)、
排気管(7)、三元触媒(8)を備え、エンジン制御用
のマイクロコンピュータQGには、絞り弁開度センサ0
υ、吸気管絶対圧センサ口、水温七ンサU、クランク角
センサα滲、酸素11[センサ(02センサ)(2)の
出力側が接続されると共に、インジェクタ(5)及び進
角装fk(61の入力側が接続されている。
(Embodiment) Fig. 1 shows an engine control device implementing the present invention, and the engine 11'l includes an intake pipe (2), an air cleaner (3), a throttle valve (4), an injector (5), an advance angle device t (6),
Equipped with an exhaust pipe (7) and a three-way catalyst (8), the microcomputer QG for engine control includes a throttle valve opening sensor 0.
υ, intake pipe absolute pressure sensor port, water temperature sensor U, crank angle sensor α, oxygen 11 [sensor (02 sensor) (2) output side is connected, injector (5) and advance angle device fk (61 The input side of is connected.

0□センサ叫は、前記公開公報に記載されたもの又は酸
素m度比例型センナ等適宜のセンサが使用できる。0□
センサの出力WF注は箕3図に示すとおりであり、11
!線(ト)、(16a)は前記公開公報記載の広域空燃
比検出用セ/すの特注曲線、点線α7ノ、(17a)は
酸素鏝度°比例型センサの特注曲線である。燃料がガフ
リン100鴫で理論空燃比14.7のとき0両センサの
出力はa!@、功で示され、ガソリン15憾、メタノー
ル85鳴のときけ、理論空燃比は7.6となって綴(1
6a )、(17a)の位置に移り、メタノール100
憾のときは6.7に移る。
As the 0□ sensor sensor, an appropriate sensor such as the sensor described in the above-mentioned publication or an oxygen m degree proportional sensor can be used. 0□
The output WFNote of the sensor is as shown in Fig. 3, and 11
! Lines (g) and (16a) are custom-made curves for the wide range air-fuel ratio detection sensor described in the above-mentioned publication, and dotted lines α7 and (17a) are custom-made curves for the oxygen sensitivity degree proportional sensor. When the fuel is Gafflin 100 and the stoichiometric air-fuel ratio is 14.7, the output of the zero sensor is a! @、Indicated by the mark, when gasoline was 15 and methanol was 85, the stoichiometric air-fuel ratio was 7.6.
6a), move to position (17a) and add methanol 100
When you feel regret, move to 6.7.

第2図は、0□センサ(至)として酸素−度比例型セン
サ會用い′fc1を子穴制御装置it B CU mノ
制御回路を示す。この02センサu9は、酸累イオン伝
導注固体電解質である二酸比ジルコニウムZrO2の焼
結体によって形成され、被測定気体であるエンジンの排
ガスを導入する導入孔(至)、気体滞流室Q鐸、大気に
連通ずる大気基準室■が設けられる。気体滞流室−の両
側壁疋は電気メツキによる電極対が設けられ、電極(2
1a )、(21b)と固体電解質体とによって酸素ポ
ンプ素子2υヲ形成し、電fE(22a)、(22b)
及び固体電解質体によって電池素子@を形成している。
FIG. 2 shows the control circuit for the control device it B CU m in which the oxygen-degree proportional sensor system is used as the 0□ sensor (to). This 02 sensor U9 is formed of a sintered body of zirconium ZrO2, which is a solid electrolyte for acid accumulation ion conduction. There will be an atmospheric standard chamber (1) that will communicate with the atmosphere. Electrode pairs are provided on both side walls of the gas retention chamber by electroplating.
1a), (21b) and the solid electrolyte body form an oxygen pump element 2υ, and the electric current fE(22a), (22b)
A battery element @ is formed by the solid electrolyte body.

第3図に示すように、BOU(IGKけ02センサ制御
部(ハ)とマイクロコンピュータの制御回路内を備える
。、0□センサ制御部(ハ)は、差動増幅回路(7)、
基準電圧ぶ(7)、電流検出抵抗(ロ)及びスイッチ(
7)からなり、差動増幅回路−の反転入力端子に電池素
子■の電極(22a)が接続され、電流検出抵抗(ロ)
に酸素ポンプ素子(財)の電極(21a)が接続され、
他の電極(22b)、(21b)は接地される。差動増
幅回路(7)は、電池素子@における電極(22a)、
 (22b)間の発生電圧と基準電圧源(7)の出力電
圧との差電圧に応じ次電圧を出力し。
As shown in FIG. 3, the BOU (IGK) includes a sensor control unit (c) and a control circuit of a microcomputer.The sensor control unit (c) includes a differential amplifier circuit (7),
Reference voltage (7), current detection resistor (b) and switch (
7), the electrode (22a) of the battery element (2) is connected to the inverting input terminal of the differential amplifier circuit (2), and the current detection resistor (22a) is connected to the inverting input terminal of the differential amplifier circuit.
The electrode (21a) of the oxygen pump element is connected to
The other electrodes (22b) and (21b) are grounded. The differential amplifier circuit (7) includes an electrode (22a) in the battery element @,
(22b) and the output voltage of the reference voltage source (7), the next voltage is output.

基準電圧源(至)の出力電圧は、理論空・燃比に相当す
る電圧(例えば0,4V)である。
The output voltage of the reference voltage source (to) is a voltage (for example, 0.4 V) corresponding to the stoichiometric air/fuel ratio.

差動増幅回路(イ)の出力端はスイッチ(2)、を流検
出抵抗勿を介して酸素ポンプ素子ゆの1を極(21a)
に接続され、電流検出抵抗翰の両端が02センサの出力
端となってマイクロコンピュータの制御回路(1)に接
続されている。
The output end of the differential amplifier circuit (A) is connected to the switch (2), and the oxygen pump element Yuno1 is connected to the pole (21a) through the flow detection resistor.
Both ends of the current detection resistor wire serve as output ends of the 02 sensor and are connected to the control circuit (1) of the microcomputer.

制御回路■には、絞り弁(4)の開度に応じ九出刃電圧
を発生する絞り弁開度センサl、吸気管内の絶対圧に応
じ九出力電圧を発生する絶対圧センナ凹、エンジン冷却
水温く応じ迄出力電圧を発生する水温七ンサ叫、エンジ
ン(1)の回転に同期し友パルス信号を発生するクラン
ク角センサα4及びイグニッションスイッチ6ηが接続
され、イグニッションスイッチGυによってバッテリ電
圧が制御回路(7)に供給される。また、この制御回路
内の駆動回路には吸気管(2)のインジェクタ(5)及
びエンジン(1)の進角装置(6)が接続されている。
The control circuit ■ includes a throttle valve opening sensor l that generates nine output voltages depending on the opening degree of the throttle valve (4), an absolute pressure sensor recess that generates nine output voltages depending on the absolute pressure in the intake pipe, and an engine cooling water temperature sensor. A crank angle sensor α4, which generates a pulse signal in synchronization with the rotation of the engine (1), and an ignition switch 6η are connected, and the battery voltage is controlled by the ignition switch Gυ to the control circuit ( 7). Further, an injector (5) of the intake pipe (2) and an advance angle device (6) of the engine (1) are connected to the drive circuit within this control circuit.

制御回路(7)は電流検出抵抗@の両vIAt圧をディ
ジタル信号に変換する差動入力のh/DK挨器(ロ)と
、絞り弁開麗センサ0υ、絶対圧センサD、水温センサ
ωの各出力レベルを変換するし4ル変換回路曽と、レベ
ル変換回路(7)を経た各センサ出力の1つを選択的に
出力するマルチプレクサ(至)と、このマルチプレクサ
(至)から出力される信号をディジタル信号に変換する
A/D変換器■と、クランク角センサ(至)の出力信号
を波形整形してTDO信号として出力する波形整形回路
(至)と、波形整形回路(至)からのTDO信号の発生
間隔をクロックツ9ルス発生回路(図示せず)から出力
されるクロックパルス数によって計a するカウスタ■
と、イグニッションスイッチ(至)の出力レベルを変換
するレベル変換回路(至)と、レベル変換回路−を経t
スイッチ出力をディジタルデータとするディジタル入力
モジュレータ口と、インジェクタ(5)を駆動する駆動
回路(40a”>と、スイッチ(至)をオン駆動する駆
動回路(40b)と、進角袋ft(61を駆動する駆動
回路(40c’)と、プログラムに従ってディジタル演
算を行なうCPU(中央演算回路’) (ADと、各種
の処理プロダラム及びデータが予め書き込まれ7’tR
OMに)と、几AM(!13を備えている。A/D変換
器(至)、(ロ)、マルチプレクサ(至)、カウンタ田
、ディジタル入カモシュレータ舜、駆動回路(40a)
 、(40b)、(40c)、0PUQI)、ROMi
及びRAM[は入出力パス(財)によって互いに接続さ
れている。
The control circuit (7) includes a differential input h/DK filter (b) that converts both vIAt pressures of the current detection resistor @ into digital signals, a throttle valve opening sensor 0υ, an absolute pressure sensor D, and a water temperature sensor ω. A 4-channel conversion circuit that converts each output level, a multiplexer that selectively outputs one of the sensor outputs that have passed through the level conversion circuit (7), and a signal output from this multiplexer. An A/D converter ■ that converts the signal into a digital signal, a waveform shaping circuit (to) that shapes the output signal of the crank angle sensor (to) and outputs it as a TDO signal, and a TDO from the waveform shaping circuit (to). A counter that measures the signal generation interval by the number of clock pulses output from a clock pulse generation circuit (not shown).
, a level conversion circuit (to) that converts the output level of the ignition switch (to), and a level conversion circuit.
A digital input modulator port that converts the switch output into digital data, a drive circuit (40a'') that drives the injector (5), a drive circuit (40b) that turns on the switch (to), and a lead angle bag ft (61). A drive circuit (40c') to drive and a CPU (central processing circuit') that performs digital calculations according to the program (7'tR with AD and various processing programs and data written in advance)
OM), AM (!13), A/D converter (to), (b), multiplexer (to), counter, digital input camosulator, and drive circuit (40a).
, (40b), (40c), 0PUQI), ROMi
and RAM[ are connected to each other by input/output paths.

OP U(41)には波形整形回路(至)からTDO信
号が供給される。
A TDO signal is supplied to the OPU (41) from the waveform shaping circuit (to).

かかる構成においては、A/D変換器c!14刀為ら酸
素ポンプ素子(至)を流れるポンプ電流値Ipが。
In such a configuration, the A/D converter c! 14 The pump current value Ip flowing through the oxygen pump element (to) is.

−A/D変換器□□□から絞り弁開度uth、吸気管内
絶対圧PBA及び冷却水温TWの情報が択一的に、カウ
ンタ(至)からエンジン回転数Neを表わす情報が、ま
たディジタル人カモシュレータ(至)からイグニッショ
ンスイッチGl)のオンオフ情報がOPU@に入出力バ
ス−を介して各々供給される。0PU(ロ)はROM(
財)に記憶された演算プログラムに従って上記の各情報
を読み込み、それらの情報を基にしてTDO信号に同期
して燃料供給ルーチンにシいて所定の算出式からエンジ
ン(11への燃料供給量に対応するインジェクタ(5)
の燃料噴射時間TOUTを演算する。そして、燃料噴射
はクランク角センサ信号に同期して行われ、演算もクラ
ンク角信号に同期して行われ燃料噴射時間ToUTだけ
駆動回路(40a)がインジェクタ(5)を駆動してエ
ンジン(1)へ燃料を供給せしめるのである。
- Information on the throttle valve opening uth, intake pipe absolute pressure PBA, and cooling water temperature TW is alternatively sent from the A/D converter On/off information of the ignition switch Gl) is supplied from the camosulator (to) to the OPU@ via the input/output bus. 0PU (b) is ROM (
The above-mentioned information is read according to the calculation program stored in the engine (11), and based on that information, the fuel supply routine is executed in synchronization with the TDO signal and the amount of fuel supplied to the engine (11) is calculated from a predetermined calculation formula. Injector (5)
The fuel injection time TOUT is calculated. Then, the fuel injection is performed in synchronization with the crank angle sensor signal, and the calculation is also performed in synchronization with the crank angle signal, and the drive circuit (40a) drives the injector (5) for the fuel injection time ToUT, and the engine (1) It supplies fuel to the

燃料噴射時間I’OUTは例えば、次式から算出される
The fuel injection time I'OUT is calculated, for example, from the following equation.

TOUT =Ti X Ko2 X KWOT X K
TW  ”・”・11)ここで、Tiはエンジン回転f
iNeと吸気管内絶対圧PB入とから決定される基本噴
射時間t−iわす基本供給量、Ko2は酸素allセン
サの出力レベルに応じて設定する空燃比のフィードバッ
ク補正係数、KWOTは高負荷時の燃料増を補正係数、
KTWは冷却水温係数である。これらTi、Ko2、K
WOT、 KTWは燃料供給ルーチンのサブルーチンに
おいて設定される。
TOUT = Ti X Ko2 X KWOT X K
TW ”・”・11) Here, Ti is the engine rotation f
The basic injection time ti minus the basic supply amount determined from iNe and the intake pipe absolute pressure PB input, Ko2 is the air-fuel ratio feedback correction coefficient set according to the output level of the oxygen all sensor, and KWOT is the air-fuel ratio feedback correction coefficient at high load. Correction factor for fuel increase,
KTW is the cooling water temperature coefficient. These Ti, Ko2, K
WOT and KTW are set in the subroutine of the fuel supply routine.

一方、駆動回路(40b )は0PU141からオン駆
動指令に応じてスイッチ(7)をオン駆動し、またオン
駆動停止指令に応じてスイッチ(ホ)のオン駆動を停止
する。スイッチ(至)がオン駆動されると差動増幅回路
に)の出力端からスイッチ■、低抗■を介して酸素ポン
プ素子ゆの電極(21a )、(21b)間にポンプ電
流が流れ始める。
On the other hand, the drive circuit (40b) turns on the switch (7) in response to an on-drive command from the 0PU 141, and stops the on-drive of the switch (e) in response to an on-drive stop command. When the switch (to) is turned on, a pump current begins to flow between the electrodes (21a) and (21b) of the oxygen pump element from the output end of the differential amplifier circuit (to the differential amplifier circuit) via the switch (2) and the low resistor (2).

酸素ポンプ素子(2)へのポンプ電流の供給が開始され
ると、そのときエンジン(1)に供給された混合気の空
燃比がリーン領域であれば、電池素子に)の電極(22
a)、  (22b)闇に発生する電圧が基準電圧源(
ホ)の出力電圧エリ低くなるので差動増幅回路(7)の
出力レベルが正レベルになり、この正レベル電圧が抵抗
@及び酸素ポンプ素子12υの直列回路に供給される。
When the supply of pump current to the oxygen pump element (2) is started, if the air-fuel ratio of the air-fuel mixture supplied to the engine (1) at that time is in the lean region, the electrode (22
a), (22b) The voltage generated in the dark is the reference voltage source (
Since the output voltage of (e) becomes low, the output level of the differential amplifier circuit (7) becomes a positive level, and this positive level voltage is supplied to the series circuit of the resistor @ and the oxygen pump element 12υ.

酸素ポンプ素子C2υには電極(21a )から電極(
21b)に向ってポンプ電流が流れるので気体滞留室回
内の酸素が電極(21b)にてイオン化して酸素ポンプ
素子eυ内全移動して電!(21a)から酸素ガスとし
て放出され、気体滞留室回内の酸素が汲み出さnる。
The oxygen pump element C2υ is connected from the electrode (21a) to the electrode (
21b), the oxygen in the gas retention chamber is ionized at the electrode (21b) and moves throughout the oxygen pump element eυ, causing electricity! (21a) is released as oxygen gas, and the oxygen in the gas retention chamber is pumped out.

気体滞留室回内の酸素の汲み出しにより気体滞留室01
内の排気ガスと大気基準案(1)内の大気の間にci1
累鹸度差が生ずる。この酸素曇度差に応じ友電圧Vsが
電池素子(4)の電極(22a )、 (22b )間
に発生し、この電圧Vsは差動増幅回路四の反転入力端
に供給される。差動増幅回路(7)の出力電圧は電圧v
3と基準電圧源(4)の出力電圧との差電圧に比例した
電圧となるのでポンプ電流値は排気ガス中のm、素濃度
に比例し、ポンプ電流値は抵抗勺の両端電圧として出力
される。
Gas retention chamber 01 is created by pumping out oxygen from the gas retention chamber pronunciation.
ci1 between the exhaust gas in the
Differences in cumulative saponification occur. A voltage Vs is generated between the electrodes (22a) and (22b) of the battery element (4) in accordance with this oxygen haze difference, and this voltage Vs is supplied to the inverting input terminal of the differential amplifier circuit 4. The output voltage of the differential amplifier circuit (7) is the voltage v
3 and the output voltage of the reference voltage source (4), the pump current value is proportional to the elementary concentration in the exhaust gas, and the pump current value is output as the voltage across the resistor. Ru.

リッチ領域の空燃比のときには電圧Vsが基準電圧#に
)の出力電圧を越える。よって、差動増幅回路(ハ)の
出力レベルが正レベルから負レベルに反転する。この負
レベルにより酸素ポンプ素子□□□の′[啄(21a)
、  (21b)闇に流れるポンプ電流が減少し、電流
方向が反転する。すなわち、ポンプ電流は1!極(21
a)刀1ら電極(21b’)方向に流れるので外部の*
2が1!f1 (21a )にてイオン比して酸g、r
i′ンプ累子シV内を移動して1!極(21b)から酸
素ガスとして気体滞留室α−内に放出され。
When the air-fuel ratio is in the rich region, the voltage Vs exceeds the output voltage of the reference voltage #. Therefore, the output level of the differential amplifier circuit (c) is inverted from a positive level to a negative level. This negative level causes the oxygen pump element □□□ to
, (21b) The pump current flowing in the dark decreases and the current direction is reversed. In other words, the pump current is 1! Pole (21
a) Since it flows from the sword 1 towards the electrode (21b'), the external *
2 is 1! At f1 (21a), the ion ratio is acid g, r
Move within the i'ump yokoshi V and get 1! It is released from the electrode (21b) into the gas retention chamber α- as oxygen gas.

酸素が気体滞留室(lL場内に汲み込まれる。従って、
気体滞留室α−内の酸素meが常に一定になるようにポ
ンプ電流を供給することにより酸素を汲み込んだり、汲
み出したりするのでW、2図aη。
Oxygen is pumped into the gas retention chamber (lL field. Therefore,
Since oxygen is pumped in and out by supplying a pump current so that the oxygen me in the gas retention chamber α is always constant, W, Figure 2 aη.

(17a)に示すようにポンプ電流値Ipはリーン及び
リッチ領域にて排気ガス中の酸素theに各々比例する
のである。このポンプ電流値Ipに応じて上記したフィ
ードバック補正係数Ko2が設定される。
As shown in (17a), the pump current value Ip is proportional to the oxygen the in the exhaust gas in the lean and rich regions, respectively. The feedback correction coefficient Ko2 described above is set according to this pump current value Ip.

制御回路(1)には、エンジンの負荷に関する運転パラ
メータであるエンジン回転速症Ne、吸気管絶対圧力F
B等から空燃比l!Il贅の次めの基準値λBASBが
設定されている。これらの各パラメータの関係は第4図
に示すとおりで、図中Kref1 * Kref2は、
制御回路(7)におけるフィードバック補正係数Ko2
の平均学習値であり、アルコール混合比XK比例する。
The control circuit (1) includes engine speed Ne, which is an operating parameter related to engine load, and intake pipe absolute pressure F.
Air-fuel ratio l from B etc.! A reference value λBASB next to Il is set. The relationship between these parameters is shown in Figure 4, where Kref1 * Kref2 is
Feedback correction coefficient Ko2 in control circuit (7)
It is the average learned value of , and is proportional to the alcohol mixing ratio XK.

そして、この基準値λBASBは、第1の補正係数であ
るフィー2パツク補正係数によって補正する。
Then, this reference value λBASB is corrected by a fee two pack correction coefficient which is a first correction coefficient.

フィー2パツク補正係数Ko 2又はその平均学習値K
refは、第5図に示すようにアルコール混合比量αと
比例1関係にあることが判り1本発明はこの事実に基づ
いてKrefの値によってアルコール混合北本αを求め
、Krefがしきい値を越し友ときはKo 2又はKr
efを第1補正係数として空燃比の基準値λBA8 E
を補正し、更にエンジンの運転ノぞラメータに応じた第
2補正係数によって補正を行なう。
Fee 2 pack correction coefficient Ko 2 or its average learning value K
It has been found that ref has a proportional relationship of 1 with the alcohol mixing ratio α, as shown in FIG. When you have an ex-friend, Ko 2 or Kr
Air-fuel ratio reference value λBA8 E with ef as the first correction coefficient
is corrected, and further correction is performed using a second correction coefficient corresponding to the engine operating speed parameter.

エンジン運転中、エンジンの経時変動又は外的影響によ
って、フィードバック補正係数Ko2は、第6図に示す
ように微小変化を続けるが、燃料中にアルコールが混入
されるとKo2の平均学習値はKreflからKr e
 f 2に大きく変化する。
During engine operation, the feedback correction coefficient Ko2 continues to change slightly due to engine fluctuations over time or external influences, as shown in Figure 6. However, when alcohol is mixed into the fuel, the average learned value of Ko2 changes from Krefl. Kre
There is a large change in f2.

このKref@けKo2より、Krefn= #Ko2
n+(1−β)Krefn=によって求める。ここでβ
はな1し係数又は平均化係数で通常1)、 18凝の値
とする。第6因においてフィードバック補正係数Ko2
の値が大きくf動して平均値がKreflからKref
2に変わって一定時闇ΔTfa続し、変動幅ΔKref
が一定のしきい値ΔKREiF ’j−越えたときけア
ルコールが混入されたものと判断し、このときのKre
f厘を第1補正係数として空燃比の基準値を補正する。
From this Kref@keKo2, Krefn= #Ko2
It is determined by n+(1-β)Krefn=. Here β
Normally, the value is 1), 18, which is the averaging coefficient or the averaging coefficient. In the sixth factor, feedback correction coefficient Ko2
The value of f fluctuates greatly, and the average value changes from Krefl to Kref.
2, the darkness ΔTfa continues for a certain period of time, and the fluctuation range ΔKref
When it exceeds a certain threshold value ΔKREiF 'j-, it is judged that alcohol has been mixed in, and at this time Kre
The reference value of the air-fuel ratio is corrected using f as the first correction coefficient.

更に、この補正Mをエンジンの運転ノぐラメータに応じ
7cg2補正係数で補正する。第2補正係数となるもの
には、始動補正係数KNe、水温補正係数KTW、始動
増賞係fiKA8T、スロットル全開増量係数KWOT
 、別速補正係a TAOO点火進角等があり、これら
の各係数とKrefの間にはそれぞれ一定の関係があり
、第7図ないし第9図にその一部を示す。アルコールの
混入により、アルコールのアンチノック性によってオク
タン価が向上し、点火進角σi?を大きくすることがで
き、・第7図のようにKreflからKref2に変つ
九ときけオクタン価に応じて点火時期を早めて最適比す
る。第8図は始動増酋係aKAsTとKrefとの関係
を示し、アルコール混合比龜の増加にエリ燃料の気化藁
が減少するため、始動時の燃料量を増大する必要があり
、該係数KA 8 Tは増大する。第9図はスロットル
全開増量係数KWOTとKrerとの関係で、アルコー
ル混合北本の増大によって燃料量が増大してエンジン冷
却作用が増す丸め、スロットル全開時の増を名を下げる
ことができ、全開増量係数KWOTはKrefの増力口
により減少する。し九がって。
Further, this correction M is corrected by a 7cg2 correction coefficient according to the engine operating parameters. The second correction coefficients include the starting correction coefficient KNe, the water temperature correction coefficient KTW, the starting increase coefficient fiKA8T, and the throttle full-open increase coefficient KWOT.
, another speed correction coefficient a, TAOO ignition advance angle, etc., and there is a certain relationship between each of these coefficients and Kref, a part of which is shown in FIGS. 7 to 9. By mixing alcohol, the octane number improves due to the anti-knock property of alcohol, and the ignition advance angle σi? As shown in Fig. 7, the ignition timing is advanced according to the octane number when it changes from Krefl to Kref2 to achieve the optimum ratio. FIG. 8 shows the relationship between the starting boost coefficient aKAsT and Kref. As the alcohol mixture ratio increases, the amount of vaporized fuel decreases, so it is necessary to increase the amount of fuel at the time of starting, and the coefficient KA 8 T increases. Figure 9 shows the relationship between the full-open throttle increase coefficient KWOT and Krer.The increase in alcohol mixture increases the amount of fuel and increases the engine cooling effect. The coefficient KWOT is reduced by the booster of Kref. Shut up.

これらの第2補正係数もKref値すなわちアルコール
含有量によって補正する。
These second correction coefficients are also corrected based on the Kref value, that is, the alcohol content.

空燃比の変更は、02センサとして酸素alt比例型セ
ンサを用い九とき特に容易に行なうことができ、エンジ
ン負荷に関するノぐラメータである、エンジン回転速度
Neと吸気管絶対圧PHに応じ九基本空燃比を、Kre
fの値によって補正して目標空燃比を設定し、この目標
空燃比に対して、アルコール含!量で補正し几各種係数
による補正をして最適の空燃比を宋め、同時に点火進角
σi?も変更する。
The air-fuel ratio can be changed particularly easily when an oxygen alt proportional sensor is used as the 02 sensor. Fuel ratio, Kre
A target air-fuel ratio is set by correcting it according to the value of f, and alcohol-containing! The optimum air-fuel ratio is determined by making corrections using various coefficients, and at the same time, the ignition advance angle σi? Also change.

空燃比の調節は例えば!10図に示す乎順で行う。同図
において、工pは02サンサ出力電流、Lo2は検出空
燃比、Lrefは目標空燃比、KO2はフィードバック
補正係数、Δは積分力ロ減算定数、KREFはKo2ノ
平均値f KRFJ’ =戸Ko 2 +(1−1’)
 Kre f −・= (2+  の関係にあり、1s
=KRBPはアルコール含有判定用しきい値、αはアル
コール混合北本(咄)、Kは定数、KA 8 Tは始動
増量係数、KWOTはスロットル全開増量係数、TOt
JTは燃料噴射時間である。第10図において、ステッ
プlで読込んだ02センサの出力電流からフィードバッ
ク補正係数Ko2を求め、ステップ(5)においてKo
 2の平均厘KFLRFを前記(2)式で計算し、ステ
ップ(6)でしきい値ΔKRBFと比較しこれ以上の変
動があるときはアルコールが混入され友とみてステップ
(7)で混合比巡αを計算し、ステップ(3)で目標空
燃比Lrefを設定する。このLrefは、KI’Lg
F したがって第1補正係数てよって補正されたものと
なる。次いでステップ(9)。
For example, adjusting the air-fuel ratio! Perform in the order shown in Figure 10. In the same figure, p is the output current of the sensor, Lo2 is the detected air-fuel ratio, Lref is the target air-fuel ratio, KO2 is the feedback correction coefficient, Δ is the integral force subtraction constant, and KREF is the average value of Ko2. 2 + (1-1')
Kre f −・= (2+ relationship, 1s
= KRBP is the threshold for determining alcohol content, α is the alcohol mixture Kitamoto (咄), K is a constant, KA 8 T is the starting power increase coefficient, KWOT is the throttle full-open power increase coefficient, TOt
JT is fuel injection time. In FIG. 10, the feedback correction coefficient Ko2 is calculated from the output current of the 02 sensor read in step l, and in step (5) Ko
Calculate the average value KFLRF of 2 using the above formula (2), compare it with the threshold value ΔKRBF in step (6), and if there is a variation greater than this, it is assumed that alcohol has been mixed in, and the mixing ratio is determined in step (7). α is calculated, and the target air-fuel ratio Lref is set in step (3). This Lref is KI'Lg
F Therefore, it is corrected by the first correction coefficient. Then step (9).

aGで運転パラメータに応じた第2補正係数のKA8T
 、 KWOT等で補正して、ステップαυ、C12で
燃料噴射時間To UTの計算及び出力を行う。噴射時
間の翼出は、前記式fi+により行なう。内式において
TiMは基本噴射時間のマツプ値で、エンジン回転速度
Ne及び吸気管絶対圧力PBO函数である。
KA8T of the second correction coefficient according to the operating parameters in aG
, KWOT, etc., and the fuel injection time To UT is calculated and output in step αυ, C12. The blade extension of the injection time is performed using the above formula fi+. In the internal formula, TiM is a map value of the basic injection time, which is a function of engine rotational speed Ne and intake pipe absolute pressure PBO.

(発明の効果) 本発明は、燃料中にアルコールが混合されても、自動的
にアルコール混合北本に応じた理論空燃比を設定し、更
にこれを運転条件に応じて補正できるので最適の空燃比
でエンジンを運転することができる。
(Effects of the Invention) The present invention automatically sets the stoichiometric air-fuel ratio according to the alcohol mixture even if alcohol is mixed in the fuel, and further corrects this according to the operating conditions, so that the optimum air-fuel ratio can be achieved. The engine can be operated with.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するために用いられるエンジン制
御装置の配置図、第2図は制御回路図、第3図は02セ
ンサの出力?a図、第4図は負荷条件とフィードバック
補正係数の関係を示す1liI図、第5図はアルコール
混合北本とフィードバック補正係数の関係を示す線図、
第6図はフィードバック補正係数の変化1例を示す線図
。 第7図、第8図、ツ9図は各種運転ノクラメータの関係
を示す線図、giE10図は制御乎順の説明図である。 fit・・・エンジン   (5)・・・インジェクタ
(1(1・・・マイクロコンピュータ 叫・・・02センサ 外2名 第1図 第10図 第3図
Fig. 1 is a layout diagram of the engine control device used to implement the present invention, Fig. 2 is a control circuit diagram, and Fig. 3 is the output of the 02 sensor. Figure a, Figure 4 is a 1liI diagram showing the relationship between load conditions and feedback correction coefficient, Figure 5 is a diagram showing the relationship between alcohol mixture Kitamoto and feedback correction coefficient,
FIG. 6 is a diagram showing one example of changes in the feedback correction coefficient. FIGS. 7, 8, and 9 are diagrams showing the relationships between various operating nomura meters, and FIG. giE10 is an explanatory diagram of the control order. Fit...Engine (5)...Injector (1 (1...Microcomputer shout...02 2 people outside the sensor Fig. 1 Fig. 10 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] アルコールを含む多種燃料エンジンの排気系に排ガス中
の酸素濃度に比例した出力を発生する酸素濃度センサを
備え、エンジン負荷に関する複数のエンジン運転パラメ
ータに応じて空燃比調節の基準値を設定し、設定した基
準値を前記センサの出力と目標空燃比との偏差に応じた
補正係数により補正して目標空燃比に対する出力値を決
定し、該出力値に応じて空燃比を調整する内燃エンジン
の空燃比制御方法において、前記補正係数の大きさから
アルコール混合比率を検出し、該検出値に応じて前記目
標空燃比を修正することを特徴とする多種燃料エンジン
空燃比制御方法。
The exhaust system of a multi-fuel engine containing alcohol is equipped with an oxygen concentration sensor that generates an output proportional to the oxygen concentration in the exhaust gas, and sets and sets reference values for air-fuel ratio adjustment according to multiple engine operating parameters related to engine load. An air-fuel ratio of an internal combustion engine in which an output value for a target air-fuel ratio is determined by correcting the reference value determined by a correction coefficient according to a deviation between the output of the sensor and a target air-fuel ratio, and the air-fuel ratio is adjusted according to the output value. An air-fuel ratio control method for a multi-fuel engine, characterized in that the alcohol mixture ratio is detected from the magnitude of the correction coefficient, and the target air-fuel ratio is corrected according to the detected value.
JP14622286A 1986-06-24 1986-06-24 Air-fuel ratio control method for multi-fuel engine Pending JPS635131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14622286A JPS635131A (en) 1986-06-24 1986-06-24 Air-fuel ratio control method for multi-fuel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14622286A JPS635131A (en) 1986-06-24 1986-06-24 Air-fuel ratio control method for multi-fuel engine

Publications (1)

Publication Number Publication Date
JPS635131A true JPS635131A (en) 1988-01-11

Family

ID=15402871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14622286A Pending JPS635131A (en) 1986-06-24 1986-06-24 Air-fuel ratio control method for multi-fuel engine

Country Status (1)

Country Link
JP (1) JPS635131A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010823A1 (en) * 1990-01-19 1991-07-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of determining fuel blend ratio
WO1991010824A1 (en) * 1990-01-19 1991-07-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of determining fuel blend ratio
WO1991010822A1 (en) * 1990-01-19 1991-07-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of determining fuel blend ratio
JP2007177637A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Fuel supply device for internal combustion engine
EP1895129A1 (en) 2006-08-29 2008-03-05 HONDA MOTOR CO., Ltd. Fuel injection control device
JP2008082171A (en) * 2006-09-25 2008-04-10 Honda Motor Co Ltd Fuel injection control device for multiple-kind fuel engine
JP2008180187A (en) * 2007-01-26 2008-08-07 Honda Motor Co Ltd Vehicle start information display device
WO2009110313A1 (en) 2008-03-06 2009-09-11 本田技研工業株式会社 Fuel supply device
WO2010131613A1 (en) 2009-05-12 2010-11-18 株式会社ケーヒン Control device for internal combustion engine
EP2354503A2 (en) 2010-02-01 2011-08-10 Honda Motor Co., Ltd. Alcohol concentration estimation and detection apparatus
JP2011163278A (en) * 2010-02-12 2011-08-25 Honda Motor Co Ltd Air-fuel ratio control apparatus for general-purpose engine
EP2706219A2 (en) 2012-09-05 2014-03-12 Yamaha Hatsudoki Kabushiki Kaisha Fuel pump unit and vehicle
US10280860B2 (en) 2010-02-12 2019-05-07 Honda Motor Co., Ltd. Air/fuel ratio control apparatus for general-purpose engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143142A (en) * 1981-03-02 1982-09-04 Mazda Motor Corp Controller for engine
JPS62214248A (en) * 1986-03-12 1987-09-21 Toyota Motor Corp Method for injecting fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143142A (en) * 1981-03-02 1982-09-04 Mazda Motor Corp Controller for engine
JPS62214248A (en) * 1986-03-12 1987-09-21 Toyota Motor Corp Method for injecting fuel

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010823A1 (en) * 1990-01-19 1991-07-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of determining fuel blend ratio
WO1991010824A1 (en) * 1990-01-19 1991-07-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of determining fuel blend ratio
WO1991010822A1 (en) * 1990-01-19 1991-07-25 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of determining fuel blend ratio
US5197451A (en) * 1990-01-19 1993-03-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method for detecting fuel blending ratio
US5263464A (en) * 1990-01-19 1993-11-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method for detecting fuel blending ratio
US5311852A (en) * 1990-01-19 1994-05-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method for detecting fuel blending ratio
JP2007177637A (en) * 2005-12-27 2007-07-12 Toyota Motor Corp Fuel supply device for internal combustion engine
JP4696904B2 (en) * 2005-12-27 2011-06-08 トヨタ自動車株式会社 Fuel supply device for internal combustion engine
EP1895129A1 (en) 2006-08-29 2008-03-05 HONDA MOTOR CO., Ltd. Fuel injection control device
US7567866B2 (en) 2006-08-29 2009-07-28 Honda Motor Co., Ltd. Fuel injection control device
JP2008082171A (en) * 2006-09-25 2008-04-10 Honda Motor Co Ltd Fuel injection control device for multiple-kind fuel engine
US7475683B2 (en) 2006-09-25 2009-01-13 Honda Motor Co., Ltd. Fuel injection control device for a variable-fuel engine and engine incorporating same
JP2008180187A (en) * 2007-01-26 2008-08-07 Honda Motor Co Ltd Vehicle start information display device
WO2009110313A1 (en) 2008-03-06 2009-09-11 本田技研工業株式会社 Fuel supply device
US8544449B2 (en) 2008-03-06 2013-10-01 Honda Motor Co., Ltd. Fuel supply device
WO2010131613A1 (en) 2009-05-12 2010-11-18 株式会社ケーヒン Control device for internal combustion engine
EP2431592A1 (en) * 2009-05-12 2012-03-21 Keihin Corporation Control device for internal combustion engine
EP2431592A4 (en) * 2009-05-12 2013-05-22 Keihin Corp Control device for internal combustion engine
EP2354503A2 (en) 2010-02-01 2011-08-10 Honda Motor Co., Ltd. Alcohol concentration estimation and detection apparatus
JP2011157871A (en) * 2010-02-01 2011-08-18 Honda Motor Co Ltd Alcohol concentration estimation and detection apparatus
EP2354503A3 (en) * 2010-02-01 2015-02-25 Honda Motor Co., Ltd. Alcohol concentration estimation and detection apparatus
US9777649B2 (en) 2010-02-01 2017-10-03 Honda Motor Co., Ltd. Alcohol concentration estimation and detection apparatus for an engine
JP2011163278A (en) * 2010-02-12 2011-08-25 Honda Motor Co Ltd Air-fuel ratio control apparatus for general-purpose engine
US8649958B2 (en) 2010-02-12 2014-02-11 Honda Motor Co., Ltd. Air/fuel ratio control apparatus for general-purpose engine
US10280860B2 (en) 2010-02-12 2019-05-07 Honda Motor Co., Ltd. Air/fuel ratio control apparatus for general-purpose engine
EP2706219A2 (en) 2012-09-05 2014-03-12 Yamaha Hatsudoki Kabushiki Kaisha Fuel pump unit and vehicle

Similar Documents

Publication Publication Date Title
US4981125A (en) Output correction method for exhaust gas ingredient-concentration sensors of proportional-output type
US4777922A (en) Method of abnormality detection of oxygen concentration sensor
JPS635131A (en) Air-fuel ratio control method for multi-fuel engine
US4819602A (en) System of abnormality detection for oxygen concentration sensor
US9745911B2 (en) Control system of internal combustion engine
JP2947353B2 (en) Air-fuel ratio control method for internal combustion engine
US4724815A (en) System of abnormality detection for oxygen concentration sensor
EP0153731A2 (en) Air-fuel ratio sensor
US4788958A (en) Method of air/fuel ratio control for internal combustion engine
JP2826599B2 (en) Fuel blend rate detection method
US4860712A (en) Method of controlling an oxygen concentration sensor
US4676213A (en) Engine air-fuel ratio control apparatus
US4760822A (en) Method for controlling the air/fuel ratio of an internal combustion engine with a fuel cut operation
JP2553509B2 (en) Air-fuel ratio controller for internal combustion engine
US4787966A (en) Oxygen concentration sensor for an internal combustion engine
US4922429A (en) Method for controlling an air/fuel ratio of an internal combustion engine
US4873642A (en) Method for controlling an oxygen concentration sensor for use in an air/fuel ratio control system of an internal combustion engine
US4763628A (en) Method of compensating output from oxygen concentration sensor of internal combustion engine
JP2600453B2 (en) Air-fuel ratio sensor output correction method
GB2227579A (en) Method of air/fuel ratio control for internal combustion engine
JPS6141960A (en) Air fuel ratio detecting device
JPS6296743A (en) Air-fuel ratio controller for internal combustion engine
JPS635130A (en) Air-fuel ratio control method for multi-fuel engine
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JP2613591B2 (en) Air-fuel ratio control method for internal combustion engine