JP2008077833A - 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法 - Google Patents

高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法 Download PDF

Info

Publication number
JP2008077833A
JP2008077833A JP2007317766A JP2007317766A JP2008077833A JP 2008077833 A JP2008077833 A JP 2008077833A JP 2007317766 A JP2007317766 A JP 2007317766A JP 2007317766 A JP2007317766 A JP 2007317766A JP 2008077833 A JP2008077833 A JP 2008077833A
Authority
JP
Japan
Prior art keywords
plasma
carbon
deposition
ion
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007317766A
Other languages
English (en)
Inventor
Vijayen Veerasamy
ベーラサミイ ビジャイエン
Manfred Weiler
バイラー マンフレッド
Eric Li
リー エリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashic Memories Corp
Original Assignee
Akashic Memories Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/761,336 external-priority patent/US5858477A/en
Application filed by Akashic Memories Corp filed Critical Akashic Memories Corp
Publication of JP2008077833A publication Critical patent/JP2008077833A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/727Inorganic carbon protective coating, e.g. graphite, diamond like carbon or doped carbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8408Processes or apparatus specially adapted for manufacturing record carriers protecting the magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】高度な四面体のアモルファス炭素の保護オーバーコートを有する好適な記録媒体
およびその製造方法を提供すること。
【解決手段】本発明のダイヤモンド様炭素材料は、高度な四面体である、すなわち、ダイヤモンド結晶格子内に見い出される多くのsp炭素−炭素結合を特徴とする。材料はまた、非結晶であり、短い範囲のオーダーと長い範囲のオーダーとの組み合わせを提供し、公知の非結晶炭素コーティング材料よりも実質的に小さい厚みにおいて、超平滑であり連続的な膜として堆積し得る。これらの材料を堆積する好適な方法において、容量性カプリングは、高密度で誘導的にイオン化されたプラズマから、高度に均一で選択的に励起されたイオンストリームを形成する。このような誘導イオン化は、共振イオン化およびイオンビームの均質化を促進する、比較的遅く移動する磁界により向上される。
【選択図】なし

Description

関連出願への相互参照
本願は、1996年3月31日に出願の米国特許仮出願第60/018,793号および1996年3月31日に出願の第60/018,746号、ならびに1996年12月10日出願の米国特許出願第08/761,336号および1996年12月10日出願の第08/761,338号の一部継続出願であり、これらから優先権を主張するものである。これらの開示内容の全体を本願に参考として援用する。
発明の背景
1.発明の分野
本発明は、広義には、薄膜およびその堆積のための方法に関し、より具体的には、ダイヤモンド状膜、プラズマビーム堆積システム、磁気記録媒体上にダイヤモンド状保護オーバーコートの生成および他の産業用途に有用な方法を提供する。
近年、ダイヤモンド状炭素と呼ばれる一群の材料の堆積に高い関心が集まっている。ダイヤモンド状炭素は、一般に、準安定で高密度な形態のアモルファス炭素として定義され得る。
ダイヤモンド状炭素フィルムの堆積は、しばしば、化学蒸着技術を伴い、堆積プロセスはしばしばプラズマ助長型である。公知のダイヤモンド状フィルムはしばしば水素、フッ素または何らかの他の物質を有する炭素を含む。ダイヤモンド状炭素フィルムの耐久性および有利な電気特性によって、これらのフィルムを半導体、光学および他の広い産業用途に適用しようという提案が複数なされている。残念ながら、公知の化学蒸着プロセスを用いてこれらの有利なダイヤモンド状炭素フィルムを提供するコストおよび複雑さは、その使用を幾分制限してきた。さらに、多岐にわたるダイヤモンド状炭素コーティングフィルムが研究室において付与されたが、これらのフィルムの多くは、理想的な材料特性未満の特性を有することが分かっている。
非常に異なる形態のアモルファス炭素は、一般に、磁気記録媒体の保護オーバーコートとして適用される。磁気記録ディスクは、一般に、磁性層を有する基板と、その上に堆積される複数の下側層および上側層とを含む。各層の性質および組成は、当該産業分野において一般に認識されているように、所望の磁気記録特性を提供するように選択される。
磁気記録媒体に格納される情報は、一般に、磁性酸化物または磁性合金のような強磁性体材料の薄膜の磁界における変動(variations)を含む。通常は、保護層を磁性層の上に形成し、潤滑材料の層を保護層の上に堆積する。これらの保護および潤滑層が組合わさせられることにより、磁気記録層の摩擦および浸食(erosion)を制限することによって磁気記録媒体の信頼性および耐久性を増大させる。スパッタリングされたアモルファス炭素フィルムは、剛性の磁気記録ディスクの保護オーバーコートとして広範囲にわたる用途を獲得した。
スパッタリングされたアモルファス炭素オーバーコートは、比較的薄い保護層によって高い摩耗保護を提供することがわかっている。スパッタリングされたアモルファス炭素を含む磁気記録ディスク構造は、非常に好結果を示し、非常に高い記録密度を可能にする。全ての成功にもかかわらず、さらに高い記録密度を有する磁気記録ディスクを提供することが望まれている。
一般に、記録密度は、読出し/書込みヘッドと呼ばれる記録トランスデューサと磁気記録ディスクの磁性層との間(または、より具体的には、読出し/書込みヘッドと磁性層の中間との間)の間隔を低減することによって改善し得る。現代の磁気記録システムにおいては、読出し/書込みヘッドはしばしば、回転するディスクと共に動く空気の層である空気ベアリング上の記録面上を滑空する。回転ディスクと読出し/書込みヘッドの間の摩擦接触を最低限にするためには、一般に、ディスクの表面を、高密度磁気記録にとって理想的なディスク表面よりも粗(rougher)にする(これにより、滑空高さをより高くする)。この滑空高さを低減(または消去)しても、読出し/書込みヘッドは保護アモルファス炭素オーバーコートによって記録層から分離される。所望の媒体の寿命を提供するためのこの保護層だけで、媒体の面積的密度が制限される。一般に、オーバーコート層の厚さは、耐久性および持続性制限によって決まる。スパッタリングされた炭素はしばしば、約50Å未満の厚さで不連続になる。剛性の磁気記録媒体の耐久性要件は磁気記録媒体の面積密度を制限するが、これによって、一般に、読出し/書込みヘッドと磁気記録層との間の距離を維持することが決まる。
フレキシブル磁気記録テープおよび磁気記録ヘッドのための保護コーティングとして使用するための様々なダイヤモンド状炭素材料を堆積するために、公知の化学蒸着技術を用いることが以前から提案されている。残念なことに、プラズマ助長型方法を含む、ダイヤモンド状材料を化学蒸着する公知の方法は、一般に、基板を500℃を越える温度にさらし、これは、ほとんどの磁気ディスク基板にとって有害である。従って、これらの公知のダイヤモンド状炭素フィルムは、比較的良好な硬度および摩擦性を提供するが、スパッタリングされるアモルファス炭素保護オーバーコートが非常に支配的である剛性磁気記録媒体の分野における用途にはほとんど応用がきかなかった。
上記理由から、記録媒体用の、向上した読出し/書込みヘッド摩擦および滑空特性(一般にスティクションと呼ばれる)を有する向上した磁気保護オーバーコートを提供することが有利である。好ましくは、このような向上したオーバーコートは、公知の剛性磁気記録媒体の密度を制限するような滑空高さおよび/または保護オーバーコート厚さにたよることなく、且つ媒体基板を過剰の温度にさらすことなく耐久性および信頼性を提供する。
改良されたダイヤモンド状炭素材料およびそれらの堆積方法を提供することも望ましい。このような材料および方法が実際の剛性磁気記録媒体に使用でき、理想的には、合計記録媒体構造の耐久性を維持または向上させる、より平坦な、より平滑な、およびより薄い保護コーティングを設けることによって、間隔が低減されることが特に望ましい。磁気記録媒体、集積回路、光学、機械ツールの製造に使用されるこのような保護層を堆積し、およびさらなる幅広い産業上の利用分野に使用できる別の方法およびシステムを提供することも望ましい。
2.背景技術の説明
米国特許第5,182,132号は、交流回路プラズマ助長化学蒸着方法によって堆積されたダイヤモンド状炭素フィルムを有する磁気記録媒体を記載する。米国特許第5,462,784号は、磁気記録媒体装置のためのフッ化ダイヤモンド状炭素保護コーティングを記載する。欧州特許出願第700,033号は、ダイヤモンド状炭素の保護層を有する側方搭載薄膜磁気ヘッドを記載する。欧州特許出願第595,564号は、炭素および水素からなるダイヤモンド状炭素保護フィルムを有する磁気記録媒体を記載する。
米国特許第5,156,703号は、粒子衝突による半導体の表面処理のための方法を記載する。この方法では、電気的に中性のプラズマ流を生成するために、容量的に結合された引出しグリッド(capacitivelycoupled extraction grid)を使用する。Solid-State Electronics, vol.37,pp.319-326 (1994)において、V.S.Veerasamyらは、フィルタリングされた陰極真空アーク cathodic vacuum arc)を用いて堆積される四面体アモルファス炭素の特性を記載した。フィルタリングされた真空アーク堆積における最近の進歩は、1996年春にSanDiagoで開催されたInternational Conference of Metallurgical Coatings and Thin Filmsにおいて発表された論文において、R.L.Boxmanによって再検討された。静磁場を重畳した低圧プラズマ中における電子サイクロトン波共鳴(electroncyclotron wave resonances)は、Plasma Physics, vol. 15, pp.835-844(1974)にProfessorOechsnerによって記載されている。
発明の要旨
本発明は、改良されたダイヤモンド状炭素材料を堆積するための、より具体的には磁気記録媒体の製造に関するシステムおよび方法を提供する。本発明のダイヤモンド状炭素材料は高度に四面体である。即ち、本発明は、ダイヤモンド結晶格子内に見られる多数のsp炭素−炭素結合を提供する。この材料はまた、アモルファスであり、短期的な秩序と長期的な無秩序の組合せを提供し、公知のアモルファス炭素コーティング材料よりも実質的に小さい厚さで超平滑且つ連続的(ピンホールが無い)フィルムとして堆積され得る。本発明の炭素保護コーティングは、しばしば水素化され、これにより、一般的に、同様の組成を有する公知の水素化アモルファスダイヤモンド状炭素コーティングよりも実質的に高い炭素−炭素sp結合のパーセントが提供され、随意に窒素化されていてもよい。これらの材料を堆積するための好適な方法において、容量性結合は、密度の高い、誘導的にイオン化されたプラズマからの非常に均一な選択的にエネルギーが与えられた(energized)イオン流を形成する。このような誘導的イオン化は、共振イオン化およびイオンビームの均質化を促進する、比較的遅い運動(または「準静的」)磁界によって高められる。明らかに、本発明の材料、システムおよび方法は、磁気記録媒体および関連装置の分野だけでなく、集積回路の製造、光学、機械ツールコーティングおよび広範な膜堆積およびエッチング用途においても使用されるであろう。
第1の局面において、本発明は、磁気記録媒体を製造する方法を提供する。この方法は、基板上に磁性層を形成する行程と、原材料をイオン化してプラズマ含有炭素イオンを形成する行程とを包含する。炭素イオンは、エネルギーが与えられ、基板に向かってプラズマ流を形成し、これにより、イオンからの炭素は基板上に付与される。イオンはエネルギーを伴って衝突し、これにより、sp炭素−炭素結合の形成が促進される。有利なことに、このような方法で、一般に、約15%sp炭素−炭素結合を有する高度に四面体のアモルファス炭素保護層を形成できる。一般にエネルギーを持った(energetic)炭素イオンの衝突エネルギーは、所定の範囲内にあり、これにより、所望の格子構造の構成を促進する。結合は、明かに少なくとも部分的に、サブプランテーション(subplantation)によって形成される。好ましくは、各炭素イオンは、約100から120eVの間のエネルギーを伴って衝突する。多くの実施形態において、得られた高度に四面体の無定型炭素保護層は、約35%spより多くの炭素−炭素結合を有し、特に好適な実施形態の方法では、70%spの炭素−炭素結合を生成する。
一般に、この流れ(stream)は、主に均一な重さのを有する複数イオンで構成され、衝突エネルギーは、好ましくは、実質的に均一である。いくつかの実施形態においては、この均一性が、イオン流のフィルタリングによって高められる。そのような場合、エネルギー付与は、一般に、炭素源材料の固体陰極アークを用いてプラズマを発生する(striking)行程を包含する。あるいは、この流れは、容量性接続によって引出しグリッドに対してプラズマを自己バイアスするために接続電極と引出しグリッドとの間に交流電位を印加してグリッドを通してイオン流を取り出すことによってエネルギーが与えられる。水素および/または窒素も、共にイオン流および保護層中に含まれ得る。
別の局面の1つにおいて本発明は、基板と、基板上に配設された磁性層と、磁性層の上に配設された保護層とを備えた磁気記録媒体を提供する。保護層は、一般に、約15%よりも大きいsp炭素−炭素結合を有する高度な四面体のアモルファス炭素を備える。好ましくは、これらの結合は、少なくとも部分的には、基板上にエネルギーを有する(energetic)炭素イオン流を指向することによって形成される。多くの実施形態において、保護層は、約35%よりも大きいsp炭素−炭素結合を有する。特に好適な実施形態は約70%よりも大きいsp炭素−炭素結合を有する。このような保護層は、75Å未満の厚さで超平滑且つ連続的となり、約50Å未満の厚さでも耐久性のある記録媒体を提供する。さらに、これらの高密保護材料の硬度および摩擦学的性能は、任意に準接触または連続的接触記録システム内において、約1μインチ未満の低減された読出し/書込みヘッドの滑空高さの場合で毎平方インチ当たり1ギガバイトを越える面積的記録密度を持つ非常に耐久性の高い記録媒体を得ることが可能になる。
他の局面において、本発明は、プラズマをプラズマ体積内に閉じ込め、プラズマを誘導的にイオン化し、プラズマ体積内からのイオン流を容量結合によって形成することによって生成されるイオンビームを増大させる方法を提供する。この方法は、好ましくは、プラズマ体積の周りに放射状に配置された複数のコイルのそれぞれに連続してエネルギーを与えることによって、磁界をプラズマを通して移動させ、共振誘導イオン化を促進することを含む。
他の局面において、本発明は、イオンビームソースと共に用いられる誘導イオン化システムを提供する。ソースは、プラズマ体積の周りに配置され、その体積内のプラズマを誘導的にイオン化するためのアンテナを有する。結合電極は、プラズマ体積に曝され、抽出電極は、プラズマ体積の開口部の上方に配置さているため、抽出電極は、プラズマのイオンを容量結合によってグリッドを通して放出することができる。システムは、プラズマ体積に隣接して配置された少なくとも1つのコイルを有し、このコイルは、横方向磁界をプラズマ体積に与え、アンテナによる共振誘導イオン化を促進することができる。磁界は、プラズマコンテナを通して移動し、放出されたイオン流を均質にし得る。磁界のこのような動きは、プラズマ体積の周りに放射状に配置されたコイルに選択的にエネルギーを与えることによって必要に応じて提供され、撹拌または混合効果によって粒子の衝突を促進することによって、プラズマの密度をさらに高め得る。
他の局面において、本発明は、約72原子%と92原子%との間の範囲の炭素および約8原子%と18原子%との間の範囲の水素を含むダイヤモンド状材料を提供する。材料はアモルファスであり、約15%と85%との間の炭素間結合はsp結合である。一般に、sp結合形成は、プラズマビームソースからのイオンビーム堆積を用いるサブプランテーションで促進される。このため、このような結合の数は、同様の組成を有する公知の材料よりも多い。従って、本発明の高度な四面体のアモルファス炭素および水素化炭素は、より少ないポリマー状の水素鎖を有し、一般に、高度な熱および機械安定性を示す。
他の局面において、本発明は、高度な四面体のアモルファス炭素を基板上方に堆積する方法を提供し、この方法は、ソース材料をイオン化し、プラズマを形成し、このプラズマをプラズマ体積内に閉じ込めることを含む。プラズマは、容量結合し、プラズマ体積内から外側に流れるプラズマ流を形成する。ストリームは、プラズマからの炭素イオンを含む、基板に方向づけられる。有利なことに、このような方法によると、均一のエネルギーを有する均一のサイズの炭素イオンが堆積され、特にサブプランテーションによってsp結合を促進させるようにエネルギーを有する炭素イオンを形成することを可能になる。ソース材料は、典型的には、実質的にコヒーレントな解離エネルギースペクトルを有するガスを含み、ソースガスは、理想的には、アセチレンを含む。好ましくは、イオンは、各炭素原子に対して、約57eVと130eVとの間(理想的には、約80eVと120eVとの間)の衝突エネルギーで基板に衝突する。
他の局面において、本発明は、プラズマ閉じ込め体積を規定するコンテナを含むイオンビームソースを提供する。コンテナは開口部を有し、アンテナはプラズマ体積の周りに配置され、第1の交流電位がアンテナに与えられることによって、プラズマ体積内のプラズマは、誘導的にイオン化され得る。結合電極は、プラズマ体積に電気的に結合され、抽出電極は、コンテナの開口部上方に配置される。抽出電極は、結合電極面よりも実質的に小さい表面積を有するので、結合電極と抽出電極との間に第2の交流電位を印加することによって、グリッドを通してプラズマのイオンが放出され得る。好ましくは、少なくとも1つのコイルが、コンテナに隣接して配置され、プラズマ体積に横方向磁界を与えることができ、それによって、アンテナによる高効率な誘導イオン化共振を促進する。理想的には、磁界は、プラズマコンテナを通して移動し、放出されたイオン流を均質にし得る。磁界のこのような動きは、プラズマ閉じ込め体積の周りに放射状に配置されたコイルに選択的にエネルギーを与えることによって必要に応じて提供され、撹拌または混合効果によって粒子の衝突を促進することによって、プラズマの密度をさらに高め得る。
さらに他の局面において、本発明は、プラズマをプラズマ体積内に閉じ込めるプラズマ閉じ込め手段を含むイオンビームソースを提供する。誘導イオン化手段は、第1の交流電流をプラズマに誘導によって結合させ、プラズマ体積内のプラズマをイオン化する。移動磁界生成手段は、プラズマ体積内のイオン化プラズマの共振密度を高め、プラズマを均質にする。イオン抽出手段は、プラズマ体積からのイオン流を形成する。
他の局面において、本発明は、イオンビームを生成する方法を提供し、この方法は、プラズマをプラズマ体積内に閉じ込め、プラズマを誘導的にイオン化し、プラズマを抽出グリッドに容量結合させることによってプラズマ体積内からのイオン流を形成することを含む。この容量結合は、プラズマをグリッドに対して自己バイアスし、準中性プラズマ流を生成するために用いられ得る。一般に、横方向磁界が与えられ、共振誘導イオン化を促進することによってプラズマの密度を高める。理想的には、磁界は、プラズマ体積を通して移動し、プラズマおよびプラズマ流を均質にする。
具体的な実施態様の説明
ここで、図1を参照する。剛性な磁気記録ディスク2は、通常、アルミニウム合金、ガラス、セラミック、ガラス−セラミック複合体、炭素、炭素−セラミック複合体などで構成された非磁気ディスク基板10を含む。アモルファスニッケル−リン(Ni−P)層12は、通常、めっきによってディスク基板10の各表面上に形成される。Ni−P層は硬く、アルミニウム合金基板に剛性を与える。クロムグラウンド層14は、通常、スパッタリングによってNi−P層12上に形成され、磁性層16は、グラウンド層14上に形成される。これらの層は、概略的に示されていることに留意されたい。なぜなら、NiP層12は、通常、他の層よりもはるかに厚いからである。
磁性層16は、磁性酸化物または磁性合金などの強磁性材料の薄膜を含む。磁性層16は、通常、従来の方法でグラウンド層14上にスッパタリングされる。磁性層は、大抵の場合、CoCrTaPtB、CoCrPtB、CoCrTa、CoPtCr、CoNiTaXY(XおよびYは、Pt、Ni、W、Bまたは他の元素から選択される)等などのコバルト合金で構成される。磁性層は、単一層として形成され得るか、または互いに積層された2つ以上の層を含み得る。磁性層16の厚さは、通常、約200Åから800Åの範囲である。
本発明で特に重要なのは、磁性層の上部に形成された保護層18である。本発明の保護層18は、一般に、ラマンフィンガープリント法および電子エネルギー損失分光法を用いて測定した場合、典型的には約15%よりも大きいsp炭素間結合、好ましくは約35%よりも大きいsp炭素間結合、理想的には約70%よりも大きいsp炭素間結合を有する高度な四面体のアモルファス炭素を含む。保護層18は、炭素の他に、一般に保護材料の約2原子%と30原子%との間の範囲、好ましくは、8原子%と18原子%との間を形成する水素も含み得る。従来の潤滑層20は、保護層の上部に配置されている。
水素は、公知の化学蒸着プロセスによって生成されるダイヤモンド状炭素のsp結合の割合を増加させることで知られているが、保護層18は、一般に、匹敵する公知のダイヤモンド状膜よりもかなり少ない水素を含む。この組成差の理由は、一部には、堆積中のエネルギーを有する炭素イオンのサブプランテーションによるsp結合の形成によって説明することができる。実際、以下に記載する方法を用いて堆積されたエネルギーを有するイオンは、成長膜表面に衝撃を与え、膜に作用して膜の密度を高める。このプロセスによっても、本発明の保護層が、4級炭素部位(水素を近傍に有さないsp炭素部位)をより高い割合で有し、および他の公知のアモルファス炭素材料よりも硬い理由が説明され得る。
従来の水素化アモルファス炭素の微視的構造は、ポリマー状炭化水素鎖を含む。水素は、水素含有量の特定閾値を上回って四面体結合炭素原子の形成を増加させるが、炭素膜はポリマーになるので、その保護特性を失う。本発明の材料は、サブプランテーションによりこの限定を克服する。サブプランテーションは、さらに水素を含有することにのみに依存しないでsp結合の形成を促進するため、重合を避けることができる。これは、重合によって熱および機械的安定性がかなり限定される公知のより高度に水素化したダイヤモンド状炭素材料に対してかなり有利である。これに対して、本発明の材料の炭素間sp結合は、一般に、約700℃の温度まで安定であるため、少ない水素含有量でsp結合の割合が高められ、非常に有利である。
必要に応じて、本発明の膜もまた窒素化され得る。公知の水素化炭素に対して、本発明の高度な四面体のアモルファス炭素の電気導電度は、以下に記載するCプラズマビーム堆積プロセス中の窒素の選択的な導入によって広範囲にわたって制御可能に変化し得る。有利なことに、この変化は、膜の構造特性をあまり変化させずに提供される。従来の水素化炭素では、窒素の導入は、sp結合の形成に関連し得る。これは、堆積された膜の機械的および光学的な特性における変化によって明らかであり、硬度および光学ギャップは、窒素の含有量と共に減少する。本発明の膜材料および堆積方法では、典型的なドーピング効果が観察され、図1Aおよび図1Bに示すように、電気導電度は、5桁以上程度に制御可能に変化し得る。ドーピングは、アセチレンが供給されたプラズマビームソースのプラズマ体積内の窒素圧力を変更することによって提供され得、典型的には、約4原子%から約30原子%の窒素を有する膜を提供する。この高度な四面体のアモルファス炭素のドーピング効果および水素化炭素は、集積回路等の製造において特に応用される。
本発明の高度な四面体のアモルファス炭素材料はまた、記録媒体用の公知の保護層に対しても多数の利点を提供する。この材料の結合構造は、約50GPaを上回る硬度を有する(特定の種は、約80GPaの硬度を有する)ダイヤモンドの物理特性に近い物理特性を提供する。さらに、本発明の保護オーバコートは、一般に1平方センチメートル当たり約2.5グラムを上回る高い密度を有し、さらに非常に化学的に不活性である。
記録媒体に特に重要なこととして、これらのコーティングは非常に低い厚さにおいて滑らかかつ連続的(ピンホールを有さない)であり、75Å未満の厚さ、特に40Å厚さ未満に堆積された際に、耐久性のある保護層を提供する。実際、150Åを越える膜はより層化し易く、厚さとともに表面粗さが増加する。これらの材料により提供される高機械的硬度および低摩擦表面は、摩擦学的性能を高め、近年の記録媒体システムの機械的摩耗および接触スタートストップ要求に対し高度に許容性を有する記録媒体を提供し、読み出し/書き込みおよび磁性層の間の分離を減少させることにより、面積密度を増大することを可能にする。この分離は、保護層の厚さの減少またはヘッド滑空高(head glide height)の減少、または好ましくはその両方の減少によって減少させ得る。保護層18は一般に、約30Å〜70Åの間の範囲であり、これはディスクが記録媒体産業における耐久性およびスティクション(stiction)試験要求を満たすことを可能にする。
本発明の保護膜の組成および特性は、堆積方法に大きく依存しており、特に、堆積表面に当たる炭素イオンのエネルギーおよび均一性に強く依存する。
保護層18を剛性記録ディスク2上に堆積するためのシステムおよび方法例を図2および2Aを参照して説明する。ハイブリッドイオンビームソース30は一般に、誘導イオン化システム32、準静止磁界システム34、および容量性イオンビーム抽出システム36を有している。
一般的に、誘導システム32はプラズマ38をイオン化する。誘導システム32およびプラズマ38の間のエネルギー転移は、準静止界システム34によって生成される横方向の磁界によって大きく促進されかつ均一化される。プラズマ38の堆積イオンは実際には、容量性カップリングシステム36を用いて、記録ディスク2(または堆積あるいはエッチングを行いたい任意の他の基板)に向けられる。
ハイブリッドソース30は保護コーティング18の堆積のために特に有利なシステムを提供するが、様々な他の堆積システムもまた用い得る。プラズマビームソース堆積システムはハイブリッドソース30とその特徴のうち多くを共有するが動作がより簡単であるため、図3A〜Fを参照してプラズマビームソース50を用いたダイヤモンド状炭素の堆積を説明した後、ハイブリッドソース30の他の局面をより詳細に説明する。
図3Aを参照して、炭素の堆積のためのプラズマビームソース50の使用を、磁性記録媒体2上の保護層18の堆積について一般的に説明する。上述のように、これらの炭素堆積システムおよび方法は、特に集積回路製造、光学、および工作機械の領域において、様々な幅広い別の用途を有する。
プラズマビームソース50は、プラズマ体積54を規定するプラズマコンテナ52を有している。コンテナ52は典型的には8cm直径のガラス管であり、あるいは石英などからなっていてもよい。比較的大きい表面58を有するカップリング電極56は、本例において、コンテナの一端を形成している。または、カップリング電極をコンテナ内部または外部に設けてもよく、オプションとしてコンテナの壁部に沿って軸方向に延びていてもよい。いずれにせよ、カップリング電極56は一般的に、プラズマ、マッチングネットワーク60、および高周波カップリング電源62に結合される。プラズマカップリングシステム36は、カップリング電極56、周波数発生器およびマッチングネットワーク60、62、ならびに抽出グリッド64を有している。典型的には、抽出グリッドは図示のように接地される。
米国特許シリアルナンバー第5,156,703号により詳細に説明されるように(その開示全体を本明細書において参考として援用する)、抽出グリッド64はカップリング電極56よりもプラズマへの曝露表面積がずっと小さい。動作において、典型的には約13.56MHzの高周波電力が周波数発生器からマッチングネットワークおよびキャパシタを介してカップリング電極に供給される。この周波数はしばしば政府規制によって設定されるものであるが、あるいは約27.12MHzに設定されてもよく、この他の倍数であってもよい。抽出グリッドは典型的には、開口部を規定するグラファイトリム66および、張力を保たれるタングステンフィラメントを有する。従って、抽出グリッド64は、熱膨張に起因するいかなる歪みにも耐える。多くの別の材料がフィラメントに用いられ得るが、フィラメント材料は好ましくは低いスパッタリング収量を有するものである。
一般に、プラズマ堆積54内の内圧を、真空ポート68を通じてガスを除去することによって減少させる。ここでは真空ポートをグリッドの後方にあるように示しているが、好ましくはグリッド64とディスク2との間に設けられる。カップリング電極と抽出グリッドとの間でプラズマが衝突すると、プラズマ内のイオンに比較しての電子の相対移動度に起因し、プラズマは抽出グリッドに対して正のDC電位に移行するので有利である。具体的には、プラズマ内のイオンよりも大きな移動度を電子が有すると、プラズマは自身と各電極との間に空間電荷層(sheath)を形成する。空間電荷層がダイオードとして機能することにより、プラズマは各電極に対して正のDCバイアスを獲得する。
総高周波電位Vは、電力を供給されている電極近傍の空間電荷層と接地されている電極との間で、それぞれの容量に従って分割される。抽出電極が接地されているため、プラズマ自身の電圧は、以下の式で与えられる。
V=V0(Ce/(Cg+Ce))
上式において、Cはカップリング電極の容量であり、Cは抽出電極の容量である。
抽出電極が接地されている場合、このプラズマ電圧はプラズマをグリッドに対して相対的にバイアスし、抽出グリッドを通って基板に向かってイオンを加速させる。上式から決定される用地、プラズマビームソースはバイアス電圧を選択的に制御することを可能にし、イオン衝突エネルギーを制御するための非常に有利なメカニズムを提供する。
容量は面積とともに大きく変化するため、電極面積を変化させることによって各電極におけるバイアス電圧の大きさを制御することができる。抽出グリッドはカップリング電極よりずっと小さな面積を有するため、カップリング電極に対しての相対的なプラズマのバイアスは比較的低く、従ってソース50はソースガス材料(カップリング電極56に隣接するソース入口70を介して一般に供給される)をかなり効率的に使用できる。より高い電力設定においてはコンテナ壁部上に若干材料が堆積されるが、プラズマビームソースをエッチングモードで使用することにより、セルフクリーニングを可能にし得る。
図3Bに電子流、イオン流、および高周波電位の関係を示す。図3Cにプラズマ、抽出グリッド空間電荷層、カップリンググリッド空間電荷層の分析のための単純化した電気回路図を示す。
本発明のプラズマビームソース炭素堆積システムおよび方法の更なる局面を図3Dに示す。ここでは、プラズマ74は磁石78によって生成される双曲(hyperbolic)磁界内に閉じこめられる。軸方向に移動可能なカップリング電極80が、プラズマコンテナ容器のセラミック側端部84を通って軸方向に摺動する可動セラミックパイプ82によって支持されている。
プラズマを磁性的に閉じこめているため、カップリング電極をプラズマに対して相対的に軸方向に移動させることによりカップリング電極80の実効面積を変化させることが可能になる。このことは、高周波電力やガス圧を変化させることなく、バイアス電圧(従ってイオンエネルギー)を変化させることを可能にする。または、高周波電力およびガスフィードストック流速度を変化させることにより、イオン飽和電流濃度(堆積速度)およびイオンエネルギーを変化させ得る。イオン流およびイオンエネルギー分布は、基板平面88内のファラデーカップ86を用いて測定することができる。図3Eは、ある範囲の高周波電力における、電極位置Dによるイオン電流および平均イオンエネルギーの変化を示している。
イオンエネルギーは少なくとも2つのファクターに依存する。すなわち、グリッド空間電荷層にわたっての加速電位および、空間電荷層内での衝突によって失われるエネルギーである。これらのファクターの効果を図3Fに示す。
図3F内の小グラフは、プラズマビームのイオンエネルギー分布がかなり鋭く、バイアス電圧付近に約5%の幅を有していることを示す。この鋭さは少なくとも2つの理由に起因するように思われる。第1に、イオンは低いプラズマ圧においては空間電荷層内の衝突で失うエネルギーは少ない。第2に、空間電荷層の幅は圧力の平方根に反比例して変化するため、空間電荷層は低圧においてかなり幅広になる。空間電荷層をわたってのイオン遷移時間が高周波帰還よりも長い場合、イオンは瞬間電圧よりもむしろ平均電圧によって加速され得る。イオンエネルギー分布幅はまた、圧力とともに線形的に変化することが見いだされており、これは、イオンエネルギー分布幅が主として空間電荷層内および空間電荷層の上でのイオン衝突によって制御されることを示している。
プラズマ74中の炭化水素の分解または解離はソースガス、動作圧、およびガス流速度に強く依存する。通常、炭化水素プラズマは、イオン化および/または中性状態にある炭化水素イオンの広いスペクトルを示す。プラズマ組成は、プラズマ中の様々な化学経路に依存し、これらの化学経路は電子温度電子濃度、およびイオン化度などのプラズマパラメータに依存する。結果として、多くの異なるイオンがプラズマ中に存在し得、また異なる条件下において組成は大きく異なり得、均一な水素化された炭素材料の均一な堆積がかなり問題となる。
本発明に関連する文献において、アセチレンが、その比較的単純な解離パターのために非常に有利なソースガスを提供することが示されている。分子のプラズマ分解は、電子−分子(1次)衝突およびイオン−分子(2次)衝突ならびに、関連する速度係数または関係する見かけ電位(appearance potential)を用いて記述できる。アセチレンの解離は11.2eVの見かけ電位におけるそのイオン化によって支配されるため有利である。アセチレンはそのようなはっきりと規定された反応経路を有する点で、炭化水素の中でもユニークである。
アセチレンソースガスを用いて生成されるプラズマビームのイオン組成は、C イオンおよびその他の2個の炭素原子を有する炭化水素イオン(集合的にC種と呼ぶ)によって支配される様々なプラズマ圧において、質量スペクトルを生成する。次に重要なイオンは、Cイオンである。Cイオンは圧力が下がるにつれて強度が減少することがわかっており、圧力が5×10−5mbar未満に維持されれば5%未満となる。これらの理由により、本発明のプラズマビームソースおよびハイブリッドソースを用いた炭素堆積は、好ましくはアセチレンを包含するフィードストックを用いて行われる。オプションとして、N、NF、または他の窒素フィードストックを包含することにより、窒素化膜を提供してもよい。
プラズマビーム堆積システムまたはハイブリッド堆積システムによって提供される粒子フラックスまたはストリームは、従来の堆積技術よりも一般に高いイオン化度を有する。サブプランテーション(subplantation)効果による炭素−炭素sp結合の形成は、十分なイオンが粒子ストリーム中に存在する場合にのみ重要となり得る。好ましくは、粒子の少なくとも15%がイオンを含む。いくつかの実施態様において、特に、非常に低い堆積圧力においては、膜形成粒子フラックスは90%を越えるイオンを含む。
プラズマビームソースを用いた堆積の際、カップリング電極に供給される入射電力(incidentpower)は、一般に約50から700ワットの間であり、理想的には約200から300ワットの間である。基板の対向面を同時にコーティングする場合は、好ましくは位相を合わせられた独立の高周波発生器をそれぞれ有する2つのプラズマビームソースを設けて、理想的にはこれらをマスタ/スレーブ構成で同期させる。高周波反射電力は一般に、銅で約5〜70ワットの間であり、適切なネットワーク要素の選択によって最小化されるべきである。
基板に最も近い磁性的閉じ込めフィールドコイルには、1〜8amp、理想的には約7ampの電流を供給し得る。外側フィールドコイルは、1.5〜5ampの電流が流れており、この電流は内側コイル電流の逆極性である。5sccm〜30sccmのガス流速度で十分プラズマを維持できるが、ガス流速度は理想的には約18sccmである。プラズマの点火は、約40〜50sccmのNガスからなる初期バーストを供給することによって容易になる。窒素ガス流を維持することにより、膜を窒素化してもよい。
プラズマビームソースは、約10eV〜500eVの間のエネルギーを有するイオンを堆積することが可能であり、一方、炭素の堆積のための最適なエネルギーは一般に炭素原子当たりにつき約80〜120eVの間である。水素成分は約8〜18原子パーセントの間であり得、ドーパントガスは約0.7原子パーセント〜10原子パーセントの間であり、典型的なドーパントガスはNまたはPHを含む。プラズマビームソース堆積法により、上記動作範囲内において毎秒約2〜12Åの間の炭素堆積速度が得られる。理想的には毎秒約8〜9Åであることにより最高品質の膜が得られる。これらの速度において約6〜30秒の堆積時間を一般に用いること値より、磁性記録媒体に十分な保護コーティングを提供する。本発明に関連する文献としては、M. WeilerがJournal Physical Review B、vol.53、pp.1594-1608(1996)において、プラズマビームソースを用いて堆積された高度四面体水素化アモルファス炭素の調製および特性を記載している。この文献の開示全体を本明細書において参考のために援用する。
図3Aおよび図3Dを参照して説明されるプラズマビーム源堆積システムおよびその方法は、イオン堆積エネルギーおよびイオン束を正確に制御することができる、などの幾つかの利点を有する。これらのプラズマビーム源はもちろん幾つかの欠点を有する。プラズマビーム源堆積の1つの主な欠点は、容量結合されたプラズマ密度、従って、堆積レートが比較的低いことである。イオン密度を増加するためには、好ましくはプラズマを30mTorrまたはそれ以上の圧力に維持するプラズマ閉じ込め体積(plasma confinement volume)内でより高い圧力を与えることが有用であろう。残念なことに、イオン化係数は、これらのより高い圧力では減少することが多く、総プラズマ密度を制限してしまう。具体的には、少なくとも2つの理由のため、低堆積圧力を維持することが通常有利である。第1に、粒子流におけるイオンの割合は、圧力が増加するにつれて減少する。基本的に、より高い動作圧力では、ガスの分散は、イオンエネルギーを低下させ、分散させる。実際には、例示的なシステムを用いる場合、30mTorrを上回る圧力で高度に四面体のアモルファス炭素を堆積させることには、問題がある。これは、そのような圧力で堆積された膜は、主として低エネルギーの遊離基から形成されるためである。第2に、圧力が増加すると、それに応じて、粒子束が、変動する粒子質量(C、C、C、C...)を含む。均一な質量の粒子が好ましいため、プラズマビーム堆積は、好ましくは、1mTorrよりも低い圧力、理想的には、約0.1MTorrと約0.5MTorrとの間の圧力で起こる。これにより、通常、容量結合だけを頼りにしてプラズマを維持するプラズマビーム源および方法によって達成され得る堆積レートが制限される。
本発明のハイブリッドビーム源は、プラズマビーム源の有利なイオンエネルギー制御を維持しながら、なおかつ、圧力の増加に頼らずにより高いプラズマ密度および高い堆積レートを提供する。再び図2および図2Aを参照して、ハイブリッド源30は、誘導イオン化システム32と、容量結合システム36(上述のプラズマビーム源において使用される容量結合システムと類似している)とを組み合わせて、高密度で低圧力のプラズマを与える。ここで、図4Aおよび図4Bを参照して、誘導イオン化システムだけを再び説明する。
誘導イオン化システム32は、ほぼ高周波〜マイクロ波の範囲の周波数を生成することができ、好ましくは約27.12MHz(またはその数倍)の周波数を有する電位を与えることができる交流電源90を含む。ここでも、周波数整合ネットワーク92が設けられるが、ここでは、電力は、プラズマ容器52の周りに配置されるアンテナ94を用いてプラズマに結合される。好ましくは、これは、アンテナに関するプラズマの自己バイアスを最小にし、容器自体の壁へのソース材料の堆積を最小にする。
誘導放電内のプラズマは、非共鳴または共鳴誘導モードにおいて付勢され得る。好ましくは、小さいDC磁場が、プラズマ体積上に重ねられ、一般に共鳴イオン化と呼ばれるプロセスにより、高いイオンエネルギー伝達およびプラズマ高密度化を与える。
アンテナ94は、プラズマ容器の軸の周りの誘電性壁と呼んでもよい。あるいは、アンテナ94は、プラズマの周りに配置される単ループ誘導コイルとしてモデル化されてもよい。いずれにせよ、容器表面に関するプラズマの電位は低いが、プラズマ密度はかなり高い。
典型的には、アンテナ94は、直径の3分の1と3倍との間の長さを有する円筒形プラズマ容器であって、好ましくは、長さおよび直径がほぼ等しい円筒形プラズマ容器を囲む。アンテナは、長手方向のスリットを有する金属シリンダからなる。重ねられた静磁場Bは、プラズマシリンダの軸に対してほぼ垂直であり、プラズマ容器に隣接する少なくとも1つの磁気コイル96によって与えれられる。共鳴イオン化電位および磁場強度は、Oechsner教授によるPlasma Physics、vol. 15、pp. 835-844 (1974)により詳細に記載されている。本明細書において、上記文献を参考として援用する。
言うまでもなく、プラズマ高密度化を与えるメカニズムは、電子サイクロトロン波共鳴(ECWR)であって、電子サイクロトロン共鳴(ECR)という関連しているが異なる現象ではない。これらのメカニズムの両方については、磁場と平行に伝播する電磁波の分散に関して理解することができ、具体的には、周波数および磁場強度の関数としての屈折率および伝播速度(ここでは、位相速度Vp)を分析することによって理解することができる。屈折率と伝播速度とは以下のように関連していることが分かっている。
Figure 2008077833
ここで、nは屈折率であり、cは光の速度であり、ωは電磁波の周波数であり、kは電磁波の伝播ベクトルの大きさである。正常波は、右および左円偏光電磁波を重ねられたものとして説明することができる。プラズマの場合、電子およびイオンの異なる電荷および質量も考慮しなければならない。右円偏光波動方程式および左円偏光波動方程式から、ωがサイクロトロン周波数ωに等しいときに共鳴効果が与えられることが分かった。これらの条件下では、屈折率は無限大になるため、伝播速度はゼロである。この状態が、ECRと呼ばれる。残念なことに、ECRに関連する波長は通常、本出願人のプラズマ容器の所望のサイズよりも大きいため、ECRを実際にプラズマ高密度化に応用することは困難である。
幸運にも、ECWRは、ωがω未満であるときには別の高密度化メカニズムを与える。イオンの質量がはるかに大きいために起こるイオンの動きを無視すると、右円偏光波の分散関係は、以下の式で近似される。
Figure 2008077833
ここで、ωは、プラズマ周波数である。通常、波の伝播は、位相速度(従って、屈折率)が正であるときに可能である。低温プラズマの屈折率および低温プラズマの位相速度(ともに、周波数の関数である)の模式的なプロットが、図4Cおよび図4Dに示される。これらのプロットを調べると、屈折率および位相速度がともにωよりも小さい正であることが分かる。実際に、13.56MHzの周波数を有する駆動位相の屈折率は、約100の値に達する。これは、プラズマ内の波長が1/100またはそれ以上だけ低減され得ることを意味する。波長をプラズマ容器の寸法まで低減することができれば、プラズマにおいて、共鳴効果を与える定在波を作り出すことが可能となる。このECWRは、磁場強度とプラズマ容器の寸法とに依存する。本出願人のプラズマ容器が直径aを有する場合、通常、以下の式が成り立てば、この共鳴効果を達成することができる。
Figure 2008077833
ここで、μ=1,2,3,...であり、λは波長であり、kは共鳴磁場である。共鳴は、プラズマの屈折率を変えることによって調節することができる。ECWRの場合、右偏光波の屈折率が磁場とプラズマ周波数との両方に依存することを考慮しようとする。nがプラズマ周波数とともに変動するため、この調節は幾分複雑になる。なぜなら、プラズマ周波数自体がプラズマ密度に依存しており、プラズマ密度は、プラズマの励起の程度とともに変化するからである。
誘導イオン化が低圧力プラズマに与える高密度化の影響を、プラズマビーム源の共有結合イオンビーム抽出と組み合わせて、堆積レートを大幅に高めることが可能である。残念なことに、誘導イオン化では、通常、均一なプラズマ密度が得られない。従って、変形を加えていないそのようなハイブリッド堆積システムは、不均一なイオン流および堆積のプロセスを作り出す。これらの理由のため、本発明は、図2および図2Aを参照して以下に説明するように、準静的な共鳴イオン化磁場をさらに提供する。
再び図2Aを参照して、ハイブリッド源30は、抽出格子64を通るプラズマイオン流を与えるように容量結合するプラズマを利用する。効果的な容量結合を促進するために、プラズマは、比較的低い圧力、好ましくは1mTorrよりも低い圧力に維持される。プラズマの密度を高めるために、誘導結合システム32のアンテナ94を用いて、誘導電力伝達が局所的に達成される。容量結合から得られ得るDCプラズマ、従って、イオン加速エネルギーは、典型的には、すべての表面で約20〜40ボルトである。好ましくは、上記のように、イオンエネルギーは、抽出格子のDCバイアスを変えることによって選択的に制御され得る。誘導結合と容量結合との同様の組み合わせは、ドイツのKaiserslavtern大学物理学部の1995年の論文において、Dieter Martinにより、誘電性サンプルのスパッタ処理について記載されている。上記文献は、イオンエネルギーおよびイオン電流密度の独立した変動をより詳細に説明している。
ハイブリッド源30からのイオン/遊離基束は、誘導結合システム32を用いて増大され得る。ハイブリッド源30によって生成されるイオン流を均質化するために、準静磁場生成システム34によって、ゆっくりと移動する共鳴イオン化磁場が与えられる。
好適な準静磁場生成システムは、プラズマ閉じ込め体積の周りに放射状に配置される複数のコイル96を利用する。磁場回転器100は、コイル96の対向する対を選択的に付勢して、プラズマ全体にかなり均一な磁場を与える。対向するコイルは、同じ方向に付勢されるが、ごく簡単に言えば、その後、横方向の磁気コイルの交互の対が付勢されて、磁場Bを与える。その後、最初のコイルは、反対の極性で再び付勢され得、磁場Bが生成され、さらに磁場Bが生成される。
磁場回転器100は、誘導結合システム32の駆動周波数よりもはるかに小さい回転周波数で、プラズマ閉じ込め体積内で効果的に回転する磁場を生成する。この駆動周波数は、通常、10,000Hz未満であるが、100Hz未満である場合が多い。従って、回転している磁場は、真に静的な共鳴磁場の誘導結合の共鳴の増大を与える。しかし、磁場の回転は、プラズマのはるかに広い領域を高密度化し、それにより、はるかに均質なイオン流を与える。さらに、移動している磁場はまた、チャーニング(churning)効果によりプラズマをさらに高密度化し、勢いのあるプラズマ粒子同士の衝突を増加し、堆積レートおよびエネルギー伝達効率のさらなる増加をもたらす。
典型的なハイブリッド源は、約5cmの内径、および結合電極と約8.5cmの抽出格子との間の長さを有する容器体積を有する。そのようなハイブリッド源は、約13.56MHz(または、その数倍)の周波数で駆動される場合、約100ワットと約1000ワットとの間のイオン化エネルギーを必要とする。言うまでもなく、本発明の範囲内で、他の様々な容器のジオメトリおよびサイズを用いてもよい。
ハイブリッド源30を用いて堆積またはエッチングを行う場合、基板を囲むプラズマ容器および堆積容器は排気され、好ましくは、約2,000リットル/秒という比較的高い速度で排気される。堆積中の周囲圧力は、好ましくは、約5×10−4mbarに維持される。ここでも、Nガスの短いバーストがソースガスの定常流に重ねられ、プラズマのぶつかり(striking)を促進し、窒素との化合(nitrogenation)が必要とされる場合には、窒素を含有するガスが絶えず供給され得る。数ミリ秒のオーダのバーストで十分である。あるいは、高電圧パルスストライカー回路を用いてもよく、この場合にも同様の結果が得られる。イオン電流密度は、プラズマビーム源によって与えられる0.1〜0.7mA/cmよりも実質的に高く、約20Å/秒と約100Å/秒との間の炭素堆積レートを与え得る。
ハイブリッド源30が好適な実施形態であるが、他の様々なシステムを用いてもよい。例えば、移動する磁場は、1つまたはそれ以上のコイルをプラズマ閉じ込め体積を中心に機械的に回転させることによって与えられ得る。
図5を参照して、さらに他の堆積システムについて説明する。示されるように、磁気ディスク2は、一対のフィルタリングされたカソードアーク源100により、その両面が同時にコーティングされる。カソードアーク源の各々は、カソードとして用いられる高密度炭素ターゲット102を含む。ここで、一旦チャンバが排気ポート106を通して排気されると、プラズマは、黒鉛抽出器アノード104に関してカソードの電位により維持される。
通常、カソードアーク堆積は、10−5mbar未満の圧力での低圧力放電を頼りにしている。高度にイオン化された電極内プラズマの形態の気化された電極材料は、カソードとアノードとの間の電流の運搬を与える。典型的には、固体カソードは、非常に高い電流密度および温度の微小な局在領域(microscopic localized region)を通して消費される。カソードは、典型的には、金属、炭素、または高濃度にドープされた半導体などの導電性堆積材料である。好ましくは、イオンの運動エネルギーは、基板をカソードに関してバイアスすることによって静電気的に変化し得る。上述のように、カソードアーク源100を用いる膜に勢いよく衝撃を与えることにより、サブプランテーション(subplantation)により連続した緻密な膜を得ることができる。強いイオン束により、30Å/秒と100Å/秒との間の高い堆積レート、および高い均一電着性(throwingpower)(三次元に均一にコーティングする能力)も与えられる。
アークを始動させるために、圧電システム108は、線形および回転フィードスルー110を用いて堆積チャンバの壁を貫通し、最初に黒鉛ストライカー112を付勢する。水冷却114は、放電されたエネルギーを堆積システムに閉じ込める助けとなる。
残念なことに、カソードアークシステムには、カソード表面から(プラズマと共に)大粒子を放逐するという問題がある。これらの大粒子が含まれると、カソードの前に置かれた基板上で成長させる膜の質がかなり制約され得る。従って、ソース100は、カソードと、コード化される磁気記録媒体または他の基板との間の直接経路を曲線ダクト116を用いて妨害する。磁場コイル118は、所望の粒子を曲線ダクト116に通すことにより、大粒子の大部分を効果的に取り除く。バッフル120の使用、およびベロウ122により形成される不規則なダクト表面が、大粒子が曲線ダクトに沿って飛び跳ねるのを防ぐ助けとなり、これによりさらに効果的なフィルタが提供される。ダクトは典型的には直径約7.3インチであり、曲線は約10インチの中心線半径を有し得る。
フィルタリングされたイオン流は、加速グリッド124を用いて基板に向かって選択的に加速され得る。もしくは、基板自体を片寄らせてもよい。より均一な堆積を行うプロセスを提供するためには、フィルタリングされたイオン流はまた、ラスターコイル126によって供給されるラスター磁場を用いて基板表面にわたって走査させてもよい。必要に応じて、イオン流は覗き口128を通して監視され得る。また、カソードにはステアリングコイル129によってステアリング磁場が提供され得る。
完全にフィルタリングに依存するのではなく、カソードから放出される大粒子を最小限にすることは有利であり得る。終わりに当たって、本発明は、多数の個別のアークスポットまたはジェットを形成するのではなく、拡散カソード表面領域にわたってアークを分配するようにされるカソードを提供する。カソードソース102の活性領域130にわたってこのような分配カソードアークを提供するためには、単一面積当たりのパワーを、一般に、活性領域が臨界温度に達するのに十分なレベルまで上昇させる。
黒鉛のカソードアーク堆積は特に問題である。何故なら、一般に黒鉛は、主として電気抵抗率の温度係数が異常であり負であるため(約1,200°Kまで)、電気加熱によって蒸発または昇華させるのが困難である。黒鉛は一般に本来多孔性であり、このため、アーキング中に大量の大粒子が放出される。上述の曲線ダクトのフィルタは基板に到達する大粒子の量を制限するには効果的であるが、この構造により、プラズマ流が磁気により狭められ、これにより堆積面積が減少し、また堆積膜の厚さが不均等になる傾向がある。さらに、長期的にみれば、フィルタダクト壁からの荷電された炭素の塵がプラズマ流に取り込まれて膜を汚染するため、壁の汚染が不利となり得る。
黒鉛ターゲットからの大粒子の含有量を減らすために、カソードの表面または表面近くの温度は、様々なタイプの黒鉛の抵抗率対温度曲線の最低点より高い温度まで上げられる。理想的には、温度を、実質的にこの最低抵抗率温度を超えて上昇させて、オーミック加熱を向上させ、これにより黒鉛をもっと効果的に蒸発させる。もっと安定したプロセスを提供するためには、一般に、直流カソードアークを利用すると有利である。この場合は、アーク自体が分単位の全寿命を持ち得る。これは約2〜3ナノ秒の時間スパン内でカソード表面を横切って現れ放散され得るスポットまたは過渡アークとは異なる。ここでの目標は、カソード表面での局所的な熱蓄積の効果を向上させ、また既知のアーク堆積システムの場合より十分に長い時間尺度上でこの熱トラッピングプロセスを促進させることである。本発明に関連する作業により、連続DCアークが1分間、好ましくは3分間を超える持続時間で生成され得ることが分かった。
カソードでのエネルギー保存は、エネルギー入力およびエネルギー出力が等しいことを意味する。エネルギーは、一般に、オーミック加熱、イオン衝撃、およびノッチンガム加熱を通してカソード表面に供給される。エネルギーは、電子放出冷却、蒸発冷却、および伝導、放射および対流による熱転移を通してプロセス中に失われ得る。
炭素カソード自体は、必要に応じて、高純度の黒鉛を約130から150MPaの間の静水圧で圧縮することによって調製され得る。このようなカソードの密度は、典型的には、約1.5から1.7g/cmの間であり得る。カソード表面での熱トラッピングを向上させるためには、カソードは熱絶縁体132により熱絶縁され得る。
アークが最初に突き出されると、カソード放電は、既知のカソード真空アークと外観は類似する、プラズマボールを有する可視の微小ドットとして発展する。アークトリガーの最初の段階では、アーク電圧は約20ボルトであり、これは、同じアーク電流の場合のスポットアークでは典型的である。しかし、点火からしばらくすると、単一のカソードスポットは、好ましくは少なくとも2cmである拡散活性領域へと発展する。理想的には、この領域内の表面温度は、黒鉛の昇華温度に近い値、多くの場合2,000℃を超える値まで達する。定常分配アークモードは、平均アーク電圧値が約25ボルトを超えて変動する、理想的には約30から33ボルトの間であることを特徴とし得る。ステアリング磁場が加えられることにより、スポットモードから分配アークモードへの転移時間が減少し得る。
大粒子の含有量の減少は、標準的なスポットアークと比較した場合のプラズマ内の白熱粒子数の減少として、目視により観察され得る。拡散プラズマクラウドがカソード表面にわたって形成され、スポットアークに特徴的な広振幅の変動が減少する。さらに、フィルタカソードアークによって生じることが多い可聴のガタガタというノイズが、これより顕著に静かな腐食プロセスに置き換えられる。合計5分間のアーキングを蓄積する一連の運転にわたって、2mg/sの腐食が測定された。
カソード温度の上昇は、カソード102の反転イオン衝撃およびジュール熱によって好都合に得られ得る。また、熱絶縁体132により、熱エネルギーの冷却水システム114への放散が防止され得る。熱絶縁体は、活性領域130のサイズおよび位置が選択的に制御されるように、カソード102の選択された部分にわたって配置され得る。
ディスク2は、必要に応じて、カソードアークソース100に対して所定の角度で配置され、これにより堆積膜の大粒子含有量を減少させ得る。ディスク2を片寄らせることにより、イオン流からディスクの表面にわたって均一な堆積を維持する助けとなる。大粒子が大きいほど、かすめる可能性が大きくなり、曲線ダクト116からの粒子流に対して斜め(または平行)である表面への接着の可能性が小さくなる。実際において、ディスクを粒子流に対して所定の角度で支持することは、多くの堆積法、特にディスク(または他の基板)が片寄っている場合には有利で有り得る。また、ディスク2を取り外し置換するとき連続アークを維持することにより、プラズマの衝突中および衝突後、カソード102から放逐される過渡大粒子が最小限にされ得る。
本発明の分配カソードアークでは、全電流密度が顕著に低くなり、イオン電流密度の空間均一度が高くなる。このような分配アークは、より古い冷却カソードアークソースの場合より高いアーク電圧を利用し得、またアーク電流発振での振幅を小さくすることができ、これらは関連するプラズマの大粒子含有量を減らすのに役立ち得る。大粒子の減少により、フィルタダクトの洗浄および保守管理が低減され、フィルタリングを行わない堆積でさえ可能となり得る。約60%を超えてイオン化された粒子流によって、18eVの平均イオンエネルギー、50A/sを超える速度で、3g/cmを超える密度を有するフィルタリングされない炭素分配アーク膜が生成され得る。

実験
対向するプラズマビームソースとアセチレンプラズマとを用いて磁気層にわたってアルミニウム基板上に膜を堆積した。堆積条件を表Iに要約して示す。これらの条件により、高度にイオン化したプラズマ、および良好に規定されたエネルギーウィンドウ内で約120eV/Cイオンのイオンビームエネルギーが得られた。
表I
Figure 2008077833
堆積速度を最適化するのではなく、アセチレンガスの流速を、ta−C:H炭素膜内でのダイヤモンド状結合を促進させるように(電子コントローラで)予め設定した。ガス流速は標準的な秒速立方センチメートル(sccm)の単位である。整合ネットワーク回路のパッシブ素子を、上記のアセチレン流速でPref/Pin(パワー入力に対する反射パワー)の比率が最小限になるように予め調整した。
速度位相状態を、短いNガスバースト(0.1s未満の持続)をCの定常の流れに重ね合わせることで誘発した。堆積中のチャンバーの圧力は、5*10−4mbarの領域内であった。きめのある、およびきめのない滑らかなディスクをコーティングし、炭素コーティングを、偏光解析法、電子エネルギー損失分光器(EELS)、およびラーマン指紋識別法を用いて特徴付けた。きめのあるディスクを従来の潤滑油塗布プロセスを用いて潤滑油を塗布し、研磨テープ試験および加速開始−停止試験を行った。
表IIは、膜の物理的特性の厚さによる変動を示す。炭素イオン当たりの平均イオンエネルギーは約100eVで均一に維持された。膜の空間均質性を半径位置および角度位置の両方で測定した。一般に、GピークおよびDピークは、ラーマン分光器ではVピーク位置であり、関連するΔ値はピーク幅を示す。Selket電圧とは、SelketCo.によって製造される研磨摩耗試験装置の光センサの出力電圧である。出力電圧が高いほど摩耗が激しい。
表II
Figure 2008077833
ラーマンスペクトルから顕著に観察される1つのことは、膜厚が増大するに従ってGピークの位置およびI/I比率(DおよびGピークの面積比率)の両方が増大することである。これは、膜厚が減少するに従って、膜容積におけるC−Csp含有量の割合が増大することを示す。監視される範囲内で膜厚が増大すると、Dピーク帯域幅もまた増大する。最適化された膜でのDピークの帯域幅は150cm−1を超え、これは、ダイヤモンド状炭素アモルファスマトリックス内に密集する黒鉛位相が非常に低いレベルである(または存在しない)ことを示している。この結果は、電子エネルギー損失分光器(EELS)から測定されたプラズモンピークが比較的高いことと一致する。プラズモンピークとは、プラズモンと呼ばれるタイプの励起のエネルギーである。これは、荷電粒子クラウド振動の量である。このエネルギー値は、荷電粒子(例えば、電子)密度に直接関連する。
プラズモンピークEは膜の密度を表す。従って、ダイヤモンドのEを34eVとすると、最もダイヤモンドに近いta−C:H膜は80%を超えるC−Csp結合を有すると推定される(これは長範囲の秩序があるかどうかとは無関係である)。
ディスクを、広範囲の高周波パワーおよびガスフィードストック流速の下でta−C:H膜によりコーティングした。次にこれらの膜に対して、従来の加速接触開始/停止(CSS)試験を用いて、摩擦の蓄積および摩耗耐性の試験を行った。試験に先立って、ディスクに潤滑油を塗布し、潤滑油の厚さは、30Åから150Åの炭素膜の厚さ範囲に対応して、16から3Åの間で変動することが分かった。各試験は500サイクルよりなり、ディスクの両側を300rpmで試験した。表IIIに平均摩擦係数(μ)を膜厚に対して示す。μの変動は、加速CSS試験が行われ、1つを除きすべてが合格した16個のディスクの40Åから150Åの厚さ範囲に対応して、0.5から1.5の間であることが分かる。
表III
Figure 2008077833
ディスクをまた、フィルタリングされたカソードアークを用いて、四面体の度合いの高いアモルファス炭素によりコーティングした。最初は、2つのディスクを静止イオン流によりコーティングし、中心から縁に向かってかなり変動するコーティングを生成した。干渉色を用いてコーティング厚さを推定し、屈折率を2.5とすると、コーティング厚さは少なくとも1,250Åから500Åの間で変動した。
Selket研磨試験からの生データを図6Aおよび図6Bに示す。2つの120秒の試験にわたって、テープ上にいかなる堆積物も見られなかった。試験が完了した後、非常に微かな摩耗跡が見つかっただけであった。
またディスクのピーク摩擦を、開始/停止サイクル数の関数として測定した。これらの試験の結果を図7に示す。
フィルタリングされたカソードアークディスクのラーマンスペクトルもまた測定した。結果を図8に示す。一般に、これらの結果により、膜は、ほぼ1518の領域内にGピークを含み、約175のG幅を有するカソードアークソースを用いて堆積され得ることが示される。この膜の偽帯域ギャップはほぼ1.68eVであると考えられ、屈折率は約2.5である。この膜での光屈折率の複合部分Kは約0.08であると考えられる。
別のディスクを、フィルタリングされたカソードアークソースを用いて、この場合は両側をコーティングした。チャンバーの両側に配置された永久磁石を操作することによって、イオン流を基板表面にわたって一掃させた。走査された基板にバイアスの印加は行わなかった。走査メカニズムは極めて簡単であるにも拘わらず、より均一な堆積層が得られた。
理解を明瞭にするために上述の本発明を図示および実施例の形態で幾分詳しく記述したが、添付の請求の範囲の範囲内でいくつかの変更および改変が実行され得ることは自明であろう。
図1は、本発明の四面体のアモルファス水素化炭素保護層を含む磁気記録ディスクの断面図である。 図1Aおよび図1Bは、本発明の四面体のアモルファス水素化炭素に対する窒素ドーピングの効果を示す。 図1Aおよび図1Bは、本発明の四面体のアモルファス水素化炭素に対する窒素ドーピングの効果を示す。 図2は、高度な四面体のアモルファス水素化炭素を図1のディスク上に堆積する方法、および本発明の原理によるハイブリッド誘導/容量プラズマビームを示す。 図2Aは、図2のハイブリッドソースの断面図であり、誘導イオン化アンテナ、およびプラズマの密度を高め、プラズマを均質にする準スタティック磁界生成コイルを示す。 図3Aは、プラズマビームソースからのアセチレンプラズマを用いて、図1のディスク上に高度な四面体のアモルファス水素化炭素を堆積する他の方法およびシステムを示す。 図3Bおよび図3Cは、図3Aのプラズマビームソースを用いたときの、イオン流を抽出するためのプラズマの容量結合を示す。 図3Bおよび図3Cは、図3Aのプラズマビームソースを用いたときの、イオン流を抽出するためのプラズマの容量結合を示す。 図3Dは、結合電極の有効面積が、イオン密度およびイオンエネルギーをさらに制御するために変更され得る、プラズマビームソースの他の実施態様を示す。 図3Eおよび図3Fは、ダイヤモンド状炭素を堆積するためのプラズマビームソースの動作特徴を示す。 図3Eおよび図3Fは、ダイヤモンド状炭素を堆積するためのプラズマビームソースの動作特徴を示す。 図4Aおよび図4Bは、所定の磁界による公知のプラズマ共振誘導イオン化を示す。 図4Aおよび図4Bは、所定の磁界による公知のプラズマ共振誘導イオン化を示す。 図4Cおよび図4Dは、電子サイクロトロン波共振によって提供されるプラズマの密度増加を示す。 図4Cおよび図4Dは、電子サイクロトロン波共振によって提供されるプラズマの密度増加を示す。 図5は、図1の記録ディスクを製造するための他の方法および堆積システムを示す、このシステムは、フィルタされた陰極アークを用いて、本発明の高度な四面体のアモルファス水素化炭素材料を堆積させる。 図6Aから図8は、実験セクションで詳細に説明する実験データを示す。 図6Aから図8は、実験セクションで詳細に説明する実験データを示す。 図6Aから図8は、実験セクションで詳細に説明する実験データを示す。 図6Aから図8は、実験セクションで詳細に説明する実験データを示す。

Claims (1)

  1. 物品であって、以下:
    基板;
    該基板上に配置された保護層であって、高度な四面体の非結晶炭素を含む、保護層、
    を含む、物品。
JP2007317766A 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法 Withdrawn JP2008077833A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1874696P 1996-05-31 1996-05-31
US1879396P 1996-05-31 1996-05-31
US76133896A 1996-12-10 1996-12-10
US08/761,336 US5858477A (en) 1996-12-10 1996-12-10 Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09543012A Division JP2000512053A (ja) 1996-05-31 1997-05-29 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法

Publications (1)

Publication Number Publication Date
JP2008077833A true JP2008077833A (ja) 2008-04-03

Family

ID=27486777

Family Applications (6)

Application Number Title Priority Date Filing Date
JP09543012A Withdrawn JP2000512053A (ja) 1996-05-31 1997-05-29 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317763A Withdrawn JP2008120676A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317764A Pending JP2008117521A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317761A Withdrawn JP2008091022A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317765A Pending JP2008123671A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317766A Withdrawn JP2008077833A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP09543012A Withdrawn JP2000512053A (ja) 1996-05-31 1997-05-29 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317763A Withdrawn JP2008120676A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317764A Pending JP2008117521A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317761A Withdrawn JP2008091022A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JP2007317765A Pending JP2008123671A (ja) 1996-05-31 2007-12-07 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法

Country Status (6)

Country Link
EP (2) EP0909445A1 (ja)
JP (6) JP2000512053A (ja)
AT (1) ATE296482T1 (ja)
AU (2) AU3224297A (ja)
DE (1) DE69733350T2 (ja)
WO (2) WO1997045855A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO613797A0 (en) * 1997-04-09 1997-05-08 University Of Sydney, The Digital information storage
US6086730A (en) * 1999-04-22 2000-07-11 Komag, Incorporated Method of sputtering a carbon protective film on a magnetic disk with high sp3 content
US6261693B1 (en) * 1999-05-03 2001-07-17 Guardian Industries Corporation Highly tetrahedral amorphous carbon coating on glass
US6338901B1 (en) * 1999-05-03 2002-01-15 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
US6303225B1 (en) * 2000-05-24 2001-10-16 Guardian Industries Corporation Hydrophilic coating including DLC on substrate
US6565719B1 (en) * 2000-06-27 2003-05-20 Komag, Inc. Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content
US6602371B2 (en) * 2001-02-27 2003-08-05 Guardian Industries Corp. Method of making a curved vehicle windshield
US6872909B2 (en) * 2003-04-16 2005-03-29 Applied Science And Technology, Inc. Toroidal low-field reactive gas and plasma source having a dielectric vacuum vessel
JP2006036611A (ja) * 2004-07-29 2006-02-09 Sumitomo Electric Ind Ltd 水素含有炭素膜
DE102004041235A1 (de) * 2004-08-26 2006-03-02 Ina-Schaeffler Kg Verschleißfeste Beschichtung und Verfahren zur Herstellung derselben
GB2417490A (en) * 2004-08-27 2006-03-01 Nanofilm Technologies Int Tetrahedral amorphous carbon coating with pre-determined resistivity
US8038850B2 (en) * 2006-06-23 2011-10-18 Qimonda Ag Sputter deposition method for forming integrated circuit
JP4764508B2 (ja) 2007-04-05 2011-09-07 富士通セミコンダクター株式会社 表面形状センサとその製造方法
US7961427B2 (en) * 2007-05-22 2011-06-14 Galleon International Corporation High performance computer hard disk drive with a carbon overcoat and method of improving hard disk performance
US9251837B2 (en) 2012-04-25 2016-02-02 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US8427925B2 (en) 2010-02-23 2013-04-23 Seagate Technology Llc HAMR NFT materials with improved thermal stability
US9224416B2 (en) 2012-04-24 2015-12-29 Seagate Technology Llc Near field transducers including nitride materials
JP5679423B2 (ja) 2010-11-02 2015-03-04 富士電機株式会社 Dlc薄膜製造方法および装置
JP2013037731A (ja) 2011-08-04 2013-02-21 Fuji Electric Co Ltd 記録媒体
MY174290A (en) 2012-02-03 2020-04-02 Seagate Technology Llc Methods of forming layers
WO2014120233A1 (en) * 2013-02-01 2014-08-07 Seagate Technology Llc Methods of forming layers
US8830800B1 (en) 2013-06-21 2014-09-09 Seagate Technology Llc Magnetic devices including film structures
US9280989B2 (en) 2013-06-21 2016-03-08 Seagate Technology Llc Magnetic devices including near field transducer
US9058824B2 (en) 2013-06-24 2015-06-16 Seagate Technology Llc Devices including a gas barrier layer
JP6038843B2 (ja) 2013-06-24 2016-12-07 シーゲイト テクノロジー エルエルシーSeagate Technology LLC 少なくとも1つの相互混合層を含む装置
US9281002B2 (en) 2013-06-24 2016-03-08 Seagate Technology Llc Materials for near field transducers and near field transducers containing same
US9245573B2 (en) 2013-06-24 2016-01-26 Seagate Technology Llc Methods of forming materials for at least a portion of a NFT and NFTs formed using the same
CN103342573B (zh) * 2013-07-10 2014-07-02 航天材料及工艺研究所 一种金刚石薄膜增强碳/碳复合材料热导率的方法
KR102111019B1 (ko) * 2013-07-12 2020-06-09 삼성디스플레이 주식회사 기상 증착 장치, 이를 이용한 증착 방법 및 유기 발광 표시 장치 제조 방법
JP5627148B1 (ja) * 2013-07-24 2014-11-19 株式会社リケン ピストンリング及びその製造方法
SG11201509161RA (en) * 2013-11-14 2015-12-30 Fuji Electric Malaysia Sdn Bhd Method for manufacturing carbon-containing protective film
US9697856B2 (en) 2013-12-06 2017-07-04 Seagate Techology LLC Methods of forming near field transducers and near field transducers formed thereby
US9570098B2 (en) 2013-12-06 2017-02-14 Seagate Technology Llc Methods of forming near field transducers and near field transducers formed thereby
US9305572B2 (en) 2014-05-01 2016-04-05 Seagate Technology Llc Methods of forming portions of near field transducers (NFTS) and articles formed thereby
US9620150B2 (en) 2014-11-11 2017-04-11 Seagate Technology Llc Devices including an amorphous gas barrier layer
US9822444B2 (en) 2014-11-11 2017-11-21 Seagate Technology Llc Near-field transducer having secondary atom higher concentration at bottom of the peg
US9552833B2 (en) 2014-11-11 2017-01-24 Seagate Technology Llc Devices including a multilayer gas barrier layer
US10510364B2 (en) 2014-11-12 2019-12-17 Seagate Technology Llc Devices including a near field transducer (NFT) with nanoparticles
US20160275972A1 (en) 2015-03-22 2016-09-22 Seagate Technology Llc Devices including metal layer
WO2016191707A1 (en) 2015-05-28 2016-12-01 Seagate Technology Llc Multipiece near field transducers (nfts)
US9824709B2 (en) 2015-05-28 2017-11-21 Seagate Technology Llc Near field transducers (NFTS) including barrier layer and methods of forming
US9852748B1 (en) 2015-12-08 2017-12-26 Seagate Technology Llc Devices including a NFT having at least one amorphous alloy layer
KR101701440B1 (ko) * 2016-06-07 2017-02-01 (주)디쉬뱅크 플라즈마 하이브리드 코팅장치를 이용한 식기류 제조방법
US9899193B1 (en) * 2016-11-02 2018-02-20 Varian Semiconductor Equipment Associates, Inc. RF ion source with dynamic volume control
WO2019013157A1 (ja) * 2017-07-10 2019-01-17 新日鐵住金株式会社 軌道部材、軸受け及び装置
CN113366604A (zh) * 2019-02-06 2021-09-07 瑞士艾发科技 产生离子的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1550853A (en) * 1975-10-06 1979-08-22 Hitachi Ltd Apparatus and process for plasma treatment
DE3708717A1 (de) * 1987-03-18 1988-09-29 Hans Prof Dr Rer Nat Oechsner Verfahren und vorrichtung zur bearbeitung von festkoerperoberflaechen durch teilchenbeschuss
DE3708716C2 (de) * 1987-03-18 1993-11-04 Hans Prof Dr Rer Nat Oechsner Hochfrequenz-ionenquelle
US4822466A (en) * 1987-06-25 1989-04-18 University Of Houston - University Park Chemically bonded diamond films and method for producing same
JPH02168540A (ja) * 1988-12-20 1990-06-28 Mitsubishi Electric Corp プラズマ処理装置
US5091049A (en) * 1989-06-13 1992-02-25 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5352493A (en) * 1991-05-03 1994-10-04 Veniamin Dorfman Method for forming diamond-like nanocomposite or doped-diamond-like nanocomposite films
EP0552491B1 (en) * 1992-01-24 1998-07-15 Applied Materials, Inc. Plasma etch process and plasma processing reactor
JPH06349054A (ja) * 1993-06-08 1994-12-22 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法

Also Published As

Publication number Publication date
WO1997045834A1 (en) 1997-12-04
AU3224297A (en) 1998-01-05
JP2008123671A (ja) 2008-05-29
JP2008091022A (ja) 2008-04-17
EP0906636B1 (en) 2005-05-25
AU3293097A (en) 1998-01-05
DE69733350T2 (de) 2006-04-27
DE69733350D1 (de) 2005-06-30
JP2008117521A (ja) 2008-05-22
JP2008120676A (ja) 2008-05-29
EP0906636A1 (en) 1999-04-07
EP0909445A1 (en) 1999-04-21
ATE296482T1 (de) 2005-06-15
JP2000512053A (ja) 2000-09-12
WO1997045855A1 (en) 1997-12-04

Similar Documents

Publication Publication Date Title
JP2008077833A (ja) 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
US5858477A (en) Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon
WO1997045834A9 (en) Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
JP3547402B2 (ja) プラズマ処理システムおよび方法
JP2000149270A (ja) 光ディスクメモリの読み取り方法
JP2005095658A (ja) ブレードの非晶質ダイヤモンドコーティング
Roy et al. A review of plasma-assisted deposition methods for amorphous carbon thin and ultrathin films with a focus on the cathodic vacuum arc technique
US6627095B2 (en) Magnetic recording disk and method of manufacturing same
JP2008138289A (ja) 高度な四面体のアモルファス炭素の保護オーバーコートを有する記録媒体およびその製造方法
JPH101305A (ja) 炭素膜および炭素膜製造方法
JP2915001B2 (ja) 記録再生用摺動部材
JP2717857B2 (ja) ダイヤモンド様薄膜の製造方法
JP2717854B2 (ja) ダイヤモンド様薄膜の製造方法
JP2717853B2 (ja) ダイヤモンド様薄膜、その製造法及び製造装置
JPH11161947A (ja) 磁気記録媒体の製造方法
JPH1153734A (ja) 磁気ディスクの作製方法
JP2000123412A (ja) 光ディスクメモリ

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090327