JP2008069772A - Optimization method of fuel injection nozzle for internal combustion engine - Google Patents

Optimization method of fuel injection nozzle for internal combustion engine Download PDF

Info

Publication number
JP2008069772A
JP2008069772A JP2007203937A JP2007203937A JP2008069772A JP 2008069772 A JP2008069772 A JP 2008069772A JP 2007203937 A JP2007203937 A JP 2007203937A JP 2007203937 A JP2007203937 A JP 2007203937A JP 2008069772 A JP2008069772 A JP 2008069772A
Authority
JP
Japan
Prior art keywords
nozzle
blind hole
angle
needle valve
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007203937A
Other languages
Japanese (ja)
Other versions
JP2008069772A5 (en
JP5438890B2 (en
Inventor
Hendrik Grosse-Loescher
グローセ‐レッシャー ヘンドリーク
Heiner Haberland
ハーバーラント ハイナー
Hakan Yalcin
ヤルシン ハカン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions France SAS
Original Assignee
MAN Diesel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel SA filed Critical MAN Diesel SA
Publication of JP2008069772A publication Critical patent/JP2008069772A/en
Publication of JP2008069772A5 publication Critical patent/JP2008069772A5/ja
Application granted granted Critical
Publication of JP5438890B2 publication Critical patent/JP5438890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimization method of a fuel injection nozzle for an internal combustion engine having a nozzle body 1 and a needle valve 3 axially movable in a hole 2 of the nozzle body against a closing force, wherein the needle valve 3 is provided with a valve disc sealing surface 4 on an end face thereof nearer to a combustion engine and the valve disc sealing surface 4 moves in cooperation with a valve seat surface 6 of the nozzle body 1 so as to control a transverse area of a flow across at least one injection opening 5 opened to the combustion chamber of the internal combustion engine. <P>SOLUTION: In the optimization method, any number of independent parameters is used for geometrically forming a fuel injection nozzle. A mathematical technique of the particle swarm optimization (PSO) is also used. An optimum reference obtained based on the above is reflected in a structural configuration of the fuel injection nozzle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特許請求の範囲の請求項1の前文に記載の内燃機関の燃料噴射ノズルの最適化方法に関する。   The invention relates to a method for optimizing a fuel injection nozzle of an internal combustion engine according to the preamble of claim 1 of the claims.

燃料噴射ノズルは、公知のように、ノズル本体とこのノズル本体の穴内を閉鎖力に抗して軸方向に移動できるノズルニードル弁から成り、このノズルニードル弁はその燃焼室側端面に弁体密封面を有し、内燃機関の燃焼室への少なくとも1個の噴射開口における貫流横断面積を制御するために、その弁体密封面がノズル本体の弁座面と協働する。燃料噴射ノズルはノズル保持体に組み込まれ、ノズル保持体の上端に公知のように燃料噴射配管が接続されている。燃料がノズル本体の内部の圧力室においてニードル弁の傾斜肩部に作用し、一般に液圧式あるいはばね力により発生された閉鎖力に抗してノズルニードル弁を開く。   As is well known, the fuel injection nozzle is composed of a nozzle body and a nozzle needle valve that can move in the axial direction against the closing force in the hole of the nozzle body. The nozzle needle valve is sealed at its end face on the combustion chamber. The valve body sealing surface cooperates with the valve seat surface of the nozzle body to control the cross-sectional area of the flow through at least one injection opening into the combustion chamber of the internal combustion engine. The fuel injection nozzle is incorporated in a nozzle holder, and a fuel injection pipe is connected to the upper end of the nozzle holder as is well known. Fuel acts on the inclined shoulder of the needle valve in the pressure chamber inside the nozzle body and opens the nozzle needle valve against the closing force generally generated by hydraulic or spring force.

通常の燃料噴射ノズルは例えば特許文献1で知られているようないわゆる孔式ノズルであり、この孔式ノズルはエンジンに好適に直接噴射する形で組み込まれている。ノズル本体に盲穴の形態で穴が形成された孔式ノズルは、通常、ノズルドームに12個以上の孔が設けられている。孔式ノズルの最終的形成は一般にエンジン実験で決定される。その場合、例えば孔数、孔直径、孔長、孔間の角度、シリンダ軸線に対する孔の角度に関する種々のノズル変更が、出力、燃料消費率並びに有害物発生などへの影響について検査されねばならない。   A normal fuel injection nozzle is, for example, a so-called hole type nozzle as known from Patent Document 1, and this hole type nozzle is preferably incorporated in the engine so as to be directly injected. In a hole type nozzle in which a hole is formed in the form of a blind hole in the nozzle body, usually, 12 or more holes are provided in the nozzle dome. The final formation of the hole nozzle is generally determined by engine experiments. In that case, various nozzle changes relating to the number of holes, the hole diameter, the hole length, the angle between the holes, and the angle of the hole with respect to the cylinder axis, for example, must be examined for effects on output, fuel consumption rate and generation of harmful substances.

燃料噴射ノズルの形成はエンジン燃焼に決定的影響を与える。孔式ノズルにおいて噴射流の形成にとって、特にノズル孔の数、直径、位置および幾何学的形成並びに盲穴内の高圧が重要である。特に盲穴容積の増大につれて、炭化水素(HC)と粒子(例えばすす)の発生および燃料消費が増大する。また、過大な盲穴容積がエンジン潤滑油の激しい汚染を生じさせ、シリンダ案内面に激しい摩耗を生じさせることも知られている。   The formation of the fuel injection nozzle has a decisive influence on engine combustion. In particular, the number, diameter, position and geometry of the nozzle holes and the high pressure in the blind holes are important for the formation of the jet flow in the hole nozzle. In particular, as blind hole volume increases, hydrocarbon (HC) and particle (eg, soot) generation and fuel consumption increase. It is also known that an excessive blind hole volume causes severe contamination of engine lubricant and severe wear on the cylinder guide surface.

さらに燃料噴射ノズルは、機械的、熱的および液圧的に大きく負荷される。従って、例えばノズルドームおよびニードル弁座における機能的要件のために、部品強度についての構造的基準が守られねばならない。   Furthermore, the fuel injection nozzle is heavily loaded mechanically, thermally and hydraulically. Thus, for example, due to functional requirements in the nozzle dome and needle valve seat, structural standards for component strength must be observed.

燃料噴射弁の設計に対する数学的方法は既に知られ、その場合、幾何学的形状は可変空間内における例えば上述の種々のパラメータから成る目的関数(x)の形の系統(システム)を有し、その可変空間において、目的関数値が複数の計算過程によって繰り返し計算的に得られ、その場合、各計算過程において、目的関数(x)に関し確率微分方程式に基づく確率量の展開が計算される。この数学的方法で得られた最良の目的関数値およびそのパラメータが、燃料噴射ノズルの設計のために利用される。   Mathematical methods for the design of fuel injectors are already known, in which case the geometry has a system in the variable space, for example in the form of an objective function (x) consisting of the various parameters mentioned above, In the variable space, the objective function value is obtained repeatedly and repeatedly by a plurality of calculation processes. In this case, in each calculation process, the expansion of the probability quantity based on the stochastic differential equation is calculated for the objective function (x). The best objective function value and its parameters obtained with this mathematical method are used for the design of the fuel injection nozzle.

かかる逐次アプローチ法は、相互関係が非常に複雑であるため、しばしば目的に合わない。
独国特許出願公開第19841192号明細書
Such sequential approaches are often unfit for purpose because of their very complex interrelationships.
German Patent Application Publication No. 198441192

本発明の課題は、内燃機関の燃料噴射ノズルの形状が少なくとも有害物発生の減少、摩耗挙動の改善および燃料消費の減少に関して最適化される、内燃機関の燃料噴射ノズルの最適化方法を提供することにある。   An object of the present invention is to provide a method for optimizing a fuel injection nozzle of an internal combustion engine, in which the shape of the fuel injection nozzle of the internal combustion engine is optimized at least with respect to a reduction in the generation of harmful substances, an improvement in wear behavior and a reduction in fuel consumption. There is.

この課題は、請求項1に記載の内燃機関の燃料噴射ノズルの最適化方法によって解決される。   This problem is solved by the fuel injection nozzle optimization method for an internal combustion engine according to claim 1.

本発明は、あらゆる様式の燃料噴射ノズルをその都度の要件および周辺条件に関して最適化することができる、全く新しい燃料噴射ノズルの最適化方法を提示する。   The present invention presents a completely new fuel injection nozzle optimization method that allows any type of fuel injection nozzle to be optimized with respect to individual requirements and ambient conditions.

単列孔式(図1)あるいは複列孔式(図2)の多数の噴射開口を備えた特殊な多孔式ノズルが各実施例において考慮されている。   Special perforated nozzles with a large number of injection openings, single row perforated (FIG. 1) or double row perforated (FIG. 2) are considered in each embodiment.

実行されたアルゴリズムは、本件出願人が開発した多重基準バージョンのパーティクル スウォーム オプティマイゼイション アルゴリズム(Particle Swarm Optimization=粒子群最適化計算法)である。パーティクル スウォーム・アルゴリズムは、人口知能分野から開発された自然界類似の確率最適化法である。このアルゴリスムは、スウォ―ム(群れ)における鳥のように探査空間内の運動時に相互に影響を及ぼすパーティクル(粒)の母集団(可能な解としてのパラメータセット)を基礎としている(参照:1995年、ニュートラル ネットワークにおけるIEEE国際会議、第1942頁〜第1948頁に掲載のJ.ケネディ、R.エバーハート共著の論文“パーティクル スウォーム オプティマイゼイション プロセス(Particle Swarm Optimization Process)”)。   The algorithm executed is a multi-criteria version of the particle swarm optimization algorithm (Particle Swarm Optimization) developed by the applicant. The particle swarm algorithm is a probability optimization method similar to the natural world developed from the field of artificial intelligence. This algorithm is based on a population of particles (a possible parameter set) that interact with each other during movement in the exploration space, like birds in swarms (see: 1995). IEEE International Conference on Neutral Network, J. Kennedy and R. Everhart, “Particle Swarm Optimization Process” published on pages 1942–1948).

パーティクル スウォーム オプティマイゼイション(PSO)の目的は、全般的に、調査関数、即ち、目的関数(x)の最適点を見出すことにあり、その最適点は定義に対応して最大値あるいは最小値を提示することができる。しかし、(一般に冒頭に述べた形式の数値方法の場合のように)或る局所的な最適点ではなく、全探査空間、即ち、解析空間の広域的最適点が見出される。   The purpose of particle swarm optimization (PSO) is generally to find the optimal point of the search function, that is, the objective function (x), which has a maximum or minimum value depending on the definition. Can be presented. However, instead of a certain local optimum (generally as in the case of numerical methods of the type mentioned at the beginning), a global optimum of the entire search space, ie the analysis space, is found.

PSOのパラメータ(粒子)は計算のはじめにランダムに、および/又は確定して全解析空間にわたり分布され、従って、このパラメータは可変空間における相応の位置を有する。初期化のために粒子にランダムな、および/又は確定した速度ベクトルも割り当てられる。   The parameters (particles) of the PSO are randomly distributed at the beginning of the calculation and / or determined and distributed over the entire analysis space, so that this parameter has a corresponding position in the variable space. Random and / or fixed velocity vectors are also assigned to the particles for initialization.

最適化アルゴリズムの次の過程に対して、各粒子は特に近傍にある粒子の状態およびそのそれまでの最良の位置に位置づけられる。個々の各粒子の個別の最良解から、比較操作によって群の最良解が選択される。そのようにして、群は全体として最良に位置された粒子の方向に倣うことになる。   For the next step of the optimization algorithm, each particle is specifically positioned at the state of the neighboring particle and its best position so far. From the individual best solutions for each individual particle, the group best solution is selected by a comparison operation. As such, the group follows the direction of the best positioned particles as a whole.

解析空間における粒子の位置づけは、基準数/独立パラメータ/目的関数(x)での未知数の数に応じてn次元である。   The positioning of the particles in the analysis space is n-dimensional depending on the number of unknowns in the reference number / independent parameters / objective function (x).

目的関数は、その中で固有の重みを有する複数の目的量が統合されるように公式化される。これは品質関数と呼ばれる。目的量は、例えば燃料噴射ノズルにおける最小にすべき盲穴容積のような数学的に把握できる具体的要件に相当し、その最小にすべき盲穴容積は、幾何学的パラメータと関数関係を有する。   The objective function is formulated such that a plurality of objective quantities having unique weights are integrated therein. This is called a quality function. The target amount corresponds to a concrete requirement that can be grasped mathematically, for example, the blind hole volume to be minimized in the fuel injection nozzle, and the blind hole volume to be minimized has a functional relationship with the geometric parameter. .

この最適化アルゴリズムが、非常に迅速であり、目的に合っており、従って非常に有効であることが分かっている。   This optimization algorithm has been found to be very quick, fit for purpose and therefore very effective.

他の利点は、パーティクル スウォーム オプティマイゼイションが導関数を利用しないので、ほぼ任意のそれ自体不連続の関数にも利用できることにある。即ち、これは非常に安定である。   Another advantage is that since particle swarm optimization does not use derivatives, it can be used for almost any function that is itself discontinuous. That is, it is very stable.

要約すれば、PSOは頑丈で迅速な最適化方法であり、この方法は、ほぼ任意の多次元数学関数において広域的最適点を見出す働きをする。重みを付けられた目的量を有する品質関数の公式化によって、多重基準数式が求められる。   In summary, PSO is a robust and fast optimization method that serves to find global optimal points in almost any multidimensional mathematical function. By formulating a quality function having a weighted target quantity, a multiple criterion formula is determined.

そのアルゴリズムはその挙動に影響を及ぼす一連の設定量を必要とする。これらの設定量は従来の経験値を基礎として決定される。   The algorithm requires a series of settings that affect its behavior. These set amounts are determined based on conventional experience values.

本発明の有利な実施態様は従属請求項の記載および以下の説明から理解できる。以下図を参照して本発明の実施例を詳細に説明するが、本発明はこれに限定されるものではない。   Advantageous embodiments of the invention can be understood from the description of the dependent claims and the following description. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

本発明は、ノズル本体(1)とこのノズル本体(1)の穴(2)内を閉鎖力に抗して軸方向に移動できるノズルニードル弁(3)から成り、ノズルニードル弁(3)がその燃焼室側端面に弁体密封面(4)を有し、内燃機関の燃焼室への少なくとも1個の噴射開口(5)における貫流横断面積を制御するために、弁体密封面(4)がノズル本体(1)の弁座面(6)と協働する、内燃機関の燃料噴射ノズルの最適化方法に関し、本発明に基づいて、ノズルの幾何学的形成のために、独立パラメータの任意選択を利用して、パーティクル スウォーム オプティマイゼイション(PSO)の数学的方法が利用され、最良として求められた基準が、燃料噴射ノズルの構造的形状に反映される。   The present invention comprises a nozzle body (1) and a nozzle needle valve (3) which can move in the axial direction against the closing force in the hole (2) of the nozzle body (1). The valve body sealing surface (4) has a valve body sealing surface (4) at its combustion chamber side end face, and controls the cross-sectional area through which the at least one injection opening (5) into the combustion chamber of the internal combustion engine controls. The invention relates to a method for optimizing a fuel injection nozzle of an internal combustion engine, which cooperates with the valve seat surface (6) of the nozzle body (1). Using the selection, the particle swarm optimization (PSO) mathematical method is used to reflect the best-sought criteria in the structural shape of the fuel injection nozzle.

特に有利な様式において、PSOによる上述の最適化方法は次の過程を含んでいる。即ち、
− 例えば必要なノズル貫流およびノズルの圧力段のような幾何学的形状に対す る所定の周辺条件(ノズル形式およびノズル大きさ)を決定する。
− 例えばノズル本体の穴(盲穴)における最大圧力、盲穴容積あるいは最小ノ ズルニードル弁座角のような任意の数の独立パラメータに関して、目的関数( x)の目的量の形で技術的要件(最適化すべき大きさ)を把握する。
− 例えばノズルニードル弁座角、ノズルニードル弁座下部直径、ノズル尖端角 、噴射角あるいはノズルニードル弁行程のような目的量の定義から、技術的要 件の独立パラメータ(自由度)を導出する。
− 所定の数値幅の形でパラメータ限度を決定する。
− 品質関数において技術的要件の目的量を数学的に重みづけする。
In a particularly advantageous manner, the optimization method described above with PSO comprises the following steps. That is,
Determine predetermined ambient conditions (nozzle type and nozzle size) for the geometry, eg the required nozzle flow-through and nozzle pressure stage;
-Technical requirements in the form of objective quantities of objective function (x) for any number of independent parameters such as maximum pressure, blind hole volume or minimum nozzle needle seat angle in the nozzle body hole (blind hole) ( Know how much to optimize.
-Deriving independent parameters (degrees of freedom) of technical requirements from definitions of target quantities such as nozzle needle valve seat angle, nozzle needle valve seat lower diameter, nozzle tip angle, injection angle or nozzle needle valve stroke.
-Determine the parameter limits in the form of a predetermined numerical range.
-Mathematically weight the objective quantity of the technical requirements in the quality function.

品質関数は、幾何学形状、液圧、メカニズムなどから生じる要件の数学的公式化から得られる。   The quality function is obtained from a mathematical formulation of requirements arising from geometry, fluid pressure, mechanisms, etc.

図1は本発明に基づく方法の第1実施例を示している。この場合、最適化すべき噴射ノズルは孔式ノズルであり、ノズル本体(1)の穴(2)内を閉鎖力に抗して軸方向に移動可能に案内されたニードル弁(3)と、盲穴(2)を燃焼室に対して閉鎖するノズルドーム(7)とを備え、前記ニードル弁(3)はその燃焼室側端面に弁体密封面(4)を有し、この弁体密封面(4)が盲穴(2)の円錐状弁座面(6)と協働し、前記ノズルドーム(7)から複数の噴射開口(5)が内燃機関の燃焼室に向けて出ている。   FIG. 1 shows a first embodiment of the method according to the invention. In this case, the injection nozzle to be optimized is a hole type nozzle, and the needle valve (3) guided so as to be movable in the axial direction against the closing force in the hole (2) of the nozzle body (1) is blindly connected. A nozzle dome (7) for closing the hole (2) with respect to the combustion chamber, and the needle valve (3) has a valve body sealing surface (4) on its combustion chamber side end surface. (4) cooperates with the conical valve seat surface (6) of the blind hole (2), and a plurality of injection openings (5) protrude from the nozzle dome (7) toward the combustion chamber of the internal combustion engine.

図1および図2において次の点を明らかにさせておく。即ち、
・ 所定の周辺条件として、ノズル形式、ノズル大きさおよび用途に関連した他 の限定を表現し自由に設定できるような周辺条件が与えられる。
・ 技術的要件として、a)盲穴における最大圧力(それにより生ずる最良混合 気形成)、b)最小の盲穴容積(これにより生ずるすす発生とHC発生並びに 燃料消費の減少)、c)ノズル孔(5)間の最小壁厚(必要な強度のため)、 d)最小ノズルニードル弁座角(ノズルニードル弁座の摩耗のため)、e)盲 穴(2)における噴射開口(5)のできるだけ深い位置(流体力学的要件のた め)、のうちの少なくとも1個、複数あるいは全部の大きさが把握される。
・ 独立パラメータとして、a)ノズルニードル弁(3)の弁座角(σ)、b) ノズルニードル尖端角(α)、c)ニードル弁行程(h)、d)ノズル孔直径 (DL)、e)盲穴直径(DE)、f)ノズルニードル弁座下部直径(DA) 、g)盲穴角(ε)、h)噴射角(κ)、i)噴射開口の噴出点(hSP)、 k)盲穴深さ(hS)、l)ノズル孔数、m)ノズル孔直径(DL)、のうち の少なくとも1個、複数あるいは全部の大きさが与えられる。
・ 決定されたパラメータ限界値が数値幅あるいは離散値を包含する。
・ 全技術的要件(上記参照)が規格化して品質関数に取り入れられ、並びに、 a)ノズルニードル弁尖端と盲穴(2)の穴底との距離が最小値を下回っては ならない、b)ノズルニードル弁座の幅が最小値を下回ってはならない、c) ノズル孔(5)間の壁厚が最小値を下回ってはならない、d)ニードル弁最大 行程時に盲穴入口における貫流断面積がノズルニードル弁座下縁における貫流 断面積より大きくなければならない、e)弁座半角(δ/2)と盲穴角(ε) との差が決定すべき値を下回ってはならない、f)盲穴角(ε)がノズルニー ドル尖端半角(α/2)より小さくなければならない、g)盲穴内部における ノズル孔の上縁と盲穴入口縁との距離が決定すべき値を下回ってはならない、 h)ノズルニードル尖端角(α)が弁座角(σ)より大きいかそれと同じでな ければならない、i)ノズルニードル弁座下部直径(DA)が盲穴直径(DE )より大きいかそれと同じでなければならない、という条件のうちの少なくと も1個の条件を有する。
The following points will be clarified in FIG. 1 and FIG. That is,
• As the predetermined peripheral conditions, peripheral conditions that can be freely set expressing the other restrictions related to the nozzle type, nozzle size and application are given.
Technical requirements include: a) maximum pressure in the blind hole (resulting in the best mixture formation), b) minimum blind hole volume (resulting in soot and HC generation and reduction in fuel consumption), c) nozzle hole (5) Minimum wall thickness between (due to required strength), d) Minimum nozzle needle seat angle (due to wear of nozzle needle seat), e) Blind hole (2) injection opening (5) as possible The size of at least one, multiple or all of the deep positions (due to hydrodynamic requirements) is known.
As independent parameters, a) valve seat angle (σ) of nozzle needle valve (3), b) nozzle needle tip angle (α), c) needle valve stroke (h), d) nozzle hole diameter (DL), e ) Blind hole diameter (DE), f) Nozzle needle valve seat lower diameter (DA), g) Blind hole angle (ε), h) Injection angle (κ), i) Injection point injection point (hSP), k) The blind hole depth (hS), l) number of nozzle holes, m) nozzle hole diameter (DL), at least one, a plurality or all of the sizes are given.
• The determined parameter limit value includes a numerical range or a discrete value.
• All technical requirements (see above) are standardized and incorporated into the quality function, and a) the distance between the needle tip of the nozzle needle and the bottom of the blind hole (2) must not be less than the minimum, b) The width of the nozzle needle valve seat must not be less than the minimum value, c) The wall thickness between the nozzle holes (5) must not be less than the minimum value, d) The cross-sectional area at the blind hole inlet at the maximum stroke of the needle valve Through-flow cross-sectional area at the lower edge of the nozzle needle valve seat must be greater than e) The difference between the valve seat half angle (δ / 2) and the blind hole angle (ε) must not be less than the value to be determined, f) Blind The hole angle (ε) must be smaller than the nozzle needle tip half angle (α / 2), g) The distance between the upper edge of the nozzle hole and the inlet edge of the blind hole inside the blind hole must not be less than the value to be determined H) The tip angle (α) of the nozzle needle is Must be greater than or equal to the seating angle (σ), i) less than the requirement that the nozzle needle seat lower diameter (DA) must be greater than or equal to the blind hole diameter (DE) And have one condition.

即ち、本発明に基づく方法は、燃料噴射ノズルの最良パラメータを同時に導出する数学的最適化アルゴリスムによる品質関数の最小化を含んでいる。   That is, the method according to the present invention includes the minimization of the quality function by a mathematical optimization algorithm that simultaneously derives the best parameters of the fuel injection nozzle.

本発明に基づいて最適化された図示された実施例は、図1の例において単列孔の孔式ノズルを示し、図2において複列孔のノズル孔を示し、これらの実施例は以下のような最適化されたパラメータを有している。即ち、約84°のノズルニードル弁座角(σ)、約100°のノズルニードル尖端角(α)、約0.5mmのノズルニードル弁行程、約0.4mmのノズル孔直径(DL)、約3mmの盲穴直径(DE)、約3.5mmのノズルニードル弁座下部直径(DA)、ノズルニードル弁軸線に関する0°の盲穴角(ε)、約75°の噴射角(κ)、約0.3mmの盲穴深さ(hS)、約0.1mmの噴出点(hSP)、およびノズル孔数=13個のパラメータを有している。   The illustrated embodiment optimized in accordance with the present invention shows a single row perforated nozzle in the example of FIG. 1 and a double row perforated nozzle in FIG. It has such optimized parameters. That is, a nozzle needle valve seat angle (σ) of about 84 °, a nozzle needle tip angle (α) of about 100 °, a nozzle needle valve stroke of about 0.5 mm, a nozzle hole diameter (DL) of about 0.4 mm, 3 mm blind hole diameter (DE), about 3.5 mm nozzle needle valve seat lower diameter (DA), 0 ° blind hole angle (ε) about nozzle needle valve axis, about 75 ° injection angle (κ), about It has a blind hole depth (hS) of 0.3 mm, an ejection point (hSP) of about 0.1 mm, and the number of nozzle holes = 13.

技術的要件の実施された重みに応じて最適化されたノズルによって、従来のノズルに比べて次の改善が得られた。即ち、盲穴圧力が約10%増大され、盲穴容積が約60%、ノズル孔間の壁厚が約7%それぞれ減少できた。   With the nozzle optimized according to the implemented weight of the technical requirements, the following improvements were obtained compared to the conventional nozzle. That is, the blind hole pressure was increased by about 10%, the blind hole volume was reduced by about 60%, and the wall thickness between the nozzle holes was reduced by about 7%.

そのように開発された燃料噴射ノズルは、公式化された要件に関して、技術的要件についてしばしば対向的パラメータの最適値を呈する。これにより、図示された燃料噴射ノズルが装備された内燃機関が、最少の有害物発生、僅かな摩耗、並びに最少の燃料消費の点で優れている、ことが保証される。同時に、図示された燃料噴射ノズルの開発過程は、目的に合わされ、従って、迅速且つ確実となる。   The so-developed fuel injection nozzles often exhibit optimum values of the opposing parameters for the technical requirements with respect to the formulated requirements. This ensures that an internal combustion engine equipped with the illustrated fuel injection nozzle is excellent in terms of minimal toxic generation, slight wear and minimal fuel consumption. At the same time, the development process of the illustrated fuel injection nozzle is tailored and therefore quick and reliable.

図示された最適化方法は、全般的に、数学的に決定されるすべての高次元の最適化目的に適している。   The optimization method shown is generally suitable for all high-dimensional optimization purposes that are mathematically determined.

本発明に基づいて最適化された燃料噴射ノズル即ち孔式ノズルの断面図。1 is a cross-sectional view of a fuel injection nozzle or hole nozzle optimized according to the present invention. ノズルドームに円形に延びる複数列ここでは二列の噴射開口を備えた本発明に基づいて最適化された孔式ノズルの断面図。FIG. 2 is a cross-sectional view of a hole nozzle optimized according to the present invention with a plurality of rows, here two rows of jet openings, extending circularly in the nozzle dome.

符号の説明Explanation of symbols

1 ノズル本体
2 穴(盲穴)
3 ノズルニードル弁
4 弁体密封面
5 噴射開口(ノズル孔)
6 弁座面
7 ノズルドーム
DL ノズル孔直径
DE 盲穴直径
DA ノズルニードル弁座下部直径
κ 噴射角
h ノズルニードル弁行程
σ 弁座角
α ノズルニードル尖端角
ε 盲穴角(噴射ノズル軸線に関する)
hS 盲穴深さ
hSP 噴出点
n ノズル孔数
1 Nozzle body 2 holes (blind holes)
3 Nozzle needle valve 4 Valve sealing surface 5 Injection opening (nozzle hole)
6 Valve seat surface 7 Nozzle dome DL Nozzle hole diameter DE Blind hole diameter DA Nozzle needle valve seat lower diameter κ Injection angle h Nozzle needle valve stroke σ Valve seat angle α Nozzle needle tip angle ε Blind hole angle (related to injection nozzle axis)
hS Blind hole depth hSP Ejection point n Number of nozzle holes

Claims (4)

ノズル本体(1)と該ノズル本体(1)の穴(2)内を閉鎖力に抗して軸方向に移動できるニードル弁(3)を有し、該ニードル弁(3)がその燃焼室側端面に弁体密封面(4)を有し、内燃機関の燃焼室への少なくとも1個の噴射開口(5)における貫流横断面積を制御するために、弁体密封面(4)がノズル本体(1)の弁座面(6)と協働する、内燃機関の燃料噴射ノズルの最適化方法において、
燃料噴射ノズルの幾何学的形成のために、任意の数の独立パラメータを利用して、パーティクル スウォーム オプティマイゼイション(粒子群最適化、PSO)の数学的方法が利用され、最良として求められた基準が、燃料噴射ノズルの構造的形状に反映されることを特徴とする内燃機関の燃料噴射ノズルの最適化方法。
A nozzle body (1) and a needle valve (3) that can move in the axial direction against the closing force in the hole (2) of the nozzle body (1) are provided, and the needle valve (3) is on the combustion chamber side. The valve body sealing surface (4) has a valve body sealing surface (4) at the end face, and the valve body sealing surface (4) has a nozzle body ( In a method for optimizing a fuel injection nozzle of an internal combustion engine in cooperation with the valve seat surface (6) of 1)
Mathematical method of particle swarm optimization (Particle Swarm Optimization, PSO) is used for geometrical formation of fuel injection nozzles, utilizing any number of independent parameters, and the best sought criteria Is reflected in the structural shape of the fuel injection nozzle, the method for optimizing the fuel injection nozzle of the internal combustion engine.
パーティクル スウォーム オプティマイゼイション(粒子群最適化、PSO)が、
− 例えば必要なノズル貫流およびノズルの圧力段のような幾何学的形状に対す る所定の周辺条件(ノズル形式およびノズル大きさ)を決定する、
− 例えばノズル本体の穴(盲穴)における最大圧力、盲穴容積あるいは最小ノ ズルニードル弁座角のような任意の数の独立パラメータに関して、目的関数( x)の目的量の形で技術的要件(最適化すべき大きさ)を把握する、
− 例えばノズルニードル弁座角、ノズルニードル弁座下部直径、ノズル尖端角 、噴射角あるいはノズルニードル弁行程のような目的量の定義から、技術的要 件の独立パラメータ(自由度)を導出する、
− 所定の数値幅の形でパラメータ限度を決定する、
− 品質関数において技術的要件の目的量を数学的に重みづけする、
過程を含んでいることを特徴とする請求項1に記載の方法。
Particle swarm optimization (particle swarm optimization, PSO)
-Determine the predetermined ambient conditions (nozzle type and nozzle size) for the geometry, eg the required nozzle flow-through and nozzle pressure stage;
-Technical requirements in the form of objective quantities of objective function (x) for any number of independent parameters such as maximum pressure, blind hole volume or minimum nozzle needle seat angle in the nozzle body hole (blind hole) ( Know how much to optimize)
-Deriving independent parameters (degrees of freedom) of technical requirements from the definition of target quantities such as nozzle needle valve seat angle, nozzle needle valve seat lower diameter, nozzle tip angle, injection angle or nozzle needle valve stroke,
-Determine parameter limits in the form of a predetermined numerical range;
-Mathematically weighting the objective quantity of the technical requirements in the quality function,
The method of claim 1 including a process.
最適化すべき噴射ノズルが孔式ノズルであり、ノズル本体(1)の穴(2)内を閉鎖力に抗して軸方向に移動可能に案内されたニードル弁(3)と、盲穴(2)を燃焼室に対して閉鎖するノズルドーム(7)とを備え、前記ニードル弁(3)がその燃焼室側端面に弁体密封面(4)を有し、該弁体密封面(4)が盲穴(2)の円錐状弁座面(6)と協働し、前記ノズルドーム(7)から複数の噴射開口(5)が内燃機関の燃焼室に向けて出ていることを特徴とする請求項1又は2に記載の方法。   The injection nozzle to be optimized is a hole type nozzle, a needle valve (3) guided so as to be movable in the axial direction against the closing force in the hole (2) of the nozzle body (1), and a blind hole (2 ) And a nozzle dome (7) that closes the combustion chamber, and the needle valve (3) has a valve body sealing surface (4) on its combustion chamber side end surface, and the valve body sealing surface (4) In cooperation with the conical valve seat surface (6) of the blind hole (2), and a plurality of injection openings (5) project from the nozzle dome (7) toward the combustion chamber of the internal combustion engine. The method according to claim 1 or 2. ・ 所定の周辺条件として、ノズル形式、ノズル大きさおよび用途に関連した他 の限定を表現し自由に設定できるような周辺条件が与えられる、
・ 技術的要件として、a)盲穴における最大圧力(それにより生ずる最良混合 気形成)、b)最小の盲穴容積(これにより生ずるすす発生とHC発生並びに 燃料消費の減少)、c)ノズル孔(5)間の最小壁厚(必要な強度のため)、 d)最小ノズルニードル弁座角(ノズルニードル弁座の摩耗のため)、e)盲 穴(2)における噴射開口(5)のできるだけ深い位置(流体力学的要件のた め)、のうちの少なくとも1個、複数あるいは全部の大きさが把握される、
・ 独立パラメータとして、a)ノズルニードル弁(3)の弁座角(σ)、b) ノズルニードル尖端角(α)、c)ニードル弁行程(h)、d)ノズル孔直径 (DL)、e)盲穴直径(DE)、f)ノズルニードル弁座下部直径(DA) 、g)盲穴角(ε)、h)噴射角(κ)、i)噴射開口の噴出点(hSP)、 k)盲穴深さ(hS)、l)ノズル孔数、m)ノズル孔直径(DL)、のうち の少なくとも1個、複数あるいは全部の大きさが与えられる、
・ 決定されたパラメータ限界値が数値幅あるいは離散値を包含する、
・ 全技術的要件(上記参照)が規格化してQ関数に取り入れられ、並びに、a )ノズルニードル弁尖端と盲穴(2)の穴底との距離が最小値を下回ってはな らない、b)ノズルニードル弁座の幅が最小値を下回ってはならない、c)ノ ズル孔(5)間の壁厚が最小値を下回ってはならない、d)ニードル弁最大行 程時に盲穴入口における貫流断面積がノズルニードル弁座下縁における貫流断 面積より大きくなければならない、e)弁座半角(δ/2)と盲穴角(ε)と の差が決定すべき値を下回ってはならない、f)盲穴角(ε)がノズルニード ル尖端半角(α/2)より小さくなければならない、g)盲穴内部におけるノ ズル孔の上縁と盲穴入口縁との距離が決定すべき値を下回ってはならない、h )ノズルニードル尖端角(α)が弁座角(σ)より大きいかそれと同じでなけ ればならない、i)ノズルニードル弁座下部直径(DA)が盲穴直径(DE) より大きいかそれと同じでなければならない、という条件のうちの少なくとも 1個の条件を有する、
ことを特徴とする請求項3に記載の方法。
・ Predetermined peripheral conditions include peripheral conditions that can be freely set to express other limitations related to nozzle type, nozzle size, and application.
Technical requirements include: a) maximum pressure in the blind hole (resulting in the best mixture formation), b) minimum blind hole volume (resulting in soot and HC generation and reduction in fuel consumption), c) nozzle hole (5) Minimum wall thickness between (due to required strength), d) Minimum nozzle needle seat angle (due to wear of nozzle needle seat), e) Blind hole (2) injection opening (5) as possible The depth of at least one, multiple or all of the deep positions (due to hydrodynamic requirements),
As independent parameters, a) valve seat angle (σ) of nozzle needle valve (3), b) nozzle needle tip angle (α), c) needle valve stroke (h), d) nozzle hole diameter (DL), e ) Blind hole diameter (DE), f) Nozzle needle valve seat lower diameter (DA), g) Blind hole angle (ε), h) Injection angle (κ), i) Injection point injection point (hSP), k) A blind hole depth (hS), l) number of nozzle holes, m) nozzle hole diameter (DL), at least one, a plurality or all of the sizes are given.
The determined parameter limit value includes a numerical range or a discrete value;
• All technical requirements (see above) are standardized and incorporated into the Q function, and a) the distance between the nozzle needle tip and the bottom of the blind hole (2) must not be less than the minimum value, b) The width of the nozzle needle valve seat must not be less than the minimum value, c) The wall thickness between the nozzle holes (5) must not be less than the minimum value, and d) At the blind hole inlet at the maximum stroke of the needle valve The cross-sectional area must be greater than the break-through area at the lower edge of the nozzle needle valve seat. E) The difference between the valve seat half angle (δ / 2) and the blind hole angle (ε) must not be less than the value to be determined. F) The blind hole angle (ε) must be smaller than the nozzle needle half tip angle (α / 2), g) The value of the distance between the upper edge of the nozzle hole and the blind hole inlet edge inside the blind hole should be determined. H) Nozzle needle tip angle (α) is valve Must be greater than or equal to the angle (σ), i) at least one of the conditions that the nozzle needle seat lower diameter (DA) must be greater than or equal to the blind hole diameter (DE) Having
The method according to claim 3.
JP2007203937A 2006-09-15 2007-08-06 Method for optimizing the fuel injection nozzle of an internal combustion engine Expired - Fee Related JP5438890B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006043460.9 2006-09-15
DE102006043460A DE102006043460A1 (en) 2006-09-15 2006-09-15 Method for optimizing injection nozzle for internal combustion engine, involves sliding nozzle body and needle axially in bore of body, where particle swarm optimization is used for geometric arrangement of nozzle

Publications (3)

Publication Number Publication Date
JP2008069772A true JP2008069772A (en) 2008-03-27
JP2008069772A5 JP2008069772A5 (en) 2010-09-02
JP5438890B2 JP5438890B2 (en) 2014-03-12

Family

ID=39104806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007203937A Expired - Fee Related JP5438890B2 (en) 2006-09-15 2007-08-06 Method for optimizing the fuel injection nozzle of an internal combustion engine

Country Status (5)

Country Link
JP (1) JP5438890B2 (en)
KR (1) KR101306526B1 (en)
CN (1) CN101144449B (en)
DE (1) DE102006043460A1 (en)
FI (1) FI123178B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255620A (en) * 2009-04-24 2010-11-11 Man Diesel Se Fuel injection nozzle for combustion engine
KR101384500B1 (en) 2010-12-06 2014-04-10 오엠티 오피신 메카니체 토리노 에스.피.에이. Nozzle with long service life for high-pressure mechanical injectors operating with heavy fuel
WO2016121475A1 (en) * 2015-01-30 2016-08-04 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2017141682A (en) * 2016-02-08 2017-08-17 株式会社Soken Fuel injection nozzle

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003725A1 (en) 2009-04-22 2010-11-04 Man Diesel & Turbo Se Method for designing turbocharged internal combustion engine of vehicle, involves optimizing design parameters for all designing units by particle-swarm-optimization version so that design-target dimensions for engine are optimally achieved
DE102010003706A1 (en) 2009-04-24 2010-10-28 Man Diesel & Turbo Se Method for designing of engine geometry of internal combustion engine, involves defining design-constraint for engine geometry, and defining design-target dimension for engine geometry
DE102010003712A1 (en) 2009-04-29 2011-04-07 Man Diesel & Turbo Se Method for interpreting e.g. working process of turbocharger loaded combustion engine, involves obtaining optimal compliance with interpretation-target size for working process of combustion engine based on interpretation-constraint
DE102010003713A1 (en) 2009-11-24 2012-05-24 Man Diesel & Turbo Se Fuel jet penetration designing method for internal combustion engine, involves determining value for each parameter of dimensioning, and obtaining optimal value of dimensioning target size for fuel jet penetration in engine
DE102010003698B4 (en) 2010-04-08 2015-05-21 Man Diesel & Turbo Se Method for laying out the contour of a control cam
DE102010003699A1 (en) 2010-04-08 2011-10-13 Man Diesel & Turbo Se Method for designing geometry of combustion chamber of turbo-supercharged diesel engine, involves determining design parameter value by particle swarm optimization algorithm to obtain optimum interpretation value of geometry
DE102010032050B4 (en) * 2010-07-23 2017-12-21 Continental Automotive Gmbh Nozzle body with blind hole
EP2439447A1 (en) * 2010-10-05 2012-04-11 Siemens Aktiengesellschaft Fuel nozzle, gas turbine combustion chamber and burner with such a fuel nozzle
DE102015002733B4 (en) 2015-03-04 2019-04-25 Man Energy Solutions Se Method for laying out the contour of a control cam
CN104951621A (en) * 2015-07-09 2015-09-30 中国航空工业集团公司沈阳发动机设计研究所 Solving method of motion law of two-dimensional nozzle
DE102015214306A1 (en) * 2015-07-29 2017-02-02 Continental Automotive Gmbh A method of manufacturing a nozzle body for a fluid injection valve and fluid injection valve
DE102017123042A1 (en) 2017-10-05 2019-04-11 Man Diesel & Turbo Se Method for designing an internal combustion engine or a system of several internal combustion engines
CN114018201A (en) * 2021-11-04 2022-02-08 河海大学 Experimental device and method for measuring notch abrasion of impulse turbine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921321A (en) * 1995-07-05 1997-01-21 Toyota Autom Loom Works Ltd Fuel injection method for direct injection type diesel engine, piston and injection nozzle employed by the method
DE19841192A1 (en) * 1998-09-09 2000-03-16 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
JP2002195135A (en) * 2000-12-27 2002-07-10 Denso Corp Operation simulation device and operation simulation method for fuel injection system
JP2002202032A (en) * 2000-12-28 2002-07-19 Unisia Jecs Corp Fluid injection valve
JP2004046303A (en) * 2002-07-09 2004-02-12 Fuji Electric Holdings Co Ltd Optimum structure design method of electromagnet
JP2004164426A (en) * 2002-11-14 2004-06-10 Fuji Electric Fa Components & Systems Co Ltd Output control method, output control system, and output control program
JP2005267363A (en) * 2004-03-19 2005-09-29 Fuji Electric Holdings Co Ltd Optimization method, device, and program
JP2007507661A (en) * 2003-10-06 2007-03-29 デルファイ・テクノロジーズ・インコーポレーテッド Injection nozzle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771361B2 (en) * 1997-11-26 2006-04-26 株式会社日立製作所 Fuel injection valve
JP3788275B2 (en) * 2001-06-26 2006-06-21 日産自動車株式会社 In-cylinder direct injection internal combustion engine
US20030116653A1 (en) * 2001-12-21 2003-06-26 Doll Jeffrey J. Fuel injector tip
JP3779250B2 (en) * 2002-09-17 2006-05-24 ボッシュ株式会社 DME fuel injection nozzle, diesel engine equipped with the DME fuel injection nozzle
DE10304787A1 (en) * 2003-02-06 2004-08-19 Robert Bosch Gmbh Fuel injection device, especially for direct fuel injection internal combustion engine, has opening in housing wall forming valve seat that is upstream of sealing edge with injection device closed
JP2004353661A (en) * 2003-05-01 2004-12-16 Hitachi Ltd Fuel injection valve and cylinder injection type internal combustion engine having it
DE10320044A1 (en) * 2003-05-06 2004-11-25 Robert Bosch Gmbh Fuel injection valve for internal combustion engine, has valve needle with sealing surface that seals off injection opening, the sealing surface having a ring groove which runs level with the off-edge of the valve seat
JP2005307904A (en) * 2004-04-23 2005-11-04 Denso Corp Fuel injection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921321A (en) * 1995-07-05 1997-01-21 Toyota Autom Loom Works Ltd Fuel injection method for direct injection type diesel engine, piston and injection nozzle employed by the method
DE19841192A1 (en) * 1998-09-09 2000-03-16 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
JP2002195135A (en) * 2000-12-27 2002-07-10 Denso Corp Operation simulation device and operation simulation method for fuel injection system
JP2002202032A (en) * 2000-12-28 2002-07-19 Unisia Jecs Corp Fluid injection valve
JP2004046303A (en) * 2002-07-09 2004-02-12 Fuji Electric Holdings Co Ltd Optimum structure design method of electromagnet
JP2004164426A (en) * 2002-11-14 2004-06-10 Fuji Electric Fa Components & Systems Co Ltd Output control method, output control system, and output control program
JP2007507661A (en) * 2003-10-06 2007-03-29 デルファイ・テクノロジーズ・インコーポレーテッド Injection nozzle
JP2005267363A (en) * 2004-03-19 2005-09-29 Fuji Electric Holdings Co Ltd Optimization method, device, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255620A (en) * 2009-04-24 2010-11-11 Man Diesel Se Fuel injection nozzle for combustion engine
KR101384500B1 (en) 2010-12-06 2014-04-10 오엠티 오피신 메카니체 토리노 에스.피.에이. Nozzle with long service life for high-pressure mechanical injectors operating with heavy fuel
WO2016121475A1 (en) * 2015-01-30 2016-08-04 日立オートモティブシステムズ株式会社 Fuel injection valve
JPWO2016121475A1 (en) * 2015-01-30 2017-08-31 日立オートモティブシステムズ株式会社 Fuel injection valve
US10415527B2 (en) 2015-01-30 2019-09-17 Hitachi Automotive Systems, Ltd. Fuel injection valve
JP2017141682A (en) * 2016-02-08 2017-08-17 株式会社Soken Fuel injection nozzle

Also Published As

Publication number Publication date
JP5438890B2 (en) 2014-03-12
FI20070579A (en) 2008-03-16
KR20080025286A (en) 2008-03-20
FI20070579A0 (en) 2007-08-01
CN101144449A (en) 2008-03-19
KR101306526B1 (en) 2013-09-09
CN101144449B (en) 2011-02-09
DE102006043460A1 (en) 2008-03-27
FI123178B (en) 2012-12-14

Similar Documents

Publication Publication Date Title
JP5438890B2 (en) Method for optimizing the fuel injection nozzle of an internal combustion engine
JP2008069772A5 (en)
JP5723786B2 (en) Fluid control valve
US7296545B2 (en) Coaxial poppet valve
EP2282093B1 (en) Control valve having &#34;c&#34; seal
US9605771B2 (en) Flow cage assemblies
CN106838398B (en) Method of balancing valve trim and reducing stem force on valve stem
CN105020057B (en) Direct spray type gas valve
EP3712473B1 (en) Fluid control valve
EP1512892A1 (en) Metering valve
US8973554B2 (en) Two solenoid valve relay two-stage fuel injection valve for diesel engines
EP3141728B1 (en) Internal combustion engine
CN102758676B (en) Engine piston cooling nozzle, engine and engineering machinery
WO2000061975A1 (en) High differential pressure regulating valve
US20200173394A1 (en) Piston for internal combustion engine
CN100402834C (en) Fuel injection valve for internal combustion engines
Čaika et al. Coupled 1D-3D simulation of common rail injector flow using AVL HYDSIM and FIRE
JP2005180375A (en) Fuel injection nozzle
WO2020023884A1 (en) Multi-dimple orifice disc for a fluid injector, and methods for constructing and utilizing same
US11598449B2 (en) Compact multi-stage control valve trim
JPH07310628A (en) Fuel injection valve
RU2787635C1 (en) Control valves of the operation line
CA2680627C (en) Poppet valve with diverging-converging flow passage and method to reduce total pressure loss
JP6547405B2 (en) Internal combustion engine
JP6099613B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130828

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5438890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees