JPH07310628A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPH07310628A
JPH07310628A JP10143494A JP10143494A JPH07310628A JP H07310628 A JPH07310628 A JP H07310628A JP 10143494 A JP10143494 A JP 10143494A JP 10143494 A JP10143494 A JP 10143494A JP H07310628 A JPH07310628 A JP H07310628A
Authority
JP
Japan
Prior art keywords
injection
fuel
nozzle body
injection hole
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10143494A
Other languages
Japanese (ja)
Other versions
JP3334330B2 (en
Inventor
Akihiro Iiyama
明裕 飯山
Takeshi Naito
健 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10143494A priority Critical patent/JP3334330B2/en
Priority to US08/365,639 priority patent/US5540200A/en
Publication of JPH07310628A publication Critical patent/JPH07310628A/en
Application granted granted Critical
Publication of JP3334330B2 publication Critical patent/JP3334330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets

Abstract

PURPOSE:To atomize injection fuel through utilization of resonance phenomenon by a method wherein fuels injected through a pair of injection nozzles are brought into collision with each other. CONSTITUTION:A large injection nozzle 2 having a high sectional area and a small injection nozzle 3 having a low sectional area are formed in the conical part 1b of a nozzle body 1 from the direction of diameter in such a state to be separated in the direction of the axis Ax of the nozzle body 1. Further, the injection axes X1 and X2 of the injection nozzles 2 and 3, respectively, cross each other at the point P of the outside of the nozzle body 1 and a ratio between the square roots of the sectional areas of the two injection nozzles 2 and 3 is set to a value in a range of 1.25-3.5. When a valve body 4 is opened, fuel in a fuel passage 1c is fed to the injection nozzles 2 and 3 and fuels having approximately the same grain size as each other are injected through the injection nozzles 2 and 3. The injection fuels are collided with each other at an intersection P and atomized through resonance phenomenon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば内燃機関の気筒
に燃料を噴射供給する燃料噴射弁の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a fuel injection valve for injecting fuel into a cylinder of an internal combustion engine, for example.

【0002】[0002]

【従来の技術】一般に、自動車用エンジンに代表される
内燃機関の各気筒に燃料を噴射供給する燃料噴射弁は、
ケーシングと、このケーシングの先端側に装着された噴
孔を有するノズル本体と、このノズル本体内に軸方向に
変位可能に設けられ、噴孔を開閉するニードル弁等の弁
体と、この弁体を閉弁方向に向けて付勢する弁ばねと、
この弁ばねのばね力に抗して弁体を開弁させる電磁アク
チュエータとを備えてなり、コントロールユニットから
の噴射信号に応じて燃料を噴射供給するようになってい
る。
2. Description of the Related Art Generally, a fuel injection valve for injecting and supplying fuel to each cylinder of an internal combustion engine typified by an automobile engine,
A casing, a nozzle body having a nozzle hole attached to the tip side of the casing, a valve body such as a needle valve that is provided in the nozzle body so as to be displaceable in the axial direction, and opens and closes the nozzle hole, and the valve body. A valve spring for urging the valve toward the valve closing direction,
An electromagnetic actuator that opens the valve body against the spring force of the valve spring is provided, and fuel is injected and supplied according to an injection signal from the control unit.

【0003】また、燃料噴射弁としては、先端側に形成
されたサックホールを介して噴孔に燃料を導くサックホ
ール型のノズル本体を備えたサックホール型燃料噴射弁
が知られている。しかし、このサックホール型燃料噴射
弁では、閉弁後の熱膨張によってサックホールに滞留し
た燃料が燃焼室内に流入し、HCの排出量が増大する可
能性がある。このため、燃料溜まりとなるサックホール
を廃止ないし可及的に小さくし、噴孔の入口を弁体で直
接的に開閉するようにしたサックレス型のノズル本体を
備えたサックレス型燃料噴射弁も従来より提案されてい
る。
As a fuel injection valve, there is known a sackhole type fuel injection valve having a sackhole type nozzle body for guiding fuel to an injection hole through a sackhole formed on the tip side. However, in this sackhole fuel injection valve, the fuel accumulated in the sackhole may flow into the combustion chamber due to thermal expansion after the valve is closed, and the amount of HC discharged may increase. For this reason, the suck-less fuel injection valve equipped with a suck-less nozzle body, in which the suck hole that serves as a fuel reservoir is eliminated or made as small as possible, and the inlet of the injection hole is directly opened and closed by the valve body, is also available. More suggested.

【0004】そこで、図11及び図12に基づき、従来
技術による燃料噴射弁として、例えば実開昭60−88
074号公報等を例に挙げて説明する。
Therefore, based on FIG. 11 and FIG. 12, a fuel injection valve according to the prior art, for example, the actual opening sho 60-88.
This will be described with reference to Japanese Patent Publication No. 074, etc.

【0005】図11は、サックレス型燃料噴射弁の要部
を拡大して示す断面図であって、電磁アクチュエータ等
を内蔵したケーシングの先端側には、燃料タンクから燃
料ポンプ、圧力レギュレータ(いずれも図示せず)等を
介して燃料が供給されるノズル本体100が固着されて
いる。このノズル本体100内にはニードル弁101が
軸方向に摺動可能に設けられ、このニードル弁101に
よって、ノズル本体100の円錐状先端部100aに同
径をもって形成された一対の噴孔102,103がそれ
ぞれ同時に開閉されるようになっている。
FIG. 11 is an enlarged cross-sectional view showing an essential part of a suckless fuel injection valve. At the front end side of a casing containing an electromagnetic actuator and the like, a fuel tank, a fuel pump and a pressure regulator (both are shown). The nozzle body 100, to which fuel is supplied via (not shown) or the like, is fixed. A needle valve 101 is provided in the nozzle body 100 so as to be slidable in the axial direction, and the needle valve 101 forms a pair of injection holes 102, 103 formed in the conical tip portion 100a of the nozzle body 100 with the same diameter. Are opened and closed at the same time.

【0006】ここで、これら各噴孔102,103は2
個で1組をなすもので、図12の断面図に示す如く、約
90度離間して合計4組設けられている。また、各噴孔
102,103は、互いの噴射軸線がノズル本体100
の径方向外周端側で交差すべく、ノズル本体100の先
端部1aに径方向から斜めに穿設されている。
Here, each of these injection holes 102 and 103 has two
The individual pieces make up one set, and as shown in the sectional view of FIG. 12, a total of four sets are provided at intervals of about 90 degrees. In addition, the injection axes of the injection holes 102 and 103 are different from each other in the nozzle body 100.
In order to intersect with the outer peripheral end side in the radial direction, the tip portion 1a of the nozzle body 100 is formed obliquely from the radial direction.

【0007】従来技術によるサックレス型燃料噴射弁
は、このように構成されるもので、噴射信号によってニ
ードル弁101が開弁すると、各噴孔102,103か
ら略等量の燃料がそれぞれ斜め下向きに噴射される。そ
して、この噴射された燃料は、ノズル本体100の外部
で互いに衝突して微粒化された後、吸入空気流にのって
燃焼室内に流入する。
The suckless fuel injection valve according to the prior art is constructed in this way, and when the needle valve 101 is opened by an injection signal, approximately equal amounts of fuel are slanted downward from the injection holes 102 and 103, respectively. Is jetted. Then, the injected fuel collides with each other outside the nozzle body 100 to be atomized, and then flows into the combustion chamber along with the intake air flow.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術による燃料噴射弁では、燃料を互いに衝突さ
せることにより微粒化を図ることができるものの、単
に、各噴孔102,103の口径を等しく設定するに過
ぎないため、衝突時の共振現象を有効に利用することが
できず、微粒化性能が十分に発揮されていなかった。
However, in the above-described fuel injection valve according to the prior art, although atomization can be achieved by colliding fuels with each other, the diameters of the injection holes 102 and 103 are simply set to be equal. However, the resonance phenomenon at the time of collision could not be effectively utilized, and the atomization performance was not sufficiently exhibited.

【0009】本発明はかかる従来技術の問題に鑑みてな
されたもので、その主たる目的は、共振現象を利用して
燃料の微粒化性能を高めることにある。また、本発明の
他の目的は、噴射圧を均一化して噴射燃料の粒径を略等
しくすることにより、一層燃料の微粒化性能を向上させ
ることにある。
The present invention has been made in view of the above problems of the prior art, and its main purpose is to enhance the atomization performance of fuel by utilizing the resonance phenomenon. Another object of the present invention is to further improve the fuel atomization performance by making the injection pressure uniform and making the particle sizes of the injected fuel substantially equal.

【0010】[0010]

【課題を解決するための手段】そこで、本発明に係る燃
料噴射弁は、先端側に噴孔が径方向に設けられたノズル
本体と、このノズル本体内に軸方向に移動可能に設けら
れ、前記噴孔を開閉する弁体とを備えた燃料噴射弁にお
いて、前記ノズル本体の先端側には互いに噴孔径の異な
る一対の噴孔を軸方向に離間して設け、前記各噴孔から
噴射された燃料が互いに衝突するように該各噴孔の噴射
軸線をノズル本体の外部で交差させたことを特徴として
いる。
Therefore, a fuel injection valve according to the present invention is provided with a nozzle main body having an injection hole radially provided on a tip side, and movably in the axial direction in the nozzle main body. In a fuel injection valve including a valve body that opens and closes the injection hole, a pair of injection holes having different injection hole diameters are axially separated from each other on the tip side of the nozzle body, and the injection is performed from each of the injection holes. The injection axes of the respective injection holes are crossed outside the nozzle body so that the fuels collide with each other.

【0011】また、請求項2の燃料噴射弁では、先端側
に噴孔が径方向に設けられたノズル本体と、このノズル
本体内に軸方向に移動可能に設けられ、前記噴孔を開閉
する弁体とを備えた燃料噴射弁において、前記ノズル本
体の先端側には互いに噴孔径の異なる一対の噴孔を軸方
向に離間して設け、該各噴孔の断面積の平方根比が1.
25〜3.5の範囲となるように設定すると共に、前記
各噴孔から噴射された燃料が互いに衝突するように該各
噴孔の噴射軸線をノズル本体の外部で交差させたことを
特徴としている。
According to another aspect of the fuel injection valve of the present invention, the nozzle body is provided with a nozzle hole on the tip end side in the radial direction, and the nozzle body is axially movable so as to open and close the nozzle hole. In a fuel injection valve having a valve body, a pair of injection holes having different injection hole diameters are axially separated from each other on the tip side of the nozzle body, and the square root ratio of the cross-sectional area of each injection hole is 1.
It is set so as to fall within the range of 25 to 3.5, and the injection axis of each injection hole is crossed outside the nozzle body so that the fuel injected from each injection hole collides with each other. There is.

【0012】さらに、請求項3の燃料噴射弁では、先端
側に噴孔が径方向に設けられたノズル本体と、このノズ
ル本体内に軸方向に移動可能に設けられ、前記噴孔を開
閉する弁体とを備えた燃料噴射弁において、前記ノズル
本体の先端側には大小一対の噴孔を大きい方の噴孔が上
流側に位置するようにして軸方向に離間して設け、前記
各噴孔から噴射された燃料が互いに衝突するように該各
噴孔の噴射軸線をノズル本体の外部で交差させたことを
特徴としている。
Further, in the fuel injection valve of the third aspect, the nozzle body is provided with the nozzle hole on the tip side in the radial direction, and the nozzle body is provided movably in the axial direction to open and close the nozzle hole. In a fuel injection valve including a valve body, a pair of large and small injection holes are provided at the tip end side of the nozzle body so as to be axially spaced so that the larger injection hole is located on the upstream side, and It is characterized in that the injection axes of the respective injection holes intersect outside the nozzle body so that the fuel injected from the holes collides with each other.

【0013】一方、請求項4の燃料噴射弁では、先端側
に噴孔が径方向に設けられたノズル本体と、このノズル
本体内に軸方向に移動可能に設けられ、前記噴孔を開閉
する弁体とを備えた燃料噴射弁において、前記ノズル本
体の先端側には大小一対の噴孔を大きい方の噴孔が上流
側に位置するようにして軸方向に離間して設け、該各噴
孔の断面積の平方根比が1.25〜3.5の範囲となる
ように設定すると共に、前記各噴孔から噴射された燃料
が互いに衝突するように該各噴孔の噴射軸線をノズル本
体の外部で交差させたことを特徴としている。
On the other hand, in the fuel injection valve of the fourth aspect, the nozzle body is provided with the nozzle hole on the tip side in the radial direction, and the nozzle body is provided movably in the axial direction to open and close the nozzle hole. In a fuel injection valve including a valve body, a pair of large and small injection holes are provided at the tip end side of the nozzle body so as to be axially spaced so that the larger injection hole is located on the upstream side. The square root ratio of the cross-sectional area of the holes is set in the range of 1.25 to 3.5, and the injection axis of each injection hole is set so that the fuel injected from each injection nozzle collides with each other. It is characterized by crossing outside.

【0014】[0014]

【作用】弁体が開くと、噴孔径の異なる一対の噴孔から
燃料がそれぞれ噴射され、これら各燃料はノズル本体の
外部で互いに衝突して微粒化される。
When the valve body is opened, fuel is injected from a pair of injection holes having different injection hole diameters, and these fuels collide with each other outside the nozzle body to be atomized.

【0015】特に、各噴孔の断面積の平方根比を1.2
5〜3.5の範囲に設定すれば、燃料の衝突面積を確保
しつつ燃料衝突時の共振現象を利用することができるた
め、有効な微粒化を行うことができる。
In particular, the square root ratio of the cross-sectional area of each injection hole is 1.2.
When the range is set to 5 to 3.5, the resonance phenomenon at the time of fuel collision can be utilized while ensuring the fuel collision area, so that effective atomization can be performed.

【0016】また、噴孔径の大きい方が上流側に位置す
るようにして、大小一対の噴孔を軸方向に離間して設け
れば、各噴孔の入口に加わる圧力差を小さくでき、各噴
孔から噴射された燃料の粒径を略同等にして強い共振現
象を得ることができる。
If a pair of large and small injection holes are provided axially spaced so that the one with the larger injection hole diameter is located on the upstream side, the pressure difference applied to the inlet of each injection hole can be made smaller. It is possible to obtain a strong resonance phenomenon by making the particle diameters of the fuel injected from the injection holes approximately the same.

【0017】[0017]

【実施例】以下、本発明の実施例を図1〜図10に基づ
きサックレス型の燃料噴射弁に適用した場合を例に挙げ
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 10 by taking as an example the case where the invention is applied to a suckless fuel injection valve.

【0018】まず、図1〜図4は本発明の第1の実施例
に係り、図1は燃料噴射弁の要部を拡大して示す断面図
であって、ノズル本体1は、電磁アクチュエータを内蔵
したケーシングの先端側にカシメ等の固着手段によって
固着され、燃焼室(いずれも図示せず)内に臨んで取り
付けられている。
First, FIGS. 1 to 4 relate to a first embodiment of the present invention, and FIG. 1 is an enlarged sectional view showing a main part of a fuel injection valve, in which a nozzle body 1 is an electromagnetic actuator. It is fixed to the front end side of the built-in casing by fixing means such as caulking, and is attached so as to face the inside of the combustion chamber (neither is shown).

【0019】このノズル本体1は、ケーシングの先端側
に固定された筒部1aと、この筒部1aの先端側に一体
的に形成された円錐状部1bとを有し、その内部には燃
料供給配管等を介して燃料タンク(いずれも図示せず)
に連なる燃料流路1cが形成されている。
The nozzle body 1 has a tubular portion 1a fixed to the tip side of the casing, and a conical portion 1b integrally formed on the tip side of the tubular portion 1a. Fuel tanks (not shown) via supply pipes, etc.
A fuel flow path 1c that is continuous with

【0020】また、ノズル本体1の円錐状部1bには、
燃料流路1cに連通するようにして大小一対の噴孔2,
3が軸線Ax方向に離間して径方向に形成されている。
より具体的には、図2にも示す如く、断面積が大きい方
の噴孔2(以下「大噴孔2」という)は、上流側に位置
してノズル本体1に径方向から斜め下側に向けて穿設さ
れている。一方、断面積が小さい方の噴孔3(以下「小
噴孔3」という)は、大噴孔2の下流側に位置してノズ
ル本体1に径方向から斜め下側に向けて穿設されてい
る。
Further, in the conical portion 1b of the nozzle body 1,
A pair of large and small injection holes 2, which communicate with the fuel flow path 1c.
3 are formed in the radial direction so as to be separated from each other in the axis Ax direction.
More specifically, as shown in FIG. 2, the injection hole 2 having a larger cross-sectional area (hereinafter referred to as “large injection hole 2”) is located on the upstream side and obliquely below the nozzle body 1 from the radial direction. Has been drilled towards. On the other hand, the injection hole 3 having a smaller cross-sectional area (hereinafter referred to as "small injection hole 3") is located downstream of the large injection hole 2 and is bored in the nozzle body 1 from the radial direction to the obliquely lower side. ing.

【0021】ここで、大噴孔2の噴射軸線X1は、軸線
Axに対して燃料の流入方向に所定角度θ1だけ傾斜し
ている。一方、小噴孔3の噴射軸線X2も軸線Axに対
して燃料の流入方向に所定角度θ2だけ傾斜している。
そして、これら両軸線X1,X2がノズル本体1外の点P
で交差することにより、各噴孔2,3から噴射された燃
料が互いに衝突するようになっている。なお、各噴射軸
線X1,X2が同一平面上の一点Pで交差せず、互いに軸
間距離がある場合でも、噴射された液体が互いに衝突す
るように各噴孔2,3を設けることも可能である。
Here, the injection axis X 1 of the large injection hole 2 is inclined by a predetermined angle θ 1 in the fuel inflow direction with respect to the axis Ax. On the other hand, the injection axis X 2 of the small injection hole 3 is also inclined with respect to the axis Ax in the fuel inflow direction by a predetermined angle θ 2 .
Then, these two axes X 1 and X 2 are located at the point P outside the nozzle body 1.
By intersecting with each other, the fuel injected from the respective injection holes 2 and 3 collides with each other. It should be noted that the injection holes 2 and 3 are provided so that the ejected liquids collide with each other even when the ejection axis lines X 1 and X 2 do not intersect at a point P on the same plane and there is an axial distance between them. Is also possible.

【0022】また、大噴孔2の断面積S1の平方根と小
噴孔3の断面積S2の平方根との比α(α=(S11/2
/(S21/2)が、後述する理由により1.25〜3.
5の範囲内の値となるように予め設定されている。な
お、これら断面積S1,S2の平方根は、負号は不適ゆ
え、正の値である。
The ratio α (α = (S 1 ) 1/2 of the square root of the cross-sectional area S 1 of the large injection hole 2 to the square root of the cross-sectional area S 2 of the small injection hole 3
/ (S 2 ) 1/2 ) is 1.25 to 3.
It is set in advance to be a value within the range of 5. The square roots of these cross-sectional areas S 1 and S 2 are positive values because the negative sign is unsuitable.

【0023】ノズル本体1内には、各噴孔2,3を開閉
する弁体4が軸線Ax方向に移動可能に設けられてい
る。この弁体4は、ノズル本体1内に挿通された長寸な
棒状の弁軸4aと、この弁軸4aの先端側に一体的に形
成された円錐状の弁部4bと、この弁部4bに一体的に
形成され、ノズル本体1の円錐状部1bに接触してシー
ルを行うシート部4cとから構成されている。そして、
各噴孔2,3は、弁体4のシート部4cがノズル本体1
の円錐状部1c内面に接触してシールを行う位置よりも
下流側に位置して設けられており、これにより全体とし
てサックレス燃料噴射弁を構成している。
A valve body 4 for opening and closing the injection holes 2 and 3 is provided in the nozzle body 1 so as to be movable in the direction of the axis Ax. The valve body 4 includes a long rod-shaped valve shaft 4a inserted into the nozzle body 1, a conical valve portion 4b integrally formed at the tip end side of the valve shaft 4a, and the valve portion 4b. And a seat portion 4c which is integrally formed with the nozzle body 1 and contacts the conical portion 1b of the nozzle body 1 to perform sealing. And
In each of the injection holes 2 and 3, the seat portion 4c of the valve body 4 is the nozzle body 1
It is provided on the downstream side of the position where it makes contact with the inner surface of the conical portion 1c for sealing and thereby constitutes a suckless fuel injection valve as a whole.

【0024】次に、本発明をなすにあたって、独自に知
見された各噴孔2,3の断面積S1,S2の平方根の比
(以下、「口径比α」という)と共振との関係等につい
て図3を参照しつつ説明する。
Next, in making the present invention, the relationship between the ratio of the square roots of the cross-sectional areas S 1 and S 2 of the respective injection holes 2 and 3 (hereinafter referred to as “aperture ratio α”) and resonance, which is uniquely found, The above will be described with reference to FIG.

【0025】即ち、図3は口径比αと非線形的な引き込
み現象である共振との相関関係を示す特性図であって、
口径比αを1〜5の範囲で変化させると、衝突時に生じ
る共振の強さに非線形的変化を生じることが知見され
た。
That is, FIG. 3 is a characteristic diagram showing the correlation between the aperture ratio α and resonance which is a non-linear pull-in phenomenon.
It was found that changing the aperture ratio α in the range of 1 to 5 causes a non-linear change in the resonance strength generated at the time of collision.

【0026】具体的には、衝突による共振の強さは、口
径比αが「1」よりも大きくなると低下するものの、約
「1.25」に達すると、αが「1」のときと同等の値
1まで回復し、口径比αが約「1.5」になると極大
値M2をとる。そして、さらに、口径比αを上げていく
と共振の強さは徐々に小さくなり、「3.5」に達する
と共振の強さは再びM1となる。
Specifically, the strength of resonance due to collision decreases when the aperture ratio α becomes larger than "1", but when it reaches about "1.25", it is equivalent to that when α is "1". of until the value M 1 to recover, and aperture ratio α is about "1.5" takes a maximum value M 2. Then, as the aperture ratio α is further increased, the resonance strength gradually decreases, and when it reaches “3.5”, the resonance strength becomes M 1 again.

【0027】従って、口径比αを「1.25〜3.5」
の範囲に設定すれば、少なくとも従来技術と同等以上の
共振を得ることができる。一方、口径比αが「4.4」
以上の場合でも、共振の強さはM1を上回ることが知見
されている。
Therefore, the aperture ratio α is "1.25 to 3.5".
When the range is set to, at least resonance equal to or higher than that of the conventional technique can be obtained. On the other hand, the aperture ratio α is "4.4"
Even in the above cases, it has been found that the strength of resonance exceeds M 1 .

【0028】しかしながら、口径比αをあまり大きくす
ると、燃料の衝突面積の割合が低下するため、結果的に
微粒化される燃料の量が少なくなる。即ち、図4は、独
自に知見された口径比αと各燃料の衝突面積との関係を
示す特性図であって、口径比αを「1」から上げていく
と、これに伴って燃料の衝突面積の割合が2次曲線的,
指数関数的に低下する。
However, if the aperture ratio α is made too large, the ratio of the fuel collision area decreases, and as a result the amount of atomized fuel decreases. That is, FIG. 4 is a characteristic diagram showing the relationship between the caliber ratio α independently found and the collision area of each fuel, and when the caliber ratio α is increased from “1”, the fuel The ratio of the collision area is a quadratic curve,
It decreases exponentially.

【0029】具体的には、口径比αが「1.25」のと
きに衝突面積の割合はβ1であり、αを「3.5」に上
げると衝突面積の割合は小さい値β2をとる。さらに、
口径比αをこれより上げると、衝突面積の割合は極めて
小さくなるため、衝突しない部分の面積割合が大きくな
って、片方の噴霧が他方の噴霧を貫通してしまい、実質
的な微粒化が生じない状態となる。
Specifically, when the aperture ratio α is “1.25”, the collision area ratio is β 1 , and when α is increased to “3.5”, the collision area ratio becomes a small value β 2 . To take. further,
When the aperture ratio α is increased above this, the ratio of the collision area becomes extremely small, so the area ratio of the part that does not collide increases and one spray penetrates the other spray, causing substantial atomization. There is no state.

【0030】従って、口径比αを「3.5」以上に設定
しても、燃料の衝突面積の割合が大幅に低下するため、
微粒化性能を向上できない。そこで、本発明では、共振
の強さと衝突面積の割合との双方を考慮して、口径比α
を「1.25〜3.5」の範囲に限定している。
Therefore, even if the aperture ratio α is set to "3.5" or more, the ratio of the fuel collision area is significantly reduced.
Atomization performance cannot be improved. Therefore, in the present invention, in consideration of both the strength of resonance and the ratio of the collision area, the aperture ratio α
Is limited to the range of “1.25 to 3.5”.

【0031】次に、本実施例による燃料噴射弁の作動に
ついて説明する。
Next, the operation of the fuel injection valve according to this embodiment will be described.

【0032】まず、図示せぬコントロールユニットから
の噴射信号によって、弁体4が上方に移動すると、シー
ト部4cが円錐状部1bから離れ、燃料流路1c内の燃
料が各噴孔2,3に向けて流入する。そして、この燃料
は、各噴孔2,3から噴射軸線X1,X2に沿って燃焼室
内にそれぞれ噴射され、交差点Pで斜め方向から衝突し
て微粒化される。
First, when the valve element 4 is moved upward by an injection signal from a control unit (not shown), the seat portion 4c is separated from the conical portion 1b, and the fuel in the fuel passage 1c is injected into the injection holes 2 and 3 respectively. Flows toward. Then, this fuel is injected into the combustion chamber from the injection holes 2 and 3 along the injection axis lines X 1 and X 2 , respectively, and collides from the diagonal direction at the intersection P to be atomized.

【0033】ここで、本実施例では、断面積S1の大き
い大噴孔2を断面積S2の小さい小噴孔3よりも上流側
に位置するように軸線Ax方向に離間して縦形に配置し
たため、まず断面積S1の大きい大噴孔2に燃料を流入
させた後に、断面積S2の小さい小噴孔3に燃料を流入
させることができ、これにより、各噴孔2,3からそれ
ぞれ噴射される噴射燃料の粒径を略等しくすることがで
き、強い共振効果を得ることができる。
Here, in the present embodiment, the large injection hole 2 having a large cross-sectional area S 1 is vertically spaced apart from the small injection hole 3 having a small cross-sectional area S 2 in the axial direction Ax so as to be located upstream. Because of the arrangement, the fuel can first flow into the large injection hole 2 having a large cross-sectional area S 1 , and then the fuel can flow into the small injection hole 3 having a small cross-sectional area S 2 , whereby each injection hole 2, 3 It is possible to make the particle diameters of the injected fuels respectively injected from the respective components substantially the same and obtain a strong resonance effect.

【0034】即ち、大噴孔2を小噴孔3の上流側に設け
ることにより、大噴孔2に作用する圧力(噴射圧)P1
よりも小噴孔3に作用する圧力P2の方が若干低くなる
が、この小噴孔3は断面積S2自体が小さいため、両噴
孔2,3から噴射される燃料の流速は略同程度となる。
そして、噴射燃料の粒径は流速の関数であるため、両噴
孔2,3の流速が略同程度となれば、各噴射燃料の粒径
も略等しくなる。従って、略同程度の粒径をもった燃料
同士を衝突させることができるため、より効果的に上述
した共振現象を利用でき、微粒化を図ることができる。
That is, by providing the large injection hole 2 on the upstream side of the small injection hole 3, the pressure (injection pressure) P 1 acting on the large injection hole 2
Although the pressure P 2 acting on the small injection hole 3 is slightly lower than that of the small injection hole 3, since the cross-sectional area S 2 of the small injection hole 3 itself is small, the flow velocity of the fuel injected from both injection holes 2 and 3 is substantially the same. It will be about the same.
Since the particle size of the injected fuel is a function of the flow rate, if the flow rates of the injection holes 2 and 3 are substantially the same, the particle sizes of the respective injected fuels are also substantially the same. Therefore, fuels having substantially the same particle diameter can be made to collide with each other, so that the above-described resonance phenomenon can be used more effectively and atomization can be achieved.

【0035】一方、もしこれとは逆に、小噴孔3を大噴
孔2の上流側に設けたならば、断面積S1の大きな大噴
孔2に加わる圧力P1が低下するため、この大噴孔2か
ら噴射される燃料の流速が低下し、噴射燃料の粒径が大
きくなる。反面、断面積S2の小さい小噴孔3側に作用
する圧力P2は上昇するため、流速が高まり、噴射燃料
の粒径が小さくなる。従って、この場合には、各噴孔
2,3から噴射される燃料の粒径(質量)に比較的大き
な差が生じ、粒径の大きな噴霧が粒径の小さな噴霧を貫
通したりするので、共振現象を十分有効に利用すること
ができない。
On the other hand, if on the contrary, if provided small nozzle hole 3 on the upstream side of the large injection hole 2, the pressure P 1 applied to large large injection hole 2 of the sectional area S 1 is lowered, The flow velocity of the fuel injected from the large injection hole 2 decreases, and the particle size of the injected fuel increases. On the other hand, since the pressure P 2 acting on the side of the small injection hole 3 having a small cross-sectional area S 2 increases, the flow velocity increases and the particle size of the injected fuel decreases. Therefore, in this case, a relatively large difference occurs in the particle size (mass) of the fuel injected from the injection holes 2 and 3, and the spray having a large particle size penetrates the spray having a small particle size. The resonance phenomenon cannot be used effectively.

【0036】このように構成される本実施例によれば、
以下の効果を奏する。
According to the present embodiment configured as described above,
The following effects are achieved.

【0037】第1に、噴孔径の異なる一対の噴孔2,3
を軸方向に離間してノズル本体1に設け、これら各噴孔
2,3の噴射軸線X1,X2をノズル本体1の外部の点P
で交差させる構成としたため、各噴孔2,3から噴射さ
れた燃料を互いに衝突させて共振現象を得ることがで
き、この共振現象を利用して噴射燃料の微粒化を図るこ
とができる。この結果、噴射燃料が燃焼室の壁面に衝突
して付着するのを未然に防止でき、HCの排出量を大幅
に低減することができる。また、微粒化燃料の気化によ
って燃焼室の温度を効果的に下げることができる。
First, a pair of injection holes 2 and 3 having different injection hole diameters.
The provided nozzle body 1 and axially spaced injection axis X 1 of the injection holes 2,3, X 2 points of the external nozzle body 1 P
Since the fuel is injected from the injection holes 2 and 3 to collide with each other, a resonance phenomenon can be obtained, and atomization of the injected fuel can be achieved by utilizing this resonance phenomenon. As a result, it is possible to prevent the injected fuel from colliding with and adhere to the wall surface of the combustion chamber, and it is possible to greatly reduce the amount of HC discharged. Further, the temperature of the combustion chamber can be effectively lowered by vaporizing the atomized fuel.

【0038】第2に、各噴孔2,3の断面積S1,S2
平方根比αを1.25〜3.5の範囲に設定したため、
上述の通り、燃料の衝突面積を確保しつつ共振現象を利
用でき、有効に微粒化を行うことができる。
Secondly, since the square root ratio α of the cross-sectional areas S 1 and S 2 of the injection holes 2 and 3 is set in the range of 1.25 to 3.5,
As described above, the resonance phenomenon can be utilized while ensuring the fuel collision area, and atomization can be effectively performed.

【0039】第3に、断面積S1の大きい大噴孔2を断
面積S2の小さい小噴孔3の上流側に位置させる構成と
したため、各噴孔2,3から噴射される燃料の粒径を略
同程度にすることができ、より強い共振効果を得て微粒
化性能を大幅に向上することができる。
Thirdly, since the large injection hole 2 having a large cross-sectional area S 1 is located upstream of the small injection hole 3 having a small cross-sectional area S 2 , the fuel injected from each injection hole 2, 3 is The particle sizes can be made to be approximately the same, a stronger resonance effect can be obtained, and the atomization performance can be greatly improved.

【0040】第4に、本実施例では、各噴孔2,3を直
接弁体4で開閉し、サックホールを介さずに燃料を噴射
するという、サックレス型燃料噴射弁に適用したため、
燃料溜まりとなる容積が小さい。従って、上述した燃料
の微粒化性能の向上によるHC低減と、サックレス型燃
料噴射弁であるが故のHCの低減とが相乗効果を発揮す
るため、一層効果的にHCの排出量を抑制することがで
きる。
Fourthly, the present embodiment is applied to a suckless fuel injection valve in which the injection holes 2 and 3 are directly opened / closed by the valve body 4 and the fuel is injected without passing through the suck hole.
The volume of the fuel pool is small. Therefore, the above-described reduction of HC by improving the atomization performance of fuel and the reduction of HC due to the suckless fuel injection valve exert a synergistic effect, so that the amount of HC emission can be suppressed more effectively. You can

【0041】次に、図5及び図6に基づき本発明の第2
の実施例について説明する。なお、以下の各実施例で
は、上述した第1の実施例と同一の構成要素に同一の符
号を付し、その説明を省略するものとする。
Next, the second aspect of the present invention will be described with reference to FIGS. 5 and 6.
An example will be described. In each of the following embodiments, the same components as those in the above-described first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

【0042】本実施例によるノズル本体11は、第1の
実施例で述べたノズル本体1と同様に、筒部11aと、
円錐状部11bと、燃料流路11cとを備えて構成され
ているが、後述する2個1組の噴孔が2組径方向に対向
して設けられている点で、第1の実施例と相違する。
The nozzle body 11 according to the present embodiment has a tubular portion 11a, similar to the nozzle body 1 described in the first embodiment.
The first embodiment is configured by including a conical portion 11b and a fuel flow passage 11c, but two pairs of injection holes, which will be described later, are provided so as to face each other in the radial direction. Is different from.

【0043】即ち、ノズル本体11の円錐状部11bに
は、断面積の大きい大噴孔12aと断面積の小さい小噴
孔13aとからなる第1の噴孔組と、他の断面積の大き
い大噴孔12bと断面積の小さい小噴孔13bからなる
第2の噴孔組とが、ノズル本体11の直径方向に対向し
て設けられている。ここで、一方の大噴孔12aと小噴
孔13a、及び他方の大噴孔12bと小噴孔13bと
は、第1の実施例で述べた如く、互いの断面積の平方根
比が1.25〜3.5の範囲となるように、それぞれ設
定されている。
That is, in the conical portion 11b of the nozzle body 11, the first set of injection holes consisting of the large injection holes 12a having a large cross-sectional area and the small injection holes 13a having a small cross-sectional area, and other large cross-sectional areas. A large injection hole 12b and a second injection hole set including a small injection hole 13b having a small cross-sectional area are provided so as to face each other in the diameter direction of the nozzle body 11. Here, one large injection hole 12a and a small injection hole 13a, and the other large injection hole 12b and a small injection hole 13b have a square root ratio of their cross-sectional areas of 1. as described in the first embodiment. It is set so as to be in the range of 25 to 3.5.

【0044】なお、本実施例では、各大噴孔12a,1
2bの断面積と各小噴孔13a,13bの断面積とを、
それぞれ第1の実施例で述べた大噴孔2の断面積S1
2と等しく設定しているため、各噴孔組における口径
比αの値は同一である。但し、これに限らず、例えば燃
焼室の形状等を考慮して、一方の口径比αと他方の口径
比αとを違えて形成してもよい。
In this embodiment, each large injection hole 12a, 1
2b and the cross-sectional area of each small injection hole 13a, 13b,
The cross-sectional area S 1 of the large injection hole 2 described in the first embodiment,
Since it is set equal to S 2 , the value of the aperture ratio α in each injection hole set is the same. However, the present invention is not limited to this, and one aperture ratio α and the other aperture ratio α may be formed differently in consideration of, for example, the shape of the combustion chamber.

【0045】また、各大噴孔12a,12bの噴射軸線
1が軸線Axに対して共に同一の所定角度θ1で傾斜す
る一方、各小噴孔13a,13bの噴射軸線X2も軸線
Axに対して共に同一の所定角度θ2で傾斜しているた
め、燃料が衝突する各交差点Pa,Pbは同一平面上に
位置している。
The injection axis X 1 of each large injection hole 12a, 12b is inclined at the same predetermined angle θ 1 with respect to the axis Ax, while the injection axis X 2 of each small injection hole 13a, 13b is also the axis Ax. Since both are inclined at the same predetermined angle θ 2 , the intersections Pa and Pb where the fuel collides are located on the same plane.

【0046】このように構成される本実施例では、各噴
孔12a,12b,13a,13bから燃料がそれぞれ
噴射されると、これらの噴射燃料はノズル本体11の外
部の交差点Pa,Pbで互いに衝突し、共振現象によっ
て微粒化される。従って、本実施例でも、第1の実施例
と同様の効果を得ることができる。
In this embodiment having such a structure, when fuel is injected from each of the injection holes 12a, 12b, 13a, 13b, these injected fuels mutually cross at the intersection points Pa, Pb outside the nozzle body 11. They collide and are atomized by the resonance phenomenon. Therefore, also in this embodiment, the same effect as that of the first embodiment can be obtained.

【0047】なお、各噴孔組を直径方向に対向させるも
のとして述べたが、これに限らず、例えば図7に示す第
1の変形例の如く、第1の噴孔組12a,13aと第2
の噴孔組12b,13bとを周方向に90度ずらして配
置してもよい。各噴孔組の間の離間角度θhは燃焼室の
形状等に応じて種々の値を採ることができる。
Although it has been described that the nozzle hole groups face each other in the diametrical direction, the invention is not limited to this. For example, as in the first modification shown in FIG. Two
The injection hole sets 12b and 13b may be arranged so as to be offset by 90 degrees in the circumferential direction. The separation angle θh between the injection hole groups can take various values depending on the shape of the combustion chamber and the like.

【0048】また、図8に示す第2の変形例の如く、2
個1組の噴孔組を3個以上設けてもよい。即ち、図8
は、第1の噴孔組12a,13a、第2の噴孔組12
b,13b、第3の噴孔組12c,13c、第4の噴孔
組12d,13dの合計4つの噴孔組を互いに周方向に
90度離間して配置した場合を示している。なお、これ
ら各噴孔組における口径比αは、前記各実施例と同様
に、1.25〜3.5の範囲であり、全ての噴孔組の口
径比αは同一である。但し、各噴孔組毎に、口径比αを
個々に設定してもよい。
Further, as in the second modification shown in FIG.
You may provide three or more sets of one injection hole. That is, FIG.
Is the first set of nozzle holes 12a, 13a and the second set of nozzle holes 12
It shows a case where a total of four injection hole sets b, 13b, the third injection hole sets 12c, 13c, and the fourth injection hole sets 12d, 13d are arranged 90 degrees apart from each other in the circumferential direction. The aperture ratio α in each of the injection hole sets is in the range of 1.25 to 3.5, as in the above-described embodiments, and the aperture ratio α of all the injection hole sets is the same. However, the aperture ratio α may be individually set for each injection hole set.

【0049】次に、図9,図10に基づいて本発明の第
3の実施例について説明する。本実施例の特徴は、大噴
孔と小噴孔とからなる噴孔組をノズル本体21の軸線A
x方向に2段で配置した点にある。
Next, a third embodiment of the present invention will be described with reference to FIGS. The feature of this embodiment is that a nozzle hole set consisting of a large nozzle hole and a small nozzle hole is attached to the axis A of the nozzle body 21.
It is located at two points in the x direction.

【0050】本実施例によるノズル本体21も、筒部2
1a,円錐状部21b,燃料流路21cから構成されて
おり、後述する噴孔の配置において第1の実施例で述べ
たノズル本体1と相違する。
The nozzle body 21 according to this embodiment also includes the tubular portion 2.
1a, the conical portion 21b, and the fuel flow passage 21c, and is different from the nozzle body 1 described in the first embodiment in the arrangement of the injection holes described later.

【0051】即ち、本実施例では、ノズル本体21の円
錐状部21bに、下流側噴孔群と上流側噴孔群とが軸線
Ax方向に離間して設けられている。これら各噴孔群
は、ノズル本体21の周方向に90度ずつ離間して配設
された4つの噴孔組からそれぞれ構成されている。
That is, in this embodiment, the downstream injection hole group and the upstream injection hole group are provided in the conical portion 21b of the nozzle body 21 so as to be separated from each other in the axis Ax direction. Each of these injection hole groups is composed of four injection hole groups arranged 90 degrees apart in the circumferential direction of the nozzle body 21.

【0052】具体的には、図10に示す如く、下流側噴
孔群は、大噴孔22aと小噴孔23aからなる第1の噴
孔組と、大噴孔22bと小噴孔23bからなる第2の噴
孔組と、大噴孔22cと小噴孔23cからなる第3の噴
孔組と、大噴孔22dと小噴孔23dからなる第4の噴
孔組とから構成されている。
Specifically, as shown in FIG. 10, the downstream injection hole group includes a first injection hole group consisting of a large injection hole 22a and a small injection hole 23a, and a large injection hole 22b and a small injection hole 23b. And a third injection hole set including a large injection hole 22c and a small injection hole 23c, and a fourth injection hole set including a large injection hole 22d and a small injection hole 23d. There is.

【0053】また、同様に、上流側噴孔群は、大噴孔3
2aと小噴孔33bからなる第1の噴孔組と、大噴孔3
2bと小噴孔33bからなる第2の噴孔組と、大噴孔3
2cと小噴孔33cからなる第3の噴孔組と、大噴孔3
2dと小噴孔33dからなる第4の噴孔組とから構成さ
れており、これら各上流側噴孔群の各噴孔組は、下流側
噴孔群の各噴孔組の上流側に対応して設けられている。
なお、上流側噴孔群の各噴孔組形成位置を図10に示す
状態から回転させて、下流側噴孔群の各噴孔組との間に
周方向のずれを与えてもよい。また、各噴孔組の間の離
間角度θhも90度に限らず、種々の値を採用すること
ができる。
Similarly, the upstream injection hole group includes the large injection holes 3
A first injection hole group consisting of 2a and a small injection hole 33b, and a large injection hole 3
2b and small injection hole 33b 2nd injection hole group, large injection hole 3
2 c and a small injection hole 33 c, a third injection hole set, and a large injection hole 3
2d and a fourth injection hole group consisting of small injection holes 33d, and each injection hole group of each upstream injection hole group corresponds to the upstream side of each injection hole group of the downstream injection hole group. Is provided.
It should be noted that the positions of the respective injection hole sets of the upstream injection hole group may be rotated from the state shown in FIG. 10 to give a circumferential deviation from the positions of the injection hole sets of the downstream injection hole group. Further, the separation angle θh between the injection hole sets is not limited to 90 degrees, and various values can be adopted.

【0054】そして、各噴孔組における口径比αは、
1.25〜3.5の範囲で設定されている。また、本実
施例では、下流側噴孔群の各噴孔組の噴射軸線X1,X2
が交差して形成する下側交差点PLの位置する平面と、
上流側噴孔群の各噴孔組の噴射軸線X3,X4が交差して
形成する上側交差点PHの位置する平面とが、軸線Ax
方向に離間するように、各噴射軸線X1,X2,X3,X4
の軸線Axに対する角度がそれぞれ設定されている。こ
れにより、燃焼室内に同心円状の噴霧を行うことができ
るようになっている。なお、これら各交差点PL,PH
同一平面上に位置するように各噴射軸線X1,X2
3,X4の軸線Axに対する角度を設定してもよい。
The aperture ratio α in each nozzle hole set is
It is set in the range of 1.25 to 3.5. Further, in the present embodiment, the injection axis lines X 1 and X 2 of each injection hole group of the downstream injection hole group are formed.
A plane where the lower intersection P L formed by intersecting
A plane upstream injection port group of the injection holes of sets of injection axes X 3, X 4 is positioned in the upper intersection P H be formed by crossing the axis Ax
The injection axis lines X 1 , X 2 , X 3 , X 4 are spaced apart from each other in the direction.
The angle with respect to the axis line Ax is set. As a result, concentric spray can be performed in the combustion chamber. It should be noted that the injection axis lines X 1 , X 2 , and X 2 are arranged so that the intersections P L and P H are located on the same plane.
X 3, the angle relative to the axis Ax of X 4 may be set.

【0055】かくして、このように構成される本実施例
でも、上述した第1の実施例と同様の効果を得ることが
できる。これに加えて、本実施例では、それぞれ複数の
噴孔組からなる2つの噴孔群を軸線Ax方向に離間して
縦形に配置したため、燃焼室の形状等に応じた最適な噴
霧パターンを容易に形成することができる。
Thus, in this embodiment having such a configuration, the same effect as that of the first embodiment described above can be obtained. In addition to this, in this embodiment, two injection hole groups, each consisting of a plurality of injection hole groups, are vertically arranged with a space in the axial line Ax direction, so that an optimum spray pattern according to the shape of the combustion chamber and the like can be easily achieved. Can be formed.

【0056】なお、本実施例では、各噴孔群をそれぞれ
4つの噴孔組から構成する場合を例示したが、本発明は
これに限らず、各噴孔群を1〜3つの噴孔組から構成し
てもよく、あるいは5つ以上の噴孔組から構成してもよ
い。また、下流側噴孔群を4つの噴孔組から構成し、上
流側噴孔群を3つの噴孔組から構成する等の如く、両噴
孔群の構成を違えてもよい。
In the present embodiment, the case where each injection hole group is composed of four injection hole groups has been illustrated, but the present invention is not limited to this, and each injection hole group includes one to three injection hole groups. Or may be composed of 5 or more sets of injection holes. Further, the downstream injection hole groups may be configured with four injection hole groups, the upstream injection hole groups may be configured with three injection hole groups, and so on.

【0057】さらに、前記各実施例では、サックレス燃
料噴射弁に用いた場合を例に挙げて説明したが、本発明
はこれに限らず、サックホール型の燃料噴射弁にも容易
に適用することができる。
Further, in each of the above-mentioned embodiments, the case of using it for the suckless fuel injection valve has been described as an example, but the present invention is not limited to this, and can be easily applied to a suck hole type fuel injection valve. You can

【0058】[0058]

【発明の効果】以上詳述した通り、本発明に係る燃料噴
射弁によれば、噴孔径の異なる一対の噴孔を軸方向に離
間して設け、各噴孔の噴射軸線をノズル本体の外部で交
差させる構成としたため、燃料衝突時の共振現象を利用
して燃料を微粒化することができる。この結果、HCの
排出量を抑制でき、燃焼室の温度を効果的に下げること
ができる。
As described in detail above, according to the fuel injection valve of the present invention, a pair of injection holes having different injection hole diameters are provided axially separated from each other, and the injection axis of each injection hole is outside the nozzle body. Since it is configured to intersect with each other, the fuel can be atomized by utilizing the resonance phenomenon at the time of fuel collision. As a result, the amount of HC discharged can be suppressed, and the temperature of the combustion chamber can be effectively lowered.

【0059】また、各噴孔の断面積の平方根比を1.2
5〜3.5の範囲となるように設定したため、燃料の衝
突面積を確保しつつ強い共振効果を得ることができ、一
層効果的に燃料の微粒化を行うことができる。
The square root ratio of the cross-sectional area of each injection hole is 1.2.
Since the range is set to 5 to 3.5, a strong resonance effect can be obtained while ensuring the fuel collision area, and fuel atomization can be performed more effectively.

【0060】さらに、断面積の大きい方の噴孔が上流側
に位置するようにして大小一対の噴孔を軸方向に離間し
て設ける構成としたため、各噴孔から噴射される燃料の
粒径を略等しくすることができ、より強い共振効果を利
用して燃料を有効に微粒化することができる。
Further, since a pair of large and small injection holes are provided axially separated so that the injection hole with the larger cross-sectional area is located on the upstream side, the particle size of the fuel injected from each injection hole is increased. Can be made substantially equal, and the stronger resonance effect can be utilized to effectively atomize the fuel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る燃料噴射弁の要部
を示す断面図。
FIG. 1 is a sectional view showing a main part of a fuel injection valve according to a first embodiment of the present invention.

【図2】弁体を除いた状態での図1中のII−II線に
沿った断面図。
FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1 with the valve body removed.

【図3】口径比と共振の強さとの関係を示す特性図。FIG. 3 is a characteristic diagram showing the relationship between the aperture ratio and the strength of resonance.

【図4】口径比と燃料の衝突面積との割合との関係を示
す特性図。
FIG. 4 is a characteristic diagram showing a relationship between a diameter ratio and a ratio of a fuel collision area.

【図5】本発明の第2の実施例に係る燃料噴射弁の要部
を示す断面図。
FIG. 5 is a sectional view showing a main part of a fuel injection valve according to a second embodiment of the present invention.

【図6】弁体を除いた状態での図5中のVI−VI線に
沿った断面図。
6 is a cross-sectional view taken along line VI-VI in FIG. 5 with the valve body removed.

【図7】第2の実施例における第1の変形例を示す図6
と同様の断面図。
FIG. 7 is a diagram showing a first modification of the second embodiment.
Sectional drawing similar to.

【図8】第2の実施例における第2の変形例を示す図6
と同様の断面図。
FIG. 8 is a diagram showing a second modification of the second embodiment.
Sectional drawing similar to.

【図9】本発明の第3の実施例に係る燃料噴射弁の要部
を示す断面図。
FIG. 9 is a sectional view showing a main part of a fuel injection valve according to a third embodiment of the present invention.

【図10】弁体を除いた状態での図9中のX−X線に沿
った断面図。
10 is a cross-sectional view taken along the line XX in FIG. 9 with the valve body removed.

【図11】従来技術に係るサックレス型燃料噴射弁の要
部を示す断面図。
FIG. 11 is a sectional view showing a main part of a suckless fuel injection valve according to a conventional technique.

【図12】図12中のA−A線に沿った断面図。12 is a cross-sectional view taken along the line AA in FIG.

【符号の説明】[Explanation of symbols]

1,11,21…ノズル本体 2,12a〜d,22a〜d,32a〜d…大噴孔 3,13a〜d,23a〜d,33a〜d…小噴孔 4…弁体 1, 11 and 21 ... Nozzle body 2, 12a-d, 22a-d, 32a-d ... Large injection hole 3, 13a-d, 23a-d, 33a-d ... Small injection hole 4 ... Valve body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 先端側に噴孔が径方向に設けられたノズ
ル本体と、このノズル本体内に軸方向に移動可能に設け
られ、前記噴孔を開閉する弁体とを備えた燃料噴射弁に
おいて、 前記ノズル本体の先端側には互いに噴孔径の異なる一対
の噴孔を軸方向に離間して設け、前記各噴孔から噴射さ
れた燃料が互いに衝突するように該各噴孔の噴射軸線を
ノズル本体の外部で交差させたことを特徴とする燃料噴
射弁。
1. A fuel injection valve provided with a nozzle body having a nozzle hole radially provided on a tip side thereof, and a valve body movably provided in the nozzle body in an axial direction to open and close the nozzle hole. A pair of injection holes having different injection hole diameters are axially separated from each other on the tip side of the nozzle body, and the injection axes of the injection holes are arranged so that the fuel injected from the injection holes collides with each other. A fuel injection valve in which the nozzles are crossed outside the nozzle body.
【請求項2】 先端側に噴孔が径方向に設けられたノズ
ル本体と、このノズル本体内に軸方向に移動可能に設け
られ、前記噴孔を開閉する弁体とを備えた燃料噴射弁に
おいて、 前記ノズル本体の先端側には互いに噴孔径の異なる一対
の噴孔を軸方向に離間して設け、該各噴孔の断面積の平
方根比が1.25〜3.5の範囲となるように設定する
と共に、前記各噴孔から噴射された燃料が互いに衝突す
るように該各噴孔の噴射軸線をノズル本体の外部で交差
させたことを特徴とする燃料噴射弁。
2. A fuel injection valve including a nozzle body having a nozzle hole radially provided on a tip side thereof, and a valve body movably provided in the nozzle body in an axial direction to open and close the nozzle hole. In the above, the tip side of the nozzle body is provided with a pair of injection holes having different injection hole diameters axially separated from each other, and the square root ratio of the cross-sectional area of each injection hole is in the range of 1.25 to 3.5. And the injection axes of the respective injection holes intersect outside the nozzle body so that the fuel injected from the respective injection holes collides with each other.
【請求項3】 先端側に噴孔が径方向に設けられたノズ
ル本体と、このノズル本体内に軸方向に移動可能に設け
られ、前記噴孔を開閉する弁体とを備えた燃料噴射弁に
おいて、 前記ノズル本体の先端側には大小一対の噴孔を大きい方
の噴孔が上流側に位置するようにして軸方向に離間して
設け、前記各噴孔から噴射された燃料が互いに衝突する
ように該各噴孔の噴射軸線をノズル本体の外部で交差さ
せたことを特徴とする燃料噴射弁。
3. A fuel injection valve including a nozzle body having a nozzle hole radially provided on a tip side thereof, and a valve body movably provided in the nozzle body in an axial direction to open and close the nozzle hole. In the nozzle body, a pair of large and small injection holes are provided axially separated from each other so that the larger injection hole is located on the upstream side, and the fuel injected from the injection holes collides with each other. As described above, the fuel injection valve is characterized in that the injection axis lines of the respective injection holes intersect outside the nozzle body.
【請求項4】 先端側に噴孔が径方向に設けられたノズ
ル本体と、このノズル本体内に軸方向に移動可能に設け
られ、前記噴孔を開閉する弁体とを備えた燃料噴射弁に
おいて、 前記ノズル本体の先端側には大小一対の噴孔を大きい方
の噴孔が上流側に位置するようにして軸方向に離間して
設け、該各噴孔の断面積の平方根比が1.25〜3.5
の範囲となるように設定すると共に、前記各噴孔から噴
射された燃料が互いに衝突するように該各噴孔の噴射軸
線をノズル本体の外部で交差させたことを特徴とする燃
料噴射弁。
4. A fuel injection valve including a nozzle body having a nozzle hole radially provided on a tip side thereof, and a valve body movably provided in the nozzle body in an axial direction to open and close the nozzle hole. At the tip side of the nozzle body, a pair of large and small injection holes are provided axially spaced so that the larger injection hole is located on the upstream side, and the square root ratio of the cross-sectional area of each injection hole is 1 25-3.5
The fuel injection valve is characterized in that the injection axes of the injection holes intersect outside the nozzle body so that the fuel injected from the injection holes collides with each other.
JP10143494A 1993-12-28 1994-05-17 Fuel injection valve Expired - Fee Related JP3334330B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10143494A JP3334330B2 (en) 1994-05-17 1994-05-17 Fuel injection valve
US08/365,639 US5540200A (en) 1993-12-28 1994-12-28 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10143494A JP3334330B2 (en) 1994-05-17 1994-05-17 Fuel injection valve

Publications (2)

Publication Number Publication Date
JPH07310628A true JPH07310628A (en) 1995-11-28
JP3334330B2 JP3334330B2 (en) 2002-10-15

Family

ID=14300597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10143494A Expired - Fee Related JP3334330B2 (en) 1993-12-28 1994-05-17 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP3334330B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840367A1 (en) * 2002-06-04 2003-12-05 Renault Sa Diesel engine fuel injector comprises nozzle with holes located in rows near nozzle free end and hole sealing needle
JP2007263114A (en) * 2006-03-27 2007-10-11 Robert Bosch Gmbh Injection nozzle for internal combustion engine and method of forming, in one workpiece, at least two passages to which different machining and molding are applied
WO2018042910A1 (en) * 2016-08-31 2018-03-08 日立オートモティブシステムズ株式会社 Fuel injection device
CN113187637A (en) * 2021-04-06 2021-07-30 大连理工大学 Composite hole nozzle with intersection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10108581B1 (en) 2017-04-03 2018-10-23 Google Llc Vector reduction processor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840367A1 (en) * 2002-06-04 2003-12-05 Renault Sa Diesel engine fuel injector comprises nozzle with holes located in rows near nozzle free end and hole sealing needle
JP2007263114A (en) * 2006-03-27 2007-10-11 Robert Bosch Gmbh Injection nozzle for internal combustion engine and method of forming, in one workpiece, at least two passages to which different machining and molding are applied
WO2018042910A1 (en) * 2016-08-31 2018-03-08 日立オートモティブシステムズ株式会社 Fuel injection device
CN113187637A (en) * 2021-04-06 2021-07-30 大连理工大学 Composite hole nozzle with intersection structure
CN113187637B (en) * 2021-04-06 2022-09-23 大连理工大学 Composite hole nozzle with intersection structure

Also Published As

Publication number Publication date
JP3334330B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
JP3183156B2 (en) Fluid injection nozzle
US6848635B2 (en) Fuel injector nozzle assembly with induced turbulence
JP3771361B2 (en) Fuel injection valve
KR102267574B1 (en) Gas-assisted fluid atomizing injector
JP2001046919A (en) Fluid injection nozzle
DE102013202784A1 (en) FUEL INJECTION VALVE AND FUEL INJECTION SYSTEM
JP4306656B2 (en) Fuel injection valve
US20180171954A1 (en) Fluid injector orifice plate for colliding fluid jets
JP3132296B2 (en) Fuel injection valve
JP2019116894A (en) Directing fuel discharge by giving off-axis direction to stream exiting from nozzle
JP2001317431A (en) Fluid injection nozzle
US20090321540A1 (en) Fuel Injector
JP4883102B2 (en) Fuel injection nozzle
JPS6363746B2 (en)
JP4196194B2 (en) Injection hole member and fuel injection valve using the same
JPH07310628A (en) Fuel injection valve
JP2001286790A (en) Liquid jet device
JPH04362272A (en) Fuel injection device for internal combustion engine
JP2000038974A (en) Fluid injection nozzle
JP7298484B2 (en) Intake structure of internal combustion engine
JP2811228B2 (en) Fuel injection nozzle for internal combustion engine
US11253875B2 (en) Multi-dimple orifice disc for a fluid injector, and methods for constructing and utilizing same
JPH11117830A (en) Injector
JP3132283B2 (en) Liquid injection valve
JPH08303321A (en) Fuel injector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees