JP2008062588A - Polylactic acid laminate - Google Patents

Polylactic acid laminate Download PDF

Info

Publication number
JP2008062588A
JP2008062588A JP2006244898A JP2006244898A JP2008062588A JP 2008062588 A JP2008062588 A JP 2008062588A JP 2006244898 A JP2006244898 A JP 2006244898A JP 2006244898 A JP2006244898 A JP 2006244898A JP 2008062588 A JP2008062588 A JP 2008062588A
Authority
JP
Japan
Prior art keywords
polylactic acid
peak
stretched film
acid
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006244898A
Other languages
Japanese (ja)
Inventor
Hiroyuki Wakagi
若木裕之
Junichi Narita
成田淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohcello Co Ltd
Original Assignee
Tohcello Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohcello Co Ltd filed Critical Tohcello Co Ltd
Priority to JP2006244898A priority Critical patent/JP2008062588A/en
Publication of JP2008062588A publication Critical patent/JP2008062588A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate which comprises a polylactic acid composition layer and paper and has biodegradability, and excellent heat resistance. <P>SOLUTION: In the polylactic acid laminate, an oriented polylactic acid film which is prepared from the polylactic acid composition containing poly-L-lactic acid and poly-D-lactic acid and in which the peak ratio (peak 1/peak 2) of the height of the maximum endothermic peak (peak 1) at 150-200°C in DSC measurement to the height of the maximum endothermic peak (peak 2) at 205-240°C is 0.2 or below is overlaid at least one side of the paper. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生分解性を有し、且つ耐熱性に優れるポリ乳酸組成物層と紙との積層体に関する。   The present invention relates to a laminate of a polylactic acid composition layer and paper having biodegradability and excellent heat resistance.

紙は本質的に耐水性がないので、牛乳パックや紙コップなどの水分と接触する包装素材や成形素材の分野では紙の表面に、熱可塑性樹脂でラミネートされたポリラミネート紙やポリラミネートされた板紙が使用されている。現在使用されている熱可塑性樹脂はポリエチレン等の汎用樹脂が殆どである。これらの紙積層体は、使用後回収され焼却あるいはリサイクルされている。しかしながら、リサイクルするには積層されたポリエチレンと紙とを剥離する必要があることからその回収には多大な労力を要するのが実情である。また、回収されずに放棄された紙コップ等が路上等に放置されたり、海洋投棄されたりして環境破壊を含めた様々な問題を引き起している。即ち、紙は分解されるがポリエチレン等の熱可塑性樹脂は全くと言ってよい程生分解性が無く、放置された状態で半永久的に残存し、それゆえに様々な問題が発生している。   Since paper is not inherently water-resistant, in the field of packaging materials and molding materials that come into contact with moisture, such as milk cartons and paper cups, polylaminated paper or polylaminated paperboard laminated with a thermoplastic resin on the surface of the paper Is used. Most of the currently used thermoplastic resins are general-purpose resins such as polyethylene. These paper laminates are collected after use and incinerated or recycled. However, in order to recycle, it is necessary to peel off the laminated polyethylene and paper, so that the recovery requires a lot of labor. In addition, paper cups that are abandoned without being collected are left on the road or dumped into the ocean, causing various problems including environmental destruction. That is, paper is decomposed, but a thermoplastic resin such as polyethylene is not biodegradable at all, and it remains semipermanently when left standing, and therefore various problems occur.

紙の生分解性を損なうことなく、紙に耐水性を付与する方法として、紙の表面にポリ乳酸等の生分解性を有する脂肪族ポリエステルを積層する方法が種々提案されている(例えば、特許文献1;特開平6−255039号公報、特許文献2;特開平4−334448号公報、特許文献3;特開平8−252895号公報)。   As a method for imparting water resistance to paper without impairing the biodegradability of the paper, various methods for laminating an aliphatic polyester having biodegradability such as polylactic acid on the surface of the paper have been proposed (for example, patents). Document 1; JP-A-6-255039, Patent Document 2; JP-A-4-334448, Patent Document 3; JP-A-8-252895).

しかしながら、かかるポリ乳酸等の生分解性ポリエステルは耐熱性が不足することから用途が限られ、耐熱性を有する積層体の開発が望まれている。
特開平6−255039号公報 特開平4−334448号公報 特開平8−252895号公報
However, such biodegradable polyesters such as polylactic acid are limited in use because of insufficient heat resistance, and development of a laminate having heat resistance is desired.
JP-A-6-255039 JP-A-4-334448 JP-A-8-252895

本発明は、生分解性を有し、且つ耐熱性に優れるポリ乳酸組成物層と紙との積層体を開発することを目的とする。   An object of the present invention is to develop a laminate of a polylactic acid composition layer and paper having biodegradability and excellent heat resistance.

本発明は、紙の少なくとも片面に、ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物からなり、DSC測定における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク2)とのピーク比(ピーク1/ピーク2)が0.2以下であるポリ乳酸系延伸フィルムが積層されてなることを特徴とするポリ乳酸系積層体を提供するものである。   The present invention comprises a polylactic acid-based composition containing poly-L-lactic acid and poly-D-lactic acid on at least one side of paper, and the peak of the maximum endothermic peak in the range of 150 to 200 ° C. in DSC measurement. Polylactic acid system in which the peak ratio (peak 1 / peak 2) between the height (peak 1) and the peak endothermic peak height (peak 2) in the range of 205 to 240 ° C. is 0.2 or less The present invention provides a polylactic acid-based laminate in which stretched films are laminated.

本発明のポリ乳酸系積層体は、TMA測定による0.25MPa荷重での5%収縮温度が170℃と、従来のポリ乳酸の溶融温度を越えても熱変形が小さく、しかも生分解性を有している。   The polylactic acid-based laminate of the present invention has a 5% shrinkage temperature of 170 ° C. under a load of 0.25 MPa as measured by TMA, and the thermal deformation is small even if it exceeds the melting temperature of conventional polylactic acid, and it has biodegradability. is doing.

<紙>
本発明のポリ乳酸系積層体を構成する成分の一つである紙は、パルプを原料として得られる所謂紙であり、種々公知の紙、例えば、印刷用紙A等の上質印刷紙、セミ上質紙、グラビア用紙等の中級印刷紙などの非塗工印刷用紙;コート紙、アート紙などの塗工印刷用紙;クラフト紙などの未晒包装紙;純白ロール紙などの晒包装紙;食品容器原紙などの加工原紙などの紙;段ボール原紙、白板紙などの板紙などを挙げることができるが、これらに限定されるものではない。本発明に係わる紙は必要に応じて印刷を施してもよい。また貼り合わせる面はシリカ等微細な無機物を塗布することによる表面平滑処理を行ってもよい。
<ポリ−L−乳酸>
本発明のポリ乳酸系積層体を構成する他の成分であるポリ乳酸系組成物の1成分であるポリ−L−乳酸(PLLA)は、L−乳酸を主たる構成成分、好ましくは95モル%以上を含む重合体である。L−乳酸の含有量が95モル%未満の重合体は、後述のポリ−D−乳酸(PDLA)と溶融混練して得られるポリ乳酸系組成物からなる層あるいは当該層を延伸して得られる延伸フィルムの耐熱性が劣る虞がある。
<Paper>
Paper, which is one of the components constituting the polylactic acid-based laminate of the present invention, is so-called paper obtained using pulp as a raw material. Various known papers such as high-quality printing paper such as printing paper A, semi-high-quality paper, etc. Non-coated printing paper such as intermediate printing paper such as gravure paper; Coated printing paper such as coated paper and art paper; Unbleached packaging paper such as kraft paper; Bleached packaging paper such as pure white roll paper; Examples of the processing base paper include, but are not limited to, paperboard such as corrugated baseboard and white paperboard. The paper according to the present invention may be printed as necessary. The surfaces to be bonded may be subjected to a surface smoothing process by applying a fine inorganic material such as silica.
<Poly-L-lactic acid>
Poly-L-lactic acid (PLLA), which is one component of the polylactic acid-based composition that is another component constituting the polylactic acid-based laminate of the present invention, is a main component of L-lactic acid, preferably 95 mol% or more. It is a polymer containing. A polymer having an L-lactic acid content of less than 95 mol% is obtained by stretching a layer composed of a polylactic acid-based composition obtained by melt-kneading with poly-D-lactic acid (PDLA) described later or the layer. There exists a possibility that the heat resistance of a stretched film may be inferior.

PLLAの分子量は後述のポリ−D−乳酸と混合したポリ乳酸系組成物がフィルムなどの層として形成性を有する限り、特に限定はされないが、通常、重量平均分子量(Mw)は6千〜300万、好ましくは6千〜200万の範囲にあるポリ−L乳酸が好適である。重量平均分子量が6千未満のものは得られる延伸フィルムの強度が劣る虞がある。一方、300万を越えるものは溶融粘度が大きくフィルム加工性が劣る虞がある。
<ポリ−D−乳酸>
本発明のポリ乳酸系積層体を構成する他の成分であるポリ乳酸系組成物の1成分であるポリ−D−乳酸(PDLA)は、D−乳酸を主たる構成成分、好ましくは95モル%以上を含む重合体である。D−乳酸の含有量が95モル%未満の重合体は、前述のポリ−L−乳酸と溶融混練して得られるポリ乳酸系組成物からなる層あるいは当該層を延伸して得られる延伸フィルムの耐熱性が劣る虞がある。
The molecular weight of PLLA is not particularly limited as long as the polylactic acid-based composition mixed with poly-D-lactic acid described later has formability as a layer such as a film. Usually, the weight average molecular weight (Mw) is 6,000 to 300. Poly-L lactic acid in the range of 10,000, preferably 6,000 to 2,000,000 is suitable. If the weight average molecular weight is less than 6,000, the strength of the resulting stretched film may be inferior. On the other hand, if it exceeds 3 million, the melt viscosity is large and the film processability may be poor.
<Poly-D-lactic acid>
Poly-D-lactic acid (PDLA), which is one component of the polylactic acid-based composition that is another component constituting the polylactic acid-based laminate of the present invention, is a main component of D-lactic acid, preferably 95 mol% or more. It is a polymer containing. A polymer having a D-lactic acid content of less than 95 mol% is a layer comprising a polylactic acid-based composition obtained by melt-kneading with the aforementioned poly-L-lactic acid or a stretched film obtained by stretching the layer. There is a possibility that heat resistance is inferior.

PDLAの分子量は前述のPLLAと混合したポリ乳酸系組成物がフィルムなどの層として形成性を有する限り、特に限定はされないが、通常、重量平均分子量(Mw)は6千〜300万、好ましくは6千〜200万の範囲にあるポリ−D乳酸が好適である。重量平均分子量が6千未満のものは得られる延伸フィルムの強度が劣る虞がある。一方、300万を越えるものは溶融粘度が大きくフィルム加工性が劣る虞がある。   The molecular weight of PDLA is not particularly limited as long as the polylactic acid composition mixed with the above-mentioned PLLA has formability as a layer such as a film. Usually, the weight average molecular weight (Mw) is 6,000 to 3,000,000, preferably Poly-D lactic acid in the range of 60 to 2 million is preferred. If the weight average molecular weight is less than 6,000, the strength of the resulting stretched film may be inferior. On the other hand, if it exceeds 3 million, the melt viscosity is large and the film processability may be inferior.

本発明においてPLLA及びPDLAには、本発明の目的を損なわない範囲で、少量の他の共重合成分、例えば、多価カルボン酸若しくはそのエステル、多価アルコール、ヒドロキシカルボン酸、ラクトン類等を共重合させておいてもよい。
多価カルボン酸としては、具体的には、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、スベリン酸、デカンジカルボン酸、ドデカンジカルボン酸、セバシン酸、ジグリコール酸、ケトピメリン酸、マロン酸及びメチルマロン酸等の脂肪族ジカルボン酸並びにテレフタル酸、イソフタル酸及び2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸等が挙げられる。
多価カルボン酸エステルとしては、具体的には、例えば、コハク酸ジメチル、コハク酸ジエチル、グルタル酸ジメチル、グルタル酸ジエチル、アジピン酸ジメチル、アジピン酸ジエチル、ピメリン酸ジメチル、アゼライン酸ジメチル、スベリン酸ジメチル、スベリン酸ジエチル、セバシン酸ジメチル、セバシン酸ジエチル、デカンジカルボン酸ジメチル、ドデカンジカルボン酸ジメチル、ジグリコール酸ジメチル、ケトピメリン酸ジメチル、マロン酸ジメチル及びメチルマロン酸ジメチル等の脂肪族ジカルボン酸ジエステル並びにテレフタル酸ジメチル及びイソフタル酸ジメチル等の芳香族ジカルボン酸ジエステルが挙げられる。
多価アルコールとしては、具体的には、例えば、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,3−ブタンジオール、2−メチル−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタメチレングリコール、へキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、ドデカメチレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール及び分子量1000以下のポリエチレングリコール等が挙げられる。
ヒドロキシカルボン酸としては、具体的には、例えば、グリコール酸、2−メチル乳酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−2−メチル酪酸、2−ヒドロキシ−3−メチル酪酸、ヒドロキシピバリン酸、ヒドロキシイソカプロン酸及びヒドロキシカプロン酸等が挙げられる。
ラクトン類としては、具体的には、例えば、β−プロピオラクトン、β−ブチロラクトン、γ−ブチロラクトン、β又はγ−バレロラクトン、δ−バレロラクトン、δ−カプロラクトン、ε−カプロラクトン、4−メチルカプロラクトン、3,5,5−トリメチルカプロラクトン、3,3,5−トリメチルカプロラクトン等の各種メチル化カプロラクトン;β−メチル−δ−バレロラクトン、エナントラクトン、ラウロラクトン等のヒドロキシカルボン酸の環状1量体エステル;グリコリド、L−ラクチド、D−ラクチド等の上記ヒドロキシカルボン酸の環状2量体エステル等が挙げられる。
また、本発明に係わるPLLA及びPDLAには、それぞれD−乳酸若しくはL−乳酸を前記範囲以下であれば少量含まれていてもよい。
In the present invention, PLLA and PDLA contain a small amount of other copolymer components such as polycarboxylic acid or ester thereof, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. within the range not impairing the object of the present invention. It may be polymerized.
Specific examples of the polyvalent carboxylic acid include succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, suberic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, sebacic acid, diglycolic acid, ketopimelic acid, Examples thereof include aliphatic dicarboxylic acids such as malonic acid and methylmalonic acid, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.
Specific examples of the polyvalent carboxylic acid ester include dimethyl succinate, diethyl succinate, dimethyl glutarate, diethyl glutarate, dimethyl adipate, diethyl adipate, dimethyl pimelate, dimethyl azelate, and dimethyl suberate. , Aliphatic dicarboxylic acid diesters such as diethyl suberate, dimethyl sebacate, diethyl sebacate, dimethyl decanedicarboxylate, dimethyl dodecanedicarboxylate, dimethyl diglycolate, dimethyl ketopimelate, dimethyl malonate and dimethyl methylmalonate, and terephthalic acid And aromatic dicarboxylic acid diesters such as dimethyl and dimethyl isophthalate.
Specific examples of the polyhydric alcohol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,3-butanediol, 2-methyl-propanediol, and 1,4-butanediol. , Neopentyl glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, dodecamethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, diethylene glycol, dipropylene glycol, triethylene glycol , Tetraethylene glycol, pentaethylene glycol, polyethylene glycol having a molecular weight of 1000 or less, and the like.
Specific examples of the hydroxycarboxylic acid include glycolic acid, 2-methyllactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, Examples include 2-hydroxy-2-methylbutyric acid, 2-hydroxy-3-methylbutyric acid, hydroxypivalic acid, hydroxyisocaproic acid, and hydroxycaproic acid.
Specific examples of lactones include β-propiolactone, β-butyrolactone, γ-butyrolactone, β or γ-valerolactone, δ-valerolactone, δ-caprolactone, ε-caprolactone, and 4-methylcaprolactone. Various methylated caprolactones such as 3,5,5-trimethylcaprolactone and 3,3,5-trimethylcaprolactone; cyclic monomeric esters of hydroxycarboxylic acids such as β-methyl-δ-valerolactone, enanthlactone and laurolactone A cyclic dimer ester of the above hydroxycarboxylic acid such as glycolide, L-lactide, D-lactide and the like.
Further, PLLA and PDLA according to the present invention may each contain a small amount of D-lactic acid or L-lactic acid as long as it is within the above range.

<ポリ乳酸系延伸フィルム>
本発明のポリ乳酸積層体を構成する他の成分であるポリ乳酸系延伸フィルムは、前記ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物からなり、DSC測定における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク2)とのピーク比(ピーク1/ピーク2)が0.2以下、好ましくは0.1以下であることを特徴とするポリ乳酸系延伸フィルムである。
<Polylactic acid-based stretched film>
The polylactic acid-based stretched film, which is another component constituting the polylactic acid laminate of the present invention, is composed of the polylactic acid-based composition containing the poly-L-lactic acid and poly-D-lactic acid, and is 150 to 200 in DSC measurement. The peak ratio (peak 1) between the peak height of the endothermic peak in the range of ° C (peak 1) and the peak height of the endothermic peak in the range of 205 to 240 ° C (peak 2). The polylactic acid stretched film is characterized in that the peak 2) is 0.2 or less, preferably 0.1 or less.

本発明に係わるポリ乳酸系延伸フィルムは、前記特性に加え、205〜240℃の範囲にある吸熱ピークの吸熱量(ΔHm)が40J/g以上、より好ましくは50J/g以上であり、DSC測定における吸熱ピーク測定後に、降温した際の発熱量(ΔHc)が40J/g以上、より好ましくは50J/g以上の特性を有する。   In addition to the above properties, the polylactic acid-based stretched film according to the present invention has an endothermic peak (ΔHm) in the range of 205 to 240 ° C. of 40 J / g or more, more preferably 50 J / g or more. DSC measurement After measuring the endothermic peak, the calorific value (ΔHc) when the temperature is lowered is 40 J / g or more, more preferably 50 J / g or more.

本発明に係わるポリ乳酸系延伸フィルムは、前記特性に加え、広角X線測定における2θが12度、21度および24度近辺のピーク面積の総和(SSC)が全体の面積に対して20%以上、好ましくは25%以上であり、かつ2θが17度および19度近辺のピーク面積の総和(SPL)が全体の面積に対して5%以下、好ましくは3%以下の特性を有する。 In addition to the above properties, the stretched polylactic acid film according to the present invention has a total sum of peak areas (S SC ) in the vicinity of 12 °, 21 °, and 24 ° in wide-angle X-ray measurement of 20% with respect to the entire area. As described above, it is preferably 25% or more, and the total peak area (S PL ) of 2θ around 17 degrees and 19 degrees (S PL ) is 5% or less, preferably 3% or less.

かかる広角X線測定における2θが17度および19度近辺のピークはPLLA及びPDLAの結晶に基づくピーク(PPL)であり、12度、21度および24度近辺のピークはPLLAとPDLAとが共結晶した所謂ステレオコンプレックスの結晶に基づくピーク(PSC)である。 In such wide-angle X-ray measurement, peaks around 2 ° of 17 ° and 19 ° are peaks based on PLLA and PDLA crystals (P PL ), and peaks around 12 °, 21 °, and 24 ° are the same for PLLA and PDLA. This is a peak ( PSC ) based on crystal of so-called stereocomplex crystal.

本発明における広角X線による回折ピーク(2θ)はX線回折装置(株式会社リガク製 自動X線回折装置RINT−2200またはRINT−2500)を用いて測定して検出される回折ピークの角度(度)である。記録紙の基線(強度;0cps)とX線回折強度曲線で囲まれた回折角(2θ)が5〜30度の総面積(全体の面積)を100%とし、結晶に基づく各々の回折ピーク面積は、(SPL)については17度および19度近辺の回折ピーク(2θ)、(SSC)については12度、21度および24度近辺の回折ピーク(2θ)各々の面積を記録紙から切り出し、その重量を測定することにより算出した。また非結晶部分に起因するブロードな部分は(非晶部分)とした。尚、(SPL)、(SSC)を測定する際には非晶部分に伴う回折曲線をベースラインとしてその上の部分を測定した。 The diffraction peak (2θ) by wide-angle X-ray in the present invention is the angle (degree) of the diffraction peak detected and measured by using an X-ray diffractometer (automatic X-ray diffractometer RINT-2200 or RINT-2500 manufactured by Rigaku Corporation). ). The total area (total area) of the diffraction angle (2θ) surrounded by the baseline (intensity; 0 cps) of the recording paper and the X-ray diffraction intensity curve is 5% to 100%, and each diffraction peak area based on the crystal is 100%. Cut out the areas of diffraction peaks (2θ) around 17 degrees and 19 degrees for (S PL ) and 12 (21) and diffraction peaks (2θ) around 21 degrees and 24 degrees for (S SC ) from the recording paper. It was calculated by measuring its weight. Moreover, the broad part resulting from an amorphous part was made into (amorphous part). When measuring (S PL ) and (S SC ), the diffraction curve associated with the amorphous portion was used as a baseline and the portion above it was measured.

本発明におけるポリ乳酸系延伸フィルムの熱融解特性は、DSC(示差走査熱量計)として、ティー・エイ・インスツルメント社製 Q100を用い、試料約5mgを精秤し、JIS K 7121及びJIS K 7122に準拠し、窒素ガス流入量:50ml/分の条件下で、0℃から加熱速度:10℃/分で250℃まで昇温して昇温時のDSC曲線を得、得られたDSC曲線から、延伸フィルムの融点(Tm)、205〜240℃の範囲にある吸熱ピークの吸熱量(ΔHm)、150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク2)とのピーク比(ピーク1/ピーク2)を求めるとともに、250℃に10分間維持した後、冷却速度:10℃/分で0℃まで降温して結晶化させて、降温時のDSC曲線を得、得られたDSC曲線から、延伸フィルムの結晶化の際の発熱量(ΔHc)を求めた。   The heat melting characteristics of the polylactic acid-based stretched film in the present invention were measured using a Q100 manufactured by TA Instruments Inc. as a DSC (Differential Scanning Calorimeter), and approximately 5 mg of a sample was precisely weighed, and JIS K 7121 and JIS K In accordance with 7122, the DSC curve was obtained by raising the temperature from 0 ° C. to 250 ° C. at a heating rate of 10 ° C./min under the condition of nitrogen gas inflow rate: 50 ml / min. From the melting point (Tm) of the stretched film, the endothermic amount (ΔHm) of the endothermic peak in the range of 205 to 240 ° C., the peak height (peak 1) of the endothermic peak in the range of 150 to 200 ° C. Obtain the peak ratio (peak 1 / peak 2) to the peak height (peak 2) of the endothermic peak in the range of 205-240 ° C. and maintain it at 250 ° C. for 10 minutes. Thereafter, the cooling rate is 10 ° C./min, and the temperature is lowered to 0 ° C. for crystallization to obtain a DSC curve at the time of cooling. From the obtained DSC curve, the calorific value (ΔHc) during crystallization of the stretched film is obtained. Asked.

なお、ピーク高さは、65℃〜75℃付近のベースラインと240℃〜250℃付近のベースラインを結ぶことにより得られるベースラインからの高さで求めた。   In addition, the peak height was calculated | required by the height from the base line obtained by connecting the base line near 65 to 75 degreeC and the base line near 240 to 250 degreeC.

本発明に係わるポリ乳酸系延伸フィルムの厚さは、通常、5〜500μm、好ましくは10〜100μmの範囲にある。   The thickness of the stretched polylactic acid film according to the present invention is usually in the range of 5 to 500 μm, preferably 10 to 100 μm.

本発明に係わるポリ乳酸系延伸フィルムは、必要に応じて、紙あるいは他の層あるいは印刷層との密着性を向上させるために、プライマーコート、コロナ処理、プラズマ処理や火炎処理などを施しても良い。特に、紙と貼り合わせる面にコロナ処理する場合は、38ダイン以上に濡れ調の改質を行うことが望ましく、また必要に応じて帯電防止剤を塗布し表面固有抵抗を1×1013Ω以下にすることが望ましい。
<ポリ乳酸系組成物>
本発明の上記特性を有するポリ乳酸系延伸フィルムを得るには、ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物として、以下の熱融解特性を有するポリ乳酸系組成物を用意して、延伸することが好ましい。
The polylactic acid-based stretched film according to the present invention may be subjected to primer coating, corona treatment, plasma treatment, flame treatment, or the like, if necessary, in order to improve adhesion to paper or other layers or printed layers. good. In particular, when corona treatment is applied to the surface to be bonded to paper, it is desirable to modify the wetness to 38 dynes or more, and if necessary, an antistatic agent is applied and the surface resistivity is 1 × 10 13 Ω or less. It is desirable to make it.
<Polylactic acid-based composition>
In order to obtain a polylactic acid-based stretched film having the above characteristics of the present invention, a polylactic acid-based composition having the following heat melting characteristics is used as a polylactic acid-based composition containing poly-L-lactic acid and poly-D-lactic acid. It is preferable to prepare and stretch.

本発明に係わるポリ乳酸系組成物は、DSC測定において、ポリ乳酸系組成物を250℃で10分融解させた後に降温した際の発熱量(ΔHc)が好ましくは20J/g以上である熱特性を有することが望ましい。
さらに、本発明に係わるポリ乳酸系組成物は、そのDSCの第2回昇温時の測定(250℃で10分経た後に10℃/分で降温を行い、0℃から再度10℃/分で昇温)において得られたDSC曲線の150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク10)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク20)のピーク比(ピーク10/ピーク20)が好ましくは0.5以下、より好ましくは0.3以下、特に好ましくは0.2以下であるという熱特性を有することが望ましい。これは、この組成物がステレオコンプレックス晶を選択的に形成しているためと考えられる。
ピーク比(ピーク10/ピーク20)が0.5より大きいと、結晶化後にPLLA、PDLA単体結晶の形成量が大きく、ポリ−L−乳酸とポリ−D−乳酸とが十分に混練されていない虞がある。
ピーク比(ピーク10/ピーク20)が0.5より大きい組成物は結晶化後のα晶(PLLAあるいはPDLAの単独結晶)の形成量が大きいため、延伸しても耐熱性に劣る虞がある。
また、本発明に係わるポリ乳酸系組成物は、DSCの第2回昇温時における205〜240℃の吸熱ピークの吸熱量(ΔHm)が35J/g以上であることが好ましい。
本発明に係わるポリ乳酸系組成物の熱融解特性は、前記ポリ乳酸系延伸フィルムの熱融解特性を求めた方法と同様な方法で、DSC(示差走査熱量計)として、ティー・エイ・インスツルメント社製 Q100を用い、試料約5mgを精秤し、JIS K 7121及びJIS K 7122に準拠して求めた。なお、ポリ乳酸系組成物の熱融解特性は、降温時と第2回昇温時における特性を求めた。
The polylactic acid-based composition according to the present invention has a heat characteristic that the calorific value (ΔHc) when the temperature is lowered after melting the polylactic acid-based composition at 250 ° C. for 10 minutes is preferably 20 J / g or more in DSC measurement. It is desirable to have
Furthermore, the polylactic acid-based composition according to the present invention was measured at the second temperature increase of the DSC (after 10 minutes at 250 ° C., the temperature was decreased at 10 ° C./minute, and then increased again from 0 ° C. at 10 ° C./minute. Of the endothermic peak in the range of 150 to 200 ° C. of the DSC curve obtained at (temperature) (peak 10) and the peak height of the endothermic peak of the endothermic peak in the range of 205 to 240 ° C. It is desirable that the peak ratio of (Peak 20) (Peak 10 / Peak 20) is preferably 0.5 or less, more preferably 0.3 or less, and particularly preferably 0.2 or less. This is presumably because this composition selectively forms stereocomplex crystals.
If the peak ratio (peak 10 / peak 20) is greater than 0.5, the amount of PLLA and PDLA single crystals formed after crystallization is large, and poly-L-lactic acid and poly-D-lactic acid are not sufficiently kneaded. There is a fear.
A composition having a peak ratio (Peak 10 / Peak 20) greater than 0.5 has a large amount of α-crystals (PLLA or PDLA single crystal) formed after crystallization. .
The polylactic acid-based composition according to the present invention preferably has an endothermic amount (ΔHm) of an endothermic peak of 205 to 240 ° C. at the time of the second DSC temperature increase of 35 J / g or more.
The heat melting characteristics of the polylactic acid-based composition according to the present invention are the same as the methods for determining the heat-melting characteristics of the above-mentioned stretched polylactic acid film, and DSA (Differential Scanning Calorimeter) is used. About 100 mg of a sample was precisely weighed using Q100 manufactured by Ment Co., Ltd., and determined according to JIS K7121 and JIS K7122. In addition, the heat melting characteristic of the polylactic acid-type composition calculated | required the characteristic at the time of temperature fall and the time of the 2nd temperature rise.

本発明に係わるポリ乳酸系組成物は、好ましくは前記PLLAを25〜75重量部、より好ましくは35〜65重量部、特に好ましくは45〜55重量部、その中でも好ましくは47〜53重量部及びPDLAを好ましくは75〜25重量部、より好ましくは65〜35重量部、特に好ましくは55〜45重量部、その中でも好ましくは53〜47重量部(PLLA+PDLA=100重量部)から構成されている、即ち調製されている。   The polylactic acid composition according to the present invention is preferably 25 to 75 parts by weight of the PLLA, more preferably 35 to 65 parts by weight, particularly preferably 45 to 55 parts by weight, and particularly preferably 47 to 53 parts by weight. PDLA is preferably composed of 75 to 25 parts by weight, more preferably 65 to 35 parts by weight, particularly preferably 55 to 45 parts by weight, and most preferably 53 to 47 parts by weight (PLLA + PDLA = 100 parts by weight). That is, it is prepared.

本発明に係わるポリ乳酸系組成物は、ポリ−L−乳酸及びポリ−D−乳酸の重量平均分子量が、いずれも6千〜300万の範囲内であり、かつ、ポリ−L−乳酸またはポリ−D−乳酸のいずれか一方の重量平均分子量が3万〜200万であるポリ−L−乳酸及びポリ−D−乳酸から混練により調製することが望ましい。   In the polylactic acid-based composition according to the present invention, the poly-L-lactic acid and the poly-D-lactic acid each have a weight average molecular weight in the range of 6,000 to 3,000,000, and It is desirable to prepare by kneading from poly-L-lactic acid and poly-D-lactic acid, each having a weight average molecular weight of 30,000 to 2,000,000.

また、本発明に係わるポリ乳酸系組成物は、例えば、これらPLLAとPDLAを、230〜260℃で二軸押出機、二軸混練機、バンバリーミキサー、プラストミルなどで溶融混練することにより得ることができる。
PLLAの量が75〜25重量部、特に65〜35重量部、その中でも特に55重量部を超える組成物及び45重量部未満の組成物は上述の方法で混練しても、得られる組成物を延伸してなるフィルムはα晶の結晶体を含み、耐熱性が不十分となる虞がある。
本発明に係わるポリ乳酸系組成物が耐熱性に優れるのは、当該組成物がステレオコンプレックス構造を形成しており、ステレオコンプレックス構造はPLLAとPDLAの等量から構成されるためであると考えられる。
本発明に係わるポリ乳酸系組成物を得るために、PLLAとPDLAを溶融混練するときの温度は、好ましくは230〜260℃であり、より好ましくは235〜255℃である。溶融混練する温度が230℃より低いとステレオコンプレックス構造物が未溶融で存在する虞があり、260℃より高いとポリ乳酸が分解する虞がある。
The polylactic acid composition according to the present invention can be obtained, for example, by melt-kneading these PLLA and PDLA at 230 to 260 ° C. with a twin-screw extruder, twin-screw kneader, Banbury mixer, plast mill or the like. it can.
The amount of PLLA is 75 to 25 parts by weight, particularly 65 to 35 parts by weight, among which a composition exceeding 55 parts by weight and a composition less than 45 parts by weight are obtained by mixing the composition obtained by the above-mentioned method. The stretched film contains α-crystals and may have insufficient heat resistance.
The reason why the polylactic acid composition according to the present invention is excellent in heat resistance is that the composition forms a stereocomplex structure, and the stereocomplex structure is composed of equal amounts of PLLA and PDLA. .
In order to obtain the polylactic acid composition according to the present invention, the temperature at which PLLA and PDLA are melt-kneaded is preferably 230 to 260 ° C, more preferably 235 to 255 ° C. If the melt kneading temperature is lower than 230 ° C, the stereocomplex structure may be unmelted, and if it is higher than 260 ° C, polylactic acid may be decomposed.

また、本発明に係わるポリ乳酸系組成物を調製する際に、PLLAとPDLAを十分に溶融混練することが望ましい。溶融混練時間は、用いる溶融混練機にもよるが、通常、5分間以上であればよい。PLLAとPDLAの溶融混練時間をより長くすればするほど、例えば、20分間以上、あるいは30分間以上とすることにより、得られるポリ乳酸系組成物は、DSCの第2回昇温時における205〜240℃の吸熱ピークの吸熱量(ΔHm)が45J/g以上、あるいは50J/g以上となり、150〜200℃の範囲にある吸熱ピークの吸熱量は3.5J/g以下、あるいは0J/gとなり、よりステレオコンプレックスの結晶化が早く、PLLAあるいはPDLAの単独結晶(α晶)が生成し難いポリ乳酸系組成物とすることができる。   Moreover, when preparing the polylactic acid-type composition concerning this invention, it is desirable to melt-knead PLLA and PDLA fully. The melt-kneading time is usually 5 minutes or longer, although it depends on the melt-kneader used. The longer the melt kneading time of PLLA and PDLA is, for example, 20 minutes or more, or 30 minutes or more, the resulting polylactic acid-based composition has a temperature of 205 to 240 at the second temperature increase of DSC. The endothermic amount (ΔHm) of the endothermic peak at 45 ° C. is 45 J / g or more, or 50 J / g or more, and the endothermic amount of the endothermic peak in the range of 150 to 200 ° C. is 3.5 J / g or less, or 0 J / g, It is possible to obtain a polylactic acid-based composition in which steric complex crystallization is quicker and PLLA or PDLA single crystal (α crystal) is less likely to be formed.

本発明に係るポリ乳酸系組成物は、ステレオコンプレックスの結晶化が早く、かつステレオコンプレックス結晶化可能領域も大きいので、PLLAあるいはPDLAの単独結晶(α晶)が生成し難いと考えられる。   The polylactic acid-based composition according to the present invention is considered to be difficult to produce a single crystal (α crystal) of PLLA or PDLA because the stereocomplex is rapidly crystallized and the stereocomplex crystallizable region is large.

前述のように、本発明に係わるポリ乳酸系組成物は、DSCによる250℃で10分経過後の降温時での測定(10℃/分)において結晶化によるピーク(発熱量ΔHc)が、20J/g以上であるとポリ乳酸系組成物の結晶化が速やかに起こる。   As described above, the polylactic acid-based composition according to the present invention has a peak due to crystallization (a calorific value ΔHc) of 20 J when measured by DSC at a temperature drop after 10 minutes at 250 ° C. (10 ° C./min). When it is at least / g, crystallization of the polylactic acid-based composition occurs rapidly.

また結晶化による発熱量が20J/gより小さいと結晶化速度が小さく、上記混練が十分でない虞がある。   On the other hand, if the calorific value due to crystallization is less than 20 J / g, the crystallization rate is low and the kneading may be insufficient.

本発明に係わるポリ乳酸系組成物の重量平均分子量は特に限定されるものではない。しかしながら、本発明に係わるポリ乳酸系組成物は、重量平均分子量が1万〜150万の範囲にあることが好ましく、さらには重量平均分子量が5万〜50万の範囲にあることが望ましい。重量平均分子量が、上記範囲を高分子側に外れるとステレオコンプレックス化が十分でなく耐熱性が得られない虞があり、また低分子側に外れると得られるポリ乳酸系組成物層の強度が十分でない虞がある。   The weight average molecular weight of the polylactic acid composition according to the present invention is not particularly limited. However, the polylactic acid composition according to the present invention preferably has a weight average molecular weight in the range of 10,000 to 1,500,000, and more preferably in the range of 50,000 to 500,000. If the weight average molecular weight deviates from the above range to the polymer side, stereocomplexation may not be sufficient and heat resistance may not be obtained, and if it deviates to the low molecular side, the strength of the polylactic acid composition layer obtained is sufficient There is a possibility that it is not.

<ポリ乳酸系延伸フィルムの製造方法>
本発明に係わるポリ乳酸系延伸フィルムは、前記ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物を用いて、押出成形して得られるフィルムあるいはシートを、好ましくは一方向に2倍以上、より好ましくは2〜12倍、さらに好ましくは3〜6倍延伸することにより、耐熱性、透明性に優れる延伸フィルムが得られる。延伸倍率の上限は延伸し得る限り、とくに限定はされないが、通常、12倍を超えるとフィルムが破断したりして、安定して延伸できない虞がある。
<Method for producing a polylactic acid-based stretched film>
The polylactic acid-based stretched film according to the present invention is a film or sheet obtained by extrusion molding using the polylactic acid-based composition containing poly-L-lactic acid and poly-D-lactic acid, preferably in one direction. A stretched film having excellent heat resistance and transparency can be obtained by stretching 2 times or more, more preferably 2 to 12 times, and even more preferably 3 to 6 times. The upper limit of the stretching ratio is not particularly limited as long as it can be stretched. However, if it exceeds 12 times, the film may be broken or the film may not be stably stretched.

また、押出成形して得られるフィルムあるいはシートを、好ましくは縦方向に2倍以上及び横方向に2倍以上、より好ましくは縦方向に2〜7倍及び横方向に2〜7倍、さらに好ましくは縦方向に2.5〜5倍及び横方向に2.5〜5倍延伸することにより、耐熱性、透明性に優れる延伸フィルム(二軸延伸フィルム)が得られる。延伸倍率の上限は延伸し得る限り、とくに限定はされないが、通常、7倍を超えるとフィルムが破断したりして、安定して延伸できない虞がある。   Further, the film or sheet obtained by extrusion molding is preferably at least 2 times in the vertical direction and at least 2 times in the horizontal direction, more preferably 2 to 7 times in the vertical direction and 2 to 7 times in the horizontal direction, still more preferably. Is stretched 2.5 to 5 times in the longitudinal direction and 2.5 to 5 times in the lateral direction, whereby a stretched film (biaxially stretched film) having excellent heat resistance and transparency is obtained. The upper limit of the stretching ratio is not particularly limited as long as it can be stretched. However, if it exceeds 7 times, the film may be broken and may not be stably stretched.

本発明に係わるポリ乳酸系延伸フィルムは、延伸した後、好ましくは140〜220℃、より好ましくは150〜200℃で、好ましくは1秒以上、より好ましくは3〜60秒熱処理しておくと、更に耐熱性が改良される。   The stretched polylactic acid film according to the present invention, after being stretched, is preferably 140-220 ° C, more preferably 150-200 ° C, preferably 1 second or longer, more preferably 3-60 seconds, Furthermore, heat resistance is improved.

<ポリ乳酸系積層体>
本発明のポリ乳酸系積層体は、前記紙の少なくとも片面に、前記熱的特性を有するポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物からなるポリ乳酸系延伸フィルムが積層されてなる積層体である。
<Polylactic acid-based laminate>
In the polylactic acid-based laminate of the present invention, a polylactic acid-based stretched film comprising a polylactic acid-based composition containing poly-L-lactic acid and poly-D-lactic acid having the thermal characteristics is laminated on at least one surface of the paper. It is the laminated body formed.

<ポリ乳酸系積層体の製造方法>
本発明のポリ乳酸積層体は、前記紙と予め得られた前記ポリ乳酸系延伸フィルムを積層する(貼り合わせる)ことにより、得られる。
<Method for producing polylactic acid-based laminate>
The polylactic acid laminate of the present invention is obtained by laminating (bonding) the paper and the previously obtained polylactic acid-based stretched film.

紙とポリ乳酸系延伸フィルムを積層する際には、接着剤ないし粘着剤により紙と貼り合わせることが出来る。   When laminating paper and a polylactic acid-based stretched film, it can be bonded to paper with an adhesive or a pressure-sensitive adhesive.

接着剤および粘着剤としては、ビニル系、アクリル系、ポリアミド系、ポリエステル系、ゴム系、ウレタン系などがあり、ごく薄く、少量塗布して貼り合わせることもできる。ラミネート材料からすれば、接着剤ないし粘着剤は少量であるが、これらも生分解性とするのが本来は好ましく、例えば、デンプンなどの炭水化物類、膠、ゼラチン、カゼインなどのたんぱく質類、未加硫天然ゴムなどの天然材料などがある。
本発明のポリ乳酸系積層体の構成は、例えばポリ乳酸系延伸フィルム/紙の2層構成、ポリ乳酸系延伸フィルム/紙/ポリ乳酸系延伸フィルムの3層構成等があるが、特に限定されるものではない。
Adhesives and pressure-sensitive adhesives include vinyl, acrylic, polyamide, polyester, rubber, urethane, etc., which are very thin and can be applied and bonded together. In the case of a laminate material, a small amount of adhesive or pressure-sensitive adhesive is used, but these are also preferably biodegradable. For example, carbohydrates such as starch, proteins such as glue, gelatin, and casein, unadded There are natural materials such as sulfur natural rubber.
The structure of the polylactic acid-based laminate of the present invention includes, for example, a two-layer structure of polylactic acid-based stretched film / paper, a three-layer structure of polylactic acid-based stretched film / paper / polylactic acid-based stretched film, and the like, but is particularly limited. It is not something.

本発明のポリ乳酸系積層体は、袋、箱、皿、トレー、コップ、蓋材などの包装資材分野に好適に用いることができる。紙を部分的に打ち抜いて「窓」を形成し、それに配向ポリ乳酸系重合体フィルムを貼り合わせて内容物透視用の容器とすることもできる。さらには、カレンダー、ポスター、本の表紙などの美麗な外観を必要とする用途;ラベル、ステッカーなどの表示材料;梱包・包装用テープ;各種製品の製造に使用される工程紙などにも好適である。
本発明のポリ乳酸系積層体は従来のポリ乳酸に比べて耐熱性に優れるため、例えば延伸フィルムとして紙に接着剤によるドライラミを施した後に加熱ロールを通した際の延伸フィルム層収縮による反りが小さく、加工適性が優れている。特に生分解性を有する接着剤は現在のところ水系であるため、従来のポリ乳酸より高い耐熱性を求められており、そのような用途にも応えることが出来る。
また本ポリ乳酸系積層体を容器成形し食品容器として使用する際にも、例えば食品を入れて電子レンジで加温した時のポリ乳酸系延伸フィルムの収縮がほとんど起きないため、油分を含んだ食品等従来のポリ乳酸延伸フィルムでは使用できなかった材料も扱える容器としての使用が可能である。
The polylactic acid-based laminate of the present invention can be suitably used in the field of packaging materials such as bags, boxes, dishes, trays, cups, and lid materials. Paper can be partially punched to form a “window”, and an oriented polylactic acid-based polymer film can be attached thereto to form a container for seeing through the contents. Furthermore, it is suitable for applications that require a beautiful appearance such as calendars, posters, and book covers; display materials such as labels and stickers; packaging and packaging tapes; and process papers used in the manufacture of various products. is there.
Since the polylactic acid-based laminate of the present invention is superior in heat resistance as compared with conventional polylactic acid, for example, a stretch film is warped due to shrinkage of the stretched film layer when it is passed through a heating roll after being dry-laminated with an adhesive on paper. Small and excellent in processability. In particular, since biodegradable adhesives are currently water-based, they are required to have higher heat resistance than conventional polylactic acid, and can meet such applications.
In addition, when this polylactic acid-based laminate is molded into a container and used as a food container, for example, when the food is added and heated in a microwave oven, the polylactic acid-based stretched film hardly contracts, so it contains oil. It can be used as a container that can handle materials that cannot be used with conventional polylactic acid stretched films such as food.

次に実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限りこれらの実施例に制約されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist.

実施例、比較例及び参考例で使用したポリ乳酸は次の通りである。
(イ)ポリ−L−乳酸(PLLA―1):
D体量:1.9% Mw:22万(g/モル)、Tm:162.9℃。
(ロ)ポリ−D−乳酸(PURAC社製:PDLA―1):
D体量:100.0% Mw:135万(g/モル)、Tm:180℃。
インヘレント粘度(溶媒;クロロホルム、測定温度;25℃、濃度;0.1g/dl):7.04(dl/g)
The polylactic acid used in Examples, Comparative Examples and Reference Examples is as follows.
(A) Poly-L-lactic acid (PLLA-1):
D body amount: 1.9% Mw: 220,000 (g / mol), Tm: 162.9 ° C.
(B) Poly-D-lactic acid (manufactured by PURAC: PDLA-1):
D body amount: 100.0% Mw: 1.35 million (g / mol), Tm: 180 ° C.
Inherent viscosity (solvent: chloroform, measurement temperature: 25 ° C., concentration: 0.1 g / dl): 7.04 (dl / g)

本発明における測定方法は以下のとおりである。
(1)重量平均分子量(Mw)
試料20mgに、GPC溶離液10mlを加え、一晩静置後、手で緩やかに攪拌した。この溶液を、両親媒性0.45μm―PTFEフィルター(ADVANTEC DISMIC―25HP045AN)でろ過し、GPC試料溶液とした。
測定装置;Shodex GPC SYSTEM−21
解析装置;データ解析プログラム:SIC480データステーションII
検出器;示差屈折検出器(RI)
カラム;Shodex GPC K−G + K−806L + K−806L
カラム温度;40℃
溶離液;クロロホルム
流速;1.0ml/分
注入量;200μL
分子量校正;単分散ポリスチレン
(2)DSC測定
示差走査熱量計(DSC)を用い、前記記載の方法で測定した。
(3)広角X線測定
測定装置:X線回折装置(株式会社リガク製 自動X線回折装置RINT−2200)
反射法
X線ターゲット:Cu K―α
出力:1/40kV×40mA
回転角:4.0°/分
ステップ:0.02°
走査範囲:10〜30°
(4)透明性
日本電色工業社製 ヘイズメーター300Aを用いてフィルムのヘイズ(HZ)及び平行光光線透過率(PT)を測定した。
(5)表面粗さ
株式会社小坂研究所製三次元表面粗さ測定器SE−30Kを用いてポリ乳酸系延伸フィルム表面の中心面平均粗さ(SRa)を測定した。
(6)引張り試験
ポリ乳酸系延伸フィルムからMD方向及びTD方向に、夫々短冊状の試験片(長さ:150mm、幅:15mm)を採取して、引張り試験機(オリエンテック社製テンシロン万能試験機RTC-1225)を使用し、チャック間距離:100mm、クロスヘッドスピード:300mm/分(但し、ヤング率の測定は5mm/分で測定)で、引張り試験を行い、引張強さ(MPa)、伸び(%)及びヤング率(MPa)を求めた。
(7)透湿度(水蒸気透過度)
JIS Z0208 に準拠して求めた。ポリ乳酸系延伸フィルムを採取して、表面積が約100cm2の袋を作り、塩化カルシウムを適量入れた後、密封した。これを40℃、90%RH(相対湿度)の雰囲気中に3日間放置し、重量増加から透湿度(水蒸気透過度)を求めた。
(8)酸素透過度
JIS K7126に基づいて20℃湿度0%RH(相対湿度)の条件で、酸素透過測定器(MOCON社製、OXTRAN2/21 ML)を使用して測定した。
(9)耐熱性
熱分析装置(セイコーインスツルメンツ株式会社製 熱・応用・歪測定装置 TMA/SS120)を用いてフィルムから幅4mmの試験片を切り出し、チャック間5mmで試験片に荷重0.25MPaを掛け、100℃(開始温度)から5℃/分で昇温し、各温度における試験片の変形(伸びまたは収縮)を測定した。

参考例1
PLLA―1:PDLA―2を50:50(重量部)の比で計量し、二軸混練押出機を用い、溶融温度;250℃、混練時間;6分で、溶融混練してポリ乳酸系組成物を得た後、T−ダイシート成形機で、厚さ約300μmのポリ乳酸系組成物からなるシートを得た。かかるポリ乳酸系組成物の熱融解特性を前記記載の方法で測定した。
次に、当該シートをブルックナー社製二軸延伸機で、縦方向に延伸温度;65℃で3倍に、横方向に延伸温度;70℃で3倍に延伸し、テンター内で180℃で約40秒間のヒートセットを行い、ポリ乳酸系延伸フィルムを得た。得られたポリ乳酸系延伸フィルムの物性を前記記載の方法で測定した。測定結果を表1に、熱融解特性を図1及び図2に示す。

参考例2
参考例1で用いたPLLA―1及びPDLA―1に代えて、PLLA―1を単独で用い、二軸延伸フィルムのヒートセットを150℃で約40秒間行う以外は参考例1と同様に行い、PLLA―1のシート及び二軸延伸フィルムを得た。測定結果を表1に、熱融解特性を図3及び図4に示す。
The measuring method in the present invention is as follows.
(1) Weight average molecular weight (Mw)
To 20 mg of the sample, 10 ml of GPC eluent was added, and the mixture was allowed to stand overnight and then gently stirred by hand. This solution was filtered through an amphiphilic 0.45 μm-PTFE filter (ADVANTEC DISMIC-25HP045AN) to obtain a GPC sample solution.
Measuring device; Shodex GPC SYSTEM-21
Analysis device; data analysis program: SIC480 data station II
Detector: Differential refraction detector (RI)
Column; Shodex GPC K-G + K-806L + K-806L
Column temperature: 40 ° C
Eluent; Chloroform flow rate; 1.0 ml / min injection volume; 200 μL
Molecular weight calibration; monodisperse polystyrene (2) DSC measurement A differential scanning calorimeter (DSC) was used and measured by the method described above.
(3) Wide-angle X-ray measurement Measuring device: X-ray diffractometer (automatic X-ray diffractometer RINT-2200 manufactured by Rigaku Corporation)
Reflection method X-ray target: Cu K-α
Output: 1 / 40kV x 40mA
Rotation angle: 4.0 ° / min Step: 0.02 °
Scanning range: 10-30 °
(4) Transparency The haze (HZ) and parallel light ray transmittance (PT) of the film were measured using a haze meter 300A manufactured by Nippon Denshoku Industries Co., Ltd.
(5) Surface roughness The center plane average roughness (SRa) of the surface of the polylactic acid-based stretched film was measured using a three-dimensional surface roughness measuring instrument SE-30K manufactured by Kosaka Laboratory.
(6) Tensile test A strip-shaped test piece (length: 150 mm, width: 15 mm) is taken from the polylactic acid-based stretched film in the MD direction and the TD direction, respectively, and a tensile tester (Tensilon universal test manufactured by Orientec Co., Ltd.) Machine RTC-1225), a tensile test was performed at a distance between chucks: 100 mm, a crosshead speed: 300 mm / min (however, Young's modulus was measured at 5 mm / min), and tensile strength (MPa), Elongation (%) and Young's modulus (MPa) were determined.
(7) Moisture permeability (water vapor permeability)
It calculated | required based on JISZ0208. A polylactic acid-based stretched film was collected to make a bag having a surface area of about 100 cm 2, and after putting an appropriate amount of calcium chloride, it was sealed. This was left in an atmosphere of 40 ° C. and 90% RH (relative humidity) for 3 days, and the moisture permeability (water vapor permeability) was determined from the weight increase.
(8) Oxygen permeability Based on JIS K7126, it measured on the conditions of 20 degreeC humidity 0% RH (relative humidity) using the oxygen-permeation measuring device (the MOCON company make, OXTRAN2 / 21 ML).
(9) Heat resistance A test piece with a width of 4 mm is cut out from the film using a thermal analyzer (Thermal / Application / Strain Measurement Device TMA / SS120 manufactured by Seiko Instruments Inc.), and a load of 0.25 MPa is applied to the test piece with 5 mm between chucks. The temperature was raised from 100 ° C. (starting temperature) at 5 ° C./min, and the deformation (elongation or shrinkage) of the test piece at each temperature was measured.

Reference example 1
PLLA-1: PDLA-2 was weighed in a ratio of 50:50 (parts by weight), and melted and kneaded at a melting temperature of 250 ° C. and a kneading time of 6 minutes using a twin-screw kneading extruder, and a polylactic acid composition. After obtaining the product, a sheet made of a polylactic acid-based composition having a thickness of about 300 μm was obtained with a T-die sheet molding machine. The heat melting characteristics of the polylactic acid composition were measured by the method described above.
Next, the sheet was stretched in a longitudinal direction by a biaxial stretching machine manufactured by Bruckner; 3 times at 65 ° C., a stretching temperature in the transverse direction; 3 times at 70 ° C., and about 180 ° C. in a tenter. Heat setting was performed for 40 seconds to obtain a polylactic acid-based stretched film. The physical properties of the obtained polylactic acid-based stretched film were measured by the method described above. The measurement results are shown in Table 1, and the thermal melting characteristics are shown in FIGS.

Reference example 2
Instead of PLLA-1 and PDLA-1 used in Reference Example 1, PLLA-1 was used alone, and the biaxially stretched film was heat-set at 150 ° C. for about 40 seconds, and was performed in the same manner as Reference Example 1, A sheet of PLLA-1 and a biaxially stretched film were obtained. The measurement results are shown in Table 1, and the thermal melting characteristics are shown in FIGS.

Figure 2008062588
Figure 2008062588

表1から明らかなように、参考例1で得られたポリ乳酸系組成物からなる二軸延伸フィルムは、熱融解特性において、150〜200℃の範囲の吸熱ピーク(吸熱量)は僅かで、205〜240℃の範囲の吸熱ピークは大きく、吸熱量(ΔHm)も66.1J/gと多く、降温した際の発熱量(ΔHc)も49.7J/gある。また、二軸延伸フィルムの素材となるポリ乳酸系組成物(シート)の熱融解特性は、第1回降温時の発熱量(ΔHc)が20.3J/gと20J/g以上である。第2回昇温時には、150〜200℃の範囲には吸熱ピークはみられず、205〜240℃の範囲の吸熱ピークの吸熱量(ΔHm)は51.0J/gと35J/g以上である。さらに、参考例1で得られたポリ乳酸系組成物からなる二軸延伸フィルムは、透明性、耐熱性に優れ、透湿度及び酸素透過度も低く、バリア性能を有し、広角X線測定における回折ピークは2θが12、21、24度近辺にのみ有し、2θが17、19度近辺には回折ピークは現れなかった。また17、19度近辺のピーク面積(SPL)が全体の面積に対して0%と5%未満であり、2θが12、21、24度近辺のピーク面積(SSC)が全体の面積に対して51%と20%以上であった。
Figure 2008062588
Figure 2008062588

As is clear from Table 1, the biaxially stretched film made of the polylactic acid composition obtained in Reference Example 1 has a slight endothermic peak (endothermic amount) in the range of 150 to 200 ° C. in the heat melting characteristics. The endothermic peak in the range of 205 to 240 ° C. is large, the endothermic amount (ΔHm) is as large as 66.1 J / g, and the calorific value (ΔHc) when the temperature is lowered is 49.7 J / g. The heat melting characteristics of the polylactic acid composition (sheet) that is the raw material for the biaxially stretched film are the calorific value (ΔHc) at the first temperature drop of 20.3 J / g and 20 J / g or more. At the time of the second temperature increase, no endothermic peak is observed in the range of 150 to 200 ° C., and the endothermic amounts (ΔHm) of the endothermic peak in the range of 205 to 240 ° C. are 51.0 J / g and 35 J / g or more. Furthermore, the biaxially stretched film made of the polylactic acid composition obtained in Reference Example 1 is excellent in transparency and heat resistance, has low moisture permeability and oxygen permeability, has barrier performance, and is used in wide-angle X-ray measurement. The diffraction peak was only in the vicinity of 2θ of 12, 21 and 24 degrees, and no diffraction peak appeared in the vicinity of 2θ of 17 and 19 degrees. Also, the peak area (S PL ) around 17 and 19 degrees is 0% and less than 5% with respect to the entire area, and the peak area (S SC ) around 12, 21 and 24 degrees is 2θ. On the other hand, it was 51% and 20% or more.

それに対し、参考例2で得られたPLLA―1からなる二軸延伸フィルムは、150〜200℃の範囲の吸熱ピークのみで、205〜240℃の範囲の吸熱ピークはなく、降温した際の発熱量(ΔHc)は0.4J/gと参考例1で得られたポリ乳酸系組成物からなる二軸延伸フィルムに比べ少ない。また、二軸延伸フィルムの素材となるPLLA―1(シート)の熱融解特性は、第1回降温時の発熱量(ΔHc)は0であり、第2回昇温時には、205〜240℃の範囲には吸熱ピークはみられず、150〜200℃の範囲のピークのみであり、その吸熱量(ΔHm)は32.1J/gである。さらに、参考例2で得られたPLLA―1からなる二軸延伸フィルムは、透明性は優れるものの、耐熱性、バリア性能に劣るとともに、広角X線測定における回折ピークは2θが17、19度近辺にのみ有し、2θが12、21、24度近辺には回折ピークは現れなかった。また17、19度近辺のピーク面積(SPL)が全体の面積に対して57%と5%を越えており、2θが12、21、24度近辺のピーク面積(SSC)が全体の面積に対して0%と20%未満であった。

実施例1
参考例1で得られたポリ乳酸系二軸延伸フィルムのコロナ処理面(濡れ調は39ダイン)、にウレタン系接着剤(武田薬品工業製:タケラックA310(60%)+タケラックA3(5%)+酢酸エチル(35%))を約7g/m塗布した後にAsukul社製コピー用紙(マルチペーパー スーパーエコノミー A4 厚み約80μm 坪量67g/m)をドライラミネートして70℃のオーブンで20秒乾燥し、更に40℃で24時間のエージングを行い、厚さ100〜110μmのポリ乳酸系延伸フィルムと紙とを積層したポリ乳酸系積層体を得た。ついで、当該ポリ乳酸系積層体を120、140、160℃に加熱した熱ロールに3m/分の速度で通したところ、いずれの温度で通したポリ乳酸系積層体も収縮がなく、美麗であった。

比較例1
参考例2の二軸延伸フィルムの片面にコロナ処理を行い、実施例1と同様な方法で、厚さ100〜110μmの二軸延伸フィルムと紙とを積層した積層体を得た。ついで、当該積層体を120、140、160℃に加熱した熱ロールに3m/分の速度で通したところ、120及び140℃では、延伸フィルムの収縮が大きくカールが生じた。また160℃では加熱ロールに延伸フィルムが融着した。
On the other hand, the biaxially stretched film made of PLLA-1 obtained in Reference Example 2 has only an endothermic peak in the range of 150 to 200 ° C, no endothermic peak in the range of 205 to 240 ° C, and exotherm when the temperature is lowered. The amount (ΔHc) is 0.4 J / g, which is smaller than the biaxially stretched film made of the polylactic acid composition obtained in Reference Example 1. In addition, the thermal melting characteristics of PLLA-1 (sheet), which is a material of the biaxially stretched film, has a calorific value (ΔHc) of 0 at the first temperature drop, and a range of 205 to 240 ° C. at the second temperature rise. No endothermic peak was observed, only a peak in the range of 150 to 200 ° C., and the endothermic amount (ΔHm) was 32.1 J / g. Furthermore, although the biaxially stretched film made of PLLA-1 obtained in Reference Example 2 is excellent in transparency, it is inferior in heat resistance and barrier performance, and the diffraction peak in wide-angle X-ray measurement is 2θ of around 17 and 19 degrees. No diffraction peak appeared in the vicinity of 2, 21 and 24 degrees. Moreover, the peak area (S PL ) around 17 and 19 degrees exceeds 57% and 5% with respect to the entire area, and the peak area (S SC ) around 12, 21 and 24 degrees with 2θ is the entire area. And 0% and less than 20%.

Example 1
Corona-treated surface of polylactic acid-based biaxially stretched film obtained in Reference Example 1 (wet tone is 39 dynes), urethane-based adhesive (manufactured by Takeda Pharmaceutical: Takelac A310 (60%) + Takelac A3 (5%)) + Ethyl acetate (35%)) was applied at about 7 g / m 2, and then copy-laminated by Asukul Co., Ltd. (multi-paper Super Economy A4, thickness about 80 μm, basis weight 67 g / m 2 ) was dry laminated in an oven at 70 ° C. for 20 seconds. It dried and further aged at 40 degreeC for 24 hours, and obtained the polylactic acid-type laminated body which laminated | stacked the polylactic acid-type stretched film and paper of thickness 100-110 micrometers. Next, when the polylactic acid-based laminate was passed through a heated roll heated to 120, 140, and 160 ° C. at a speed of 3 m / min, the polylactic acid-based laminate passed at any temperature did not shrink and was beautiful. It was.

Comparative Example 1
One side of the biaxially stretched film of Reference Example 2 was subjected to corona treatment, and a laminate obtained by laminating a biaxially stretched film having a thickness of 100 to 110 μm and paper was obtained in the same manner as in Example 1. Next, the laminate was passed through a hot roll heated to 120, 140, and 160 ° C. at a speed of 3 m / min. At 120 and 140 ° C., the stretched film was greatly contracted and curled. At 160 ° C., the stretched film was fused to the heating roll.

本発明のポリ乳酸系積層体は、TMA測定による0.25MPa荷重での5%収縮温度が170℃と、従来のポリ乳酸の溶融温度である130℃に比べ極めて高く、成形・加工性、製品の耐熱性に優れ、しかも生分解性を有しているので、かかる特性を利用して、袋、箱、皿、トレー、コップ、蓋材などの包装資材分野に好適に用いることができる。さらには、カレンダー、ポスター、本の表紙などの美麗な外観を必要とする用途;ラベル、ステッカーなどの表示材料;梱包・包装用テープ;各種製品の製造に使用される工程紙などにも好適である。   The polylactic acid-based laminate of the present invention has a 5% shrinkage temperature of 170 ° C. under a load of 0.25 MPa as measured by TMA, which is significantly higher than the conventional polylactic acid melting temperature of 130 ° C. Since it has excellent heat resistance and biodegradability, it can be suitably used in the field of packaging materials such as bags, boxes, dishes, trays, cups, lids, etc. by utilizing such characteristics. Furthermore, it is suitable for applications that require a beautiful appearance such as calendars, posters, and book covers; display materials such as labels and stickers; packaging and packaging tapes; and process papers used in the manufacture of various products. is there.

図1は、参考例1の延伸フィルムの第1回昇温のDSC測定のチャートを示す図である。FIG. 1 is a diagram showing a DSC measurement chart of the first temperature increase of the stretched film of Reference Example 1. FIG. 図2は、参考例1の延伸フィルムの第1回降温のDSC測定のチャートを示す図である。2 is a chart showing a DSC measurement chart of the first temperature drop of the stretched film of Reference Example 1. FIG. 図3は、参考例1の延伸フィルムの第2回昇温のDSC測定のチャートを示す図である。FIG. 3 is a diagram showing a DSC measurement chart of the second temperature increase of the stretched film of Reference Example 1. 図4は、参考例2の延伸フィルムの第1回昇温のDSC測定のチャートを示す図である。4 is a chart showing a DSC measurement chart of the first temperature increase of the stretched film of Reference Example 2. FIG. 図5は、参考例2の延伸フィルムの第1回降温のDSC測定のチャートを示す図である。FIG. 5 is a diagram showing a DSC measurement chart of the first temperature drop of the stretched film of Reference Example 2. 図6は、参考例2の延伸フィルムの第2回昇温のDSC測定のチャートを示す図である。6 is a diagram showing a DSC measurement chart of the second temperature increase of the stretched film of Reference Example 2. FIG. 図7は、参考例1のポリ乳酸系組成物からなるシート(未延伸)の第1回降温のDSC測定のチャートを示す図である。7 is a chart showing a DSC measurement chart of the first temperature drop of a sheet (unstretched) made of the polylactic acid-based composition of Reference Example 1. FIG. 図8は、参考例1のポリ乳酸系組成物からなるシート(未延伸)の第2回昇温のDSC測定のチャートを示す図である。FIG. 8 is a diagram showing a DSC measurement chart of the second temperature increase of a sheet (unstretched) made of the polylactic acid-based composition of Reference Example 1. 図9は、参考例2のポリ乳酸系組成物からなるシート(未延伸)の第1回降温のDSC測定のチャートを示す図である。FIG. 9 is a diagram showing a DSC measurement chart of the first temperature drop of a sheet (unstretched) made of the polylactic acid composition of Reference Example 2. 図10は、参考例2のポリ乳酸系組成物からなるシート(未延伸)の第2回昇温のDSC測定のチャートを示す図である。FIG. 10 is a diagram showing a DSC measurement chart of the second temperature increase of a sheet (unstretched) made of the polylactic acid-based composition of Reference Example 2. 図11は、参考例1の延伸フィルムの広角X線回折測定結果を示す図である。FIG. 11 is a diagram showing the results of wide-angle X-ray diffraction measurement of the stretched film of Reference Example 1. 図12は、参考例2の延伸フィルムの広角X線回折測定結果を示す図である。FIG. 12 is a view showing a wide-angle X-ray diffraction measurement result of the stretched film of Reference Example 2.

Claims (11)

紙の少なくとも片面に、ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物からなり、DSC測定における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク2)とのピーク比(ピーク1/ピーク2)が0.2以下であるポリ乳酸系延伸フィルムが積層されてなることを特徴とするポリ乳酸系積層体。   The peak height of the maximum endothermic peak of the endothermic peak in the range of 150 to 200 ° C. in DSC measurement (peak) consisting of a polylactic acid-based composition containing poly-L-lactic acid and poly-D-lactic acid on at least one side of the paper 1) and a polylactic acid-based stretched film having a peak ratio (peak 1 / peak 2) between the peak endotherm peak height (peak 2) in the range of 205 to 240 ° C. of 0.2 or less is laminated. The polylactic acid-type laminated body characterized by being made. ポリ乳酸系延伸フィルムが、205〜240℃の範囲にある吸熱ピークの吸熱量が40J/g以上である請求項1に記載のポリ乳酸系積層体。   The polylactic acid-based laminate according to claim 1, wherein the polylactic acid-based stretched film has an endothermic amount of an endothermic peak in the range of 205 to 240 ° C. of 40 J / g or more. ポリ乳酸系延伸フィルムが、DSC測定における吸熱ピーク測定後に、降温した際の発熱量が40J/g以上である請求項1に記載のポリ乳酸系積層体。   The polylactic acid-based laminate according to claim 1, wherein the polylactic acid-based stretched film has a calorific value of 40 J / g or more when the temperature is lowered after measuring the endothermic peak in DSC measurement. ポリ乳酸系延伸フィルムが、広角X線測定における2θが12度、21度および24度近辺のピーク面積の総和(SSC)が全体の面積に対して20%以上であり、かつ2θが17度および19度近辺のピーク面積の総和(SPL)が全体の面積に対して5%以下である請求項1〜3のいずれかに記載のポリ乳酸系積層体。 In the polylactic acid-based stretched film, 2θ in wide-angle X-ray measurement is 12 °, 21 °, and the sum of peak areas in the vicinity of 24 ° (S SC ) is 20% or more with respect to the entire area, and 2θ is 17 °. 4. The polylactic acid-based laminate according to claim 1, wherein a sum of peak areas around 19 degrees (S PL ) is 5% or less with respect to the entire area. ポリ乳酸系延伸フィルムが、DSC測定において、250℃で10分間経過後に降温した際の発熱量が20J/g以上のポリ乳酸系組成物を延伸してなる請求項1〜4のいずれかに記載のポリ乳酸系積層体。   The polylactic acid-based stretched film is obtained by stretching a polylactic acid-based composition having a calorific value of 20 J / g or more when the temperature is lowered after a lapse of 10 minutes at 250 ° C in DSC measurement. Polylactic acid based laminate. ポリ乳酸系延伸フィルムが、DSC測定において、第2回昇温時における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク10)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク20)とのピーク比(ピーク10/ピーク20)が0.5以下のポリ乳酸系組成物を延伸してなる請求項1〜4のいずれかに記載のポリ乳酸系積層体。   In the DSC measurement, the polylactic acid-based stretched film has a maximum endothermic peak peak height (peak 10) in the range of 150 to 200 ° C. and an endothermic peak in the range of 205 to 240 ° C. at the second temperature rise. The peak ratio (peak 10 / peak 20) to the peak height of the maximum endothermic peak (peak 10 / peak 20) is stretched from a polylactic acid-based composition having a molecular weight of 0.5 or less. Polylactic acid-based laminate. ポリ乳酸系延伸フィルムが、DSC測定において、第2回昇温時における205〜240℃の範囲にある吸熱ピークの吸熱量が35J/g以上のポリ乳酸系組成物を延伸してなる請求項1〜4のいずれかに記載のポリ乳酸系積層体。   The polylactic acid-based stretched film is formed by stretching a polylactic acid-based composition having an endothermic peak of 35 J / g or more in the range of 205 to 240 ° C at the time of second temperature increase in DSC measurement. 5. The polylactic acid-based laminate according to any one of 4. ポリ乳酸系組成物が、ポリ−L−乳酸75〜25重量部及びポリ−D−乳酸25〜75重量部(ポリ−L−乳酸とポリ−D−乳酸の合計で100重量部)から調製されてなる請求項1〜7のいずれかに記載のポリ乳酸系積層体。   A polylactic acid-based composition is prepared from 75 to 25 parts by weight of poly-L-lactic acid and 25 to 75 parts by weight of poly-D-lactic acid (a total of 100 parts by weight of poly-L-lactic acid and poly-D-lactic acid). The polylactic acid-based laminate according to any one of claims 1 to 7. ポリ乳酸系延伸フィルムが、少なくとも一方向に2倍以上延伸されてなる延伸フィルムからなる層である請求項1〜4のいずれかに記載のポリ乳酸系積層体。   The polylactic acid-based laminate according to any one of claims 1 to 4, wherein the polylactic acid-based stretched film is a layer made of a stretched film that is stretched at least twice in one direction. ポリ乳酸系延伸フィルムが、縦方向に2倍以上及び横方向に2倍以上延伸されてなる延伸フィルムである請求項1〜4のいずれかに記載のポリ乳酸系積層体。   The polylactic acid-based laminate according to any one of claims 1 to 4, wherein the polylactic acid-based stretched film is a stretched film that is stretched twice or more in the longitudinal direction and twice or more in the transverse direction. ポリ乳酸系延伸フィルムが、140〜220℃で1秒以上熱処理してなる請求項10または10に記載のポリ乳酸積層体。   The polylactic acid laminate according to claim 10 or 10, wherein the polylactic acid-based stretched film is heat-treated at 140 to 220 ° C for 1 second or longer.
JP2006244898A 2006-09-09 2006-09-09 Polylactic acid laminate Pending JP2008062588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244898A JP2008062588A (en) 2006-09-09 2006-09-09 Polylactic acid laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244898A JP2008062588A (en) 2006-09-09 2006-09-09 Polylactic acid laminate

Publications (1)

Publication Number Publication Date
JP2008062588A true JP2008062588A (en) 2008-03-21

Family

ID=39285702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244898A Pending JP2008062588A (en) 2006-09-09 2006-09-09 Polylactic acid laminate

Country Status (1)

Country Link
JP (1) JP2008062588A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123450A1 (en) * 2008-05-19 2009-11-25 Honeywell International Inc. Enhance performance on current renewable film using functional polymer coatings
JP2010189828A (en) * 2009-02-16 2010-09-02 Weimeng Ind Co Ltd Paper made of polylactic acid and food container using the same
FR2964064A1 (en) * 2010-08-26 2012-03-02 Clio Andrea Zandvliet Three-dimensional biocomposite material for household objects, plates, furnitures and interior architecture elements, comprises plant and/or animal renewable material layers, biodegradable polymer sheets, and a stacking layer
US8389107B2 (en) 2008-03-24 2013-03-05 Biovation, Llc Cellulosic biolaminate composite assembly and related methods
US8652617B2 (en) 2008-03-24 2014-02-18 Biovation, Llc Biolaminate composite assembly including polylactic acid and natural wax laminate layer, and related methods
JP2016049629A (en) * 2014-08-28 2016-04-11 三菱化学株式会社 Laminate
US9585461B2 (en) 2014-03-18 2017-03-07 Panasonic Intellectual Property Management Co., Ltd. Method of producing an adhesive sheet for skin, cosmetic method and adhesive sheet for skin
WO2023149475A1 (en) * 2022-02-07 2023-08-10 リンテック株式会社 Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252895A (en) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd Decomposable laminated material
JP2002254584A (en) * 2001-02-28 2002-09-11 Mitsubishi Plastics Ind Ltd Biodegradable laminate
JP2003096285A (en) * 2001-09-27 2003-04-03 Toray Ind Inc Polyactic acid resin composition, production method thereof and molded article
JP2005042084A (en) * 2003-07-04 2005-02-17 Toyota Central Res & Dev Lab Inc Polylactic acid resin composition and molded product of the same
JP2005325286A (en) * 2004-05-17 2005-11-24 Tohcello Co Ltd Polylactic acid stretched film and its manufacturing method
WO2006009285A1 (en) * 2004-07-22 2006-01-26 Teijin Limited Polylactic acid and process for producing the same
WO2006088241A1 (en) * 2005-02-20 2006-08-24 Teijin Limited Process for producing polylactic acid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252895A (en) * 1995-03-16 1996-10-01 Mitsubishi Plastics Ind Ltd Decomposable laminated material
JP2002254584A (en) * 2001-02-28 2002-09-11 Mitsubishi Plastics Ind Ltd Biodegradable laminate
JP2003096285A (en) * 2001-09-27 2003-04-03 Toray Ind Inc Polyactic acid resin composition, production method thereof and molded article
JP2005042084A (en) * 2003-07-04 2005-02-17 Toyota Central Res & Dev Lab Inc Polylactic acid resin composition and molded product of the same
JP2005325286A (en) * 2004-05-17 2005-11-24 Tohcello Co Ltd Polylactic acid stretched film and its manufacturing method
WO2006009285A1 (en) * 2004-07-22 2006-01-26 Teijin Limited Polylactic acid and process for producing the same
WO2006088241A1 (en) * 2005-02-20 2006-08-24 Teijin Limited Process for producing polylactic acid

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389107B2 (en) 2008-03-24 2013-03-05 Biovation, Llc Cellulosic biolaminate composite assembly and related methods
US8652617B2 (en) 2008-03-24 2014-02-18 Biovation, Llc Biolaminate composite assembly including polylactic acid and natural wax laminate layer, and related methods
EP2123450A1 (en) * 2008-05-19 2009-11-25 Honeywell International Inc. Enhance performance on current renewable film using functional polymer coatings
JP2010189828A (en) * 2009-02-16 2010-09-02 Weimeng Ind Co Ltd Paper made of polylactic acid and food container using the same
FR2964064A1 (en) * 2010-08-26 2012-03-02 Clio Andrea Zandvliet Three-dimensional biocomposite material for household objects, plates, furnitures and interior architecture elements, comprises plant and/or animal renewable material layers, biodegradable polymer sheets, and a stacking layer
US9585461B2 (en) 2014-03-18 2017-03-07 Panasonic Intellectual Property Management Co., Ltd. Method of producing an adhesive sheet for skin, cosmetic method and adhesive sheet for skin
JP2016049629A (en) * 2014-08-28 2016-04-11 三菱化学株式会社 Laminate
WO2023149475A1 (en) * 2022-02-07 2023-08-10 リンテック株式会社 Multilayer sheet for food, packaging material for food, container for food, and manufacturing method for multilayer sheet for food

Similar Documents

Publication Publication Date Title
JP5465877B2 (en) Polylactic acid-based stretched film
JP2008062588A (en) Polylactic acid laminate
JP2008062591A (en) Polylactic acid based multilayer film
AU2005251905B2 (en) Process for the production of biodegradable films having improved mechanical properties
JP4693365B2 (en) Polylactic acid stretched film and method for producing the same
JP2008088402A (en) Polylactic acid-based stretched film
JP6759828B2 (en) A polylactic acid-based film, a heat-shrinkable film using the film, a molded product or a heat-shrinkable label using the heat-shrinkable film, and a container using the molded product or having the label attached.
JP2008062984A (en) Packaging bag made of oriented polylactic acid-based film
JP3084239B2 (en) Biodegradable laminated film
JP2008062589A (en) Polylactic acid release film
JP4570393B2 (en) Polylactic acid stretched film and method for producing the same
JP2005330332A (en) Aliphatic polyester composition, film comprising the same, and laminated film
JP2008063506A (en) Polylactic acid-based oriented film
JP2008062586A (en) Polylactic acid type gas barrier film
JP2014218576A (en) Method of manufacturing stereo complex polylactic acid stretched film
JP2008062590A (en) Polylactic acid film for shrink wrap
JP2008063502A (en) Polylactic acid based thermoformed product
JP2003072008A (en) Laminate
JP2008062587A (en) Polylactic acid type laminated film
JP5323241B2 (en) Polylactic acid-based stretched film
JP2014227472A (en) Method for producing matte stretched film of stereo complex polylactic acid
JP2003301095A (en) Biodegradable polyester composition, and film and laminate prepared therefrom
JP2008063505A (en) Polylactic acid-based oriented film
JP2008063503A (en) Polylactic acid based tacky film
JP2010094949A (en) Polylactic acid-based film for ironing print

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100330

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703