JP2008063502A - Polylactic acid based thermoformed product - Google Patents

Polylactic acid based thermoformed product Download PDF

Info

Publication number
JP2008063502A
JP2008063502A JP2006244895A JP2006244895A JP2008063502A JP 2008063502 A JP2008063502 A JP 2008063502A JP 2006244895 A JP2006244895 A JP 2006244895A JP 2006244895 A JP2006244895 A JP 2006244895A JP 2008063502 A JP2008063502 A JP 2008063502A
Authority
JP
Japan
Prior art keywords
polylactic acid
peak
sheet
acid
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006244895A
Other languages
Japanese (ja)
Inventor
Junichi Narita
淳一 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohcello Co Ltd
Original Assignee
Tohcello Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohcello Co Ltd filed Critical Tohcello Co Ltd
Priority to JP2006244895A priority Critical patent/JP2008063502A/en
Publication of JP2008063502A publication Critical patent/JP2008063502A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid based thermoformed product composed of a polylactic acid composition which has biodegradability and transparency and excels in heat resistance. <P>SOLUTION: The polylactic acid based thermoformed product is produced by thermoforming a sheet composed of a polylactic acid composition comprising poly-L-lactic acid and poly-D-lactic acid and has a peak ratio (peak 1/peak 2) of the peak height (peak 1) of a maximum endothermic peak of the endothermic peak in the range of 150-200°C in the DSC measurement to the peak height (peak 2) of a maximum endothermic peak of the endothermic peak in the range of 205-240°C of not greater than 0.2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生分解性、透明性を有し、且つ耐熱性に優れるポリ乳酸組成物からなるポリ乳酸系熱成形体に関する。   The present invention relates to a polylactic acid-based thermoformed article comprising a polylactic acid composition having biodegradability, transparency, and excellent heat resistance.

プラスチックフィルムの廃棄処理を容易にする目的で生分解性のあるフィルムが注目され、種々のフィルムが開発されている。その生分解性フィルムは、土壌中や水中で加水分解や生分解を受け、徐々にフィルムの崩壊や分解が進み、最後には微生物の作用で無害な分解物へと変化するものである。そのようなフィルムとして、芳香族系ポリエステル樹脂やポリ乳酸、ポリブチレンサクシネート等の脂肪族系ポリエステル樹脂、ポリビニルアルコール、酢酸セルロース、デンプン等から成形したフィルムが知られている。   In order to facilitate the disposal of plastic films, biodegradable films have attracted attention and various films have been developed. The biodegradable film is subject to hydrolysis and biodegradation in soil and water, gradually breaking down and decomposing the film, and finally changing to a harmless degradation product by the action of microorganisms. As such a film, a film formed from an aromatic polyester resin, an aliphatic polyester resin such as polylactic acid or polybutylene succinate, polyvinyl alcohol, cellulose acetate, starch or the like is known.

かかる生分解性樹脂の一つであるポリ乳酸は得られるフィルムの透明性が優れ、他の生分解性樹脂に比較すれば耐熱性もあるので、包装材料として使用され始めている。包装材料の一つとして、ポリ乳酸系重合体を熱成形体に加工する方法が種々提案されている(例えば、特許文献1;特開平7−308961号公報、特許文献2;特開平9−12748号公報)。   Polylactic acid, which is one of such biodegradable resins, is excellent in transparency of the resulting film and has heat resistance as compared with other biodegradable resins, and is thus beginning to be used as a packaging material. As a packaging material, various methods for processing a polylactic acid polymer into a thermoformed body have been proposed (for example, Patent Document 1; JP-A-7-308961, Patent Document 2; JP-A-9-12748). Issue gazette).

しかしながら、ポリ乳酸から得られる熱成形体は、ポリエチレンテレフタレートから得られる熱成形体に比べ、耐熱性に劣ることから、用途が制限されている。
特開平7−308961号公報 特開平9−12748号公報
However, the thermoformed product obtained from polylactic acid is inferior in heat resistance as compared with the thermoformed product obtained from polyethylene terephthalate, and therefore its use is limited.
Japanese Patent Laid-Open No. 7-308961 Japanese Patent Laid-Open No. 9-12748

本発明は、生分解性、透明性を有し、且つ耐熱性に優れるポリ乳酸組成物からなるポリ乳酸系熱成形体を開発することを目的とする。   An object of the present invention is to develop a polylactic acid-based thermoformed article comprising a polylactic acid composition having biodegradability, transparency, and excellent heat resistance.

本発明は、ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸組成物からなるシートを熱成形してなる成形体であって、当該成形体が、DSC測定における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク2)とのピーク比(ピーク1/ピーク2)が0.2以下であることを特徴とするポリ乳酸系熱成形体を提供するものである。   The present invention is a molded body obtained by thermoforming a sheet comprising a polylactic acid composition containing poly-L-lactic acid and poly-D-lactic acid, and the molded body is in a range of 150 to 200 ° C. in DSC measurement. Peak ratio (peak 1 / peak 2) of peak endothermic peak height (peak 1) to peak endothermic peak height (peak 2) in the range of 205-240 ° C. The present invention provides a polylactic acid-based thermoformed article characterized by having a value of 0.2 or less.

本発明のポリ乳酸系熱成形体は、耐熱性に優れ、生分解性及び透明性を有する。   The polylactic acid-based thermoformed article of the present invention is excellent in heat resistance and has biodegradability and transparency.

<ポリ−L−乳酸>
本発明に係わるポリ乳酸系組成物の1成分であるポリ−L−乳酸(PLLA)は、L−乳酸を主たる構成成分、好ましくは95モル%以上を含む重合体である。L−乳酸の含有量が95モル%未満の重合体は、後述のポリ−D−乳酸(PDLA)と溶融混練してなるポリ乳酸系組成物からなるシートから得られるポリ乳酸系熱成形体の耐熱性が劣る虞がある。
<Poly-L-lactic acid>
Poly-L-lactic acid (PLLA), which is one component of the polylactic acid composition according to the present invention, is a polymer containing L-lactic acid as a main constituent, preferably 95 mol% or more. A polymer having an L-lactic acid content of less than 95 mol% is a polylactic acid-based thermoformed product obtained from a sheet comprising a polylactic acid-based composition formed by melt-kneading with poly-D-lactic acid (PDLA) described later. There is a possibility that heat resistance is inferior.

PLLAの分子量は後述のポリ−D−乳酸と混合したポリ乳酸系組成物がシートとして形成性を有する限り、特に限定はされないが、通常、重量平均分子量(Mw)は6千〜300万、好ましくは6千〜200万の範囲にあるポリ−L乳酸が好適である。重量平均分子量が6千未満のものは得られるシートの強度が劣る虞がある。一方、300万を越えるものは溶融粘度が大きくシート加工性が劣る虞がある。
<ポリ−D−乳酸>
本発明に係わるポリ乳酸系組成物の1成分であるポリ−D−乳酸(PDLA)は、D−乳酸を主たる構成成分、好ましくは95モル%以上を含む重合体である。D−乳酸の含有量が95モル%未満の重合体は、前述のポリ−L−乳酸と溶融混練してなるポリ乳酸系組成物からなるシートから得られるポリ乳酸系熱成形体の耐熱性が劣る虞がある。
The molecular weight of PLLA is not particularly limited as long as the polylactic acid-based composition mixed with poly-D-lactic acid described later has formability as a sheet, but the weight average molecular weight (Mw) is usually 6,000 to 3,000,000, preferably Is preferably poly-L lactic acid in the range of 6,000 to 2,000,000. If the weight average molecular weight is less than 6,000, the strength of the resulting sheet may be inferior. On the other hand, if it exceeds 3 million, the melt viscosity is large and the sheet processability may be inferior.
<Poly-D-lactic acid>
Poly-D-lactic acid (PDLA), which is one component of the polylactic acid composition according to the present invention, is a polymer containing D-lactic acid as a main constituent, preferably 95 mol% or more. A polymer having a D-lactic acid content of less than 95 mol% has a heat resistance of a polylactic acid-based thermoformed article obtained from a sheet comprising a polylactic acid-based composition that is melt-kneaded with the aforementioned poly-L-lactic acid. May be inferior.

PDLAの分子量は前述のPLLAと混合したポリ乳酸系組成物がシートとして形成性を有する限り、特に限定はされないが、通常、重量平均分子量(Mw)は6千〜300万、好ましくは6千〜200万の範囲にあるポリ−D乳酸が好適である。重量平均分子量が6千未満のものは得られるシートの強度が劣る虞がある。一方、300万を越えるものは溶融粘度が大きくシート加工性が劣る虞がある。   The molecular weight of PDLA is not particularly limited as long as the polylactic acid composition mixed with PLLA has formability as a sheet, but the weight average molecular weight (Mw) is usually 6,000 to 3,000,000, preferably 6,000 to Poly-D lactic acid in the range of 2 million is preferred. If the weight average molecular weight is less than 6,000, the strength of the resulting sheet may be inferior. On the other hand, if it exceeds 3 million, the melt viscosity is large and the sheet processability may be inferior.

本発明においてPLLA及びPDLAには、本発明の目的を損なわない範囲で、少量の他の共重合成分、例えば、多価カルボン酸若しくはそのエステル、多価アルコール、ヒドロキシカルボン酸、ラクトン類等を共重合させておいてもよい。   In the present invention, PLLA and PDLA contain a small amount of other copolymer components such as polycarboxylic acid or ester thereof, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. within the range not impairing the object of the present invention. It may be polymerized.

多価カルボン酸としては、具体的には、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、スベリン酸、デカンジカルボン酸、ドデカンジカルボン酸、セバシン酸、ジグリコール酸、ケトピメリン酸、マロン酸及びメチルマロン酸等の脂肪族ジカルボン酸並びにテレフタル酸、イソフタル酸及び2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸等が挙げられる。   Specific examples of the polyvalent carboxylic acid include succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, suberic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, sebacic acid, diglycolic acid, ketopimelic acid, Examples thereof include aliphatic dicarboxylic acids such as malonic acid and methylmalonic acid, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.

多価カルボン酸エステルとしては、具体的には、例えば、コハク酸ジメチル、コハク酸ジエチル、グルタル酸ジメチル、グルタル酸ジエチル、アジピン酸ジメチル、アジピン酸ジエチル、ピメリン酸ジメチル、アゼライン酸ジメチル、スベリン酸ジメチル、スベリン酸ジエチル、セバシン酸ジメチル、セバシン酸ジエチル、デカンジカルボン酸ジメチル、ドデカンジカルボン酸ジメチル、ジグリコール酸ジメチル、ケトピメリン酸ジメチル、マロン酸ジメチル及びメチルマロン酸ジメチル等の脂肪族ジカルボン酸ジエステル並びにテレフタル酸ジメチル及びイソフタル酸ジメチル等の芳香族ジカルボン酸ジエステルが挙げられる。   Specific examples of the polyvalent carboxylic acid ester include dimethyl succinate, diethyl succinate, dimethyl glutarate, diethyl glutarate, dimethyl adipate, diethyl adipate, dimethyl pimelate, dimethyl azelate, and dimethyl suberate. , Aliphatic dicarboxylic acid diesters such as diethyl suberate, dimethyl sebacate, diethyl sebacate, dimethyl decanedicarboxylate, dimethyl dodecanedicarboxylate, dimethyl diglycolate, dimethyl ketopimelate, dimethyl malonate and dimethyl methylmalonate, and terephthalic acid And aromatic dicarboxylic acid diesters such as dimethyl and dimethyl isophthalate.

多価アルコールとしては、具体的には、例えば、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,3−ブタンジオール、2−メチル−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタメチレングリコール、へキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、ドデカメチレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール及び分子量1000以下のポリエチレングリコール等が挙げられる。   Specific examples of the polyhydric alcohol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,3-butanediol, 2-methyl-propanediol, and 1,4-butanediol. , Neopentyl glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, dodecamethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, diethylene glycol, dipropylene glycol, triethylene glycol , Tetraethylene glycol, pentaethylene glycol, polyethylene glycol having a molecular weight of 1000 or less, and the like.

ヒドロキシカルボン酸としては、具体的には、例えば、グリコール酸、2−メチル乳酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−2−メチル酪酸、2−ヒドロキシ−3−メチル酪酸、ヒドロキシピバリン酸、ヒドロキシイソカプロン酸及びヒドロキシカプロン酸等が挙げられる。   Specific examples of the hydroxycarboxylic acid include glycolic acid, 2-methyllactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, Examples include 2-hydroxy-2-methylbutyric acid, 2-hydroxy-3-methylbutyric acid, hydroxypivalic acid, hydroxyisocaproic acid, and hydroxycaproic acid.

ラクトン類としては、具体的には、例えば、β−プロピオラクトン、β−ブチロラクトン、γ−ブチロラクトン、β又はγ−バレロラクトン、δ−バレロラクトン、δ−カプロラクトン、ε−カプロラクトン、4−メチルカプロラクトン、3,5,5−トリメチルカプロラクトン、3,3,5−トリメチルカプロラクトン等の各種メチル化カプロラクトン;β−メチル−δ−バレロラクトン、エナントラクトン、ラウロラクトン等のヒドロキシカルボン酸の環状1量体エステル;グリコリド、L−ラクチド、D−ラクチド等の上記ヒドロキシカルボン酸の環状2量体エステル等が挙げられる。
また、本発明に係わるPLLA及びPDLAには、それぞれD−乳酸若しくはL−乳酸を前記範囲以下であれば少量含まれていてもよい。
Specific examples of lactones include β-propiolactone, β-butyrolactone, γ-butyrolactone, β or γ-valerolactone, δ-valerolactone, δ-caprolactone, ε-caprolactone, and 4-methylcaprolactone. Various methylated caprolactones such as 3,5,5-trimethylcaprolactone and 3,3,5-trimethylcaprolactone; cyclic monomeric esters of hydroxycarboxylic acids such as β-methyl-δ-valerolactone, enanthlactone and laurolactone A cyclic dimer ester of the above hydroxycarboxylic acid such as glycolide, L-lactide, D-lactide and the like.
Further, PLLA and PDLA according to the present invention may each contain a small amount of D-lactic acid or L-lactic acid as long as it is within the above range.

本発明に係わるポリ乳酸系組成物には、本発明の目的を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、帯電防止剤、防曇剤、粘着付与剤、アンチブロッキング剤、スリップ剤、耐光安定剤、紫外線吸収剤、蛍光増白剤、抗菌剤、核剤、無機あるいは有機化合物充填材等の添加剤を必要に応じて配合しておいてもよい。
<ポリ乳酸系熱成形体>
本発明のポリ乳酸系熱成形体は、前記ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸組成物からなるシートを熱成形してなる成形体であって、当該成形体が、DSC測定における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークの高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークの高さ(ピーク2)とのピーク比(ピーク1/ピーク2)が0.2以下、好ましくは0.1以下であることを特徴とする。
In the polylactic acid-based composition according to the present invention, an antioxidant, a weathering stabilizer, an antistatic agent, an antifogging agent, a tackifier, an antiblocking agent, a slip are used as long as the object of the present invention is not impaired. Additives such as additives, light-resistant stabilizers, ultraviolet absorbers, fluorescent brighteners, antibacterial agents, nucleating agents, inorganic or organic compound fillers may be blended as required.
<Polylactic acid thermoformed body>
The polylactic acid-based thermoformed article of the present invention is a molded article obtained by thermoforming a sheet comprising a polylactic acid composition containing the poly-L-lactic acid and poly-D-lactic acid, and the molded article is a DSC. The peak ratio of the maximum endothermic peak height (peak 1) in the range of 150 to 200 ° C. and the maximum endothermic peak height (peak 2) in the range of 205 to 240 ° C. in the measurement ( The peak 1 / peak 2) is 0.2 or less, preferably 0.1 or less.

本発明のポリ乳酸系熱成形体は、前記特性に加え、205〜240℃の範囲にある吸熱ピークの吸熱量(ΔHm)が40J/g以上、より好ましくは50J/g以上であり、DSC測定における吸熱ピーク測定後に、降温した際の発熱量(ΔHc)が40J/g以上、より好ましくは50J/g以上の特性を有する。   In addition to the above properties, the polylactic acid-based thermoformed article of the present invention has an endothermic peak endothermic amount (ΔHm) in the range of 205 to 240 ° C. of 40 J / g or more, more preferably 50 J / g or more. After measuring the endothermic peak, the calorific value (ΔHc) when the temperature is lowered is 40 J / g or more, more preferably 50 J / g or more.

本発明のポリ乳酸系熱成形体は、前記特性に加え、広角X線測定における2θが12度、21度および24度近辺のピーク面積の総和(SSC)が全体の面積に対して20%以上、好ましくは25%以上であり、かつ2θが17度および19度近辺のピーク面積の総和(SPL)が全体の面積に対して5%以下、好ましくは3%以下の特性を有する。 In addition to the above characteristics, the polylactic acid-based thermoformed article of the present invention has a total sum of peak areas (S SC ) in the vicinity of 12 °, 21 ° and 24 ° in wide-angle X-ray measurement of 20% relative to the entire area. As described above, it is preferably 25% or more, and the total peak area (S PL ) of 2θ around 17 degrees and 19 degrees (S PL ) is 5% or less, preferably 3% or less.

かかる広角X線測定における2θが17度および19度近辺のピークはPLLA及びPDLAの結晶に基づくピーク(PPL)であり、12度、21度および24度近辺のピークはPLLAとPDLAとが共結晶した所謂ステレオコンプレックスの結晶に基づくピーク(PSC)である。 In such wide-angle X-ray measurement, peaks around 2 ° of 17 ° and 19 ° are peaks based on PLLA and PDLA crystals (P PL ), and peaks around 12 °, 21 °, and 24 ° are the same for PLLA and PDLA. This is a peak ( PSC ) based on crystal of so-called stereocomplex crystal.

本発明における広角X線による回折ピーク(2θ)はX線回折装置(株式会社リガク製 自動X線回折装置RINT−2200またはRINT−2500)を用いて測定して検出される回折ピークの角度(度)である。記録紙の基線(強度;0cps)とX線回折強度曲線で囲まれた回折角(2θ)が10〜30度の総面積(全体の面積)を100%とし、結晶に基づく各々の回折ピーク面積は、(SPL)については17度および19度近辺の回折ピーク(2θ)、(SSC)については12度、21度および24度近辺の回折ピーク(2θ)各々の面積を記録紙から切り出し、その重量を測定することにより算出した。また非結晶部分に起因するブロードな部分は(非晶部分)とした。尚、(SPL)、(SSC)を測定する際には非晶部分に伴う回折曲線をベースラインとしてその上の部分を測定した。 The diffraction peak (2θ) by wide-angle X-ray in the present invention is the angle (degree) of the diffraction peak detected and measured by using an X-ray diffractometer (automatic X-ray diffractometer RINT-2200 or RINT-2500 manufactured by Rigaku Corporation). ). Each diffraction peak area based on a crystal is defined as a total area (total area) of 10 to 30 degrees of diffraction angle (2θ) surrounded by the base line (intensity; 0 cps) of the recording paper and the X-ray diffraction intensity curve. Cut out the areas of diffraction peaks (2θ) around 17 degrees and 19 degrees for (S PL ) and 12 (21) and diffraction peaks (2θ) around 21 degrees and 24 degrees for (S SC ) from the recording paper. It was calculated by measuring its weight. Moreover, the broad part resulting from an amorphous part was made into (amorphous part). When measuring (S PL ) and (S SC ), the diffraction curve associated with the amorphous portion was used as a baseline and the portion above it was measured.

本発明におけるポリ乳酸系熱成形体の熱融解特性は、DSC(示差走査熱量計)として、ティー・エイ・インスツルメント社製 Q100を用い、試料約5mgを精秤し、JIS K 7121及びJIS K 7122に準拠し、窒素ガス流入量:50ml/分の条件下で、0℃から加熱速度:10℃/分で250℃まで昇温して昇温時のDSC曲線を得、得られたDSC曲線から、ポリ乳酸系熱成形体の融点(Tm)、205〜240℃の範囲にある吸熱ピークの吸熱量(ΔHm)、150〜200℃の範囲にある吸熱ピークの最大吸熱ピーク高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピーク高さ(ピーク2)とのピーク比(ピーク1/ピーク2)を求めるとともに、250℃に10分間維持した後、冷却速度:10℃/分で0℃まで降温して結晶化させて、降温時のDSC曲線を得、得られたDSC曲線から、ポリ乳酸系熱成形体の結晶化の際の発熱量(Hc)を求めた。   The heat melting characteristics of the polylactic acid-based thermoformed product in the present invention are as follows: DSA (Differential Scanning Calorimeter), Q100 manufactured by T.A. Instruments Co., Ltd. is used, and about 5 mg of a sample is precisely weighed, and JIS K 7121 and JIS are used. In accordance with K 7122, the DSC curve was obtained by raising the temperature from 0 ° C. to 250 ° C. at a heating rate of 10 ° C./min under the condition of nitrogen gas inflow rate: 50 ml / min. From the curve, the melting point (Tm) of the polylactic acid-based thermoformed product, the endothermic amount of the endothermic peak in the range of 205 to 240 ° C (ΔHm), the maximum endothermic peak height of the endothermic peak in the range of 150 to 200 ° C (peak) 1) and the peak ratio (peak 1 / peak 2) between the endothermic peak in the range of 205-240 ° C. and the maximum endothermic peak height (peak 2), and after maintaining at 250 ° C. for 10 minutes, the cooling rate The temperature is lowered to 0 ° C. at 10 ° C./min to crystallize to obtain a DSC curve at the time of temperature reduction, and the calorific value (Hc) at the time of crystallization of the polylactic acid thermoformed product is obtained from the obtained DSC curve. It was.

なお、ピーク高さは、65℃〜75℃付近のベースラインと240℃〜250℃付近のベースラインを結ぶことにより得られるベースラインからの高さで求めた。
本発明のポリ乳酸系熱成形体の厚さは、用途に応じて、適宜決め得るが、通常、0.005〜1mm、好ましくは0.01〜0.5mmの範囲にある。
<ポリ乳酸系組成物シート>
本発明のポリ乳酸系熱成形体の原反となるポリ乳酸系組成物シートを得るには、ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物として、以下の熱融解特性を有するポリ乳酸系組成物を用意して、キャスト成形または延伸フィルム成形することが好ましい。
In addition, the peak height was calculated | required by the height from the base line obtained by connecting the base line near 65 to 75 degreeC and the base line near 240 to 250 degreeC.
The thickness of the polylactic acid-based thermoformed article of the present invention can be appropriately determined according to the use, but is usually in the range of 0.005 to 1 mm, preferably 0.01 to 0.5 mm.
<Polylactic acid-based composition sheet>
In order to obtain a polylactic acid-based composition sheet as a raw material of the polylactic acid-based thermoformed article of the present invention, the following thermal melting characteristics are obtained as a polylactic acid-based composition containing poly-L-lactic acid and poly-D-lactic acid. It is preferable to prepare a polylactic acid-based composition having the above and cast or stretch film.

本発明に係わるポリ乳酸系組成物は、DSC測定において、ポリ乳酸系組成物を250℃で10分融解させた後に降温した際(第1回降温時)の発熱量(ΔHc)が好ましくは20J/g以上である熱特性を有することが望ましい。   The polylactic acid composition according to the present invention preferably has a calorific value (ΔHc) of 20 J when the temperature is lowered after the polylactic acid composition is melted at 250 ° C. for 10 minutes (at the first temperature drop) in DSC measurement. It is desirable to have thermal characteristics that are greater than / g.

さらに、本発明に係わるポリ乳酸系組成物は、そのDSCの第2回昇温時の測定(250℃で10分経た後に10℃/分で降温を行い、0℃から再度10℃/分で昇温)において得られたDSC曲線の150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク10)と205〜240℃の範囲にある吸熱ピークの最大ピークのピーク高さ(ピーク20)のピーク比(ピーク10/ピーク20)が好ましくは0.5以下、より好ましくは0.3以下、特に好ましくは0.2以下であるという熱特性を有することが望ましい。これは、この組成物がステレオコンプレックス晶を選択的に形成しているためと考えられる。   Furthermore, the polylactic acid-based composition according to the present invention was measured at the second temperature increase of the DSC (after 10 minutes at 250 ° C., the temperature was decreased at 10 ° C./minute, and then increased again from 0 ° C. at 10 ° C./minute. Of the endothermic peak in the range of 150 to 200 ° C. of the DSC curve obtained at (temperature) (peak 10) and the peak height of the endothermic peak in the range of 205 to 240 ° C. It is desirable that the peak ratio of peak 20) (peak 10 / peak 20) is preferably 0.5 or less, more preferably 0.3 or less, and particularly preferably 0.2 or less. This is presumably because this composition selectively forms stereocomplex crystals.

ピーク比(ピーク10/ピーク20)が0.5より大きいと、結晶化後にPLLA、PDLA単体結晶の形成量が大きく、ポリ−L−乳酸とポリ−D−乳酸とが十分に混練されていない虞がある。   If the peak ratio (peak 10 / peak 20) is greater than 0.5, the amount of PLLA and PDLA single crystals formed after crystallization is large, and poly-L-lactic acid and poly-D-lactic acid are not sufficiently kneaded. There is a fear.

ピーク比(ピーク10/ピーク20)が0.5より大きい組成物は結晶化後のα晶(PLLAあるいはPDLAの単独結晶)の形成量が大きいため、延伸しても耐熱性に劣る虞がある。   A composition having a peak ratio (Peak 10 / Peak 20) greater than 0.5 has a large amount of α-crystals (PLLA or PDLA single crystal) formed after crystallization. .

また、本発明に係わるポリ乳酸系組成物は、DSCの第2回昇温時における205〜240℃の吸熱ピークの吸熱量(ΔHm)が35J/g以上であることが好ましい。   The polylactic acid-based composition according to the present invention preferably has an endothermic amount (ΔHm) of an endothermic peak of 205 to 240 ° C. at the time of the second DSC temperature increase of 35 J / g or more.

本発明に係わるポリ乳酸系組成物の熱融解特性は、前記ポリ乳酸系熱成形体の熱融解特性を求めた方法と同様な方法で、DSC(示差走査熱量計)として、ティー・エイ・インスツルメント社製 Q100を用い、試料約5mgを精秤し、JIS K 7121及びJIS K 7122に準拠して求めた。なお、ポリ乳酸系組成物の熱融解特性は、降温時と第2回昇温時における特性を求めた。   The heat melting characteristics of the polylactic acid-based composition according to the present invention are the same as the methods for determining the heat-melting characteristics of the polylactic acid-based thermoformed article, and DSA (Differential Scanning Calorimeter) is used. About 100 mg of a sample was precisely weighed using Q100 manufactured by Strument, and determined according to JIS K7121 and JIS K7122. In addition, the heat melting characteristic of the polylactic acid-type composition calculated | required the characteristic at the time of temperature fall and the time of the 2nd temperature rise.

本発明に係わるポリ乳酸系組成物は、好ましくは前記PLLAを25〜75重量部、より好ましくは35〜65重量部、特に好ましくは45〜55重量部、その中でも好ましくは47〜53重量部及びPDLAを好ましくは75〜25重量部、より好ましくは65〜35重量部、特に好ましくは55〜45重量部、その中でも好ましくは53〜47重量部(PLLA+PDLA=100重量部)から構成されている、即ち調製されている。   The polylactic acid composition according to the present invention is preferably 25 to 75 parts by weight of the PLLA, more preferably 35 to 65 parts by weight, particularly preferably 45 to 55 parts by weight, and particularly preferably 47 to 53 parts by weight. PDLA is preferably composed of 75 to 25 parts by weight, more preferably 65 to 35 parts by weight, particularly preferably 55 to 45 parts by weight, and most preferably 53 to 47 parts by weight (PLLA + PDLA = 100 parts by weight). That is, it is prepared.

本発明に係わるポリ乳酸系組成物は、ポリ−L−乳酸及びポリ−D−乳酸の重量平均分子量が、いずれも6千〜300万の範囲内であり、かつ、ポリ−L−乳酸またはポリ−D−乳酸のいずれか一方の重量平均分子量が3万〜200万であるポリ−L−乳酸及びポリ−D−乳酸から混練により調製することが望ましい。   In the polylactic acid-based composition according to the present invention, the poly-L-lactic acid and the poly-D-lactic acid each have a weight average molecular weight in the range of 6,000 to 3,000,000, and It is desirable to prepare by kneading from poly-L-lactic acid and poly-D-lactic acid, each having a weight average molecular weight of 30,000 to 2,000,000.

また、本発明に係わるポリ乳酸系組成物は、例えば、これらPLLAとPDLAを、230〜260℃で二軸押出機、二軸混練機、バンバリーミキサー、プラストミルなどで溶融混練することにより得ることができる。   The polylactic acid composition according to the present invention can be obtained, for example, by melt-kneading these PLLA and PDLA at 230 to 260 ° C. with a twin-screw extruder, twin-screw kneader, Banbury mixer, plast mill or the like. it can.

PLLAの量が上記範囲外の組成物は上述の方法で混練しても、得られる組成物を延伸してなるシートはα晶の結晶体を含み、耐熱性が不十分となる虞がある。
本発明に係わるポリ乳酸系組成物が耐熱性に優れるのは、当該組成物がステレオコンプレックス構造を形成しており、ステレオコンプレックス構造はPLLAとPDLAの等量から構成されるためであると考えられる。
Even if a composition having an amount of PLLA outside the above range is kneaded by the above-described method, a sheet obtained by stretching the resulting composition contains α-crystals, which may result in insufficient heat resistance.
The reason why the polylactic acid composition according to the present invention is excellent in heat resistance is that the composition forms a stereocomplex structure, and the stereocomplex structure is composed of equal amounts of PLLA and PDLA. .

本発明に係わるポリ乳酸系組成物を得るために、PLLAとPDLAを溶融混練するときの温度は、好ましくは230〜260℃であり、より好ましくは235〜255℃である。溶融混練する温度が230℃より低いとステレオコンプレックス構造物が未溶融で存在する虞があり、260℃より高いとポリ乳酸が分解する虞がある。   In order to obtain the polylactic acid composition according to the present invention, the temperature at which PLLA and PDLA are melt-kneaded is preferably 230 to 260 ° C, more preferably 235 to 255 ° C. If the melt kneading temperature is lower than 230 ° C, the stereocomplex structure may be unmelted, and if it is higher than 260 ° C, polylactic acid may be decomposed.

また、本発明に係わるポリ乳酸系組成物を調製する際に、PLLAとPDLAを十分に溶融混練することが望ましい。溶融混練時間は、用いる溶融混練機にもよるが、通常、5分間以上であればよい。PLLAとPDLAの溶融混練時間をより長くすればするほど、例えば、20分間以上、あるいは30分間以上とすることにより、得られるポリ乳酸系組成物は、DSCの第2回昇温時における205〜240℃の吸熱ピークの吸熱量(ΔHm)が45J/g以上、あるいは50J/g以上となり、150〜200℃の範囲にある吸熱ピークの吸熱量は3.5J/g以下、あるいは0J/gとなり、よりステレオコンプレックスの結晶化が早く、PLLAあるいはPDLAの単独結晶(α晶)が生成し難いポリ乳酸系組成物とすることができる。   Moreover, when preparing the polylactic acid-type composition concerning this invention, it is desirable to melt-knead PLLA and PDLA fully. The melt-kneading time is usually 5 minutes or longer, although it depends on the melt-kneader used. The longer the melt kneading time of PLLA and PDLA is, for example, 20 minutes or more, or 30 minutes or more, the resulting polylactic acid-based composition has a temperature of 205 to 240 at the second temperature increase of DSC. The endothermic amount (ΔHm) of the endothermic peak at 45 ° C. is 45 J / g or more, or 50 J / g or more, and the endothermic amount of the endothermic peak in the range of 150 to 200 ° C. is 3.5 J / g or less, or 0 J / g, It is possible to obtain a polylactic acid-based composition in which steric complex crystallization is quicker and PLLA or PDLA single crystal (α crystal) is less likely to be formed.

本発明に係るポリ乳酸系組成物は、ステレオコンプレックスの結晶化が早く、かつステレオコンプレックス結晶化可能領域も大きいので、PLLAあるいはPDLAの単独結晶(α晶)が生成し難いと考えられる。   The polylactic acid-based composition according to the present invention is considered to be difficult to produce a single crystal (α crystal) of PLLA or PDLA because the stereocomplex is rapidly crystallized and the stereocomplex crystallizable region is large.

前述のように、本発明に係わるポリ乳酸系組成物は、DSCによる250℃で10分経過後の降温時(第1回降温時)での測定(10℃/分)において結晶化によるピーク(発熱量ΔHc)が、20J/g以上であり、ポリ乳酸系組成物の結晶化が速やかに起こる。   As described above, the polylactic acid composition according to the present invention has a peak due to crystallization (10 ° C./min) measured by DSC at the time of temperature decrease after 10 minutes at 250 ° C. (at the first temperature decrease) (10 ° C./min). The calorific value ΔHc) is 20 J / g or more, and the polylactic acid composition crystallizes rapidly.

また結晶化による発熱量が20J/gより小さいと結晶化速度が小さく、上記混練が十分でない虞がある。   On the other hand, if the calorific value due to crystallization is less than 20 J / g, the crystallization rate is low and the kneading may be insufficient.

本発明に係わるポリ乳酸系組成物の重量平均分子量は特に限定されるものではない。しかしながら、本発明に係わるポリ乳酸系組成物は、重量平均分子量が1万〜150万の範囲にあることが好ましく、さらには重量平均分子量が5万〜50万の範囲にあることが望ましい。重量平均分子量が、上記範囲を高分子側に外れるとステレオコンプレックス化が十分でなく耐熱性が得られない虞があり、また低分子側に外れると得られるポリ乳酸系組成物層の強度が十分でない虞がある。   The weight average molecular weight of the polylactic acid composition according to the present invention is not particularly limited. However, the polylactic acid composition according to the present invention preferably has a weight average molecular weight in the range of 10,000 to 1,500,000, and more preferably in the range of 50,000 to 500,000. If the weight average molecular weight deviates from the above range to the polymer side, stereocomplexation may not be sufficient and heat resistance may not be obtained, and if it deviates to the low molecular side, the strength of the polylactic acid composition layer obtained is sufficient There is a possibility that it is not.

<ポリ乳酸系組成物シートの製造方法>
本発明に係わるポリ乳酸系組成物シートは、前記ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸系組成物を用いて、押出成形して得られるシートをそのまま用いてもよく、また延伸してもよい。延伸する場合は、好ましくは一方向に2倍以上、より好ましくは2〜12倍、さらに好ましくは3〜6倍延伸することにより、耐熱性、透明性に優れる延伸されたシートが得られる。延伸倍率の上限は延伸し得る限り、とくに限定はされないが、通常、12倍を超えるとシートが破断したりして、安定して延伸できない虞がある。
<Method for producing polylactic acid-based composition sheet>
As the polylactic acid composition sheet according to the present invention, a sheet obtained by extrusion molding using the polylactic acid composition containing poly-L-lactic acid and poly-D-lactic acid may be used as it is. You may extend | stretch. In the case of stretching, a stretched sheet having excellent heat resistance and transparency can be obtained by stretching preferably twice or more in one direction, more preferably 2 to 12 times, and even more preferably 3 to 6 times. The upper limit of the stretching ratio is not particularly limited as long as it can be stretched. However, if it exceeds 12 times, the sheet may be broken and may not be stably stretched.

本発明に係わるポリ乳酸系組成物シートはそのまま用いてもよく、ヒートセットしてもよい。ヒートセットする場合は好ましくは140〜220℃、より好ましくは150〜200℃で、好ましくは1秒以上、より好ましくは3〜60秒熱処理しておくと、更に耐熱性が改良される。   The polylactic acid composition sheet according to the present invention may be used as it is or may be heat set. In the case of heat setting, heat resistance is preferably further improved by heat treatment at 140 to 220 ° C, more preferably 150 to 200 ° C, preferably 1 second or more, more preferably 3 to 60 seconds.

<ポリ乳酸系熱成形体の製造方法>
本発明のポリ乳酸系熱成形体は、前記記載の方法で得られるポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸組成物をからなる未延伸シートを熱成形することにより得られる。
<Method for producing polylactic acid-based thermoformed article>
The polylactic acid-based thermoformed article of the present invention is obtained by thermoforming an unstretched sheet comprising a polylactic acid composition containing poly-L-lactic acid and poly-D-lactic acid obtained by the above-described method.

ポリ乳酸組成物をからなる未延伸シートを熱成形する方法としては、種々公知の方法、具体的には真空成形、圧空成形、真空圧空成形、プラグアシスト成形、雌雄型成形等を採用し得る。   As a method for thermoforming an unstretched sheet comprising a polylactic acid composition, various known methods, specifically, vacuum forming, pressure forming, vacuum / pressure forming, plug assist forming, male and female forming, etc. can be employed.

真空成形においては、プラスチック成形用の汎用成形機が使用可能であり、熱板または熱風を用いて未延伸シートの表面温度を110〜150℃に予熱して、キャビティ温度100〜150℃でキャビティに密着させることが好ましい。キャビティには、多数の細孔を設けてキャビティ内を減圧することで成形を行い、型の再現性の良好な容器を得ることができる。また、真空成形法において、プラグと称する押し込み装置を備えて用いることにより、シートの局所的な引き延ばしによる薄肉化を防止することができる。   In vacuum forming, a general-purpose molding machine for plastic molding can be used. The surface temperature of the unstretched sheet is preheated to 110 to 150 ° C. using a hot plate or hot air, and the cavity temperature is set to 100 to 150 ° C. It is preferable to adhere. The cavity is provided with a large number of pores, and molding is performed by reducing the pressure in the cavity, thereby obtaining a container with good mold reproducibility. Further, in the vacuum forming method, by using a push-in device called a plug, it is possible to prevent thinning due to local stretching of the sheet.

圧空成形においても、プラスチック成形用の汎用成形機が使用可能であり、熱板によるシートの可塑化後、熱板全体に設けられた多数の細孔からシート表面に空気圧を作用することで、シートの押し込み成形を行い、型の再現性の良好な成形品を得ることができる。   Even in pressure forming, a general-purpose molding machine for plastic molding can be used, and after plasticizing the sheet with a hot plate, air pressure is applied to the sheet surface from a large number of pores provided in the entire hot plate. The molded product with good mold reproducibility can be obtained.

次に実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限
りこれらの実施例に制約されるものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist.

実施例及び比較例等で使用したポリ乳酸は次の通りである。
(1)ポリ乳酸
(イ)ポリ−L−乳酸(PLLA―1):
D体量:1.9% Mw:22.2万(g/モル)、Tm:163℃。
(ロ)ポリ−D−乳酸(PURAC社製:PDLA―1):
D体量:100.0% Mw:135万(g/モル)、Tm:180℃
Inherent粘度(溶媒;クロロホルム、測定温度;25℃、濃度;0.1g/dl):7.04dl/g。
The polylactic acid used in Examples and Comparative Examples is as follows.
(1) Polylactic acid (I) Poly-L-lactic acid (PLLA-1):
D body amount: 1.9% Mw: 222,000 (g / mol), Tm: 163 ° C.
(B) Poly-D-lactic acid (manufactured by PURAC: PDLA-1):
D body amount: 100.0% Mw: 1.35 million (g / mol), Tm: 180 ° C.
Inherent viscosity (solvent: chloroform, measurement temperature: 25 ° C., concentration: 0.1 g / dl): 7.04 dl / g.

本発明における測定方法は以下のとおりである。
(1)重量平均分子量(Mw)
試料20mgに、GPC溶離液10mlを加え、一晩静置後、手で緩やかに攪拌した。この溶液を、両親媒性0.45μm―PTFEフィルター(ADVANTEC DISMIC―25HP045AN)でろ過し、GPC試料溶液とした。
測定装置;Shodex GPC SYSTEM−21
解析装置;データ解析プログラム:SIC480データステーションII
検出器;示差屈折検出器(RI)
カラム;Shodex GPC K−G + K−806L + K−806L
カラム温度;40℃
溶離液;クロロホルム
流速;1.0ml/分
注入量;200μL
分子量校正;単分散ポリスチレン
The measuring method in the present invention is as follows.
(1) Weight average molecular weight (Mw)
To 20 mg of the sample, 10 ml of GPC eluent was added, and the mixture was allowed to stand overnight and then gently stirred by hand. This solution was filtered through an amphiphilic 0.45 μm-PTFE filter (ADVANTEC DISMIC-25HP045AN) to obtain a GPC sample solution.
Measuring device; Shodex GPC SYSTEM-21
Analysis device; data analysis program: SIC480 data station II
Detector: Differential refraction detector (RI)
Column; Shodex GPC K-G + K-806L + K-806L
Column temperature: 40 ° C
Eluent; Chloroform flow rate; 1.0 ml / min injection volume; 200 μL
Molecular weight calibration; monodisperse polystyrene

(2)DSC測定
示差走査熱量計(DSC)を用い、前記記載の方法で測定した。
(3)広角X線測定
測定装置:X線回折装置(株式会社リガク製 自動X線回折装置RINT−2200)
反射法
X線ターゲット:Cu K―α
出力:1/40kV×40mA
回転角:4.0°/分
ステップ:0.02°
走査範囲:10〜30°
(4)透明性
日本電色工業社製 ヘイズメーター300Aを用いてシート及び成形品のヘイズ(HZ)及び平行光光線透過率(PT)を測定した。
(5)表面粗さ
株式会社小坂研究所製三次元表面粗さ測定器SE−30Kを用いてポリ乳酸系延伸シート表面の中心面平均粗さ(SRa)を測定した。
(6)引張り試験
ポリ乳酸系延伸シートからMD方向及びTD方向に、夫々短冊状の試験片(長さ:150mm、幅:15mm)を採取して、引張り試験機(オリエンテック社製テンシロン万能試験機RTC-1225)を使用し、チャック間距離:100mm、クロスヘッドスピード:300mm/分(但し、ヤング率の測定は5mm/分で測定)で、引張り試験を行い、引張強さ(MPa)、伸び(%)及びヤング率(MPa)を求めた。
(7)透湿度(水蒸気透過度)
JIS Z0208 に準拠して求めた。ポリ乳酸系延伸シートを採取して、表面積が約100cm2の袋を作り、塩化カルシウムを適量入れた後、密封した。これを40℃、90%RH(相対湿度)の雰囲気中に3日間放置し、重量増加から透湿度(水蒸気透過度)を求めた。
(8)酸素透過度
JIS K7126に基づいて20℃湿度0%RH(相対湿度)の条件で、酸素透過測定器(MOCON社製、OXTRAN2/21 ML)を使用して測定した。
(9)耐熱性(延伸シート)
熱分析装置(セイコーインスツルメンツ株式会社製 熱・応用・歪測定装置 TMA/SS120)を用いてシートから幅4mmの試験片を切り出し、チャック間5mmで試験片に荷重0.25MPaを掛け、100℃(開始温度)から5℃/分で昇温し、各温度における試験片の変形(伸びまたは収縮)を測定した。
(10)耐熱性(容器)
真空成形品(容器)の耐熱性を98℃の熱湯を容器の底から6cmまで入れて容器の変形を目視で以下に分類した。
○:変形なし。
△:軽微な変形あり(主に底部の変形)
×:変形が大きい(容器が傾き、熱湯がこぼれる状態)

参考例1
PLLA―1:PDLA―1を50:50(重量部)の比で計量し、二軸混練押出機を用い、溶融温度;250℃、混練時間;6分で、溶融混練してポリ乳酸系組成物を得た後、T−ダイシート成形機で、厚さ約300μmのポリ乳酸系組成物からなるシートを得た。かかるポリ乳酸系組成物の熱融解特性を前記記載の方法で測定した。
(2) DSC measurement It measured by the method of the said description using the differential scanning calorimeter (DSC).
(3) Wide-angle X-ray measurement Measuring device: X-ray diffractometer (automatic X-ray diffractometer RINT-2200 manufactured by Rigaku Corporation)
Reflection method X-ray target: Cu K-α
Output: 1 / 40kV x 40mA
Rotation angle: 4.0 ° / min Step: 0.02 °
Scanning range: 10-30 °
(4) Transparency The haze (HZ) and parallel light ray transmittance (PT) of the sheet and the molded product were measured using a haze meter 300A manufactured by Nippon Denshoku Industries Co., Ltd.
(5) Surface roughness The center plane average roughness (SRa) of the surface of the polylactic acid-based stretched sheet was measured using a three-dimensional surface roughness measuring instrument SE-30K manufactured by Kosaka Laboratory.
(6) Tensile test A strip-shaped test piece (length: 150 mm, width: 15 mm) is taken from the polylactic acid-based stretched sheet in the MD direction and the TD direction, respectively, and a tensile tester (Tensilon universal test manufactured by Orientec Co., Ltd.) Machine RTC-1225), a tensile test was performed at a distance between chucks: 100 mm, a crosshead speed: 300 mm / min (however, Young's modulus was measured at 5 mm / min), and tensile strength (MPa), Elongation (%) and Young's modulus (MPa) were determined.
(7) Moisture permeability (water vapor permeability)
It calculated | required based on JISZ0208. A polylactic acid-based stretched sheet was collected to make a bag having a surface area of about 100 cm 2, and an appropriate amount of calcium chloride was added, followed by sealing. This was left in an atmosphere of 40 ° C. and 90% RH (relative humidity) for 3 days, and the moisture permeability (water vapor permeability) was determined from the weight increase.
(8) Oxygen permeability Based on JIS K7126, it measured on the conditions of 20 degreeC humidity 0% RH (relative humidity) using the oxygen-permeation measuring device (the MOCON company make, OXTRAN2 / 21 ML).
(9) Heat resistance (stretched sheet)
A test piece with a width of 4 mm was cut out from the sheet using a thermal analyzer (Seiko Instruments Co., Ltd. Thermal / Application / Strain Measurement Device TMA / SS120), and a load of 0.25 MPa was applied to the test piece with a gap of 5 mm between chucks at 100 ° C. ( The temperature was increased from the starting temperature at 5 ° C./min, and the deformation (elongation or shrinkage) of the test piece at each temperature was measured.
(10) Heat resistance (container)
The heat resistance of the vacuum formed product (container) was set to 6 cm from the bottom of the container with hot water of 98 ° C., and the deformation of the container was visually classified as follows.
○: No deformation.
Δ: Minor deformation (mainly deformation at the bottom)
X: Deformation is large (the container is tilted and hot water spills)

Reference example 1
PLLA-1: PDLA-1 was weighed at a ratio of 50:50 (parts by weight), and melted and kneaded at a melting temperature of 250 ° C. and a kneading time of 6 minutes using a twin-screw kneading extruder. After obtaining the product, a sheet made of a polylactic acid-based composition having a thickness of about 300 μm was obtained with a T-die sheet molding machine. The heat melting characteristics of the polylactic acid composition were measured by the method described above.

次に、当該シートをブルックナー社製二軸延伸機で、縦方向に延伸温度;65℃で3倍に、横方向に延伸温度;70℃で3倍に延伸し、テンター内で180℃で約40秒間のヒートセットを行い、ポリ乳酸系延伸シートを得た。得られたポリ乳酸系延伸シートの物性を前記記載の方法で測定した。測定結果を表1に、熱融解特性を図1及び図2に示す。
参考例2
参考例1で用いたPLLA―1及びPDLA―1に代えて、PLLA―1を単独で用い、二軸延伸フィルムのヒートセットを150℃で約40秒間行う以外は参考例1と同様に行い、PLLA―1の未延伸シート及び二軸延伸シートを得た。測定結果を表1に、熱融解特性を図3及び図4に示す。
Next, the sheet was stretched in a longitudinal direction by a biaxial stretching machine manufactured by Bruckner; 3 times at 65 ° C., a stretching temperature in the transverse direction; 3 times at 70 ° C., and about 180 ° C. in a tenter. Heat setting for 40 seconds was performed to obtain a polylactic acid-based stretched sheet. The physical properties of the obtained polylactic acid-based stretched sheet were measured by the method described above. The measurement results are shown in Table 1, and the thermal melting characteristics are shown in FIGS.
Reference example 2
Instead of PLLA-1 and PDLA-1 used in Reference Example 1, PLLA-1 was used alone, and the biaxially stretched film was heat-set at 150 ° C. for about 40 seconds, and was performed in the same manner as Reference Example 1, An unstretched sheet and a biaxially stretched sheet of PLLA-1 were obtained. The measurement results are shown in Table 1, and the thermal melting characteristics are shown in FIGS.

Figure 2008063502
Figure 2008063502
表1から明らかなように、参考例1で得られたポリ乳酸系組成物からなる二軸延伸シートは、熱融解特性において、150〜200℃の範囲の吸熱ピーク(吸熱量)は僅かで、205〜240℃の範囲の吸熱ピークは大きく、吸熱量(ΔHm)も66.1J/gと多く、降温した際の発熱量(ΔHc)も49.7J/gある。また、二軸延伸シートの素材となるポリ乳酸系組成物(未延伸シート)の熱融解特性は、第1回降温時の発熱量(ΔHc)が20.3J/gと20J/g以上であり、第2回昇温時には、150〜200℃の範囲には吸熱ピークはみられず、205〜240℃の範囲の吸熱ピークの吸熱量(ΔHm)は51.0J/gと35J/gである。さらに、実施例1で得られたポリ乳酸系組成物からなる二軸延伸シートは、透明性、耐熱性に優れ、透湿度及び酸素透過度も低く、バリア性能を有し、広角X線測定における回折ピークは2θが12度近辺にのみ有し、2θが17度近辺には回折ピークは現れなかった。
Figure 2008063502
Figure 2008063502
As is clear from Table 1, the biaxially stretched sheet made of the polylactic acid composition obtained in Reference Example 1 has a slight endothermic peak (endothermic amount) in the range of 150 to 200 ° C. in the thermal melting characteristics. The endothermic peak in the range of 205 to 240 ° C. is large, the endothermic amount (ΔHm) is as large as 66.1 J / g, and the calorific value (ΔHc) when the temperature is lowered is 49.7 J / g. The heat melting characteristics of the polylactic acid composition (unstretched sheet) that is the raw material of the biaxially stretched sheet are the calorific value (ΔHc) at the first temperature drop of 20.3 J / g and 20 J / g or more. During the second temperature increase, no endothermic peak is observed in the range of 150 to 200 ° C., and the endothermic amounts (ΔHm) of the endothermic peak in the range of 205 to 240 ° C. are 51.0 J / g and 35 J / g. Furthermore, the biaxially stretched sheet made of the polylactic acid-based composition obtained in Example 1 is excellent in transparency and heat resistance, has low moisture permeability and oxygen permeability, has barrier performance, and is used in wide-angle X-ray measurement. The diffraction peak had 2θ only around 12 degrees, and no diffraction peak appeared when 2θ was around 17 degrees.

それに対し、参考例2で得られたPLLA―1からなる二軸延伸シートは、150〜200℃の範囲の吸熱ピークのみで、205〜240℃の範囲の吸熱ピークはなく、降温した際の発熱量(ΔHc)は0.4J/gと実施例1で得られたポリ乳酸系組成物からなる二軸延伸シートに比べ少ない。また、二軸延伸シートの素材となるPLLA―1(未延伸シート)の熱融解特性は、第1回降温時の発熱量(ΔHc)は0であり、第2回昇温時には、205〜240℃の範囲には吸熱ピークはみられず、150〜200℃の範囲のピークのみであり、その吸熱量(ΔHm)は32.1J/gである。さらに、比較例1で得られたPLLA―1からなる二軸延伸シートは、透明性は優れるものの、耐熱性、バリア性能に劣るとともに、広角X線測定における回折ピークは2θが17度近辺にのみ有し、2θが12度近辺には回折ピークは現れなかった。
実施例1
参考例1で得られた延伸シートから半径90mmの円形を切り出し、プレス成形装置を用いて、底径36mm、波の幅約5mmでカップ形に熱成型を行った。プレス温度は約90℃、プレス時間は7秒で行った。
On the other hand, the biaxially stretched sheet made of PLLA-1 obtained in Reference Example 2 has only an endothermic peak in the range of 150 to 200 ° C, no endothermic peak in the range of 205 to 240 ° C, and exotherm when the temperature is lowered. The amount (ΔHc) is 0.4 J / g, which is smaller than the biaxially stretched sheet made of the polylactic acid composition obtained in Example 1. In addition, the heat melting characteristics of PLLA-1 (unstretched sheet), which is a material for the biaxially stretched sheet, has a calorific value (ΔHc) of 0 at the first temperature drop, and 205 to 240 ° C. at the second temperature rise. No endothermic peak is observed in the range of, but only the peak in the range of 150 to 200 ° C., and the endothermic amount (ΔHm) is 32.1 J / g. Furthermore, although the biaxially stretched sheet made of PLLA-1 obtained in Comparative Example 1 has excellent transparency, it is inferior in heat resistance and barrier performance, and the diffraction peak in wide-angle X-ray measurement is 2θ around 17 degrees only. The diffraction peak did not appear when 2θ was around 12 degrees.
Example 1
A circular shape having a radius of 90 mm was cut out from the stretched sheet obtained in Reference Example 1, and thermoformed into a cup shape with a bottom diameter of 36 mm and a wave width of about 5 mm using a press molding apparatus. The pressing temperature was about 90 ° C. and the pressing time was 7 seconds.

得られた熱成型品に惣菜を入れ、電子レンジにて10秒間加熱を行ったところ、容器の変形はなく、美麗であった。
実施例2
実施例1で用いた延伸シートに代えて、印刷を施した参考例1の延伸シートをイソシアネート系接着剤で2枚(印刷面を内面として)貼り合わせて用いた以外は実施例1と同様に行った。実施例1と同じく、得られた熱成型品に惣菜を入れ、電子レンジにて10秒間加熱を行ったところ、容器の変形はなく、美麗であった。
比較例1
実施例1で用いた延伸シートに代えて、参考例2の延伸シートを用いた以外は実施例1と同様に行ったところ、プレスによる温度での軟化が実施例1、2に比べて大きかった。また実施例1と同じく、得られた熱成型品に惣菜を入れ、電子レンジにて10秒間加熱を行ったところ、容器の変形を生じた。
実施例3
<真空成形>
参考例1で得た厚さ約300μmのポリ乳酸系組成物からなる未延伸シートを用いて株式会社浅野研究所製カットシートテスト成形機FKS−0631−20により成形した。金型は上面径82mm、下面径55mm、絞り深さ60mmのプリン型を用いた。
本装置は(1)予熱部、(2)成形部と分かれているバッチ式である。まず(1)予熱部で遠赤外ヒーターによりシートが加熱させ放射温度計によりシート表面の温度が設定値に予熱されると、(2)成形部に移動しキャビティ/プラグ間で成形される。
予熱ヒーター温度を300℃にし、シート表面温度が140℃に上昇したところで成形を行った。予熱時間は21秒であった。またキャビティの設定温度は100℃、プラグの設定温度は100℃、成形時間(型内保持時間)は60秒とした。

比較例2
参考例1のPLLA―1:PDLA―2を50:50(重量%)からなる厚さ約300ミクロンのシートを用いる代わりに参考例2のPLLA―1単体からなるシートを用いた以外は実施例3と同様に行った。
When the prepared thermoformed product was put in a side dish and heated in a microwave oven for 10 seconds, the container was not deformed and was beautiful.
Example 2
In place of the stretched sheet used in Example 1, the stretched sheet of Reference Example 1 subjected to printing was used in the same manner as in Example 1 except that two sheets (with the printed surface as the inner surface) were bonded together with an isocyanate adhesive. went. As in Example 1, the side dish was put into the obtained thermoformed product and heated in a microwave oven for 10 seconds. The container was not deformed and was beautiful.
Comparative Example 1
The same procedure as in Example 1 was performed except that the stretched sheet of Reference Example 2 was used instead of the stretched sheet used in Example 1, and the softening at the temperature by the press was larger than in Examples 1 and 2. . Similarly to Example 1, when the prepared thermoformed product was put in a side dish and heated in a microwave oven for 10 seconds, the container was deformed.
Example 3
<Vacuum forming>
Using an unstretched sheet made of a polylactic acid composition having a thickness of about 300 μm obtained in Reference Example 1, the sheet was molded by a cut sheet test molding machine FKS-0631-20 manufactured by Asano Laboratories. As the mold, a pudding mold having an upper surface diameter of 82 mm, a lower surface diameter of 55 mm, and a drawing depth of 60 mm was used.
This device is a batch type that is divided into (1) preheating section and (2) molding section. First, (1) when the sheet is heated by a far-infrared heater in the preheating part and the temperature of the sheet surface is preheated to a set value by the radiation thermometer, (2) it moves to the forming part and is formed between the cavity / plug.
Molding was performed when the preheating heater temperature was 300 ° C. and the sheet surface temperature was increased to 140 ° C. The preheating time was 21 seconds. The cavity set temperature was 100 ° C., the plug set temperature was 100 ° C., and the molding time (in-mold holding time) was 60 seconds.

Comparative Example 2
Example in which PLLA-1 of Reference Example 1 was replaced with a sheet made of PLLA-1 alone in Reference Example 2 instead of using a sheet of about 300 microns in thickness consisting of 50:50 (% by weight) of PLLA-2 Same as 3.

Figure 2008063502
表2から明らかなように、PLLA―1とPDLA―1を50:50(重量%)で予め十分混練した未延伸シートを原料として用い、且つ予熱に時間をかけてシートで一部結晶させた実施例3はヘイズはやや上がるものの成形性、耐熱性ともに優れていた。一方PLLA−1単体では同一条件ではキャビティ内で成形品が軟化して貼りついてしまい成形できず、成形するためにキャビティ、プラグ温度を常温まで下げた比較例2では耐熱性が得られなかった。
Figure 2008063502
As is clear from Table 2, an unstretched sheet in which PLLA-1 and PDLA-1 were sufficiently kneaded in advance at 50:50 (% by weight) was used as a raw material, and part of the sheet was crystallized over time for preheating. In Example 3, although the haze increased slightly, the moldability and heat resistance were excellent. On the other hand, in the case of PLLA-1 alone, the molded product was softened and stuck in the cavity under the same conditions and could not be molded. In Comparative Example 2 in which the cavity and plug temperature were lowered to room temperature for molding, heat resistance was not obtained.

また実施例3で得られたポリ乳酸系組成物からなる真空成形体は、熱融解特性において、150〜200℃の範囲の吸熱ピーク(吸熱量)はなく、205〜240℃の範囲の吸熱ピークは大きく、吸熱量(ΔHm)が49.5J/gと大きい。さらに広角X線測定における回折ピークは2θが12度近辺にのみ有し、2θが17度近辺には回折ピークは現れなかった。   Further, the vacuum molded body made of the polylactic acid-based composition obtained in Example 3 has no endothermic peak (endothermic amount) in the range of 150 to 200 ° C. in the thermal melting property, and an endothermic peak in the range of 205 to 240 ° C. The heat absorption (ΔHm) is as large as 49.5 J / g. Furthermore, the diffraction peak in wide-angle X-ray measurement had 2θ only around 12 degrees, and no diffraction peak appeared when 2θ was around 17 degrees.

それに対し、比較例2で得られたPLLA―1からなる真空成形体は、150〜200℃の範囲の吸熱ピークのみで、205〜240℃の範囲の吸熱ピークはなかった。さらに、広角X線測定における回折ピークは2θが17度近辺にのみ有し、2θが12度近辺には回折ピークは現れなかった。   In contrast, the vacuum molded body made of PLLA-1 obtained in Comparative Example 2 had only an endothermic peak in the range of 150 to 200 ° C and no endothermic peak in the range of 205 to 240 ° C. Furthermore, the diffraction peak in wide-angle X-ray measurement had 2θ only around 17 degrees, and no diffraction peak appeared when 2θ was around 12 degrees.

本発明のポリ乳酸熱成形品は、例えば延伸フィルムであればTMA測定による0.25MPa荷重での5%収縮温度が170℃と、従来のポリ乳酸の溶融温度を越えて熱変形が小さく、成形・加工性、製品の耐熱性に優れ、しかも生分解性を有しているので、かかる特性を利用して、袋、箱、トレー、コップ、蓋材などの包装資材分野に好適に用いることができる。さらには、カレンダ、ポスタ、本の表紙などの美麗な外観を必要とする用途;ラベル、ステッカなどの表示材料;梱包・包装用テープ;各種製品の製造に使用される工程紙などにも好適である。   For example, in the case of a stretched film, the polylactic acid thermoformed product of the present invention has a 5% shrinkage temperature of 170 ° C. under a load of 0.25 MPa as measured by TMA, which is less than the melting temperature of conventional polylactic acid, and has a small thermal deformation.・ Excellent processability, heat resistance of products, and biodegradability. Utilizing such properties, it can be used suitably in the field of packaging materials such as bags, boxes, trays, cups and lids. it can. It is also suitable for applications that require a beautiful appearance such as calendars, posters, and book covers; display materials such as labels and stickers; tapes for packaging and packaging; and process papers used in the manufacture of various products. is there.

図1は、参考例1の延伸シートの第1回昇温のDSC測定のチャートを示す図である。FIG. 1 is a diagram showing a DSC measurement chart of the first temperature increase of the stretched sheet of Reference Example 1. FIG. 図2は、参考例1の延伸シートの第1回降温のDSC測定のチャートを示す図である。FIG. 2 is a diagram showing a DSC measurement chart of the first temperature drop of the stretched sheet of Reference Example 1. 図3は、参考例1の延伸シートの第2回昇温のDSC測定のチャートを示す図である。FIG. 3 is a chart showing a DSC measurement chart of the second temperature increase of the stretched sheet of Reference Example 1. 図4は、参考例2の延伸シートの第1回昇温のDSC測定のチャートを示す図である。4 is a chart showing a DSC measurement chart of the first temperature increase of the stretched sheet of Reference Example 2. FIG. 図5は、参考例2の延伸シートの第1回降温のDSC測定のチャートを示す図である。FIG. 5 is a diagram showing a DSC measurement chart of the first temperature drop of the stretched sheet of Reference Example 2. 図6は、参考例2の延伸シートの第2回昇温のDSC測定のチャートを示す図である。6 is a diagram showing a DSC measurement chart of the second temperature increase of the stretched sheet of Reference Example 2. FIG. 図7は、参考例1のポリ乳酸系組成物からなるシート(未延伸)の第1回降温のDSC測定のチャートを示す図である。7 is a chart showing a DSC measurement chart of the first temperature drop of a sheet (unstretched) made of the polylactic acid-based composition of Reference Example 1. FIG. 図8は、参考例1のポリ乳酸系組成物からなるシート(未延伸)の第2回昇温のDSC測定のチャートを示す図である。FIG. 8 is a diagram showing a DSC measurement chart of the second temperature increase of a sheet (unstretched) made of the polylactic acid-based composition of Reference Example 1. 図9は、参考例2のポリ乳酸系組成物からなるシート(未延伸)の第1回降温のDSC測定のチャートを示す図である。FIG. 9 is a diagram showing a DSC measurement chart of the first temperature drop of a sheet (unstretched) made of the polylactic acid composition of Reference Example 2. 図10は、参考例2のポリ乳酸系組成物からなるシート(未延伸)の第2回昇温のDSC測定のチャートを示す図である。FIG. 10 is a diagram showing a DSC measurement chart of the second temperature increase of a sheet (unstretched) made of the polylactic acid-based composition of Reference Example 2. 図11は、参考例1の延伸シートの広角X線回折測定結果を示す図である。FIG. 11 is a diagram showing a wide-angle X-ray diffraction measurement result of the stretched sheet of Reference Example 1. 図12は、参考例2の延伸シートの広角X線回折測定結果を示す図である。FIG. 12 is a view showing a wide-angle X-ray diffraction measurement result of the stretched sheet of Reference Example 2. 図13は、実施例3の延伸シートの第1回昇温のDSC測定のチャートを示す図である。FIG. 13 is a diagram showing a DSC measurement chart of the first temperature increase of the stretched sheet of Example 3. 図14は、実施例3の延伸シートの第1回降温のDSC測定のチャートを示す図である。14 is a chart showing a DSC measurement chart of the first temperature drop of the stretched sheet of Example 3. FIG. 図15は、実施例3の延伸シートの第2回昇温のDSC測定のチャートを示す図である。FIG. 15 is a chart showing a DSC measurement chart of the second temperature increase of the stretched sheet of Example 3. 図16は、実施例3のポリ乳酸系組成物からなるシート(未延伸)の第1回降温のDSC測定のチャートを示す図である。16 is a chart showing a DSC measurement chart of the first temperature drop of a sheet (unstretched) made of the polylactic acid-based composition of Example 3. FIG.

Claims (12)

ポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸組成物からなるシートを熱成形してなる成形体であって、当該成形体が、DSC測定における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク1)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークのピーク高さ(ピーク2)とのピーク比(ピーク1/ピーク2)が0.2以下であることを特徴とするポリ乳酸系熱成形体。   A molded body obtained by thermoforming a sheet comprising a polylactic acid composition containing poly-L-lactic acid and poly-D-lactic acid, wherein the molded body has an endothermic peak in the range of 150 to 200 ° C. in DSC measurement. The peak ratio (peak 1 / peak 2) of the peak endothermic peak height (peak 1) to the peak endothermic peak height (peak 2) in the range of 205-240 ° C. is 0.2. A polylactic acid-based thermoformed article characterized by: ポリ乳酸系熱成形体が、205〜240℃の範囲にある吸熱ピークの吸熱量が40J/g以上である請求項1に記載のポリ乳酸系熱成形体。   The polylactic acid-based thermoformed article according to claim 1, wherein the polylactic acid-based thermoformed article has an endothermic amount of 40 J / g or more in an endothermic peak in the range of 205 to 240 ° C. ポリ乳酸系熱成形体が、DSC測定における吸熱ピーク測定後に、降温した際の発熱量が40J/g以上である請求項1に記載のポリ乳酸系熱成形体。   The polylactic acid-based thermoformed article according to claim 1, wherein the polylactic acid-based thermoformed article has a calorific value of 40 J / g or more when the temperature is lowered after measuring the endothermic peak in DSC measurement. ポリ乳酸系熱成形体が、広角X線測定における2θが12度、21度および24度近辺のピーク面積の総和(SSC)が全体の面積に対して15%以上であり、かつ2θが17度および19度近辺のピーク面積の総和(SPL)が全体の面積に対して5%以下である請求項1〜3のいずれかに記載のポリ乳酸系熱成形体。 In the polylactic acid-based thermoformed product, the sum of peak areas (S SC ) in the vicinity of 12 °, 21 ° and 24 ° in the wide-angle X-ray measurement is 15% or more, and 2θ is 17 The polylactic acid-based thermoformed article according to any one of claims 1 to 3, wherein a sum of peak areas around 5 degrees and 19 degrees ( SPL ) is 5% or less with respect to the entire area. DSC測定において、250℃で10分間経過後に降温した際の発熱量が20J/g以上のポリ乳酸系組成物からなるシートから熱成形してなる請求項1〜4のいずれかに記載のポリ乳酸系熱成形体。   The polylactic acid according to any one of claims 1 to 4, wherein the polylactic acid is thermoformed from a sheet made of a polylactic acid-based composition having a calorific value of 20 J / g or more when the temperature is lowered after a lapse of 10 minutes at 250 ° C in DSC measurement. Thermoformed body. DSC測定において、第2回昇温時における150〜200℃の範囲にある吸熱ピークの最大吸熱ピークの高さ(ピーク10)と205〜240℃の範囲にある吸熱ピークの最大吸熱ピークの高さ(ピーク20)とのピーク比(ピーク10/ピーク20)が0.5以下のポリ乳酸系組成物からなるシートを熱成形してなる請求項1〜4のいずれかに記載のポリ乳酸系熱成形体。   In DSC measurement, the maximum endothermic peak height (peak 10) of the endothermic peak in the range of 150 to 200 ° C. during the second temperature increase and the maximum endothermic peak height of the endothermic peak in the range of 205 to 240 ° C. ( The polylactic acid-based thermoforming according to any one of claims 1 to 4, wherein the sheet is made of a polylactic acid-based composition having a peak ratio (peak 10 / peak 20) to peak 20) of 0.5 or less. body. DSC測定において、第2回昇温時における205〜240℃の範囲にある吸熱ピークの吸熱量が35J/g以上のポリ乳酸系組成物からなるシートを熱成形してなる請求項1〜4のいずれかに記載のポリ乳酸系熱成形体。   The DSC measurement is carried out by thermoforming a sheet made of a polylactic acid-based composition having an endothermic peak of 35 J / g or more in the range of 205 to 240 ° C during the second temperature increase. A polylactic acid-based thermoformed article according to claim 1. ポリ乳酸組成物が、ポリ−L−乳酸75〜25重量部及びポリ−D−乳酸25〜75重量部(ポリ−L−乳酸とポリ−D−乳酸の合計で100重量部)から調製されてなる請求項1〜7のいずれかに記載のポリ乳酸系熱成形体。   A polylactic acid composition is prepared from 75 to 25 parts by weight of poly-L-lactic acid and 25 to 75 parts by weight of poly-D-lactic acid (a total of 100 parts by weight of poly-L-lactic acid and poly-D-lactic acid). The polylactic acid-based thermoformed article according to any one of claims 1 to 7. ポリ乳酸組成物からなるシートが、未延伸シートである請求項1に記載のポリ乳酸系熱成形体。   The polylactic acid-based thermoformed article according to claim 1, wherein the sheet made of the polylactic acid composition is an unstretched sheet. 縦方向に2倍以上及び横方向に2倍以上延伸されてなる延伸シートを熱成形してなる請求項1記載のポリ乳酸系熱成形体。   The polylactic acid-based thermoformed article according to claim 1, wherein the stretched sheet is stretched by at least 2 times in the longitudinal direction and at least 2 times in the transverse direction. 少なくとも一方向に2倍以上延伸したポリ−L−乳酸とポリ−D−乳酸を含むポリ乳酸組成物シートを熱成形した後、当該シートを140〜220℃で1秒以上熱処理してなる請求項1〜3の何れかに記載のポリ乳酸系熱成形体。   A polylactic acid composition sheet containing poly-L-lactic acid and poly-D-lactic acid stretched at least twice in one direction is thermoformed, and then the sheet is heat-treated at 140-220 ° C for 1 second or longer. The polylactic acid-based thermoformed product according to any one of 1 to 3. ポリ乳酸組成物からなるシートが、射出成形、中空成形もしくは押出成形により得られたシートである請求項1に記載に記載のポリ乳酸系熱成形体。   The polylactic acid-based thermoformed article according to claim 1, wherein the sheet made of the polylactic acid composition is a sheet obtained by injection molding, hollow molding or extrusion molding.
JP2006244895A 2006-09-09 2006-09-09 Polylactic acid based thermoformed product Pending JP2008063502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244895A JP2008063502A (en) 2006-09-09 2006-09-09 Polylactic acid based thermoformed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244895A JP2008063502A (en) 2006-09-09 2006-09-09 Polylactic acid based thermoformed product

Publications (1)

Publication Number Publication Date
JP2008063502A true JP2008063502A (en) 2008-03-21

Family

ID=39286481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244895A Pending JP2008063502A (en) 2006-09-09 2006-09-09 Polylactic acid based thermoformed product

Country Status (1)

Country Link
JP (1) JP2008063502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087914A1 (en) * 2012-12-04 2014-06-12 学校法人 関西大学 Method for molding piezoelectric polymer and molded body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298236A (en) * 1993-04-13 1994-10-25 Mitsui Toatsu Chem Inc Throwaway food container
JP2004359948A (en) * 2003-05-14 2004-12-24 Toray Ind Inc Biaxially oriented polylactic acid film for forming and container
JP2005187630A (en) * 2003-12-25 2005-07-14 Toyota Central Res & Dev Lab Inc Polylactic acid resin composition and molded form thereof
JP2006182926A (en) * 2004-12-28 2006-07-13 Teijin Ltd Stereocomplex polylactic acid, its production process, composition, and molded article
JP2007191551A (en) * 2006-01-18 2007-08-02 Teijin Chem Ltd Thermoformed article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298236A (en) * 1993-04-13 1994-10-25 Mitsui Toatsu Chem Inc Throwaway food container
JP2004359948A (en) * 2003-05-14 2004-12-24 Toray Ind Inc Biaxially oriented polylactic acid film for forming and container
JP2005187630A (en) * 2003-12-25 2005-07-14 Toyota Central Res & Dev Lab Inc Polylactic acid resin composition and molded form thereof
JP2006182926A (en) * 2004-12-28 2006-07-13 Teijin Ltd Stereocomplex polylactic acid, its production process, composition, and molded article
JP2007191551A (en) * 2006-01-18 2007-08-02 Teijin Chem Ltd Thermoformed article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087914A1 (en) * 2012-12-04 2014-06-12 学校法人 関西大学 Method for molding piezoelectric polymer and molded body
JP2014110595A (en) * 2012-12-04 2014-06-12 Kansai Univ Method of molding piezoelectric polymer and molded article

Similar Documents

Publication Publication Date Title
JP5465877B2 (en) Polylactic acid-based stretched film
KR100981484B1 (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
US8362157B2 (en) Polylactic acid composition and molding comprising the composition
JP4804179B2 (en) Polylactic acid composition and molded product comprising the composition
JP4693365B2 (en) Polylactic acid stretched film and method for producing the same
JP2008088402A (en) Polylactic acid-based stretched film
JPWO2007139236A1 (en) Molded article made of polylactic acid-based composition
JP2008062591A (en) Polylactic acid based multilayer film
JP2008062588A (en) Polylactic acid laminate
JP2008062589A (en) Polylactic acid release film
JP2008062984A (en) Packaging bag made of oriented polylactic acid-based film
JP4570393B2 (en) Polylactic acid stretched film and method for producing the same
JP2014218576A (en) Method of manufacturing stereo complex polylactic acid stretched film
JP2008062586A (en) Polylactic acid type gas barrier film
JP2008063506A (en) Polylactic acid-based oriented film
JP2004131726A (en) Biodegradable matte film
JP2008063502A (en) Polylactic acid based thermoformed product
JP2008062590A (en) Polylactic acid film for shrink wrap
JP2014227472A (en) Method for producing matte stretched film of stereo complex polylactic acid
JP5323241B2 (en) Polylactic acid-based stretched film
JP2010260900A (en) Polylactic acid film and method for manufacturing the same
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP2008063504A (en) Polylactic acid-based oriented film
JP6160276B2 (en) Polylactic acid resin sheet
JP2008063505A (en) Polylactic acid-based oriented film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100330

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106