JP2008057977A - Film analysis method and device by fluorescent x-ray analysis - Google Patents

Film analysis method and device by fluorescent x-ray analysis Download PDF

Info

Publication number
JP2008057977A
JP2008057977A JP2006231426A JP2006231426A JP2008057977A JP 2008057977 A JP2008057977 A JP 2008057977A JP 2006231426 A JP2006231426 A JP 2006231426A JP 2006231426 A JP2006231426 A JP 2006231426A JP 2008057977 A JP2008057977 A JP 2008057977A
Authority
JP
Japan
Prior art keywords
ray
sample
characteristic
film
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006231426A
Other languages
Japanese (ja)
Other versions
JP5043387B2 (en
Inventor
Masahito Koseki
関 雅 人 小
Motoki Kinugasa
笠 元 気 衣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2006231426A priority Critical patent/JP5043387B2/en
Publication of JP2008057977A publication Critical patent/JP2008057977A/en
Application granted granted Critical
Publication of JP5043387B2 publication Critical patent/JP5043387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining quickly whether an analysis object element is included in either or both of a film and a substrate, in trace constituent inspection or the like of a plating film. <P>SOLUTION: When the film thickness is known, n and m corresponding to the film thickness are determined by a relational expression on the film and the substrate, by using the relational expression showing a relation wherein an intensity ratio n (=Bp/Ap) between two kinds of characteristic X-ray peak intensity measured values generated from the analysis object element included only in the film and an intensity ratio m (=Bb/Ab) of two kinds of characteristic X-ray peak intensity measured values generated from the analysis object element included only in the substrate are changed according to the film thickness of the film, and A and B are determined respectively by being separated into estimated values (Ab, Bb) of measured intensity caused by the substrate and estimated values (Ap, Bp) of measured intensity caused by the film from n and m, and the two kinds of characteristic X-ray peak intensity measured values A (=Ap+Ab) and B (=Bb+Bp). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、下地上に形成された被膜及びその下地に含まれる微量元素を、蛍光X線分析装置を用いて定量分析する方法に関する。   The present invention relates to a film formed on a base and a method for quantitative analysis of trace elements contained in the base using a fluorescent X-ray analyzer.

蛍光X線分析法は、ppmレベルの微量元素の定量分析を精度良く行える分析法として材料開発や製品検査等に広く用いられている。またメッキ被膜等の膜厚を簡単に行う方法としても知られている。例えば、特許文献1の特開平10−221047号公報には、組成比が既知の標準試料を被測定薄膜の裏側におき、標準試料から発生した蛍光X線が被測定薄膜によって受ける吸収の大きさから被測定薄膜の膜厚を求める技術が開示されている。また、特許文献2の特開昭58−50412号公報にはエネルギーの異なるn種類の放射線を照射して得られた蛍光X線強度データに基づいて、金属被膜の膜厚又は金属被膜中に含まれるn種類の元素の含有量を同時に求める方法が開示されている。
The X-ray fluorescence analysis method is widely used for material development, product inspection, and the like as an analysis method that can accurately perform quantitative analysis of trace elements at the ppm level. It is also known as a method for easily performing film thickness such as a plating film. For example, in Japanese Patent Application Laid-Open No. 10-221047 of Patent Document 1, a standard sample having a known composition ratio is placed on the back side of a thin film to be measured, and the magnitude of absorption received by the thin film to be measured by fluorescent X-rays generated from the standard sample. Discloses a technique for obtaining the thickness of a thin film to be measured. Further, Japanese Patent Application Laid-Open No. 58-50412 of Patent Document 2 includes a metal film thickness or a metal film based on fluorescent X-ray intensity data obtained by irradiating n types of radiations having different energies. A method for simultaneously determining the contents of n kinds of elements is disclosed.

特開平10−221047号公報Japanese Patent Laid-Open No. 10-221047 特開昭58−50412号公報JP-A-58-50412

近年、めっき被膜中に鉛やカドミウム等の有害元素が一定量以上含有されていることを禁ずる環境規制(例えばヨーロッパの「RoHS指令」等)が強化されている。そのため、めっき被膜中のこれら有害金属の含有量を精度良く分析する必要性が高まっている。図8は、蛍光X線分析装置を用いて、メッキ試料に含まれる分析目的元素の鉛(以下、元素記号「Pb」で表すことがある)を分析する例を模式的に表した図である。図8(a)において、X線源から試料に照射された一次X線はメッキ層を透過して下地にまで達するため、メッキ層と下地の両方から発生した鉛の特性X線(蛍光X線)がX線検出器によって検出される。検出されたX線はスペクトルとして図8(b)のように表示される。なお、鉛の特性X線には、図8(b)に示したPb−Lα、Pb−Lβ以外にもPb−Lγ線など多数存在するが、判りやすくするため他の特性X線ピークに比較して強度の高い二種類の特性X線のみを示している。   In recent years, environmental regulations (for example, the “RoHS Directive in Europe”) prohibiting the inclusion of a certain amount or more of harmful elements such as lead and cadmium in the plating film have been strengthened. For this reason, there is an increasing need to accurately analyze the contents of these harmful metals in the plating film. FIG. 8 is a diagram schematically showing an example of analyzing lead (hereinafter, may be represented by the element symbol “Pb”) as an analysis target element contained in a plating sample using a fluorescent X-ray analyzer. . In FIG. 8A, since the primary X-ray irradiated to the sample from the X-ray source passes through the plating layer and reaches the base, characteristic X-rays of lead generated from both the plating layer and the base (fluorescent X-rays) ) Is detected by the X-ray detector. The detected X-ray is displayed as a spectrum as shown in FIG. In addition to the Pb-Lα and Pb-Lβ shown in FIG. 8B, there are many Pb-Lγ rays in the characteristic X-rays of lead. Compared to other characteristic X-ray peaks for easy understanding. Only two types of characteristic X-rays with high intensity are shown.

しかし、図8(b)に示すような鉛の特性X線ピークが得られた場合、従来の分析法では同じエネルギーを持つ特性X線であれば被膜と下地のどちらから発生したかを区別できないので、分析目的元素がめっき被膜中に含まれているのか、又は下地に含まれているのか、又は両方に含まれているのかを判別できなかった。鉛やカドミウム等の有害元素が試料のどの部分にどれだけ含まれているかを迅速に知ることは品質管理上極めて重要である。また従来の分析法では、一次X線を照射する面積の不足する小さな試料や、リード線や丸棒のように分析高さを正規の位置にセットすることが難しい試料の場合は正確な分析が困難であるという問題もある。   However, when a characteristic X-ray peak of lead as shown in FIG. 8B is obtained, it is not possible to distinguish whether the characteristic X-ray has the same energy or not from the coating or the base by the conventional analysis method. Therefore, it was not possible to determine whether the analysis target element was contained in the plating film, contained in the underlayer, or contained in both. It is extremely important for quality control to quickly know how much of a sample contains harmful elements such as lead and cadmium. In addition, with the conventional analysis method, accurate analysis is possible for small samples that do not have enough area to irradiate primary X-rays, or for samples where it is difficult to set the analysis height to the normal position, such as lead wires and round bars. There is also the problem that it is difficult.

本発明は、めっき被膜の微量成分検査等において、分析目的元素が被膜又は下地のどちらか又は両方に含まれているかを迅速に判別する方法を提供することを目的としている。   An object of the present invention is to provide a method for quickly discriminating whether an analysis target element is included in either or both of a film and a base in a trace component inspection of a plating film.

上記の問題を解決するために、請求項1記載の発明は、
試料にX線を照射し、該試料から発生する二次X線を用いて元素分析を行う蛍光X線分析法であって、
下地上に被膜が形成された分析対象試料の分析において、
被膜のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比及び下地のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比が該被膜の膜厚に応じて変化する関係を予め求めておき、
該分析対象試料の被膜の膜厚が既知のとき、被膜及び下地について前記分析対象試料の被膜の膜厚に対応する前記2種類の特性X線ピーク強度測定値の強度比を該関係に基づいて求め、該関係に基づいて求められた該強度比と該分析対象試料についての前記2種類の特性X線ピーク強度測定値とから、前記2種類の特性X線ピーク強度測定値を下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求めることを特徴とする。
また請求項2記載の発明は、前記分析目的元素が鉛であるとき、前記2種類の特性X線ピークは、Pb−LαとPb−Lβの組み合わせ又はPb−KαとPb−Kβの組み合わせ又はPb−MαとPb−Mβの組み合わせの何れかであることを特徴とする。
また請求項3記載の発明は、前記被膜がニッケルメッキであることを特徴とする。
また請求項4記載の発明は、前記下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求められたX線強度に基づいて、下地及び/又は被膜中の分析目的元素の含有量をそれぞれ分離して求めるようにしたことを特徴とする。
また請求項5記載の発明は、試料にX線を照射し、該試料から発生する二次X線を用いて元素分析を行う蛍光X線分析法であって、
下地上に被膜が形成された分析対象試料の分析において、
被膜のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比及び/又は下地のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比が該被膜の厚さに応じて変化する関係を表す関係を予め求めておき、
該分析目的元素が分析対象試料の被膜又は下地の何れか一方のみに含まれていることが判っているとき、分析対象試料の被膜又は下地から発生する前記2種類の特性X線ピーク強度測定値の強度比に対応する該被膜の膜厚を該関係から求めることを特徴とする。
また請求項6記載の発明は、試料にX線を照射し、該試料から発生する二次X線を用いて元素分析を行う蛍光X線分析装置であって、
下地上に被膜が形成された試料の被膜のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比及び/又は下地のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比が該被膜の膜厚に応じて変化する関係を表すデータを記憶する記憶手段と、
下地上に被膜が形成された分析対象試料の被膜の膜厚が既知のとき、前記分析対象試料の被膜の膜厚に対応する前記2種類の特性X線ピーク強度測定値の強度比を被膜及び下地について前記記憶手段に記憶されているデータを用いて求め、該データを用いて求められた強度比と前記分析対象試料についての前記2種類の特性X線ピーク強度測定値とから、前記2種類の特性X線ピーク強度測定値を下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求める演算手段とを備えたことを特徴とする。
In order to solve the above problem, the invention of claim 1
A fluorescent X-ray analysis method that irradiates a sample with X-rays and performs elemental analysis using secondary X-rays generated from the sample,
In the analysis of the sample to be analyzed with a film formed on the ground,
Intensity ratio of two kinds of characteristic X-ray peak intensity measurement values generated from the analysis target element contained only in the coating and two kinds of characteristic X-ray peak intensity measurement values generated from the analysis target element contained only in the base In advance, a relationship in which the intensity ratio changes according to the film thickness of the coating,
When the thickness of the coating film of the sample to be analyzed is known, the intensity ratio of the two kinds of characteristic X-ray peak intensity measurement values corresponding to the thickness of the coating film of the sample to be analyzed is determined based on the relationship Obtaining the two types of characteristic X-ray peak intensity measured values from the ground based on the intensity ratio obtained based on the relationship and the two types of characteristic X-ray peak intensity measured values of the sample to be analyzed It is characterized by separately obtaining an estimated value of measured intensity and an estimated value of measured intensity caused by the coating.
Further, in the invention according to claim 2, when the analysis target element is lead, the two kinds of characteristic X-ray peaks are a combination of Pb-Lα and Pb-Lβ, a combination of Pb-Kα and Pb-Kβ, or Pb. -Mα and any combination of Pb-Mβ.
The invention according to claim 3 is characterized in that the coating is nickel plating.
According to a fourth aspect of the present invention, there is provided a base and / or coating film based on X-ray intensities obtained separately from the estimated value of the measured intensity caused by the base and the estimated value of the measured intensity caused by the coating, respectively. It is characterized in that the content of the element for analysis in each is determined separately.
The invention according to claim 5 is a fluorescent X-ray analysis method in which a sample is irradiated with X-rays and elemental analysis is performed using secondary X-rays generated from the sample,
In the analysis of the sample to be analyzed with a film formed on the ground,
Intensity ratio of two kinds of characteristic X-ray peak intensity measurements generated from the analytical element contained only in the coating and / or two characteristic X-ray peak intensities generated from the analytical element contained only in the base In advance, a relationship representing a relationship in which the intensity ratio of the measured values changes according to the thickness of the coating is obtained,
When it is known that the target element for analysis is contained in only one of the film or the base of the sample to be analyzed, the two kinds of characteristic X-ray peak intensity measurement values generated from the film or the base of the sample to be analyzed The film thickness of the coating corresponding to the intensity ratio is obtained from the relationship.
The invention described in claim 6 is an X-ray fluorescence analyzer that irradiates a sample with X-rays and performs elemental analysis using secondary X-rays generated from the sample,
From the intensity ratio of two kinds of characteristic X-ray peak intensity measurements generated from the analysis target element contained only in the coating film of the sample having the coating formed on the ground and / or from the analysis objective element contained only in the groundwork Storage means for storing data representing a relationship in which the intensity ratio of two kinds of generated characteristic X-ray peak intensity measurement values varies depending on the film thickness of the coating;
When the film thickness of the sample to be analyzed with the film formed on the ground is known, the intensity ratio of the two types of characteristic X-ray peak intensity measurement values corresponding to the film thickness of the film of the sample to be analyzed is determined as the film and Using the data stored in the storage means for the ground, the intensity ratio determined using the data and the two types of characteristic X-ray peak intensity measurement values for the sample to be analyzed, the two types The characteristic X-ray peak intensity measurement value is calculated by separately calculating an estimated value of the measured intensity caused by the ground and an estimated value of the measured intensity caused by the coating, respectively.

請求項1記載の発明によれば、分析対象試料に含まれる分析目的元素から発生する特性X線ピークの測定強度を、下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求めることができるので、分析目的元素が下地に存在するのか被膜中に存在するのかを知ることができる。また、下地と被膜の両方に入っている場合にも、それぞれから発生する特性X線の測定強度を定量的に知ることができる。また、特性X線の測定強度比を利用することにより、一次X線を照射する面積の不足や、リード線や丸棒のように分析高さを正規の位置にセットすることが難しいという試料の形状に起因する分析精度の低下を避けることができる。   According to the first aspect of the present invention, the measured intensity of the characteristic X-ray peak generated from the analysis target element contained in the sample to be analyzed is the estimated value of the measured intensity caused by the ground and the estimated value of the measured intensity caused by the coating. Therefore, it is possible to know whether the element to be analyzed exists in the base or in the coating. In addition, even when both the base and the coating are included, the measured intensity of characteristic X-rays generated from each can be quantitatively known. In addition, by using the measured intensity ratio of characteristic X-rays, it is difficult to set the analysis height at a normal position, such as a shortage of the primary X-ray irradiation area or lead wires or round bars. A decrease in analysis accuracy due to the shape can be avoided.

また請求項2記載の発明によれば、分析目的元素が鉛であるとき、鉛が下地に存在するのか被膜中に存在するのかを知ることができる。また、鉛が下地と被膜の両方に入っている場合にも、それぞれを分離して分析することができる。   According to the invention described in claim 2, when the analysis target element is lead, it is possible to know whether lead is present in the base or in the coating. Also, when lead is contained in both the base and the coating, each can be separated and analyzed.

また請求項3記載の発明によれば、ニッケルメッキ試料のとき、分析目的元素が下地に存在するのかニッケルメッキ中に存在するのかを知ることができる。また、下地とニッケルメッキの両方に入っている場合にも、それぞれを分離して分析することができる。   According to the third aspect of the present invention, it is possible to know whether the analysis target element is present in the base or in the nickel plating when the sample is a nickel plating sample. Further, even when both the base and nickel plating are included, each can be separated and analyzed.

また請求項4記載の発明によれば、下地及び被膜中の分析目的元素の含有量を別々に求めることができる。   According to the invention described in claim 4, the contents of the element for analysis in the base and the coating can be obtained separately.

また請求項5記載の発明によれば、分析対象試料の膜厚が不明の場合でも、該分析目的元素が分析対象試料の被膜のみに含まれているか又は下地のみに含まれているかが判っていれば、膜厚を求めることができる。   Further, according to the invention described in claim 5, even when the film thickness of the analysis target sample is unknown, it is known whether the analysis target element is included only in the coating of the analysis target sample or only in the ground. Then, the film thickness can be obtained.

また請求項6記載の発明によれば、分析対象試料に含まれる分析目的元素から発生する特性X線ピークの測定強度を、下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求めることができる手段を備えた蛍光X線分析装置を提供することができる。   According to the sixth aspect of the present invention, the measured intensity of the characteristic X-ray peak generated from the analysis target element contained in the sample to be analyzed is the estimated value of the measured intensity caused by the base and the estimated intensity of the measured intensity caused by the coating. It is possible to provide an X-ray fluorescence analyzer equipped with means that can be obtained separately for each value.

以下図面を参照しながら、本発明の実施の形態について説明する。但し、この例示によって本発明の技術範囲が制限されるものでは無い。   Embodiments of the present invention will be described below with reference to the drawings. However, the technical scope of the present invention is not limited by this illustration.

図5は、本発明を実施する蛍光X線分析装置の概略構成例を示す図である。図5において、試料1はメッキ層1aが下地1bの上に形成されている。X線源2から試料1に一次X線が照射され、試料1から発生した蛍光X線はX線検出器4により検出される。X線源2と試料の間には一次X線フィルタ7とコリメータ9、試料1とX線検出器4との間にはコリメータ10が配置されている。X線源からX線を発生させるための発生器電源3と一次X線フィルタを制御するためのフィルタ制御系8は制御系6に接続されている。また、X線検出器4からの検出信号はX線計数系5を介して制御系6に送られる。制御系6には本発明を実施するために必要な種々の演算を行うための演算手段11が設けられており、また本発明を実施するために必要な関係等のデータを記憶する記憶手段12が接続されている。   FIG. 5 is a diagram showing a schematic configuration example of an X-ray fluorescence analyzer for carrying out the present invention. In FIG. 5, the sample 1 has a plating layer 1a formed on a base 1b. The sample 1 is irradiated with primary X-rays from the X-ray source 2, and the fluorescent X-rays generated from the sample 1 are detected by the X-ray detector 4. A primary X-ray filter 7 and a collimator 9 are disposed between the X-ray source 2 and the sample, and a collimator 10 is disposed between the sample 1 and the X-ray detector 4. A generator power supply 3 for generating X-rays from the X-ray source and a filter control system 8 for controlling the primary X-ray filter are connected to the control system 6. A detection signal from the X-ray detector 4 is sent to the control system 6 via the X-ray counting system 5. The control system 6 is provided with calculation means 11 for performing various calculations necessary for carrying out the present invention, and storage means 12 for storing data such as relationships necessary for carrying out the present invention. Is connected.

図1に、本発明の基本的考え方を説明するための模式図を示す。図1の(a)と(b)は、下地に鉛(分析目的元素)を含まずメッキ層のみに含む場合に鉛の二種類の特性X線(Pb−LαとPb−Lβ)のスペクトル得る方法を示す図である。鉛の二種類の特性X線がメッキ層からのみ発生する場合、Lα線とLβ線の強度比がメッキ厚の変化に応じて変化する割合はそれほど大きくない。しかし、Lβ線の方がLα線に比べて高エネルギーのため自己吸収が少ないので、メッキ厚が大きくなるほどLβ/Lα強度比が増加するはずである。図3のグラフは、膜厚の異なるいくつかのメッキ試料を用いて、メッキ厚に対するメッキ層からの鉛の特性X線の測定強度比(Lβ/Lα)変化を測定して作成した関係である。Lβ/Lα強度比はメッキ厚が増加するにつれて、無限厚の場合の測定強度比に近づくように漸増している。   FIG. 1 is a schematic diagram for explaining the basic concept of the present invention. FIGS. 1A and 1B show the spectrum of two types of characteristic X-rays (Pb-Lα and Pb-Lβ) of lead when lead (analysis target element) is not included in the base and only the plating layer is included. It is a figure which shows a method. When two types of characteristic X-rays of lead are generated only from the plating layer, the rate at which the intensity ratio between the Lα line and the Lβ line changes according to the change in the plating thickness is not so large. However, since the Lβ line has a higher energy than the Lα line and has less self-absorption, the Lβ / Lα intensity ratio should increase as the plating thickness increases. The graph of FIG. 3 is a relationship created by measuring changes in the measured intensity ratio (Lβ / Lα) of characteristic X-rays of lead from the plating layer to the plating thickness using several plating samples having different film thicknesses. . As the plating thickness increases, the Lβ / Lα intensity ratio gradually increases so as to approach the measured intensity ratio in the case of infinite thickness.

ここで、下地成分及びメッキ成分が図3のグラフを作成した試料と同じとき、もし分析対象試料のメッキ層のみに鉛が含まれていて下地には含まれていないことが判っていれば、鉛の特性X線の測定強度比(Lβ/Lα)を測定するだけで、図3のグラフを用いてメッキ層の膜厚が求まることを示している。   Here, when the base component and the plating component are the same as the sample that created the graph of FIG. 3, if it is known that only the plating layer of the sample to be analyzed contains lead and not the base, FIG. 3 shows that the thickness of the plating layer can be obtained only by measuring the measured intensity ratio (Lβ / Lα) of the characteristic X-ray of lead.

次に、メッキ層に鉛を含まず下地のみに含む場合について説明する。図1の(c)と(d)は、メッキ層に鉛を含まず下地のみに含む場合に鉛の二種類の特性X線(Pb−LαとPb−Lβ)のスペクトル得る状態を示す図である。下地からのみ発生した鉛の特性X線の下地による自己吸収の影響はあまり大きくないが、鉛を含まないメッキ層により吸収を受けるのでメッキ厚が大きくなるほどLα線とLβ線の吸収される割合が変わる。図4のグラフは、膜厚の異なるいくつかのメッキ試料を用いて、メッキ厚に対する下地からの鉛の特性X線の測定強度比(Lβ/Lα)変化を測定して作成した関係である。膜厚がゼロのときに強度比が1となるようにノーマライズしてある。Lβ/Lα強度比はメッキ厚が増加するにつれて、急激に増加していくことがわかる。   Next, the case where the plating layer does not contain lead but is contained only in the base will be described. (C) and (d) of FIG. 1 are diagrams showing a state where spectra of two types of characteristic X-rays of lead (Pb-Lα and Pb-Lβ) are obtained when the plating layer does not contain lead but is contained only in the base. is there. The characteristic of lead generated only from the base The influence of self-absorption by the base of X-rays is not so great, but since it is absorbed by the plating layer that does not contain lead, the proportion of absorbed Lα and Lβ rays increases as the plating thickness increases. change. The graph of FIG. 4 is a relationship created by measuring changes in the measured intensity ratio (Lβ / Lα) of characteristic X-rays of lead from the base to the plating thickness using several plating samples having different film thicknesses. The film is normalized so that the intensity ratio is 1 when the film thickness is zero. It can be seen that the Lβ / Lα intensity ratio increases rapidly as the plating thickness increases.

ここで、下地成分及びメッキ成分が図4のグラフを作成した試料と同じとき、もし分析対象試料の下地のみに鉛が含まれていてメッキ層には含まれていないことがわかっていれば、鉛の特性X線の測定強度比(Lβ/Lα)を測定するだけで、図4のグラフを用いてメッキ層の膜厚が求まることを示している。   Here, if the base component and the plating component are the same as the sample that created the graph of FIG. 4, if it is known that only the base of the sample to be analyzed contains lead and not the plating layer, FIG. 4 shows that the film thickness of the plating layer can be obtained by simply measuring the measured intensity ratio (Lβ / Lα) of the characteristic X-ray of lead.

上記の図3及び図4に示したデータは図1の記憶手段12に記憶され、必要に応じて演算手段により呼び出されて、種々の計算に使用される。実際の演算に使用される場合は、メッキ厚と強度比との関係をそれぞれのグラフに適した近似式で表して使用してもよい。   The data shown in FIG. 3 and FIG. 4 are stored in the storage unit 12 of FIG. 1, and are called up by the calculation unit as necessary and used for various calculations. When used for actual calculation, the relationship between the plating thickness and the strength ratio may be expressed by an approximate expression suitable for each graph.

なお、上記説明において、図3及び図4のグラフはメッキ厚と特性X線の測定強度比の関係を実測により求めた例を示しているが、メッキ層と下地の組成及び分析条件が決まれば理論計算によってこの関係を求めておくこともできる。   In the above description, the graphs in FIGS. 3 and 4 show examples in which the relationship between the plating thickness and the measured intensity ratio of characteristic X-rays is obtained by actual measurement. However, if the composition of the plating layer and the base and analysis conditions are determined. This relationship can also be obtained by theoretical calculation.

次に、図1の(e)と(f)に示すようなメッキ層と下地の両方に鉛が含まれている場合について説明する。メッキ層と下地の両方に鉛が含まれている場合は、(b)と(d)が重畳したスペクトルが得られることになる。なお、下地から発生したLα線とLβ線がメッキ層で受ける吸収は、メッキ層に鉛が含まれている場合と全く含まれていない場合とでは若干異なるが、鉛が微量(主成分でない程度に少なければ良い)であればその違いは殆ど無視することができる。   Next, a case where lead is contained in both the plating layer and the base as shown in FIGS. When lead is contained in both the plating layer and the base, a spectrum in which (b) and (d) are superimposed is obtained. In addition, the absorption which the Lα ray and the Lβ ray generated from the base receive in the plating layer is slightly different between the case where the plating layer contains lead and the case where the plating layer does not contain lead at all. The difference is almost negligible.

図1の(f)に示されるPb−LαとPb−Lβの測定強度及び測定強度比(Lβ/Lα)は、メッキ層と下地から発生する鉛の特性X線の強度及びメッキ層の膜厚に依存して変化する。そこで図2に示すように、メッキ層からのみ発生するLα線とLβ線の測定強度の推定値をそれぞれApとBp、下地からのみ発生するLα線とLβ線の測定強度の推定値をそれぞれAbとBb、実際に観測されるLα線とLβ線の測定強度をAとBとおくと、
A=Ap+Ab
B=Bp+Bb
である。
また、メッキ層からのみ発生するLα線とLβ線の測定強度比をn、下地からのみ発生するLα線とLβ線の測定強度比をmとおくと、
n=Bp/Ap
m=Bb/Ab
である。
The measured intensity and measured intensity ratio (Lβ / Lα) of Pb-Lα and Pb-Lβ shown in FIG. 1 (f) are the characteristic X-ray strength of the lead generated from the plating layer and the base and the thickness of the plating layer. Varies depending on Therefore, as shown in FIG. 2, the estimated values of the measured intensities of the Lα and Lβ rays generated only from the plating layer are Ap and Bp, respectively, and the estimated values of the measured intensities of the Lα and Lβ rays generated only from the ground are respectively Ab. And Bb, and the measured intensities of the actually observed Lα and Lβ rays as A and B,
A = Ap + Ab
B = Bp + Bb
It is.
Further, if the measurement intensity ratio between the Lα line and the Lβ line generated only from the plating layer is n, and the measurement intensity ratio between the Lα line and the Lβ line generated only from the ground is m,
n = Bp / Ap
m = Bb / Ab
It is.

ここで、下地成分及びメッキ成分が図3及び図4のグラフを作成した試料と同じとき、メッキ層の膜厚が与えられれば、図3及び図4の関係からそれぞれnとmを求めることができる。また、AとBは測定によって得られる値であるから、上記のA、B、n、mに関する4つの式をAp、Bp、Ab、Bbの連立方程式として解くことができる。即ち、
Ap=(B−m×A)/(n−m)
Bp=n×(B−m×A)/(n−m)
Ab=(B−n×A)/(m−n)
Bb=m×(B−n×A)/(m−n)
が得られる。
Here, when the base component and the plating component are the same as the sample that created the graphs of FIGS. 3 and 4, if the thickness of the plating layer is given, n and m can be obtained from the relationship of FIGS. 3 and 4, respectively. it can. Further, since A and B are values obtained by measurement, the above four equations relating to A, B, n, and m can be solved as simultaneous equations of Ap, Bp, Ab, and Bb. That is,
Ap = (B−m × A) / (nm)
Bp = n × (B−m × A) / (n−m)
Ab = (B−n × A) / (mn)
Bb = m × (B−n × A) / (mn)
Is obtained.

以上述べたようにして、メッキ層の膜厚が判っていれば、実際に測定できる試料からの測定強度(A、B)をメッキ層からのみ発生するLα線とLβ線の測定強度の推定値(Ap、Bp)と、下地からのみ発生するLα線とLβ線の測定強度の推定値(Ab、Bb)に分離して求めることができる。   As described above, if the film thickness of the plating layer is known, the measured intensities (A, B) from the sample that can be actually measured are estimated values of the measured intensities of the Lα and Lβ rays generated only from the plating layer. (Ap, Bp) and the estimated values (Ab, Bb) of the measured intensities of the Lα and Lβ rays generated only from the ground.

分離して求められた鉛のX線強度からメッキ層に含まれる鉛の濃度への変換は、メッキ層のみに鉛を含み下地には含まない複数の標準試料を用いて作成された検量線を用いて行えばよい。しかし、この検量線が作成された標準試料のメッキ層の膜厚と分析対象試料のメッキ層の膜厚は同じであるとは限らない。そのため、分析対象試料の膜厚で得られるX線強度を、検量線を作成した標準試料の膜厚に対応するX線強度に換算する必要がある。この換算のために、図6に示すようなメッキ厚とX線強度の無限厚比との関係を用いる。
図6はニッケルメッキ層から発生したPb−Lαの測定強度とメッキ厚との関係を表すグラフである。例えば、分析対象試料のメッキ厚が3μm(3.42mg/cm)で、検量線を作成した標準試料のメッキ厚が5μm(5.7mg/cm)であるとき、Pb強度の無限厚比はグラフからそれぞれ6.2と8.0となる。従って、メッキ層に含まれる鉛の濃度を求めるための検量線に使用するLα線の強度は、Ap×(8.0/6.2)となる。
Conversion from the X-ray intensity of lead obtained by separation to the concentration of lead contained in the plating layer is based on calibration curves created using a plurality of standard samples that contain lead only in the plating layer and not in the ground. You can use it. However, the thickness of the plating layer of the standard sample on which the calibration curve is created is not necessarily the same as the thickness of the plating layer of the analysis target sample. Therefore, it is necessary to convert the X-ray intensity obtained from the film thickness of the sample to be analyzed into an X-ray intensity corresponding to the film thickness of the standard sample for which the calibration curve has been created. For this conversion, the relationship between the plating thickness and the infinite thickness ratio of the X-ray intensity as shown in FIG. 6 is used.
FIG. 6 is a graph showing the relationship between the measured strength of Pb-Lα generated from the nickel plating layer and the plating thickness. For example, when the plating thickness of the sample to be analyzed is 3 μm (3.42 mg / cm 2 ) and the plating thickness of the standard sample for which the calibration curve is prepared is 5 μm (5.7 mg / cm 2 ), the infinite thickness ratio of Pb intensity Are 6.2 and 8.0 from the graph, respectively. Therefore, the intensity of the Lα line used for the calibration curve for obtaining the concentration of lead contained in the plating layer is Ap × (8.0 / 6.2).

また、分離して求められた鉛のX線強度から下地に含まれる鉛の濃度への変換は、下地と主成分が同じ組成で異なる濃度の鉛を含むの複数の標準試料を用いて作成された検量線を用いて行えばよい。但し、分析対象試料から得られた分離されたX線強度は、メッキ層を通過して強度が低下した値である。そこで、図7に示すようなメッキ厚とX線強度の低下比との関係を用いてメッキ層が無い場合のX線強度に換算する。図7は、下地から発生したPb−Lαの測定強度とニッケルメッキ層で吸収されて強度が減衰する低下比とメッキ厚との関係を表すグラフである。例えば、メッキ厚が3μm(3.42mg/cm)の場合、低下比はグラフから0.36となる。従って、下地に含まれる鉛の濃度を求めるための検量線に使用するLα線の強度は、Ab/0.36となる。 In addition, the conversion from the X-ray intensity of lead obtained separately to the concentration of lead contained in the substrate is made using a plurality of standard samples in which the substrate and the main component have the same composition and contain different concentrations of lead. The calibration curve may be used. However, the separated X-ray intensity obtained from the sample to be analyzed is a value obtained by passing through the plating layer and reducing the intensity. Therefore, the relationship between the plating thickness and the reduction ratio of the X-ray intensity as shown in FIG. 7 is used to convert to the X-ray intensity when there is no plating layer. FIG. 7 is a graph showing the relationship between the measured strength of Pb-Lα generated from the base, the reduction ratio at which the strength is attenuated by being absorbed by the nickel plating layer, and the plating thickness. For example, when the plating thickness is 3 μm (3.42 mg / cm 2 ), the reduction ratio is 0.36 from the graph. Therefore, the intensity of the Lα ray used for the calibration curve for obtaining the concentration of lead contained in the base is Ab / 0.36.

上記した図6及び図7の関係を用いて換算されたX線強度を求める方法は、メッキ層と下地に含まれる鉛(分析目的元素)の含有量を求めるときに検量線を用いることを前提としている。しかし、薄膜FP法(Fundamental parameter法)の計算ルーチンに、メッキ層と下地から発生する鉛のX線強度の測定強度比を求めるアルゴルリズムを組み込むことにより、鉛以外の主成分元素の濃度を求めるのと同じ扱いで自動的にメッキ層と下地に含まれる鉛の濃度を分離して求めることが可能である。   The method for obtaining the converted X-ray intensity using the relationship shown in FIG. 6 and FIG. 7 is based on the assumption that a calibration curve is used when obtaining the content of lead (analytical element) contained in the plating layer and the base. It is said. However, the concentration of the main component elements other than lead is obtained by incorporating an algorithm that obtains the measured intensity ratio of the X-ray intensity of the lead generated from the plating layer and the base into the calculation routine of the thin film FP method (Fundamental parameter method). It is possible to automatically determine the concentration of lead contained in the plating layer and the base in the same manner as described above.

上記の本発明の実施の形態を説明した中で、下地上に形成された被膜をメッキ層若しくはニッケルメッキ層、分析目的元素を鉛の例を用いて説明しているが、これに限定される必要は無く、例えば分析目的元素はカドミウム等の有害金属であってもよい。さらに、被膜はメッキ層に限られるわけでもない。   In the embodiment of the present invention described above, the coating formed on the base is described using a plated layer or nickel plating layer, and the analysis target element is described as an example of lead. However, the present invention is limited to this. There is no need, for example, the analysis target element may be a harmful metal such as cadmium. Furthermore, the coating is not limited to a plating layer.

また、分析に用いる二種類の特性X線としてLα線とLβ線の組み合わせ例を用いて説明したが、この組み合わせに限られる必要は無く、例えばLα線とLγ線等の組み合わせでもよいし、Kα線とKβ線、Mα線とMβ線の組み合わせか若しくはLα線とMα線等のK、L、M系列の特性X線の組み合わせを用いてもよい。   In addition, the two types of characteristic X-rays used for the analysis have been described using the combination examples of the Lα ray and the Lβ ray. However, the combination is not limited to this combination. For example, a combination of the Lα ray and the Lγ ray may be used. A combination of a line and a Kβ line, an Mα line and an Mβ line, or a combination of K, L, and M series characteristic X-rays such as an Lα line and an Mα line may be used.

以上のように、本発明によれば、分析対象試料に含まれる鉛(分析目的元素)から発生する特性X線ピークの測定強度を、下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求めることができるので、被膜の膜厚が判れば鉛が下地に存在するのかメッキ層中に存在するのかを知ることができる。また、下地とメッキ層の両方に入っている場合にも、分離された鉛の特性X線の測定強度からそれぞれに含まれている鉛の含有量を求めることができる。   As described above, according to the present invention, the measurement intensity of the characteristic X-ray peak generated from the lead (analysis target element) contained in the sample to be analyzed is measured based on the estimated value of the measurement intensity caused by the ground and the coating. Since it can be obtained separately for each of the estimated strength values, it can be known whether the lead exists in the base or the plating layer if the film thickness of the coating is known. Moreover, also when it is contained in both the foundation | substrate and a plating layer, content of lead contained in each can be calculated | required from the measurement intensity | strength of the characteristic X-ray of separated lead.

本発明の基本的考え方を説明するための模式図。The schematic diagram for demonstrating the basic idea of this invention. メッキ層と下地からの特性X線の測定強度を分離する方法を説明するための図。The figure for demonstrating the method of isolate | separating the measurement intensity | strength of the characteristic X-ray from a plating layer and a foundation | substrate. メッキ厚に対するメッキ層からのPb特性X線の強度比変化の関係を示すデータの例。The example of the data which shows the relationship of the intensity ratio change of the Pb characteristic X-ray from a plating layer with respect to plating thickness. メッキ厚に対する下地からのPb特性X線の強度比変化の関係を示すデータの例。The example of the data which shows the relationship of the intensity ratio change of the Pb characteristic X-ray from the foundation | substrate with respect to plating thickness. 本発明を実施する蛍光X線分析装置の概略構成例の示すブロック図。1 is a block diagram showing a schematic configuration example of a fluorescent X-ray analyzer that implements the present invention. メッキ厚とメッキ層からのPb特性X線強度との関係を示す関係の例。The example of the relationship which shows the relationship between plating thickness and the Pb characteristic X-ray intensity from a plating layer. メッキ厚と下地からのPb特性X線強度との関係を示す関係の例。The example of the relationship which shows the relationship between plating thickness and the Pb characteristic X-ray intensity from a foundation | substrate. メッキ試料に含まれる有害金属(鉛)を蛍光X線分析法で分析する例を説明するための模式図。The schematic diagram for demonstrating the example which analyzes the harmful metal (lead) contained in a plating sample by a fluorescent X ray analysis method.

符号の説明Explanation of symbols

(同一または類似の動作を行うものには共通の符号を付す。)
1 試料 2 X線源
3 発生器電源 4 X線検出器
5 X線計数系 6制御系
7 一次X線フィルタ 8 フィルタ制御系
9、10 コリメータ 11 演算手段
12 記憶手段
(Those that perform the same or similar operations are denoted by a common reference.)
DESCRIPTION OF SYMBOLS 1 Sample 2 X-ray source 3 Generator power supply 4 X-ray detector 5 X-ray counting system 6 Control system 7 Primary X-ray filter 8 Filter control system 9, 10 Collimator 11 Calculation means 12 Storage means

Claims (6)

試料にX線を照射し、該試料から発生する二次X線を用いて元素分析を行う蛍光X線分析法であって、
下地上に被膜が形成された分析対象試料の分析において、
被膜のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比及び下地のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比が該被膜の膜厚に応じて変化する関係を予め求めておき、
該分析対象試料の被膜の膜厚が既知のとき、被膜及び下地について前記分析対象試料の被膜の膜厚に対応する前記2種類の特性X線ピーク強度測定値の強度比を該関係に基づいて求め、該関係に基づいて求められた該強度比と該分析対象試料についての前記2種類の特性X線ピーク強度測定値とから、前記2種類の特性X線ピーク強度測定値を下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求めることを特徴とする蛍光X線分析法。
A fluorescent X-ray analysis method that irradiates a sample with X-rays and performs elemental analysis using secondary X-rays generated from the sample,
In the analysis of the sample to be analyzed with a film formed on the ground,
Intensity ratio of two kinds of characteristic X-ray peak intensity measurement values generated from the analysis target element contained only in the coating and two kinds of characteristic X-ray peak intensity measurement values generated from the analysis target element contained only in the base In advance, a relationship in which the intensity ratio changes according to the film thickness of the coating,
When the thickness of the coating film of the sample to be analyzed is known, the intensity ratio of the two kinds of characteristic X-ray peak intensity measurement values corresponding to the thickness of the coating film of the sample to be analyzed is determined based on the relationship Obtaining the two types of characteristic X-ray peak intensity measured values from the ground based on the intensity ratio obtained based on the relationship and the two types of characteristic X-ray peak intensity measured values of the sample to be analyzed A fluorescent X-ray analysis method characterized by separately obtaining an estimated value of measured intensity and an estimated value of measured intensity caused by a coating.
前記分析目的元素が鉛であるとき、前記2種類の特性X線ピークは、Pb−LαとPb−Lβの組み合わせ又はPb−KαとPb−Kβの組み合わせ又はPb−MαとPb−Mβの組み合わせの何れかであることを特徴とする請求項1に記載の蛍光X線分析法。 When the analysis target element is lead, the two kinds of characteristic X-ray peaks are a combination of Pb-Lα and Pb-Lβ, a combination of Pb-Kα and Pb-Kβ, or a combination of Pb-Mα and Pb-Mβ. The X-ray fluorescence analysis method according to claim 1, wherein the method is any one. 前記被膜がニッケルメッキであることを特徴とする請求項1乃至2の何れかに記載の蛍光X線分析法。 The fluorescent X-ray analysis method according to claim 1, wherein the coating is nickel plating. 前記下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求められたX線強度に基づいて、下地及び/又は被膜中の分析目的元素の含有量をそれぞれ分離して求めるようにしたことを特徴とする請求項1に記載の蛍光X線分析法。 Based on the X-ray intensity obtained separately for the estimated value of the measurement intensity caused by the base and the estimated value of the measurement intensity caused by the film, the content of the analysis target element in the base and / or the film is determined. 2. The fluorescent X-ray analysis method according to claim 1, wherein each is obtained separately. 試料にX線を照射し、該試料から発生する二次X線を用いて元素分析を行う蛍光X線分析法であって、
下地上に被膜が形成された分析対象試料の分析において、
被膜のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比及び/又は下地のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比が該被膜の厚さに応じて変化する関係を表す関係を予め求めておき、
該分析目的元素が分析対象試料の被膜又は下地の何れか一方のみに含まれていることが判っているとき、分析対象試料の被膜又は下地から発生する前記2種類の特性X線ピーク強度測定値の強度比に対応する該被膜の膜厚を該関係から求めることを特徴とする蛍光X線分析法。
A fluorescent X-ray analysis method that irradiates a sample with X-rays and performs elemental analysis using secondary X-rays generated from the sample,
In the analysis of the sample to be analyzed with a film formed on the ground,
Intensity ratio of two kinds of characteristic X-ray peak intensity measurements generated from the analytical element contained only in the coating and / or two characteristic X-ray peak intensities generated from the analytical element contained only in the base In advance, a relationship representing a relationship in which the intensity ratio of the measured values changes according to the thickness of the coating is obtained,
When it is known that the target element for analysis is contained in only one of the film or the base of the sample to be analyzed, the two kinds of characteristic X-ray peak intensity measurement values generated from the film or the base of the sample to be analyzed A fluorescent X-ray analysis method characterized in that the film thickness of the coating corresponding to the intensity ratio is determined from the relationship.
試料にX線を照射し、該試料から発生する二次X線を用いて元素分析を行う蛍光X線分析装置であって、
下地上に被膜が形成された試料の被膜のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比及び/又は下地のみに含まれている分析目的元素から発生する2種類の特性X線ピーク強度測定値の強度比が該被膜の膜厚に応じて変化する関係を表すデータを記憶する記憶手段と、
下地上に被膜が形成された分析対象試料の被膜の膜厚が既知のとき、前記分析対象試料の被膜の膜厚に対応する前記2種類の特性X線ピーク強度測定値の強度比を被膜及び下地について前記記憶手段に記憶されているデータを用いて求め、該データを用いて求められた強度比と前記分析対象試料についての前記2種類の特性X線ピーク強度測定値とから、前記2種類の特性X線ピーク強度測定値を下地に起因する測定強度の推定値と被膜に起因する測定強度の推定値とにそれぞれ分離して求める演算手段とを備えたことを特徴とする蛍光X線分析装置。
A fluorescent X-ray analyzer that irradiates a sample with X-rays and performs elemental analysis using secondary X-rays generated from the sample,
From the intensity ratio of two kinds of characteristic X-ray peak intensity measurements generated from the analysis target element contained only in the coating film of the sample having the coating formed on the ground and / or from the analysis objective element contained only in the groundwork Storage means for storing data representing a relationship in which the intensity ratio of two kinds of generated characteristic X-ray peak intensity measurement values varies depending on the film thickness of the coating;
When the film thickness of the sample to be analyzed with the film formed on the ground is known, the intensity ratio of the two types of characteristic X-ray peak intensity measurement values corresponding to the film thickness of the film of the sample to be analyzed is determined as the film and Using the data stored in the storage means for the ground, the intensity ratio determined using the data and the two types of characteristic X-ray peak intensity measurement values for the sample to be analyzed, the two types X-ray fluorescence analysis characterized by comprising: a calculation means for separately obtaining a characteristic X-ray peak intensity measurement value of each of the measured X-ray peak intensity measurement value resulting from the underlayer and a measurement intensity estimation value resulting from the coating. apparatus.
JP2006231426A 2006-08-29 2006-08-29 Film analysis method and apparatus by fluorescent X-ray analysis Active JP5043387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231426A JP5043387B2 (en) 2006-08-29 2006-08-29 Film analysis method and apparatus by fluorescent X-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231426A JP5043387B2 (en) 2006-08-29 2006-08-29 Film analysis method and apparatus by fluorescent X-ray analysis

Publications (2)

Publication Number Publication Date
JP2008057977A true JP2008057977A (en) 2008-03-13
JP5043387B2 JP5043387B2 (en) 2012-10-10

Family

ID=39240910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231426A Active JP5043387B2 (en) 2006-08-29 2006-08-29 Film analysis method and apparatus by fluorescent X-ray analysis

Country Status (1)

Country Link
JP (1) JP5043387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091597A1 (en) * 2020-10-30 2022-05-05 株式会社リガク Fluorescent x-ray analysis device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850412A (en) * 1981-09-22 1983-03-24 Rigaku Denki Kogyo Kk Method for measuring film thickness of metal film or amount of inclusion of each element in metal film
JPS60135811A (en) * 1983-12-26 1985-07-19 Seiko Instr & Electronics Ltd Film thickness measuring apparatus
JPS61250508A (en) * 1985-04-30 1986-11-07 Seiko Instr & Electronics Ltd Apparatus for measuring film thickness
JPH01209648A (en) * 1988-02-17 1989-08-23 Shimadzu Corp X-ray microanalyzer
JPH08247970A (en) * 1995-03-15 1996-09-27 Nippon Steel Corp Measuring method of coating quantity of anneal releasing agent on grain-oriented magnetic steel sheet
JPH10221047A (en) * 1997-02-03 1998-08-21 Jeol Ltd Fluorescent x-ray film thickness analyzer and method
JP2000146874A (en) * 1998-11-17 2000-05-26 Nkk Corp Analytical method for plated steel sheet, and analyzer therefor
JP2009510479A (en) * 2005-10-04 2009-03-12 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Analysis of elemental composition and thickness of multilayer materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850412A (en) * 1981-09-22 1983-03-24 Rigaku Denki Kogyo Kk Method for measuring film thickness of metal film or amount of inclusion of each element in metal film
JPS60135811A (en) * 1983-12-26 1985-07-19 Seiko Instr & Electronics Ltd Film thickness measuring apparatus
JPS61250508A (en) * 1985-04-30 1986-11-07 Seiko Instr & Electronics Ltd Apparatus for measuring film thickness
JPH01209648A (en) * 1988-02-17 1989-08-23 Shimadzu Corp X-ray microanalyzer
JPH08247970A (en) * 1995-03-15 1996-09-27 Nippon Steel Corp Measuring method of coating quantity of anneal releasing agent on grain-oriented magnetic steel sheet
JPH10221047A (en) * 1997-02-03 1998-08-21 Jeol Ltd Fluorescent x-ray film thickness analyzer and method
JP2000146874A (en) * 1998-11-17 2000-05-26 Nkk Corp Analytical method for plated steel sheet, and analyzer therefor
JP2009510479A (en) * 2005-10-04 2009-03-12 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Analysis of elemental composition and thickness of multilayer materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091597A1 (en) * 2020-10-30 2022-05-05 株式会社リガク Fluorescent x-ray analysis device
JP2022073174A (en) * 2020-10-30 2022-05-17 株式会社リガク X-ray fluorescence analyzer
CN114868013A (en) * 2020-10-30 2022-08-05 株式会社理学 Fluorescent X-ray analyzer
CN114868013B (en) * 2020-10-30 2022-12-20 株式会社理学 Fluorescent X-ray analyzer
US11656190B2 (en) 2020-10-30 2023-05-23 Rigaku Corporation X-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JP5043387B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US7302034B2 (en) Analysis of elemental composition and thickness in multilayered materials
Kalnicky et al. Field portable XRF analysis of environmental samples
JP6861469B2 (en) Quantitative X-ray analysis and matrix thickness correction method
JP2003050115A (en) X-ray film thickness meter
EP2185921B1 (en) Differentiation of lead in surface layers and in bulk samples by x-ray fluorescence
JP2008268076A (en) Non-destructive discrimination method, and device
JP2006292399A (en) Fluorescent x-ray analyzer and program used therefor
WO2021161631A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JP4725350B2 (en) Transmission X-ray measurement method
JPH03505251A (en) Methods for measuring thickness and composition of films on substrates
EP3247995A1 (en) Method of three-dimensional scanning using fluorescence induced by electromagnetic radiation and a device for executing this method
JP3965173B2 (en) X-ray fluorescence analyzer and program used therefor
JP5043387B2 (en) Film analysis method and apparatus by fluorescent X-ray analysis
US20060093085A1 (en) Fluorescent X-ray analysis apparatus
JP2008298679A (en) Fluorescent x-ray analysis apparatus and its method
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JPH0688792A (en) Method for analyzing contamination element
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
JPS61210932A (en) Method and instrument for fluorescent x-ray analysis of laminated body
JP2014041065A (en) X-ray analyzer and computer program
JP4834613B2 (en) X-ray fluorescence analyzer and method
JP2017020924A (en) Resin discrimination device and resin discrimination method
JP4473246B2 (en) X-ray fluorescence analyzer and X-ray fluorescence analysis method
JP5618240B2 (en) Quantitative analysis method
USH922H (en) Method for analyzing materials using x-ray fluorescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3