JP2017020924A - Resin discrimination device and resin discrimination method - Google Patents

Resin discrimination device and resin discrimination method Download PDF

Info

Publication number
JP2017020924A
JP2017020924A JP2015139462A JP2015139462A JP2017020924A JP 2017020924 A JP2017020924 A JP 2017020924A JP 2015139462 A JP2015139462 A JP 2015139462A JP 2015139462 A JP2015139462 A JP 2015139462A JP 2017020924 A JP2017020924 A JP 2017020924A
Authority
JP
Japan
Prior art keywords
resin
sample
scattering intensity
intensity ratio
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139462A
Other languages
Japanese (ja)
Other versions
JP6507898B2 (en
Inventor
博朗 古川
Hiroaki Furukawa
博朗 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015139462A priority Critical patent/JP6507898B2/en
Publication of JP2017020924A publication Critical patent/JP2017020924A/en
Application granted granted Critical
Publication of JP6507898B2 publication Critical patent/JP6507898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a resin discrimination device and a resin discrimination method capable of discriminating a kind of a resin contained in a sample from X rays emitted from the sample when the sample has been irradiated with the X rays.SOLUTION: A resin discrimination device includes: an X-ray tube 1 that emits X rays; an X-ray detector 3 that detects the X rays emitted from a sample 2 which has been irradiated with the X rays; a data processing section 10 that creates spectrum based on a detection signal obtained by the X-ray detector 3; a peak extraction section 12 that extracts a spectral line due to Compton scattering originating in a target element of the X-ray tube 1 and a spectral line due to Rayleigh scattering on the spectrum, and determines the peak strength; and a discrimination section 13 that calculates a scattering intensity ratio which is a ratio of the Rayleigh scattering intensity and the Compton scattering intensity, and discriminates a type of a resin contained in the sample 2 from the scattering intensity ratio.SELECTED DRAWING: Figure 1

Description

本発明は、樹脂の種類を判別する樹脂判別装置及び樹脂判別方法に関し、さらに詳しくは、励起X線を試料に照射しそれに応じて試料から放出されたX線を利用して樹脂の種類を判別する樹脂判別装置及び樹脂判別方法に関する。   The present invention relates to a resin discriminating apparatus and a resin discriminating method for discriminating the type of resin. More specifically, the present invention relates to a method for discriminating the type of resin by irradiating a sample with excited X-rays and using X-rays emitted from the sample accordingly The present invention relates to a resin discrimination device and a resin discrimination method.

蛍光X線分析による定量方法として、検量線法と、ファンダメンタルパラメータ法(以下「FP法」と称す)がよく知られている。検量線法は、標準試料を測定した結果からX線強度と元素含有量(又は濃度)の関係を表す検量線を予め作成しておき、この検量線に照らして、目的試料に対する測定により得られたX線強度値から元素含有量を求めるものである。一方、FP法は、目的試料に対する測定により得られたX線強度値から理論強度計算により元素含有量を求めるものである。FP法は検量線法に比べて定量精度の点では劣るものの、必ずしも標準試料を必要とせずに簡易的に定量を行うことができるという利点がある。   As a quantitative method by fluorescent X-ray analysis, a calibration curve method and a fundamental parameter method (hereinafter referred to as “FP method”) are well known. The calibration curve method is obtained by preparing a calibration curve representing the relationship between the X-ray intensity and the element content (or concentration) in advance from the result of measuring a standard sample, and measuring the target sample in light of this calibration curve. The element content is obtained from the X-ray intensity value. On the other hand, in the FP method, the element content is obtained by theoretical intensity calculation from an X-ray intensity value obtained by measurement on a target sample. Although the FP method is inferior to the calibration curve method in terms of quantification accuracy, there is an advantage that quantification can be easily performed without necessarily requiring a standard sample.

水素、炭素など、蛍光X線を測定できない元素を含む試料、例えば樹脂などの有機化合物についてFP法により定量を行う場合の手法として、例えば特許文献1に記載の方法が知られている。この方法では、試料に含まれる樹脂の主成分元素を仮定して、主成分以外の各成分については蛍光X線を利用する一方、主成分については散乱X線を利用し、試料に対する実測強度と理論強度とを比較してFP法により主成分及びその他の各種成分の定量値を求める。こうした定量方法では各種成分の定量値の推定は可能であるが、主成分元素については仮定しているため、有機化合物を特定することは困難であり、例えば試料に含まれる樹脂の種類を判別することはできない。そのため、上記方法で得られた定量値は、樹脂をそれ以外の物質(例えば金属)と分別する前処理のための情報として用いることしかできず、樹脂の種類を特定するためには、さらに別の処理を行っているのが実状である。   For example, a method described in Patent Document 1 is known as a method for quantifying a sample containing an element that cannot measure fluorescent X-rays, such as hydrogen and carbon, for example, an organic compound such as a resin, by the FP method. In this method, assuming the principal component element of the resin contained in the sample, the fluorescent X-ray is used for each component other than the main component, while the scattered X-ray is used for the main component, Quantitative values of the main component and other various components are determined by the FP method by comparing with the theoretical strength. Although such quantitative methods can estimate the quantitative values of various components, it is difficult to specify organic compounds because the main component elements are assumed. For example, the type of resin contained in a sample is discriminated. It is not possible. Therefore, the quantitative value obtained by the above method can only be used as information for pretreatment for separating the resin from other substances (for example, metals). This is the actual situation.

特開2010−223908号公報JP 2010-223908 A

本発明は上記課題を解決するために成されたものであり、その主な目的は、試料にX線を照射したときに該試料から発せられるX線から該試料に含まれる樹脂の種類を判別することができる樹脂判別装置及び樹脂判別方法を提供することにある。   The present invention has been made to solve the above problems, and its main purpose is to determine the type of resin contained in the sample from the X-rays emitted from the sample when the sample is irradiated with X-rays. An object of the present invention is to provide a resin discrimination device and a resin discrimination method that can be used.

上記課題を解決するために成された本発明に係る樹脂判別装置は、
a)X線を発するX線源と、
b)前記X線源からのX線が照射された試料から発せられるX線を検出するX線検出器と、
c)前記X線検出器により得られた検出信号に基づいてスペクトルを作成するスペクトル作成手段と、
d)前記スペクトル上で前記X線源のターゲット元素由来のコンプトン散乱によるスペクトル線及びレイリー散乱によるスペクトル線を検出し、前記コンプトン散乱強度と前記レイリー散乱強度の比である散乱強度比を算出する散乱強度比算出手段と、
e)前記散乱強度比から前記試料に含まれる樹脂の種類を判別する樹脂種判別手段と
を備えることを特徴とする。
The resin discriminating apparatus according to the present invention made to solve the above problems is as follows.
a) an X-ray source emitting X-rays;
b) an X-ray detector for detecting X-rays emitted from a sample irradiated with X-rays from the X-ray source;
c) spectrum creation means for creating a spectrum based on the detection signal obtained by the X-ray detector;
d) Scatter for detecting a spectrum line by Compton scattering and a Rayleigh scattering spectrum line derived from the target element of the X-ray source on the spectrum, and calculating a scattering intensity ratio which is a ratio of the Compton scattering intensity to the Rayleigh scattering intensity. Intensity ratio calculating means;
e) A resin type discriminating means for discriminating the type of resin contained in the sample from the scattering intensity ratio.

本発明は、樹脂を含む試料にX線源からのX線を照射したときに該試料から発せられるX線より得られるスペクトルにX線源のターゲット元素に主に由来するレイリー散乱X線とコンプトン散乱X線が現れ、これらレイリー散乱強度とコンプトン散乱強度の比が、試料に含まれる樹脂の種類によって変化することを見出し、なされたものである。ここで、樹脂はプラスチック等の固形状の樹脂に限らず、液体状、粉末状など様々な形態の樹脂を含む。また、合成樹脂だけでなく天然樹脂も含む。   In the present invention, when a sample containing a resin is irradiated with X-rays from an X-ray source, the spectrum obtained from the X-rays emitted from the sample is subjected to Rayleigh scattered X-rays and Compton mainly derived from the target element of the X-ray source. Scattered X-rays appear, and the ratio between the Rayleigh scattering intensity and the Compton scattering intensity is found to change depending on the type of resin contained in the sample. Here, the resin is not limited to a solid resin such as plastic, but includes various forms of resin such as liquid and powder. In addition to synthetic resins, natural resins are also included.

本発明では、複数の既知の樹脂について予め求められた散乱強度比を記憶する記憶部を備え、
前記樹脂種判別手段は、前記散乱強度比算出手段が算出した散乱強度比を、前記記憶部に記憶された複数の散乱強度比と比較することにより、前記試料に含まれる樹脂の種類を判別するとよい。
この場合、記憶部に記憶される既知の樹脂の散乱強度比は、その樹脂の含有元素や構造から算出されたコンプトン散乱及びレイリー散乱の理論強度から求められた値でも良く、既知の樹脂について実際に測定されたコンプトン散乱及びレイリー散乱の強度(実測強度)から求められた値でも良い。このような構成では、樹脂種判別手段は、例えば記憶部に記憶された散乱強度比のうち、散乱強度比算出手段により算出された散乱強度比との差が最も小さい散乱強度比の樹脂を、試料に含まれる試料の種類と判定する。
In the present invention, comprising a storage unit for storing the scattering intensity ratio determined in advance for a plurality of known resins,
The resin type discrimination means discriminates the type of resin contained in the sample by comparing the scattering intensity ratio calculated by the scattering intensity ratio calculation means with a plurality of scattering intensity ratios stored in the storage unit. Good.
In this case, the scattering intensity ratio of the known resin stored in the storage unit may be a value obtained from the theoretical intensity of Compton scattering and Rayleigh scattering calculated from the contained element and structure of the resin. It may also be a value obtained from the Compton scattering and Rayleigh scattering intensities (measured intensities). In such a configuration, the resin type discriminating means, for example, out of the scattering intensity ratios stored in the storage unit, a resin having a scattering intensity ratio with the smallest difference from the scattering intensity ratio calculated by the scattering intensity ratio calculating means, It is determined that the type of sample included in the sample.

また、前記樹脂種判別手段は、前記記憶部に記憶された複数の散乱強度比を独立変数、前記試料について算出された散乱強度比を従属変数とする関係式を回帰分析により求め、求められた関係式における各独立変数の係数から、試料に含まれる樹脂の種類を判別するようにしても良い。この場合、各独立変数の係数が試料に含まれる樹脂の混合比率であると推定することができる。また、求められた関係式における各独立変数の係数の全てを樹脂の混合比率と推定しても良いが、所定の設定最小値よりも大きい変数のみを樹脂の混合比率としても良い。具体的には、例えば係数の値が設定最小値より大きい場合はその係数を持つ独立変数(記憶部に記憶された散乱強度比)に対応する既知の樹脂が、当該係数の比率で試料に含まれていると判別され、係数の値が設定最小値以下の場合はその係数を持つ独立変数に対応する既知の樹脂は試料に含まれていないと判別される。このような構成によれば、求められた関係式の独立変数の項のうちX線検出器の検出誤差に起因する項に対応する樹脂を、試料に含まれる樹脂の種類の一つと誤って判別してしまうことを避けることができる。   Further, the resin type discriminating means obtains a relational expression using a plurality of scattering intensity ratios stored in the storage unit as independent variables and a scattering intensity ratio calculated for the sample as a dependent variable by regression analysis. You may make it discriminate | determine the kind of resin contained in a sample from the coefficient of each independent variable in a relational expression. In this case, it can be estimated that the coefficient of each independent variable is the mixing ratio of the resin contained in the sample. Further, all the coefficients of the independent variables in the obtained relational expression may be estimated as the resin mixing ratio, but only a variable larger than a predetermined set minimum value may be used as the resin mixing ratio. Specifically, for example, when the coefficient value is larger than the set minimum value, a known resin corresponding to an independent variable (scattering intensity ratio stored in the storage unit) having the coefficient is included in the sample at the ratio of the coefficient. If the coefficient value is equal to or less than the set minimum value, it is determined that the known resin corresponding to the independent variable having the coefficient is not included in the sample. According to such a configuration, the resin corresponding to the term resulting from the detection error of the X-ray detector among the independent variable terms of the obtained relational expression is erroneously determined as one of the types of resins contained in the sample. Can be avoided.

樹脂の種類によっては塩素(Cl)や硫黄(S)等の蛍光X線を発する元素を含むものがあり、このような樹脂にX線を照射した場合はこれら元素に由来する蛍光X線スペクトルが得られる。従って、このような樹脂を試料とする場合は、前記樹脂種判別手段は、前記スペクトル上で前記試料から発せられる蛍光X線を検出し、該蛍光X線の強度と前記散乱強度比算出手段が算出した散乱強度比から前記試料に含まれる樹脂の種類を判別するようにすると良い。   Some resins contain elements that emit fluorescent X-rays, such as chlorine (Cl) and sulfur (S), and when such resins are irradiated with X-rays, the X-ray fluorescence spectrum derived from these elements is can get. Therefore, when such a resin is used as a sample, the resin type discriminating means detects fluorescent X-rays emitted from the sample on the spectrum, and the fluorescent X-ray intensity and the scattering intensity ratio calculating means The type of resin contained in the sample may be discriminated from the calculated scattering intensity ratio.

上記した本発明の樹脂判別装置においては、前記樹脂種判別手段が判別した結果を表示する判別結果表示部を備えることが好ましい。特に、上記した回帰分析により樹脂の種類を判別する構成の場合、解(関係式)が一つとは限らない。そこで、複数の解(関係式)が得られ、複数の異なる判定結果が得られた場合は、これらの判定結果を印刷や表示画面に表示し、その中から分析者が選択した結果から試料に含まれる樹脂を決定するようにしても良い。また、複数の関係式が求められたときは、各関係式について当該関係式における各独立変数の係数から前記試料に含まれる樹脂の種類を判別すると共に、当該関係式から求められる散乱強度比と前記散乱強度比算出手段が算出した散乱強度比との一致度を求めるようにしても良い。そして、複数の関係式のそれぞれについて前記樹脂判別手段が判別した前記試料に含まれる樹脂の種類と前記一致度を印刷や表示画面に表示すると、分析者は、一致度を参考にして試料に含まれる樹脂の種類を判別することができる。   In the resin discriminating apparatus of the present invention described above, it is preferable to include a discrimination result display unit for displaying the result discriminated by the resin type discriminating means. In particular, in the case of the configuration in which the type of resin is discriminated by the above-described regression analysis, the solution (relational expression) is not necessarily one. Therefore, when multiple solutions (relational expressions) are obtained and multiple different determination results are obtained, these determination results are displayed on a print or display screen, and the results selected by the analyst are displayed on the sample. The resin included may be determined. When a plurality of relational expressions are obtained, for each relational expression, the type of resin contained in the sample is determined from the coefficient of each independent variable in the relational expression, and the scattering intensity ratio obtained from the relational expression The degree of coincidence with the scattering intensity ratio calculated by the scattering intensity ratio calculating means may be obtained. Then, when the resin type and the degree of coincidence included in the sample determined by the resin determining unit for each of a plurality of relational expressions are displayed on a print or display screen, the analyst includes the sample in the sample with reference to the degree of coincidence. The type of resin used can be discriminated.

本発明の別の態様は、上記した樹脂判別装置に対応する樹脂判別方法であり、X線源から発せられたX線を試料に照射し、それに応じて該試料から発せられるX線を分析して、前記X線源のターゲット元素由来のコンプトン散乱強度とレイリー散乱強度の比である散乱強度比を算出し、この散乱強度比から前記試料に含まれる樹脂の種類を判別することを特徴とする。   Another aspect of the present invention is a resin discrimination method corresponding to the above-described resin discrimination apparatus, which irradiates a sample with X-rays emitted from an X-ray source and analyzes the X-rays emitted from the sample accordingly. Calculating a scattering intensity ratio which is a ratio of Compton scattering intensity and Rayleigh scattering intensity derived from the target element of the X-ray source, and discriminating the type of resin contained in the sample from the scattering intensity ratio. .

上記樹脂判別方法においては、試料について算出された散乱強度比を、複数の既知の樹脂について予め求められた散乱強度比と比較することにより、前記試料に含まれる樹脂の種類を判別しても良く、複数の既知の樹脂について予め求められた散乱強度比を独立変数、前記試料について算出された散乱強度比を従属変数とする関係式を回帰分析により求め、求められた関係式における各独立変数の係数から、前記試料に含まれる樹脂の種類と混合比率を判別しても良い。   In the resin discrimination method, the type of resin contained in the sample may be discriminated by comparing the scattering intensity ratio calculated for the sample with the scattering intensity ratio obtained in advance for a plurality of known resins. , A relational expression having a scattering intensity ratio obtained in advance for a plurality of known resins as an independent variable and a scattering intensity ratio calculated for the sample as a dependent variable is obtained by regression analysis, and each independent variable in the obtained relational expression is calculated. The type and mixing ratio of the resin contained in the sample may be determined from the coefficient.

また、X線が前記試料に照射されることに応じて該試料から発せられるX線を分析して、該試料に含まれる蛍光X線の強度を算出し、該蛍光X線の強度と前記試料について算出された散乱強度比から前記試料に含まれる樹脂以外の例えば塩素(Cl)や硫黄(S)等の蛍光X線を発する樹脂の種類を判別しても良い。   In addition, X-rays emitted from the sample are analyzed in response to irradiation of the sample with X-rays, the intensity of the fluorescent X-rays contained in the sample is calculated, and the intensity of the fluorescent X-rays and the sample are calculated. The type of resin that emits fluorescent X-rays, such as chlorine (Cl) and sulfur (S), other than the resin contained in the sample, may be determined from the scattering intensity ratio calculated for.

以上の通り、本発明に係る樹脂判別装置及び樹脂判別方法によれば、試料にX線を照射したときに該試料から発せられるX線を分析することにより、試料に含まれる樹脂の種類を判別することができる。   As described above, according to the resin discriminating apparatus and the resin discriminating method of the present invention, the type of resin contained in the sample is discriminated by analyzing the X-rays emitted from the sample when the sample is irradiated with X-rays. can do.

本発明に係る樹脂判別装置の一実施例を示す蛍光X線分析装置の一例の概略構成図。1 is a schematic configuration diagram of an example of an X-ray fluorescence analyzer showing an embodiment of a resin discrimination device according to the present invention. 同実施例における樹脂判別処理のフローチャート。The flowchart of the resin discrimination | determination process in the Example. 3種の樹脂純物質の蛍光X線スペクトルを測定した結果を示す図。The figure which shows the result of having measured the fluorescence X-ray spectrum of three types of resin pure substances.

まず、本発明に係る樹脂判別装置の一例である蛍光X線分析装置について説明する。図1はエネルギー分散型蛍光X線分析装置の概略構成図である。   First, a fluorescent X-ray analysis apparatus that is an example of a resin discrimination apparatus according to the present invention will be described. FIG. 1 is a schematic configuration diagram of an energy dispersive X-ray fluorescence analyzer.

図1において、制御部15による制御の下に、ターゲット材料がロジウム(Rh)であるX線管1から発せられた励起X線が試料2に当たると、励起X線により励起された蛍光X線が試料2から放出され、シリコンドリフト型検出器などのX線検出器3に入射して電流信号として検出される。また試料2に当たった励起X線はその一部が試料2によって散乱され、こうした散乱X線もX線検出器3で検出される。検出された電流はX線検出器3内部で積分され、その積分は一定時間を超えるとリセットされる。これにより、X線検出器3の出力信号は階段状の電流パルス信号となる。この信号の各段の高さが試料2に含まれる各元素のエネルギーに対応している。この電流パルス信号は、プリアンプ4、さらに波形整形回路を含む比例増幅器5に入力され、上記各階段の高さに応じた波高を持つ適当な形状のパルスに成形されて出力される。   In FIG. 1, under the control of the control unit 15, when the excited X-ray emitted from the X-ray tube 1 whose target material is rhodium (Rh) hits the sample 2, the fluorescent X-ray excited by the excited X-ray is The sample 2 is emitted from the sample 2 and is incident on an X-ray detector 3 such as a silicon drift detector to be detected as a current signal. A part of the excited X-rays that have hit the sample 2 are scattered by the sample 2, and such scattered X-rays are also detected by the X-ray detector 3. The detected current is integrated inside the X-ray detector 3, and the integration is reset when a certain time is exceeded. Thereby, the output signal of the X-ray detector 3 becomes a step-like current pulse signal. The height of each step of this signal corresponds to the energy of each element contained in the sample 2. This current pulse signal is input to the preamplifier 4 and further to a proportional amplifier 5 including a waveform shaping circuit, and is formed into a pulse having an appropriate shape having a wave height corresponding to the height of each step and output.

A/D変換器(ADC)6は、このパルス波形状のアナログ信号を所定のサンプリング周期でサンプリングしてデジタル化する。マルチチャンネルアナライザ(MCA)7はデジタル化されたパルス信号の波高値に応じて各パルスを弁別した後にそれぞれ計数し、波高分布図、つまりX線スペクトルを作成してデータ処理部10に入力する。X線スペクトルを構成するデータはスペクトル記憶部11に格納される。後述するようにX線スペクトルでは、分析対象である試料中に含まれる元素から放出される蛍光X線のエネルギー値に対応する位置に各元素固有のスペクトル線がピークとして現れる。また、X線管1のターゲット元素に由来するコンプトン散乱X線及びレイリー散乱X線のスペクトル線のピークも現れる。データ処理部10においてピーク抽出部12はX線スペクトル上に現れている各ピークを検出し、目的とする元素や化合物のピークを抽出する。判別部13は抽出された各ピークの強度、つまりX線強度値を用いて、試料に含まれる樹脂の種類の判別処理を実行する。本実施例では、この判別部13において特徴的な樹脂判別処理が実行される。   The A / D converter (ADC) 6 samples and digitizes the pulse wave-shaped analog signal at a predetermined sampling period. The multi-channel analyzer (MCA) 7 discriminates each pulse according to the peak value of the digitized pulse signal and then counts it, creates a peak distribution diagram, that is, an X-ray spectrum, and inputs it to the data processing unit 10. Data constituting the X-ray spectrum is stored in the spectrum storage unit 11. As will be described later, in the X-ray spectrum, a spectrum line unique to each element appears as a peak at a position corresponding to the energy value of the fluorescent X-ray emitted from the element contained in the sample to be analyzed. In addition, peaks of Compton scattered X-rays and Rayleigh scattered X-ray spectral lines derived from the target element of the X-ray tube 1 also appear. In the data processing unit 10, the peak extraction unit 12 detects each peak appearing on the X-ray spectrum, and extracts the peak of the target element or compound. The discriminating unit 13 uses the intensity of each extracted peak, that is, the X-ray intensity value, to execute a process for discriminating the type of resin contained in the sample. In the present embodiment, a characteristic resin discrimination process is executed in the discrimination unit 13.

次に、本実施例に係る樹脂判別処理の手順を図2のフローチャートに従って説明する。
所定位置に試料2がセットされ(ステップS1)、操作部16により測定開始が指示されると(ステップS2)、試料2に対してX線が照射され、それに応じて試料2から発せられるX線がX線検出器3で検出される(ステップS3)。続いて、データ処理部10がX線検出器3の検出信号に基づきX線スペクトルを作成し(ステップS4)、ピーク抽出部12がX線スペクトル上のRhKα線のコンプトン散乱線によるピーク及びRhKα線のレイリー散乱線によるピーク、並びに蛍光X線スペクトルのピークを抽出すると共にその強度を求める(ステップS5、S6)。また、ピーク抽出部12は、蛍光X線スペクトルのピーク強度と共にピークエネルギーも求める。
Next, the procedure of the resin discrimination process according to the present embodiment will be described with reference to the flowchart of FIG.
When the sample 2 is set at a predetermined position (step S1) and the start of measurement is instructed by the operation unit 16 (step S2), the sample 2 is irradiated with X-rays and the X-rays emitted from the sample 2 accordingly. Is detected by the X-ray detector 3 (step S3). Subsequently, the data processing unit 10 creates an X-ray spectrum based on the detection signal of the X-ray detector 3 (step S4), and the peak extraction unit 12 causes the peak of the RhKα ray on the X-ray spectrum and the RhKα ray. The peak due to the Rayleigh scattered ray and the peak of the fluorescent X-ray spectrum are extracted and the intensity is obtained (steps S5 and S6). Moreover, the peak extraction part 12 calculates | requires a peak energy with the peak intensity of a fluorescent X-ray spectrum.

判別部13は、RhKα線のコンプトン散乱線によるピーク強度及びRhKα線のレイリー散乱線によるピーク強度から両者の比(本発明の散乱強度比に相当、以下「C/R比」という。)を算出する(ステップS7)。そして、この算出したC/R比を、予め記憶部131に記憶されているデータベースのC/R比と比較して(ステップS8)、試料2に含まれる樹脂の種類を判別する(ステップS9)。   The discriminating unit 13 calculates the ratio between the peak intensity of the RhKα ray due to the Compton scattered ray and the peak intensity of the RhKα ray due to the Rayleigh scattered ray (corresponding to the scattering intensity ratio of the present invention, hereinafter referred to as “C / R ratio”). (Step S7). Then, the calculated C / R ratio is compared with the C / R ratio of the database stored in advance in the storage unit 131 (step S8), and the type of resin contained in the sample 2 is determined (step S9). .

ここで、記憶部131には、例えば下記の表1に示すようなテーブルが記憶されているものとする。表1に示す既知の樹脂種のC/R比としては、各種の樹脂のみからなる試料(樹脂純物質)について本実施例に係る装置を使って予め求めたC/R比を用いても良く、各種の樹脂の組成から算出したコンプトン散乱強度及びレイリー散乱強度の理論値から求めたものでも良い。図3に3種類の樹脂純物質(ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET))の蛍光X線スペクトルの例を示す。図3中、矢印を付した右から4本目のピーク及び右から3本目のピークがそれぞれRhKα線のコンプトン散乱線、レイリー散乱線を示す。各樹脂のコンプトン散乱線のピーク強度及びレイリー散乱線のピーク強度からC/R比を求めることができる。

Figure 2017020924
Here, it is assumed that the storage unit 131 stores, for example, a table as shown in Table 1 below. As the C / R ratio of the known resin types shown in Table 1, the C / R ratio obtained in advance using the apparatus according to the present embodiment may be used for a sample (resin pure substance) consisting only of various resins. Further, it may be obtained from theoretical values of Compton scattering intensity and Rayleigh scattering intensity calculated from the composition of various resins. FIG. 3 shows examples of fluorescent X-ray spectra of three kinds of resin pure substances (polyethylene (PE), nylon, polyethylene terephthalate (PET)). In FIG. 3, the fourth peak from the right and the third peak from the right with arrows indicate the Compton scattered ray and Rayleigh scattered ray of the RhKα ray, respectively. The C / R ratio can be obtained from the peak intensity of the Compton scattered ray and the Rayleigh scattered line of each resin.
Figure 2017020924

例えば判別部13は、ステップS7で算出されたC/R比とテーブル中の各C/R比との差を求め、この差が最も小さいC/R比の樹脂種を抽出し、それを試料に含まれる樹脂の種類として決定する。また、表1に示すC/R比の値を中心とする所定の数値範囲(例えば±0.1の範囲)に算出されたC/R比の値が含まれるか否か判断し、数値範囲に含まれる場合に、その樹脂種を試料に含まれる樹脂の種類として決定する。   For example, the discriminating unit 13 obtains the difference between the C / R ratio calculated in step S7 and each C / R ratio in the table, extracts the resin type having the smallest C / R ratio, and uses it as a sample. It is determined as the type of resin contained in. In addition, it is determined whether the calculated C / R ratio value is included in a predetermined numerical range (for example, a range of ± 0.1) centered on the C / R ratio value shown in Table 1, and the numerical range. If it is contained in the sample, the resin type is determined as the type of resin contained in the sample.

また、蛍光X線スペクトルのピークが抽出された場合は、そのピーク情報(ピークエネルギー及びピーク強度)と上記C/R比から試料に含まれる樹脂の種類を決定しても良い。蛍光X線スペクトルのピーク情報は塩素(Cl)や硫黄(S)等の元素が樹脂に含まれることを示していることから、試料に含まれる樹脂の種類をより正確に判別することができる。
こうして得られた樹脂の種類は表示又は印刷として出力部14(本発明の「判別結果表示部」に相当)から出力される(ステップS10)。
Moreover, when the peak of the fluorescent X-ray spectrum is extracted, the type of resin contained in the sample may be determined from the peak information (peak energy and peak intensity) and the C / R ratio. Since the peak information of the fluorescent X-ray spectrum indicates that an element such as chlorine (Cl) or sulfur (S) is contained in the resin, the type of resin contained in the sample can be more accurately determined.
The type of resin thus obtained is output from the output unit 14 (corresponding to the “discrimination result display unit” of the present invention) as a display or print (step S10).

ところで、試料2に複数の種類の樹脂が含まれる場合、その試料のC/R比は、各樹脂の混合比率にその樹脂純物質のC/R比を乗じた値の合計値となる。そこで、判別部13が、試料2について算出されたC/R比とテーブル中の各樹脂種のC/R比との差を求めた結果、いずれの樹脂種についてもその差が所定値を上回っている場合、あるいは、いずれの樹脂種についてもC/R比の値を中心とする所定の数値範囲から外れている場合は、複数の種類の樹脂が含まれると判断して、次に述べる方法により試料に含まれる樹脂の種類を判別するようにしても良い。   By the way, when the sample 2 includes a plurality of types of resins, the C / R ratio of the sample is a total value obtained by multiplying the mixing ratio of each resin by the C / R ratio of the resin pure substance. Therefore, as a result of the determination unit 13 obtaining a difference between the C / R ratio calculated for the sample 2 and the C / R ratio of each resin type in the table, the difference exceeds a predetermined value for any resin type. If any of the resin types is out of the specified numerical range centered on the C / R ratio, it is determined that multiple types of resins are included, and the method described below Thus, the type of resin contained in the sample may be determined.

まず、判別部13は、表1のテーブルの中のC/R比を、試料について算出されたC/R比との差が小さい順に並べ、これらC/R比の値を独立変数(X1、X2、X3…)、試料について算出されたC/R比を従属変数Yとする以下の関係式(1)を設定する。
Y=a・X1+b・X2+c・X3+ … (1)
ここで、a、b、c…は各樹脂の混合比率(ただし、a+b+c+…=1)を表す係数を示す。判別部13は、係数a、b、c等の値を変化させながら回帰分析により各係数の値を決定する。なお、このような回帰分析には「Excel」等の周知の解析ソフトを用いることができる。
First, the determination unit 13 arranges the C / R ratios in the table of Table 1 in ascending order of difference from the C / R ratio calculated for the sample, and sets the values of these C / R ratios as independent variables (X1,. X2, X3...), The following relational expression (1) is set with the C / R ratio calculated for the sample as the dependent variable Y.
Y = a.X1 + b.X2 + c.X3 + (1)
Here, a, b, c... Indicate coefficients representing the mixing ratio of each resin (where a + b + c +... = 1). The determination unit 13 determines the value of each coefficient by regression analysis while changing the values of the coefficients a, b, c, and the like. In addition, well-known analysis software such as “Excel” can be used for such regression analysis.

そして、回帰分析の結果、得られた係数の値に基づき、試料2に含まれる樹脂の種類を判別する。例えば、係数の値が最も大きいものから順に並べ、上位3番目までのC/R比に対応する樹脂種を、試料2に含まれる樹脂の種類の組み合わせとして推定する。また、係数の値が所定の設定最小値以上のC/R比に対応する樹脂種を試料2に含まれる樹脂の種類の組み合わせとして推定しても良い。   Then, as a result of the regression analysis, the type of resin contained in the sample 2 is determined based on the coefficient value obtained. For example, the resin types corresponding to the C / R ratios up to the top third are arranged in order from the largest coefficient value, and the resin types included in the sample 2 are estimated as combinations. Further, a resin type corresponding to a C / R ratio having a coefficient value equal to or greater than a predetermined set minimum value may be estimated as a combination of types of resins included in the sample 2.

さらに、回帰分析の結果、複数の関係式(解)が得られた場合は、これらの関係式の全てについて試料に含まれる樹脂の種類の組み合わせを推定し、これらを樹脂種の組み合わせの候補としても良い。そして、候補となる樹脂種の組み合わせを表示画面又は印刷により表示し、これらの中から分析者が適宜の組み合わせを選択するようにすると良い。また、複数の関係式の全てについて、各関係式から求められるYの値と、試料について算出されたY(C/R比)の一致度を算出し、それぞれの一致度を候補となる樹脂種の組み合わせと共に表示画面又は印刷により表示するようにしても良い。この場合、表示画面を表示する表示手段や印刷手段が本発明の一致度表示部に相当する。
このような構成によれば、試料に複数の種類の樹脂が含まれる場合でもそれら樹脂の種類を判別することができる。また、候補となる樹脂種の組み合わせと共に一致度を表示するようにすれば、その一致度を参考に分析者が樹脂種の組み合わせを選択することができる。
Furthermore, if multiple relational expressions (solutions) are obtained as a result of regression analysis, the combination of resin types contained in the sample is estimated for all of these relational expressions, and these are used as candidates for the combination of resin types. Also good. And it is good to display the combination of the resin kind used as a candidate by a display screen or printing, and let an analyst select an appropriate combination from these. Also, for all of the plurality of relational expressions, the degree of coincidence between the Y value obtained from each relational expression and the Y (C / R ratio) calculated for the sample is calculated, and the degree of coincidence of each is calculated as a candidate resin type. It may be displayed by a display screen or printing together with the combination. In this case, the display means and the printing means for displaying the display screen correspond to the coincidence degree display unit of the present invention.
According to such a configuration, even when a sample includes a plurality of types of resins, the types of these resins can be determined. If the degree of coincidence is displayed together with a combination of candidate resin types, the analyst can select a combination of resin types with reference to the degree of coincidence.

なお、上記実施例では、記憶部131に記憶されたテーブルから試料2中の樹脂の種類を判定する処理と回帰分析により試料2中の樹脂の種類を判定する処理を併用したが、いずれか一方の処理だけを試料2中の樹脂の種類の判定処理に用いても良い。
また、本発明は上記実施例に限らず、試料から発せられるX線の検出信号からスペクトルを作成し、該スペクトルからコンプトン散乱強度とレイリー散乱光度の比を求めることができれば、どのような種類のX線分析装置でも良く、ターゲット材料やX線検出器も実施例で挙げたものに限らない。
In the above embodiment, the process of determining the type of resin in the sample 2 from the table stored in the storage unit 131 and the process of determining the type of resin in the sample 2 by regression analysis are used in combination. Only the above process may be used for the determination process of the type of resin in the sample 2.
In addition, the present invention is not limited to the above embodiment, and any type of spectrum may be used as long as a spectrum is created from a detection signal of X-rays emitted from a sample and a ratio between Compton scattering intensity and Rayleigh scattered light intensity can be obtained from the spectrum. An X-ray analyzer may be used, and the target material and the X-ray detector are not limited to those described in the embodiments.

1…X線管
2…試料
3…X線検出器
4…プリアンプ
5…比例増幅器
6…A/D変換器
7…マルチチャンネルアナライザ(MCA)
10…データ処理部
11…スペクトル記憶部
12…ピーク抽出部
13…判別部
131…記憶部
14…出力部
15…制御部
16…操作部
DESCRIPTION OF SYMBOLS 1 ... X-ray tube 2 ... Sample 3 ... X-ray detector 4 ... Preamplifier 5 ... Proportional amplifier 6 ... A / D converter 7 ... Multichannel analyzer (MCA)
DESCRIPTION OF SYMBOLS 10 ... Data processing part 11 ... Spectrum storage part 12 ... Peak extraction part 13 ... Discrimination part 131 ... Storage part 14 ... Output part 15 ... Control part 16 ... Operation part

Claims (10)

a)X線を発するX線源と、
b)X線が照射された試料から発せられるX線を検出するX線検出器と、
c)前記X線検出器により得られた検出信号に基づいてスペクトルを作成するスペクトル作成手段と、
d)前記スペクトル上で前記X線源のターゲット元素由来のコンプトン散乱によるスペクトル線及びレイリー散乱によるスペクトル線を検出し、前記レイリー散乱強度と前記コンプトン散乱強度の比である散乱強度比を算出する散乱強度比算出手段と、
e)前記散乱強度比から前記試料に含まれる樹脂の種類を判別する樹脂種判別手段と
を備えることを特徴とする樹脂判別装置。
a) an X-ray source emitting X-rays;
b) an X-ray detector for detecting X-rays emitted from a sample irradiated with X-rays;
c) spectrum creation means for creating a spectrum based on the detection signal obtained by the X-ray detector;
d) Scatter for detecting a spectrum line by Compton scattering and a Rayleigh scattering spectrum line derived from the target element of the X-ray source on the spectrum and calculating a scattering intensity ratio which is a ratio of the Rayleigh scattering intensity and the Compton scattering intensity. Intensity ratio calculating means;
e) A resin discriminating apparatus comprising: a resin type discriminating unit that discriminates the type of resin contained in the sample from the scattering intensity ratio.
請求項1に記載の樹脂判別装置において、
前記樹脂種判別手段が判別した結果を表示する判別結果表示部を備えることを特徴とする樹脂判別装置。
In the resin discrimination device according to claim 1,
A resin discrimination device comprising a discrimination result display unit for displaying a result discriminated by the resin type discrimination means.
請求項1又は2に記載の樹脂判別装置において、
複数の既知の樹脂について予め求められた散乱強度比を記憶する記憶部を備え、
前記樹脂種判別手段は、前記散乱強度比算出手段が算出した散乱強度比を、前記記憶部に記憶された複数の散乱強度比と比較することにより、前記試料に含まれる樹脂の種類を判別することを特徴とする樹脂判別装置。
In the resin discrimination device according to claim 1 or 2,
A storage unit for storing a scattering intensity ratio obtained in advance for a plurality of known resins;
The resin type discriminating unit discriminates the type of resin contained in the sample by comparing the scattering intensity ratio calculated by the scattering intensity ratio calculating unit with a plurality of scattering intensity ratios stored in the storage unit. A resin discrimination device characterized by that.
請求項3に記載の樹脂判別装置において、
前記樹脂種判別手段は、前記記憶部に記憶された複数の散乱強度比を独立変数、前記散乱強度比算出手段が算出した散乱強度比を従属変数とする関係式を回帰分析により求め、求められた関係式における各独立変数の係数から、前記試料に含まれる樹脂の種類と混合比率を判別することを特徴とする樹脂判別装置。
In the resin discriminating device according to claim 3,
The resin type discriminating means obtains a relational expression by regression analysis using the plurality of scattering intensity ratios stored in the storage unit as independent variables and the scattering intensity ratio calculated by the scattering intensity ratio calculating means as a dependent variable. A resin discriminating apparatus that discriminates the type and mixing ratio of the resin contained in the sample from the coefficient of each independent variable in the relational expression.
請求項4に記載の樹脂判別装置において、
前記樹脂種判別手段は、回帰分析により複数の関係式が求められたときは、各関係式について当該関係式における各独立変数の係数から前記試料に含まれる樹脂の種類を判別すると共に、当該関係式から求められる散乱強度比と前記散乱強度比算出手段が算出した散乱強度比との一致度を求め、
複数の関係式のそれぞれについて前記樹脂判別手段が判別した前記試料に含まれる樹脂の種類と前記一致度を表示する一致度表示部を備えることを特徴とする樹脂判別装置。
In the resin discrimination device according to claim 4,
When a plurality of relational expressions are obtained by regression analysis, the resin type determining means determines the type of resin contained in the sample from the coefficient of each independent variable in each relational expression, and the relation Obtain the degree of coincidence between the scattering intensity ratio obtained from the equation and the scattering intensity ratio calculated by the scattering intensity ratio calculating means,
A resin discriminating apparatus, comprising: a coincidence degree display unit for displaying the type of resin contained in the sample and the degree of coincidence determined by the resin discriminating unit for each of a plurality of relational expressions.
請求項1〜5のいずれかに記載の樹脂判別装置において、
前記樹脂種判別手段が、前記スペクトル上で前記試料から発せられる蛍光X線を検出し、該蛍光X線の強度と前記散乱強度比算出手段が算出した散乱強度比から前記試料に含まれる樹脂の種類を判別することを特徴とする樹脂判別装置。
In the resin discrimination | determination apparatus in any one of Claims 1-5,
The resin type discriminating means detects fluorescent X-rays emitted from the sample on the spectrum, and the resin contained in the sample from the intensity of the fluorescent X-rays and the scattering intensity ratio calculated by the scattering intensity ratio calculating means. A resin discriminating apparatus characterized by discriminating types.
X線源から発せられたX線を試料に照射し、それに応じて該試料から発せられるX線を分析して、前記X線源のターゲット元素由来のコンプトン散乱強度とレイリー散乱強度の比である散乱強度比を算出し、この散乱強度比から前記試料に含まれる樹脂の種類を判別する樹脂判別方法。   A ratio of Compton scattering intensity and Rayleigh scattering intensity derived from the target element of the X-ray source by irradiating the sample with X-rays emitted from the X-ray source and analyzing the X-rays emitted from the sample accordingly. A resin discrimination method that calculates a scattering intensity ratio and discriminates the type of resin contained in the sample from the scattering intensity ratio. 請求項7に記載の樹脂判別方法において、
前記試料について算出された散乱強度比を、複数の既知の樹脂について予め求められた散乱強度比と比較することにより、前記試料に含まれる樹脂の種類を判別することを特徴とする樹脂判別方法。
In the resin discriminating method according to claim 7,
A resin discrimination method characterized in that the type of resin contained in the sample is discriminated by comparing the scattering intensity ratio calculated for the sample with a scattering intensity ratio obtained in advance for a plurality of known resins.
請求項7に記載の樹脂判別方法において、
複数の既知の樹脂について予め求められた散乱強度比を独立変数、前記試料について算出された散乱強度比を従属変数とする関係式を回帰分析により求め、求められた関係式における各独立変数の係数から、前記試料に含まれる樹脂の種類と混合比率を判別することを特徴とする樹脂判別方法。
In the resin discriminating method according to claim 7,
A relational expression having a scattering intensity ratio determined in advance for a plurality of known resins as an independent variable and a scattering intensity ratio calculated for the sample as a dependent variable is obtained by regression analysis, and the coefficient of each independent variable in the obtained relational expression From the above, a resin discriminating method comprising discriminating the type and mixing ratio of the resin contained in the sample.
請求項7〜9のいずれかに記載の樹脂判別方法において、
X線が前記試料に照射されることに応じて該試料から発せられるX線を分析して、該試料から発せられる蛍光X線の強度を算出し、該蛍光X線の強度と前記試料について算出された散乱強度比から前記試料に含まれる樹脂の種類を判別することを特徴とする樹脂判別方法。
In the resin discriminating method according to any one of claims 7 to 9,
The X-ray emitted from the sample is analyzed in response to the X-ray being irradiated to the sample, the intensity of the fluorescent X-ray emitted from the sample is calculated, and the intensity of the fluorescent X-ray and the sample are calculated. A resin discrimination method characterized by discriminating the type of resin contained in the sample from the scattered intensity ratio.
JP2015139462A 2015-07-13 2015-07-13 Resin discrimination device Active JP6507898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139462A JP6507898B2 (en) 2015-07-13 2015-07-13 Resin discrimination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139462A JP6507898B2 (en) 2015-07-13 2015-07-13 Resin discrimination device

Publications (2)

Publication Number Publication Date
JP2017020924A true JP2017020924A (en) 2017-01-26
JP6507898B2 JP6507898B2 (en) 2019-05-08

Family

ID=57888040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139462A Active JP6507898B2 (en) 2015-07-13 2015-07-13 Resin discrimination device

Country Status (1)

Country Link
JP (1) JP6507898B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109201A (en) * 2017-12-20 2019-07-04 日本電子株式会社 Fluorescent x-ray analysis device and analysis method
WO2023210136A1 (en) * 2022-04-28 2023-11-02 株式会社島津製作所 Fluorescent x-ray analysis device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337252A (en) * 1993-05-28 1994-12-06 Shimadzu Corp Fluorescent x ray analytic method
JP2005083762A (en) * 2003-09-04 2005-03-31 Sii Nanotechnology Inc X-ray analyzer for analyzing plastic
JP2006071311A (en) * 2004-08-31 2006-03-16 Rigaku Industrial Co X-ray fluorescence spectrometer and program used for it
JP2006162468A (en) * 2004-12-08 2006-06-22 Jeol Ltd Analytical method and system
US20130208850A1 (en) * 2012-02-15 2013-08-15 L-3 Communications Security And Detection Systems, Inc. Determining a material property based on scattered radiation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337252A (en) * 1993-05-28 1994-12-06 Shimadzu Corp Fluorescent x ray analytic method
JP2005083762A (en) * 2003-09-04 2005-03-31 Sii Nanotechnology Inc X-ray analyzer for analyzing plastic
JP2006071311A (en) * 2004-08-31 2006-03-16 Rigaku Industrial Co X-ray fluorescence spectrometer and program used for it
JP2006162468A (en) * 2004-12-08 2006-06-22 Jeol Ltd Analytical method and system
US20130208850A1 (en) * 2012-02-15 2013-08-15 L-3 Communications Security And Detection Systems, Inc. Determining a material property based on scattered radiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109201A (en) * 2017-12-20 2019-07-04 日本電子株式会社 Fluorescent x-ray analysis device and analysis method
JP6994931B2 (en) 2017-12-20 2022-01-14 日本電子株式会社 X-ray fluorescence analyzer and analysis method
WO2023210136A1 (en) * 2022-04-28 2023-11-02 株式会社島津製作所 Fluorescent x-ray analysis device

Also Published As

Publication number Publication date
JP6507898B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5975181B2 (en) X-ray fluorescence analysis method and X-ray fluorescence analyzer
WO2021161631A1 (en) Quantitative analysis method, quantitative analysis program, and fluorescence x-ray analysis device
JP2010223908A (en) Fluorescent x-ray analysis method
US20220050068A1 (en) Quantitative analysis method, quantitative analysis program, and x-ray fluorescence spectrometer
US10557808B2 (en) Method and apparatus for discriminating resin
JP6507898B2 (en) Resin discrimination device
CN105389479B (en) Analysis method and system for analyzing nucleic acid amplification reaction
US7289598B2 (en) X-ray fluorescent analysis apparatus
JP6161058B2 (en) Radioactivity inspection apparatus and radioactivity detection method
JP6308857B2 (en) Component concentration measuring device and method
US7720193B2 (en) X-ray fluorescence analysis to determine levels of hazardous substances
JP5245299B2 (en) X-ray fluorescence analyzer
JP6191408B2 (en) X-ray fluorescence analyzer
JP4607565B2 (en) Analysis method and apparatus
JP2014041065A (en) X-ray analyzer and computer program
JP2010107261A (en) Fluorescent x-ray analyzer
WO2023210136A1 (en) Fluorescent x-ray analysis device
US11187664B2 (en) Devices and methods for detecting elements in a sample
JP2019090652A (en) Analyzer
JP2010190584A (en) Method and device for measuring hazardous element concentration
KR101443710B1 (en) Fluorenscent X-ray analysis device using Pile-up signal removing and Analysis method using thereof
JP5043387B2 (en) Film analysis method and apparatus by fluorescent X-ray analysis
JP4557140B2 (en) Element content determination method, program, apparatus and system
JPH0763711A (en) Method and apparatus for fluorescent x-ray analysis
Abdalla et al. Implementation of Nuclear Spectrum Analysis System Using Lab VIEW Software

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6507898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151