JP2008056141A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2008056141A
JP2008056141A JP2006236601A JP2006236601A JP2008056141A JP 2008056141 A JP2008056141 A JP 2008056141A JP 2006236601 A JP2006236601 A JP 2006236601A JP 2006236601 A JP2006236601 A JP 2006236601A JP 2008056141 A JP2008056141 A JP 2008056141A
Authority
JP
Japan
Prior art keywords
phase
clutch
torque
value
execution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006236601A
Other languages
English (en)
Other versions
JP4372778B2 (ja
Inventor
Takeshi Kitaori
健 北折
Rei Nishikawa
玲 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006236601A priority Critical patent/JP4372778B2/ja
Publication of JP2008056141A publication Critical patent/JP2008056141A/ja
Application granted granted Critical
Publication of JP4372778B2 publication Critical patent/JP4372778B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】エンジン直結走行モードとモータ走行モードとを切り替える切替動作の実行時に各出力トルクに対する協調制御を適切に行う。
【解決手段】トルク協調指令値算出部67は、クラッチ14による接続および遮断の切替動作中での位相制御装置25による位相変更動作の実行を禁止する。トルク協調指令値算出部67は、位相制御装置25による位相変更動作の実行中に、クラッチ14による接続および遮断の切替動作に対する所定の実行条件が満たされた場合、位相変更動作の実行を禁止した後に、切替動作の実行を許可する。トルク協調指令値算出部67は、クラッチ14の入力側と出力側との回転数の差である差回転が所定範囲内の値である場合に位相変更動作の実行禁止を開始し、クラッチ14による接続が完了した時に位相変更動作の実行禁止を解除する。
【選択図】図5

Description

本発明は、ハイブリッド車両の制御装置に関する。
従来、例えば電動機の回転軸の周囲に同心円状に設けた第1および第2回転子を備え、電動機の回転速度に応じて、あるいは、固定子に発生する回転磁界の速度に応じて第1および第2回転子の周方向の相対位置つまり位相差を制御する電動機が知られている(例えば、特許文献1参照)。
この電動機では、例えば電動機の回転速度に応じて第1および第2回転子の位相差を制御する場合、遠心力の作用により径方向に沿って変位する部材を介して第1および第2回転子の周方向の相対位置を変更するようになっている。また、例えば固定子に発生する回転磁界の速度に応じて第1および第2回転子の位相差を制御する場合には、各回転子が慣性により回転速度を維持する状態で固定子巻線に制御電流を通電して回転磁界速度を変更することによって、第1および第2回転子の周方向の相対位置を変更するようになっている。
また、従来、例えば複数の変速段を切り替え使用する自動変速機とのタンデム結合になるパワートレインにおいて、エンジン出力特性の切り替えの要否を判断する出力特性切り替え判定手段と、自動変速機が選択すべき変速段の切り替え要否を判定する変速判断手段と、これらの各手段により一方の切り替えが判定される時、他方の切り替えを、設定時間だけ禁止する切り替え遅延手段を具備するショック軽減装置が知られている(例えば、特許文献2参照)。
特開2002−204541号公報 特許第2943824号公報
ところで、上記従来技術の一例に係る電動機においては、第1および第2回転子の周方向の相対位置を変更することによって、例えば誘起電圧定数等のモータ特性係数を変更するようになっている。そして、この電動機を内燃機関と共に車両の駆動源として搭載したハイブリッド車両において、内燃機関の出力により走行するエンジン直結走行モードと、モータの出力により走行するモータ走行モードとを切り替える切替機構を具備する場合には、例えばエンジン直結走行モードとモータ走行モードとを切り替える切替動作の実行中にモータ特性係数が変更されてしまうと、内燃機関およびモータの各出力トルクに対する協調制御が不安定となってしまう虞がある。
また、上記従来技術の一例に係るショック軽減装置においては、変速途中での駆動特性の切り替えが禁止されている動力源が、駆動負荷に適したカム特性を複数段有する内燃機関単体に限定されているため、ハイブリッド車両のように複数の動力源を有するパワートレインでは、変速中に動力源の出力特性が各々変化してしまうと、制御性が不安定になる虞がある。
本発明は上記事情に鑑みてなされたもので、エンジン直結走行モードとモータ走行モードとを切り替える切替動作の実行時に各出力トルクに対する協調制御を適切に行うことが可能なハイブリッド車両の制御装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、請求項1に記載の発明のハイブリッド車両の制御装置は、内燃機関(例えば、実施の形態での内燃機関12)およびモータ(例えば、実施の形態での可変特性モータ11)を駆動源として備え、前記内燃機関および前記モータの駆動力を駆動輪に伝達する伝達手段(例えば、実施の形態でのトランスミッションT/M)と、少なくとも前記内燃機関と前記伝達手段との間の接続および遮断を行う断接手段(例えば、実施の形態でのクラッチ14)とを備え、少なくとも前記内燃機関または前記モータの駆動力により走行可能なハイブリッド車両の制御装置であって、前記モータは、各磁石片を具備すると共に互いの相対的な位相を位相変更手段(例えば、実施の形態での位相制御装置25)により変更可能な複数のロータ(例えば、実施の形態での内周側回転子21および外周側回転子22)を備え、前記断接手段による接続および遮断の切替動作中での前記位相変更手段による位相変更動作の実行を禁止する禁止手段(例えば、実施の形態でのステップS25、ステップS57)を備えることを特徴としている。
上記構成のハイブリッド車両の制御装置によれば、断接手段による接続および遮断の切替動作中、つまり内燃機関の出力により走行するエンジン直結走行モードと、モータの出力により走行するモータ走行モードとを切り替える状態において、位相変更手段による位相変更動作の実行を禁止することにより、モータ特性係数が変更されてしまうことに伴って内燃機関およびモータの各出力トルクに対する協調制御が不安定となってしまうことを防止することができる。
さらに、請求項2に記載の発明のハイブリッド車両の制御装置は、前記位相変更手段による位相変更動作の実行中に、前記断接手段による接続および遮断の切替動作に対する所定の実行条件が満たされた場合、前記位相変更動作の実行を禁止した後に、前記切替動作の実行を許可する許可手段(例えば、実施の形態でのトルク協調指令値算出部67)を備えることを特徴としている。
上記構成のハイブリッド車両の制御装置によれば、断接手段による接続および遮断の切替動作に対する所定の実行条件が満たされた場合、位相変更動作の実行を中断することにより、モータ特性係数が変更されてしまうことに伴って内燃機関およびモータの各出力トルクに対する協調制御が不安定となってしまうことを防止することができる。
さらに、請求項3に記載の発明のハイブリッド車両の制御装置では、前記断接手段は、前記切替動作を油圧により行う油圧回路(例えば、実施の形態での油圧装置16)と、該油圧回路に設けられた圧力検出手段(例えば、実施の形態での油圧スイッチ44)とを備え、前記禁止手段は、前記圧力検出手段による検出値に基づき前記位相変更動作の実行を禁止することを特徴としている。
上記構成のハイブリッド車両の制御装置によれば、断接手段による接続および遮断の切替動作を油圧により行うと共に、油圧の検出値に基づいて位相変更動作の実行を禁止することから、過剰な期間に亘って位相変更動作の実行禁止が継続されてしまうことを抑制し、ハイブリッド車両の燃費を向上させることができる。
さらに、請求項4に記載の発明のハイブリッド車両の制御装置では、前記禁止手段は、前記断接手段の入力側と出力側との回転数の差である差回転(例えば、実施の形態でのクラッチ差回転DNRPM)が所定範囲内(例えば、実施の形態での所定値#DNRPMA3未満)の値である場合に前記位相変更動作の実行禁止を開始し、前記断接手段による接続が完了した時に前記位相変更動作の実行禁止を解除することを特徴としている。
上記構成のハイブリッド車両の制御装置によれば、例えば断接手段による接続および遮断の切替動作を油圧により行う場合等において、油圧の作用に対するばらつきに起因して切替動作の動作タイミングが変動する場合であっても、過剰な期間に亘って位相変更動作の実行禁止が継続されてしまうことを抑制し、ハイブリッド車両の燃費を向上させることができる。
本発明のハイブリッド車両の制御装置によれば、断接手段による接続および遮断の切替動作中、つまり内燃機関の出力により走行するエンジン直結走行モードと、モータの出力により走行するモータ走行モードとを切り替える状態において、位相変更手段による位相変更動作の実行を禁止することにより、モータ特性係数が変更されてしまうことに伴って内燃機関およびモータの各出力トルクに対する協調制御が不安定となってしまうことを防止することができる。
さらに、請求項3および請求項4に記載の発明のハイブリッド車両の制御装置によれば、過剰な期間に亘って位相変更動作の実行禁止が継続されてしまうことを抑制し、ハイブリッド車両の燃費を向上させることができる。
以下、本発明のハイブリッド車両の制御装置の一実施形態について添付図面を参照しながら説明する。
本実施の形態に係るハイブリッド車両10は、例えば図1に示すように、可変特性モータ11および内燃機関12を駆動源として備えるハイブリッド車両であり、可変特性モータ11と、内燃機関12と、トランスミッションT/Mとは直列に直結され、少なくとも可変特性モータ11または内燃機関12の駆動力はトランスミッションT/Mを介して車両10の駆動輪Wに伝達されるようになっている。
さらに、このハイブリッド車両10は、内燃機関12により駆動させられる発電機13と、内燃機関12と可変特性モータ11との間の動力伝達を継断するクラッチ14とを備えている。
このため、クラッチ14の接続状態では、内燃機関12の出力トルクをクラッチ14およびトランスミッションT/Mを介して駆動輪Wに伝達して、車両の走行を行なうことができる。そして、この接続状態では、必要に応じて可変特性モータ11の出力トルク(あるいは発電機13の出力トルク)を付加的に駆動輪Wに伝達することも可能である。従って、クラッチ14の接続状態では、パラレル型のハイブリッド走行(パラレル型のハイブリッド車両としての走行)が可能となる。
また、クラッチ14の切断状態では、内燃機関12の出力トルクにより発電機13の発電を適宜行いながら(後述するバッテリ53の充電を行いながら)、可変特性モータ11の出力トルクをトランスミッションT/Mを介して駆動輪Wに伝達して、車両の走行を行なうことができる。従って、この状態では、シリーズ型のハイブリッド走行(シリーズ型のハイブリッド車両としての走行)が可能となる。なお、このシリーズ型のハイブリッド走行では、内燃機関12および発電機13の出力トルクの駆動輪Wへの伝達は、クラッチ14によって遮断される。
可変特性モータ11は、例えば図2に示すように、周方向に沿って配置された各永久磁石21a,22aを具備する略円環状の各内周側回転子21および外周側回転子22からなるロータ23と、ロータ23を回転させる回転磁界を発生する複数相の固定子巻線(図示略)を有する固定子24と、内周側回転子21と外周側回転子22との間の相対的な位相を制御する位相制御装置25とを備えている。
内周側回転子21および外周側回転子22は、互いの回転軸が可変特性モータ11の回転軸Oと同軸となるように配置され、略円筒状の各ロータ鉄心31,32と、第1ロータ鉄心31の外周部で周方向に所定間隔をおいて設けられた複数の内周側磁石装着部33,…,33および第2ロータ鉄心32の内部で周方向に所定間隔をおいて設けられた複数の外周側磁石装着部34,…,34とを備えている。
そして、周方向で隣り合う内周側磁石装着部33,33間において第1ロータ鉄心31の外周面31A上には回転軸Oに平行に伸びる凹溝31aが形成されている。
また、周方向で隣り合う外周側磁石装着部34,34間において第2ロータ鉄心32の外周面32A上には回転軸Oに平行に伸びる凹溝32aが形成されている。
各磁石装着部33および34は、例えば回転軸Oに平行に貫通する各1対の磁石装着孔33a,33aおよび34a,34aを備え、1対の磁石装着孔33a,33aはセンターリブ33bを介して、かつ、1対の磁石装着孔34a,34aはセンターリブ34bを介して、周方向で隣り合うように配置されている。
そして、各磁石装着孔33a,34aは回転軸Oに平行な方向に対する断面が、略周方向が長手方向かつ略径方向が短手方向の略長方形状に形成され、各磁石装着孔33a,34aには回転軸Oに平行に伸びる略長方形板状の各永久磁石21a,22aが装着されている。
1対の磁石装着孔33a,33aに装着される1対の内周側永久磁石21a,21aは、厚さ方向(つまり各回転子21,22の径方向)に磁化され、互いに磁化方向が同方向となるように設定される。そして、周方向で隣り合う内周側磁石装着部33,33に対して、各1対の磁石装着孔33a,33aおよび33a,33aに装着される各1対の内周側永久磁石21a,21aおよび内周側永久磁石21a,21aは互いに磁化方向が異方向となるように設定される。すなわち外周側がN極とされた1対の内周側永久磁石21a,21aが装着された内周側磁石装着部33には、外周側がS極とされた1対の内周側永久磁石21a,21aが装着された内周側磁石装着部33が、凹溝31aを介して周方向で隣接するようになっている。
同様にして、1対の磁石装着孔34a,34aに装着される1対の外周側永久磁石22a,22aは、厚さ方向(つまり各回転子21,22の径方向)に磁化され、互いに磁化方向が同方向となるように設定される。そして、周方向で隣り合う外周側磁石装着部34,34に対して、各1対の磁石装着孔34a,34aおよび34a,34aに装着される各1対の外周側永久磁石22a,22aおよび外周側永久磁石22a,22aは互いに磁化方向が異方向となるように設定される。すなわち外周側がN極とされた1対の外周側永久磁石22a,22aが装着された外周側磁石装着部34には、外周側がS極とされた1対の外周側永久磁石22a,22aが装着された外周側磁石装着部34が、凹溝32aを介して周方向で隣接するようになっている。
そして、内周側回転子21の各磁石装着部33,…,33と外周側回転子22の各磁石装着部34,…,34とは、さらに、内周側回転子21の各凹溝31a,…,31aと外周側回転子22の各凹溝32a,…,32aとは、各回転子21,22の径方向で互いに対向配置可能となるように配置されている。
これにより、内周側回転子21と外周側回転子22との回転軸O周りの相対位置に応じて、可変特性モータ11の状態を、内周側回転子21の内周側永久磁石21aと外周側回転子22の外周側永久磁石22aとの同極の磁極同士が対向配置(つまり、内周側永久磁石21aと外周側永久磁石22aとが対極配置)される弱め界磁状態から、内周側回転子21の内周側永久磁石21aと外周側回転子22の外周側永久磁石22aとの異極の磁極同士が対向配置(つまり、内周側永久磁石21aと外周側永久磁石22aとが同極配置)される強め界磁状態に亘る適宜の状態に設定可能とされている。
クラッチ14は、入力側回転要素14a(例えば、図1に示すクラッチガイド14a)と出力側回転要素14b(例えば、図1に示すクラッチハブ14b)とを有し、これらの回転要素14a,14bを摩擦係合させる(つまり、摩擦力により係合させる)ことにより、両回転要素14a,14bの間の動力伝達を可能としている。
つまり、両回転要素14a,14bが、これらの摩擦係合により一体に回転し得る状態が、クラッチ14の接続状態(つまり、両回転要素14a,14bの間の動力伝達を可能とする状態)であり、この摩擦係合が解除された状態が、クラッチ14の切断状態(つまり、両回転要素14a,14bの間の動力伝達を遮断する状態)である。
なお、クラッチ14は、例えばスプリング等により、切断状態側に付勢されており、この付勢力に抗して両回転要素14a,14bを摩擦係合させることにより接続状態となる。
そして、クラッチ14の入力側回転要素14a、出力側回転要素14bは、それぞれ内燃機関12、可変特性モータ11に接続される内燃機関側回転要素、モータ側回転要素に相当している。例えば図1に示すように、内燃機関12の出力軸12aは、発電機13のロータ13aを介してクラッチ14の入力側回転要素14aに連結されている。
つまり、出力軸12a、ロータ13aおよび入力側回転要素14aは同軸に連結され、互いに同一の回転速度で一体に回転可能とされている。従って、クラッチ14の入力側回転要素14aは、内燃機関12の出力軸12aに連動して回転するようになっている。
さらに、クラッチ14の出力側回転要素14bと、可変特性モータ11のロータ23とは、トランスミッションT/Mの入力軸に同軸に連結され、該入力軸と同一の回転速度で一体に回転可能とされている。従って、クラッチ14の出力側回転要素14bは、可変特性モータ11のロータ23およびトランスミッションT/Mの入力軸と連動して回転するようになっている。
そして、クラッチ14の接続状態では、内燃機関12と可変特性モータ11との間の動力伝達が可能になると共に、内燃機関12の出力トルクがクラッチ14を介してトランスミッションT/Mに入力されるようになっている。この接続状態では、可変特性モータ11の出力トルクあるいは発電機13の出力トルクがトランスミッションT/Mに入力可能である。一方、クラッチ14の切断状態では、内燃機関12と可変特性モータ11との間の動力伝達が遮断されると共に、可変特性モータ11の出力トルクのみがトランスミッションT/Mに入力可能となっている。
そして、トランスミッションT/Mの出力軸は差動歯車機構15を介して車両の駆動輪Wに接続されている。
このクラッチ14の駆動(例えば、切断状態から接続状態への駆動)は、例えば図3に示す油圧装置16により行われる。
この油圧装置16は、クラッチ14の入力側回転要素14aと出力側回転要素14bを摩擦係合させるための作動油を、油圧ポンプ40から第1開閉弁41、第2開閉弁42、第3開閉弁43を介してクラッチ14に供給するように構成されている。
第1開閉弁41は、例えば車両に備えられたシフトレバー等に対する操作者の操作入力によって開閉する手動弁であり、シフトレバーが車両の走行用の操作位置(いわゆる「D」レンジ)に操作された場合に開弁するようになっている。
また、第2開閉弁42は、常閉型の電磁開閉弁であり、この電磁開閉弁に具備されるソレノイドへの通電により開弁するようになっている。
また、第3開閉弁43は、例えば図4(a)に示すように、油圧スイッチ遮断弁であって、油圧スイッチ(油圧SW)44への油路を遮断可能なバルブと、このバルブを非作動状態側に付勢するスプリング43aとを具備している。
そして、油圧ポンプ40から第1開閉弁41、第2開閉弁42を介して供給され、スプリング43aのスプリング荷重に抗うように作用する作動油の油圧Pが、例えば図4(b)に示すように、スプリング荷重とバルブ断面積との積によって記述される所定のバルブ作動油圧PSPGよりも小さい場合には、バルブ非作動状態とされ、油圧スイッチ44への油路が開放されて、油圧スイッチ44がオン状態となる。
そして、作動油の油圧Pが、例えば図4(c)に示すように、所定のバルブ作動油圧PSPGよりも大きい場合には、バルブ作動状態とされ、油圧スイッチ44への油路が遮断されて、油圧スイッチ44がオフ状態となる。
ここで、所定のバルブ作動油圧PSPGは、この第3開閉弁43からクラッチ14へと供給される作動油によって、クラッチ14の両回転要素14a,14bの摩擦係合が生じ、両回転要素14a,14bの間の所望の動力伝達が可能となる状態、つまりクラッチ14が所望のトルク容量を有する状態での油圧とされている。つまり、クラッチ14へと供給される油圧(クラッチ油圧)が所定のバルブ作動油圧PSPGよりも小さい場合には、クラッチ14は実質的に切断状態であり、クラッチ油圧が所定のバルブ作動油圧PSPGよりも高くなると、クラッチ14の実質的な接続が開始する。
なお、油圧スイッチ44は、油圧回路中の圧力変化を感知して、例えば所定値以上の油圧に対してオン状態を示す電気信号を出力するようになっている。
また、この油圧装置16では、油圧ポンプ40の吐出作動油の圧力は、油圧ポンプ40の吐出ポートに接続されたレギュレータ弁45により一定の圧力となるように維持されている。さらに、第3開閉弁43からクラッチ14に至る油路には、アキュムレータ46が接続されている。
このハイブリッド車両10に具備される可変特性モータ11と、内燃機関12と、発電機13と、油圧装置16との動作を制御する制御装置50は、例えば各可変特性モータ11および発電機13に対するインバータ51,52と、バッテリ53と、PDU(パワードライブユニット)54と、エンジントルク制御部55と、ECU56とを備えて構成されている。
各インバータ51,52は、例えばトランジスタのスイッチング素子がブリッジ接続されたブリッジ回路を用いてパルス幅変調(PWM)を行うPWMインバータであって、PDU54の制御によりPWMインバータにおいて各相毎に対を成す各トランジスタのオン(導通)/オフ(遮断)状態を切り換えることによって、バッテリ53から供給される直流電力を3相交流電力に変換し、可変特性モータ11の固定子巻線への通電を順次転流させることによって、各相の固定子巻線に交流のU相電流Iu、V相電流IvおよびW相電流Iwを通電、あるいは、可変特性モータ11の回生電力および発電機13の発電電力を直流電力に変換し、バッテリ53を充電する。
PDU54は、ECU56から出力される可変特性モータ11および発電機13に対する各トルク指令TQMOT,TQGENに応じて、可変特性モータ11とバッテリ53との間の電力授受および発電機13とバッテリ53との間の電力授受を各インバータ51,52を介して制御する。
具体的には、PDU54は、可変特性モータ11に対するトルク指令TQMOTが力行トルクであるときには、バッテリ53からインバータ51を介して可変特性モータ11に電力が供給されるようにインバータ51を動作させ、可変特性モータ11の力行運転を行なわせる。
また、可変特性モータ11に対するトルク指令TQMOTが回生トルクであるときには、可変特性モータ11からインバータ51を介してバッテリ53に電力が供給される(つまり、バッテリ53の充電が行われる)ようにインバータ51を動作させ、可変特性モータ11の回生運転(発電運転)を行なわせる。
また、PDU54は、発電機13に対するトルク指令TQGENが力行トルクであるときには、バッテリ53からインバータ52を介して発電機13に電力が供給されるようにインバータ52を動作させ、発電機13の力行運転を行なわせる。
また、発電機13に対するトルク指令TQGENが回生トルクであるときには、発電機13からインバータ52を介してバッテリ53に電力が供給される(つまり、バッテリ53の充電が行われる)ようにインバータ52を動作させ、発電機13の回生運転(発電運転)を行なわせる。
エンジントルク制御部55は、ECU56から入力される内燃機関12の出力トルクに対するトルク指令TQENGに応じて、内燃機関12のスロットル弁(図示しない)の開度、燃料噴射量、点火時期などを制御する。これにより、エンジントルク制御部55は、内燃機関12の出力トルクをトルク指令TQENGに従わせるように制御する。この場合、内燃機関12の出力トルクの増減は、基本的には、スロットル弁の開度をアクチュエータを介して操作することで行なわれる。
ECU56は、例えばSOC演算部61と、目標充放電量算出部62と、目標駆動トルク算出部63と、走行モード判定部64と、エンジントルク算出部65と、油圧制御量算出部66と、トルク協調指令値算出部67とを備えて構成されている。
SOC演算部61は、SOCセンサ70の出力に基づきバッテリ53の残容量を算出する。なお、SOCセンサ70は、バッテリ53の端子電圧を検出する電圧センサやバッテリ53の放電電流および充電電流検出する電流センサ等から構成される。
目標充放電量算出部62は、SOC演算部61により算出されたバッテリ53の残容量に基づき、バッテリ53に対する目標充放電量を算出する。
目標駆動トルク算出部63は、目標充放電量算出部62により算出されたバッテリ53に対する目標充放電量に基づき、目標駆動トルクを算出する。
走行モード判定部64は、目標駆動トルク算出部63により算出された目標駆動トルクに基づき、車両の走行モードを判定する。例えば走行モード判定部64は、車両の走行モードが、内燃機関12の駆動力のみにより走行するエンジン(ENG)直結走行モードと、可変特性モータ11の駆動力のみにより走行するモータ(MOT)走行モードとの何れであるかを判定する。
エンジントルク算出部65は、内燃機関12の出力トルクに対するトルク指令TQENGを算出する。
油圧制御量算出部66は、走行モード判定部64の判定結果と、作動状態検出部69により検出されるクラッチ14の作動状態とに応じて、クラッチ14へ供給される油圧(クラッチ油圧)に対する制御量を算出する。
トルク協調指令値算出部67は、例えば可変特性モータ11と、内燃機関12と、発電機13との各出力トルクを協調的に制御するための指令値を算出すると共に、油圧装置16の動作を制御するための指令値を設定する。
後述するように、トルク協調指令値算出部67は、例えばクラッチ14による接続および遮断の切替動作中での位相制御装置25による位相変更動作の実行を禁止する。
また、トルク協調指令値算出部67は、例えば位相制御装置25による位相変更動作の実行中に、クラッチ14による接続および遮断の切替動作に対する所定の実行条件が満たされた場合、位相変更動作の実行を禁止した後に、切替動作の実行を許可する。
また、トルク協調指令値算出部67は、例えばクラッチ14の入力側と出力側との回転数の差である差回転が所定範囲内の値である場合に位相変更動作の実行禁止を開始し、クラッチ14による接続が完了した時に位相変更動作の実行禁止を解除する。
さらに、トルク協調指令値算出部67は、例えば可変特性モータ11および発電機13の各出力トルクが、各トルク指令TQMOT、TQGENに追従するようにして、可変特性モータ11および発電機13に対して、回転直交座標をなすdq座標上で電流のフィードバック制御を行う。
例えば可変特性モータ11の駆動制御時には、運転者のアクセル操作に係るアクセル開度等に応じて設定されるトルク指令Tqに基づき、d軸電流指令Idc及びq軸電流指令Iqcを演算し、d軸電流指令Idc及びq軸電流指令Iqcに基づいて各相出力電圧Vu,Vv,Vwを算出し、各相出力電圧Vu,Vv,Vwに応じてPDU54にゲート信号であるPWM信号を出力するとともに、実際にインバータ51から可変特性モータ11に供給される各相電流Iu,Iv,Iwの何れか2つの相電流をdq座標上の電流に変換して得たd軸電流Id及びq軸電流Iqと、d軸電流指令Idc及びq軸電流指令Iqcとの各偏差がゼロとなるように電流制御を行う。
例えば図6に示すように、トルク協調指令値算出部67は、目標電流設定部71と、電流偏差算出部72と、界磁制御部73と、電力制御部74と、電流制御部75と、dq−3相変換部76と、PWM信号生成部77と、フィルタ処理部78と、3相−dq変換部79と、回転数演算部80と、誘起電圧定数算出部81と、誘起電圧定数指令出力部82と、誘起電圧定数差分算出部83と、位相制御部84と、位相指令出力部85とを備えている。
そして、このトルク協調指令値算出部67には、PDU54の制御によりインバータ51を介して可変特性モータ11に出力される3相の各相電流Iu,Iv,Iwのうち、2相のU相電流IuおよびW相電流Iwを検出する各電流センサ91,91から出力される各検出信号Ius,Iwsと、バッテリ53の端子電圧(電源電圧)VBを検出する電圧センサ92から出力される検出信号と、可変特性モータ11のロータ23の回転角θm(つまり、所定の基準回転位置からのロータの磁極の回転角度)を検出する回転センサ93から出力される検出信号と、位相制御装置25により可変制御される内周側回転子21と外周側回転子22との相対的な位相θに応じた状態量(例えば、電磁ソレノイドに通電される実電流等)を検出する位相センサ94から出力される検出信号とが入力されている。
目標電流設定部71は、トルク指令Tq(例えば、運転者によるアクセルペダルの踏み込み操作量に応じて必要とされるトルクを可変特性モータ11に発生させるためのトルク指令TQMOT)と、回転数演算部80から入力される可変特性モータ11の回転数Nmと、後述する誘起電圧定数算出部81から入力される誘起電圧定数Keとに基づき、PDU54から可変特性モータ11に供給される各相電流Iu,Iv,Iwを指定するための電流指令を演算しており、この電流指令は、回転する直交座標上でのd軸目標電流Idc及びq軸目標電流Iqcとして電流偏差算出部72へ出力されている。
この回転直交座標をなすdq座標は、例えばロータの永久磁石による界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としており、可変特性モータ11のロータ23の回転位相に同期して回転している。これにより、インバータ51から可変特性モータ11の各相に供給される交流信号に対する電流指令として、直流的な信号であるd軸目標電流Idcおよびq軸目標電流Iqcを与えるようになっている。
電流偏差算出部72は、界磁制御部73から入力されるd軸補正電流が加算されたd軸目標電流Idcと、d軸電流Idとの偏差ΔIdを算出するd軸電流偏差算出部72aと、電力制御部74から入力されるq軸補正電流が加算されたq軸目標電流Iqcと、q軸電流Iqとの偏差ΔIqを算出するq軸電流偏差算出部72bとを備えて構成されている。
なお、界磁制御部73は、例えば可変特性モータ11の回転数Nmの増大に伴う逆起電圧の増大を抑制するためにロータ23の界磁量を等価的に弱めるようにして電流位相を制御する弱め界磁制御の弱め界磁電流に対する目標値をd軸補正電流としてd軸電流偏差算出部72aへ出力する。
また、電力制御部74は、例えばバッテリ53の残容量等に応じた適宜の電力制御に応じてq軸目標電流Iqcを補正するためのq軸補正電流をq軸電流偏差算出部72bへ出力する。
電流制御部75は、例えば可変特性モータ11の回転数Nmに応じたPI(比例積分)動作により、偏差ΔIdを制御増幅してd軸電圧指令値Vdを算出し、偏差ΔIqを制御増幅してq軸電圧指令値Vqを算出する。
dq−3相変換部76は、回転数演算部80から入力されるロータ23の回転角θを用いて、dq座標上でのd軸電圧指令値Vdおよびq軸電圧指令値Vqを、静止座標である3相交流座標上での電圧指令値であるU相出力電圧VuおよびV相出力電圧VvおよびW相出力電圧Vwに変換する。
PWM信号生成部77は、例えば、正弦波状の各相出力電圧Vu,Vv,Vwと、三角波からなるキャリア信号と、スイッチング周波数とに基づくパルス幅変調により、インバータ51の各スイッチング素子をオン/オフ駆動させる各パルスからなるスイッチング指令であるゲート信号(つまり、PWM信号)を生成する。
フィルタ処理部78は、各電流センサ91,91により検出された各相電流に対する検出信号Ius,Iwsに対して、高周波成分の除去等のフィルタ処理を行い、物理量としての各相電流Iu,Iwを抽出する。
3相−dq変換部79は、フィルタ処理部78により抽出された各相電流Iu,Iwと、回転数演算部80から入力されるロータ23の回転角θmとにより、可変特性モータ11の回転位相による回転座標すなわちdq座標上でのd軸電流Idおよびq軸電流Iqを算出する。
回転数演算部80は、回転センサ93から出力される検出信号から可変特性モータ11のロータ23の回転角θmを抽出すると共に、この回転角θmに基づき、可変特性モータ11の回転数Nmを算出する。
誘起電圧定数算出部81は、位相センサ94から出力される位相θの検出信号に基づき、内周側回転子21と外周側回転子22との相対的な位相θに応じた誘起電圧定数Keを算出する。
誘起電圧定数指令出力部82は、例えばトルク指令Tqと、可変特性モータ11の回転数Nmとに基づき、可変特性モータ11の誘起電圧定数Keに対する指令値(誘起電圧定数指令)Kecを出力する。
誘起電圧定数差分算出部83は、誘起電圧定数指令出力部82から出力される誘起電圧定数指令Kecから、誘起電圧定数算出部81から出力される誘起電圧定数Keを減算して得た誘起電圧定数差分ΔKeを出力する。
位相制御部84は、例えば誘起電圧定数差分算出部83から出力される誘起電圧定数差分ΔKeに応じて、この誘起電圧定数差分ΔKeをゼロとするようにして位相θを制御するための制御指令(位相指令値)θcを出力する。
位相指令出力部85は、位相制御装置25による位相変更動作の実行許可および実行禁止を指示する許可/禁止信号に応じて位相指令θcの出力を切り換える。
例えば許可/禁止信号により位相変更動作の実行が許可されている場合には、位相制御部84から入力される位相指令値θcを位相制御装置25に出力し、許可/禁止信号により位相変更動作の実行が禁止されている場合には、位相指令値θcの前回値、つまり許可/禁止信号により位相変更動作の実行が許可されていた直近の過去に位相制御部84から入力された位相指令値θcを位相制御装置25に出力する。
また、トルク協調指令値算出部67は、車両の走行モードをモータ走行モードからエンジン直結走行モードに切り替える際に、モード切替制御処理によって、可変特性モータ11と、内燃機関12と、発電機13との各トルク指令TQMOT、TQENG、TQGENを設定し、可変特性モータ11と、内燃機関12と、発電機13との動作を制御する。
走行状態検出部68は、例えば車両の走行速度(車速)を検出する速度センサと、運転者によるアクセルペダルの操作量(アクセル操作量)を検出するセンサ等を備えて構成されている。
作動状態検出部69は、クラッチ14の作動状態、例えば接続状態または切断状態、摩擦係合状態等を検出する。
以下に、ECU56によるモード切替制御処理の一例について、図7から図10に示すタイミングチャートを参照して説明する。
なお、図7および図8はモード切替制御処理の開始時におけるクラッチ14の入力側回転要素14aの回転速度(入力側回転速度)が出力側回転要素14bの回転速度(出力側回転速度)よりも高い場合において内燃機関12の慣性を可変特性モータ11によって吸収するエンジンイナーシャ吸収制御の一例であり、図9および図10はモード切替制御処理の開始時におけるクラッチ14の入力側回転速度が出力側回転速度よりも低い場合において内燃機関12の回転を可変特性モータ11に同期させるエンジン回転同期制御の一例である。
そして、図7および図9では、車両の走行モードを示す走行モード変数SHと、内燃機関12の出力軸12aの回転速度NEと、各トルク指令TQENG,TQMOT,TQGENと、クラッチ14の入力側回転速度NM(入力側回転要素14aの回転速度NM)と出力側回転速度NRPMHUB(出力側回転要素14bの回転速度NRPMHUB)との差(クラッチ差回転)DNRPM(=NM−NRPMHUB)と、油圧装置16によりクラッチ14に供給される作動油の圧力(油圧)の指令値(油圧指令値)QONと、可変特性モータ11に対する位相制御装置25による位相変更(つまりトルク特性変更)動作の実行を禁止することを示すトルク特性変更禁止フラグF_MOTINHと、油圧スイッチ44のオン/オフ状態との経時変化の一例を示し、図8および図10では、油圧スイッチ44の異常状態(油圧SWフェール時)における油圧スイッチ44のオン/オフ状態と、作動油の実油圧が油圧スイッチ44を作動させる所定の作動圧(油圧スイッチ作動圧)を通過したことを示す油圧スイッチ作動圧通過フラグF_P1との経時変化の一例を示す。
なお、図7から図10のタイミングチャートは、モード切替制御処理の前後で、車両のアクセル操作量が一定に維持されている状況での一例である。
モード切替制御処理のシーケンスは、例えばモード切換制御処理のフェーズ(段階)を示すフェーズ変数SFTMONの値に応じて3つのフェーズ(段階)A,B,Cを有するように設定されている。
例えばフェーズA(図7から図10の時刻t1から時刻t4までの期間)では、クラッチ14の切断状態(クラッチ14に油圧を付与していない状態)において、クラッチ14の入力側回転速度NMを、出力側回転速度NRPMHUBに近づけるように内燃機関12の出力トルクを変化させる(つまりトルク指令TQENGを設定する)フェーズである。
このフェーズAでは、内燃機関12のトルク指令TQENGが、クラッチ14の入力側回転要素14aの回転速度NMと、出力側回転要素14bの回転速度NRPMHUBとの差DNRPM(クラッチ差回転DNRPM=NM−NRPMHUB)に応じて可変的(例えば、段階的等)に設定される。
このフェーズAでの内燃機関12の出力トルクに対するトルク指令TQENGは、クラッチ14の入力側回転速度NMと、出力側回転速度NRPMHUBとのうちのいずれが高いかに応じて(つまりNM>NRPMHUBであるか、あるいはNM<NRPMHUBであるかに応じて)設定される。
例えばNM>NRPMHUBである場合には、入力側回転要素14aの回転速度NMを低下させていくために、フェーズAでのトルク指令TQENGは、フェーズAの開始時の内燃機関12のトルク指令TQENGSよりも小さい値に決定される。
一方、NM<NRPMHUBである場合には、入力側回転要素14aの回転速度NMを上昇させていくために、フェーズAでのトルク指令TQENGは、フェーズAの開始時の内燃機関12のトルク指令TQENGSよりも大きい値に決定される。
なお、フェーズAでは、クラッチ14が切断状態であることから、内燃機関12の出力トルクを駆動輪W,Wに伝達できないようになっており、可変特性モータ11の出力トルクを駆動輪W,Wに伝達して車両を走行させるようになっている。
そして、フェーズAにおいて、クラッチ14の入力側回転要素14aの回転速度NMと、出力側回転要素14bの回転速度NRPMHUBとの差DNRPM(=NM−NRPMHUB)の絶対値が所定値未満に十分に小さくなると(図7から図10の時刻t4)、モード切替制御処理のフェーズは、フェーズAからフェーズBに移行する。
このフェーズB(図7から図10の時刻t4から時刻t6までの期間)は、内燃機関12の出力トルクをフェーズAの終了時のトルクに維持しながら、クラッチ14への作動油の供給(つまりクラッチ14の接続)を開始させるように油圧装置16の動作を制御する(つまり油圧指令値QONを増大させて、クラッチ油圧を上昇させる)フェーズである。
このフェーズBでは、実際のクラッチ油圧の上昇の遅れ(油圧指令値QONに対する遅れ)により、クラッチ14の動作状態は、実質的に切断状態(つまりクラッチ14の両回転要素14a,14b間の動力伝達の容量がほぼ0である状態)である。
なお、フェーズBでは、フェーズAと同様に、内燃機関12の出力トルクを駆動輪W,Wに伝達できないことから、可変特性モータ11の出力トルクを駆動輪W,Wに伝達して車両を走行させるようになっている。
フェーズBにおいて、実際のクラッチ油圧が、油圧スイッチ44がON信号を出力するようになる所定の油圧スイッチ作動圧まで上昇すると(図7から図10の時刻t6)、モード切替制御処理のフェーズは、フェーズBからフェーズCに移行する。
このフェーズC(図7から図10の時刻t6からt7までの期間)は、クラッチ油圧によって、クラッチ14の動作状態を実質的に切断状態から接続状態に移行させつつ、車両の駆動輪W,Wに動力伝達を行なう動力源を、可変特性モータ11側から内燃機関12側に徐々に移行させるフェーズである。
このフェーズCでは、内燃機関12の出力トルクと可変特性モータ11の出力トルクとが協調的に制御される(つまり各トルク指令TQENG,TQMOTが協調的に設定される)。例えば、クラッチ14の動作状態の移行中に、車両の走行速度(車速)が一定に維持され、且つ、クラッチ14の入力側回転速度NMと出力側回転速度NRPMHUBとがほぼ同じ回転速度を有するように、可変特性モータ11のトルク指令TQMOTが減少させられる(0に近づけられる)と共に、内燃機関12のトルク指令TQMOTが、エンジン直結走行モードで要求されるトルクに向かって増加させられる。
このフェーズCでは、クラッチ14の動作状態が接続状態から遮断状態へと切り替えられることから、可変特性モータ11に対する位相制御装置25による位相変更(つまりトルク特性変更)動作の実行を禁止することを示すトルク特性変更禁止フラグF_MOTINHのフラグ値に「1」が設定される。なお、後述する油圧スイッチ44の異常状態においては、より早いタイミング(例えば、図7および図9の時刻t4のように、油圧指令値QONが増大を開始した時点等)でトルク特性変更禁止フラグF_MOTINHのフラグ値に「1」が設定されるようになっている。
そして、フェーズCは、可変特性モータ11のトルク指令TQMOTが0に十分に近い所定の値#TQMOTLまで低下し、または、内燃機関12のトルク指令TQENGがエンジン直結走行モードで要求されるトルクに十分に近い値#TQENGHまで増加したときに(例えば、図7から図10の時刻t7に)終了する。これにより、モード切替制御処理が終了する。
なお、本実施形態では、モード切替制御処理の各フェーズA,B,Cにおける発電機13のトルク指令TQGENは、所定の回生トルク(<0)に維持される。この回生トルクは、例えば発電機13が所望の発電を行い得る回生トルク(例えば、微小な回生トルク)に設定されている。
以下に、ECU56によるモード切替制御処理の詳細について説明する。
なお、図11に示すモード切替制御処理のメインルーチン処理は所定の制御処理周期で逐次実行される。
先ず、例えば図11に示すステップS01においては、後述するMOTトルク特性係数変更処理を実行する。
そして、ステップS02においては、現在(つまり今回)の制御処理周期での車両の状態が、走行モードをエンジン直結走行モードとする状態であるエンジン走行領域であるか否かを判定する。
このステップS02では、例えば各走行モード(エンジン直結走行モードおよびモータ走行モード)における内燃機関12の必要燃料消費量は、走行状態検出部68の出力(例えば、車速とアクセル操作量の検出データ)を基に設定された車両目標駆動力(つまり駆動輪W,Wに伝達すべき駆動力の目標値)と、車速とから、予め設定された所定のマップ等に基づいて設定される。そして、本実施形態では、各走行モードでの必要燃料消費量がより小さい方の走行モードで車両の走行を行なうようになっている。このため、このステップS02の判定では、設定された必要燃料消費量が、モータ走行モードよりもエンジン直結走行モードの方がより小さい場合に、車両の状態がエンジン走行領域であると判定される。一方、必要燃料消費量が、エンジン直結走行モードよりもモータ走行モードの方がより小さい場合には、車両の状態はエンジン走行領域ではないと判定される。
このステップS02の判定結果が「NO」の場合(つまり、現在の車両の状態がエンジン走行領域でない場合)には、ステップS03に進み、このステップS03においては、走行モードを示す走行モード変数SHの値に「0」を設定し、ステップS04に進む。
なお、走行モード変数SHは、その値が「1」であるとき、走行モードがエンジン直結走行モードであることを示し、その値が「0」であるとき、走行モードがモータ走行モードであることを示す。
そして、ステップS04においては、可変特性モータ11に対する位相制御装置25による位相変更(つまりトルク特性変更)動作の実行を禁止することを示すトルク特性変更禁止フラグF_MOTINHのフラグ値に「0」を設定し、トルク特性変更動作の実行を許可して、ステップS05に進む。
そして、ステップS05においては、モード切換制御処理のフェーズ(段階)を示すフェーズ変数SFTMONの値に「00」を設定して初期化し、一連の処理を終了する。
なお、フェーズ変数SFTMON=00の状態は、例えば図7から図10に示すように、モード切替制御処理の終了後など、実質的なモード切替制御処理を実行する必要のない状態(例えば、フェーズA,B,Cのいずれでもない状態)であり、車両が可変特性モータ11の駆動力により走行し、発電機13が内燃機関12の駆動力により発電を行う状態である。
一方、ステップS02の判定結果が「YES」の場合(つまり、現在の車両の状態がエンジン走行領域である場合)には、ステップS06に進み、このステップS06においては、走行モード変数SHの値(現在値)が「1」であり、かつ、フェーズ変数SFTMONの値(現在値)が「00」であるか否かを判定する。すなわち、走行モードがエンジン直結走行モードであり、かつ、モード切替制御処理を実行する必要のない状態であるか否かを判定する。
この判定結果が「YES」の場合には、既に、走行モードがエンジン直結走行モードであると判断して、上述したステップS04に進む。
一方、この判定結果が「NO」の場合には、ステップS07に進む。
そして、ステップS07においては、今回の制御処理周期が、走行モードの切替開始時(実質的なモード切替制御処理の開始時)の制御処理周期であるか否かを判定する。つまり、前回の制御処理周期での走行モードがエンジン直結走行モードではない(走行モード変数SHの前回値が「1」ではない)か否かを判定する。
この判定結果が「YES」の場合には、ステップS08に進み、このステップS08においては、走行モード変数SHの値として「1」を設定する。さらに、油圧装置16によりクラッチ14への作動油の供給を行なうための制御を開始してから(つまりフェーズBの開始時から)、クラッチ14の実際の接続が開始される(つまりクラッチ油圧が所定の油圧ON設定圧まで上昇する)までの時間に対する所定の予測値#TMDB2Cをクラッチ応答時間TMDB2Cとして設定する。そして、油圧スイッチ作動カウンタータイマーTMPSWの計数値にゼロを設定して初期化する。さらに、油圧スイッチ作動圧通過フラグF_P1のフラグ値に「0」を設定し、例えば図7および図9に示す変速開始時エンジントルクTQENGSに内燃機関12のトルク指令TQENGを設定し、ステップS09に進む。
なお、所定の予測値#TMDB2Cは、例えばクラッチ14に供給する作動油の油温と、クラッチ14の入力側回転速度NMとから、予め設定されたマップ等に基づき決定される。このようにクラッチ応答時間TMDB2Cに対する所定の予測値#TMDB2Cを、油温とクラッチ14の入力側回転速度NMとに応じて設定することで、作動油の粘性や、クラッチ14の入力側回転要素14aの回転に伴う遠心油圧などの影響を補償し、予測値#TMDB2Cの信頼性を高めることができる。なお、作動油の油温は、図示しない温度センサを介して検出される。また、クラッチ14の入力側回転速度NMは、回転センサ95により検出される。
一方、ステップS07の判定結果が「NO」の場合には、ステップS09に進む。
そして、ステップS09においては、後述するクラッチ差回転算出処理を実行する。
そして、ステップS10においては、後述する油圧スイッチ動作判定処理を実行する。
そして、ステップS11においては、フェーズ変数SFTMONの値(現在値)が「31」以上であるか否か、つまりモード切替制御処理の現在のフェーズがフェーズAよりも後のフェーズ(フェーズBまたはC)であるか否かを判定する。
この判定結果が「YES」の場合には、後述するステップS15に進む。
一方、この判定結果が「NO」の場合、つまりモード切替制御処理のフェーズがフェーズAであり、クラッチ14の入力側回転要素14aの回転速度NMと、出力側回転要素14bの回転速度NRPMHUBとの差DNRPM(=NM−NRPMHUB)が所定値以上である場合には、ステップS12に進む。
そして、ステップS12においては、モード切替制御処理のフェーズAにおいて回転同期制御を行なうことを示すフラグF_MODEのフラグ値が「1」であるか否かを判定する。
この判定結果が「YES」の場合、つまりモード切替制御処理のフェーズAにおいて、イナーシャ吸収制御を行なうことを示す場合には、ステップS13に進み、このステップS13においては、後述するイナーシャ吸収制御を実行し、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、ステップS14に進み、このステップS14においては、後述する同期回転制御を実行し、一連の処理を終了する。
また、ステップS15においては、フェーズ変数SFTMONの値(現在値)が「31」であるか否か、つまりモード切替制御処理の現在のフェーズがフェーズBであるか否かを判定する。
この判定結果が「YES」の場合には、モード切替制御処理のフェーズBでの処理として、後述する油圧切替制御の処理を実行し、一連の処理を終了する。
一方、この判定結果が「NO」の場合、つまりモード切替制御処理の現在のフェーズがフェーズCである場合には、モード切替制御処理のフェーズCでの処理として、後述する油圧ON制御の処理を実行し、一連の処理を終了する。
以下に、上述したステップS01のMOTトルク特性係数変更処理について説明する。
先ず、図12に示すステップS21においては、後述する油圧スイッチ44の異常状態であって、かつ、フェーズ変数SFTMONの値(現在値)が「31」以上かつ「41」以下(つまりモード切替制御処理の現在のフェーズがフェーズBまたはC)であるか否かを判定する。
この判定結果が「YES」の場合には、後述するステップS24に進む。
一方、この判定結果が「NO」の場合には、ステップS22に進み、このステップS22においては、トルク特性変更禁止フラグF_MOTINHのフラグ値に「0」を設定し、トルク特性変更動作の実行を許可して、ステップS23に進む。
そして、ステップS23においては、位相制御装置25による位相変更動作の実行許可を指示する許可信号を出力し、一連の処理を終了する。
また、ステップS24においては、トルク特性変更禁止フラグF_MOTINHのフラグ値に「1」を設定し、トルク特性変更動作の実行を禁止して、ステップS25に進む。
そして、ステップS25においては、位相制御装置25による位相変更動作の実行禁止を指示する禁止信号を出力し、一連の処理を終了する。
以下に、上述したステップS09のクラッチ差回転算出処理について説明する。
先ず、例えば図13に示すステップS31においては、回転センサ93により検出された回転速度Nbの検出値(現在値)をクラッチ14の出力側回転速度NRPMHUBとして設定すると共に、回転センサ95により検出された回転速度Naの検出値(現在値)を回転速度NMとして設定する。
なお、回転速度Naとクラッチ14の入力側回転速度NMとが所定の関係を有する場合には、回転速度Naから入力側回転速度NMを算出してもよいし、回転速度Nbとクラッチ14の出力側回転速度NRPMHUBとが所定の関係を有する場合には、回転速度Nbから出力側回転速度NRPMHUBを算出してもよい。
そして、ステップS32においては、クラッチ14の入力側回転速度NMと出力側回転速度NRPMHUBとの差を差DNRPMとして設定する。
そして、ステップS33においては、差DNRPMの絶対値が所定値#DNRPMA3未満であるか否かを判定する。
この判定結果が「YES」の場合には、可変特性モータ11と内燃機関12とが同期回転状態であると判断してステップS34に進み、このステップS34においては、フェーズ変数SFTMONの値に「31」を設定して、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、ステップS35に進む。
そして、ステップS35においては、差DNRPMがゼロよりも大きいか否かを判定する。
この判定結果が「YES」の場合には、クラッチ14の入力側が過回転状態、つまり可変特性モータ11よりも内燃機関12の方が過回転状態であると判断してステップS36に進み、このステップS36においては、フラグF_MODEのフラグ値に「1」を設定して、モード切替制御処理のフェーズAにおいてイナーシャ吸収制御を行なうことを指示し、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、クラッチ14の出力側が過回転状態、つまり内燃機関12よりも可変特性モータ11の方が過回転状態であると判断してステップS37に進み、このステップS37においては、フラグF_MODEのフラグ値に「0」を設定して、モード切替制御処理のフェーズAにおいて、回転同期制御を行なうことを指示し、一連の処理を終了する。
なお、フェーズ変数SFTMONの値は、モード切替制御処理のフェーズがフェーズAであるときには、「11」,「12」,「13」,「21」,「22」,「23」のいずれかであり、フェーズ変数SFTMONの値としての「11」〜「13」は、クラッチ14の入力側回転速度NMが出力側回転速度NRPMHUBよりも高い場合であり、フェーズ変数SFTMONの値としての「21」〜「23」は、クラッチ14の入力側回転速度NMが出力側回転速度NRPMHUBよりも低い場合である。
そして、クラッチ14の入力側回転速度NMが出力側回転速度NRPMHUBに対して過大になっている場合には、クラッチ14の接続時のショックを軽減するために、内燃機関12の出力軸12aや、発電機13のロータ13aや、クラッチ14の入力側回転要素14aの回転に伴う慣性力を吸収するように内燃機関12の出力トルクを制御する。
一方、クラッチ14の出力側回転速度NRPMHUBが入力側回転速度NMに対して過大になっている場合には、クラッチ14の接続時のショックを軽減するために、内燃機関12の出力軸12aや、発電機13のロータ13aや、クラッチ14の入力側回転要素14aの回転を増速して、入力側回転速度NMが出力側回転速度NRPMHUBに収束するように内燃機関12の出力トルクを制御する。
以下に、上述したステップS10の油圧スイッチ動作判定処理について説明する。
先ず、例えば図14に示すステップS41においては、フェーズ変数SFTMONの値(現在値)が「31」よりも小さいか否か、つまり、モード切替制御処理のフェーズがフェーズAであるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS44に進む。
一方、この判定結果が「YES」の場合には、ステップS42に進む。
そして、ステップS42においては、油圧スイッチ44がオン状態となっているか否かを判定する。
ステップS42の判定結果が「NO」の場合には、一連の処理を終了する。
一方、ステップS42の判定結果が「YES」の場合、つまり油圧装置16によるクラッチ14への作動油の供給は未だ開始されていないフェーズAでありながら、クラッチ油圧が所定の油圧スイッチ作動圧を超えている状態であって、油圧スイッチ44がON信号を出力する故障状態である可能性がある場合には、ステップS43に進み、このステップS43においては、後述する油圧スイッチON故障判定の処理を実行し、一連の処理を終了する。
また、ステップS44においては、油圧スイッチ作動カウンタータイマーTMPSWの現在値が、ゼロ以上かつ所定値#TMUTSWG未満であるか否かを判定する。
この判定結果が「NO」の場合には、後述するステップS48に進む。
一方、この判定結果が「YES」の場合には、ステップS45に進む。
そして、ステップS45においては、油圧スイッチ44がオン状態となっているか否かを判定する。
ステップS45の判定結果が「NO」の場合には、一連の処理を終了する。
一方、ステップS45の判定結果が「YES」の場合、つまり図7および図9に示すように、フェーズBの開始時(すなわち、油圧指令値QONの立ち上がりの開始時)からの経過時間が、所定値#TMUTSWGに到達するまでの期間(例えば、図7および図9に示すの時刻t4から時刻t5に亘る期間)として設定された不感帯期間内でありながら、クラッチ油圧が所定の油圧スイッチ作動圧を超えている状態であって、クラッチ油圧の一時的なサージ圧によって油圧スイッチ44がON信号を出力している可能性がある場合には、ステップS46に進み、このステップS46においては、サージ圧による油圧スイッチ44の誤作動が生じたと判断する。
そして、ステップS47においては、例えば油圧スイッチ作動カウンタータイマーTMPSWの値を所定値ΔTUP(例えば、モード切替制御処理のメインルーチン処理が実行される所定の制御処理周期に相当する時間)だけ増加させ、フェーズBからフェーズCへの移行を行なわずにフェーズBを継続して、一連の処理を終了する。
また、ステップS48においては、油圧スイッチ作動カウンタータイマーTMPSWの現在値が、不感帯期間を過ぎた所定値#TMUTSWG以上、かつ、クラッチ14の実際の接続が開始される(つまりクラッチ油圧が所定の油圧ON設定圧まで上昇する)までの時間に対する所定の予測値#TMDB2Cと、所定値#TMUTSWHとを加算して得た上限時間(=TMDB2C+#TMUTSWH)未満であるか否かを判定する。
なお、上限時間(TMDB2C+#TMUTSWH)は、例えば図7および図9に示す時刻t4から時刻t8に亘る期間であって、フェーズBの開始時からモード切替制御処理の終了時(つまり、フェーズCの終了時)までの上限時間に相当する。
この判定結果が「NO」の場合には、後述するステップS58に進む。
一方、この判定結果が「YES」の場合には、ステップS49に進む。
そして、ステップS49においては、油圧スイッチ44のON故障が確定しているか否かを判定する。
この判定結果が「YES」の場合、つまり油圧スイッチ44のON故障が確定している場合には、ステップS50に進み、このステップS50においては、例えば油圧スイッチ作動カウンタータイマーTMPSWの値を所定値ΔTUP(例えば、モード切替制御処理のメインルーチン処理が実行される所定の制御処理周期に相当する時間)だけ増加させ、フェーズ変数SFTMONの値を変更せずに、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、ステップS51に進む。
そして、ステップS51においては、油圧スイッチ44がオン状態となっているか否かを判定する。
この判定結果が「YES」の場合には、後述するステップS54に進む。
一方、この判定結果が「NO」の場合には、ステップS52に進み、このステップS52においては、油圧スイッチ作動圧通過フラグF_P1のフラグ値が「1」であるか否かを判定する。
ステップS52の判定結果が「NO」の場合には、上述したステップS50に進む。
一方、ステップS52の判定結果が「YES」の場合、つまりフェーズBにおいて、実際のクラッチ油圧が所定の油圧スイッチ作動圧まで上昇しているにもかかわらず、油圧スイッチ44からON信号が出力されず、油圧スイッチ44が故障している可能性がある場合には、ステップS53に進み、このステップS53においては、後述する切替終了制御を実行し、一連の処理を終了する。
また、ステップS54においては、油圧スイッチ作動圧通過フラグF_P1のフラグ値に「1」を設定する。
そして、ステップS55においては、フェーズ変数SFTMONの値に「41」を設定し、油圧スイッチ44が正常である場合に油圧スイッチ作動カウンタータイマーTMPSWの値が、上述したステップS44での所定値#TMUTSWGに到達した後、油圧スイッチ44がオン状態となった時(つまり、クラッチ油圧が所定の油圧スイッチ作動圧に到達した時)に、モード切替制御処理のフェーズがフェーズBからフェーズCに移行し、この以後は、モード切替制御処理が終了するまで(つまり、フェーズ変数SFTMONの値が「00」に設定されるまで)、フェーズCの処理が継続されるように設定する。
そして、ステップS56においては、トルク特性変更禁止フラグF_MOTINHのフラグ値に「1」を設定し、トルク特性変更動作の実行を禁止して、ステップS57に進む。
そして、ステップS57においては、位相制御装置25による位相変更動作の実行禁止を指示する禁止信号を出力し、一連の処理を終了する。
なお、上述したステップS51の判定結果が「YES」の場合には、油圧スイッチ作動カウンタータイマーTMPSWの値は更新されず、油圧スイッチ作動カウンタータイマーTMPSWによる計時は中止される。このため、油圧スイッチ44が正常であれば、上述したステップS48での判定結果が「NO」となることはない。
一方、上述したステップS50において、油圧スイッチ作動カウンタータイマーTMPSWの値の更新が継続されると、この値が上限時間(=TMDB2C+#TMUTSWH)に到達して、上述したステップS48での判定結果が「NO」となる。
ステップS58においては、油圧スイッチ44のON故障が確定しているか否かを判定する。
この判定結果が「YES」の場合、つまり油圧スイッチ44のON故障が確定している場合には、ステップS62に進み、このステップS62においては、後述する切替終了制御の処理を実行し、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、ステップS59に進む。
そして、ステップS59においては、油圧スイッチ作動圧通過フラグF_P1のフラグ値が「1」であるか否かを判定する。
ステップS59の判定結果が「YES」の場合には、ステップS60に進み、このステップS60においては、例えば図8および図10に示す異常状態F4のように、油圧装置16の第3開閉弁43がバルブセット側、つまりバルブ非作動状態とされ、油圧スイッチ44への油路が開放されて、油圧スイッチ44がオン状態に固定される異常状態であると判断し、ステップS62に進む。
一方、ステップS59の判定結果が「NO」の場合には、ステップS61に進み、このステップS61においては、後述する油圧スイッチOFF故障判定の処理を実行し、ステップS62に進む。
以下に、上述したステップS43における油圧スイッチON故障判定の処理について説明する。
先ず、例えば図15に示すステップS64においては、車速の時間変化が所定値以上に急激か否かを判定する。
この判定結果が「NO」の場合には、ステップS65に進み、このステップS65においては、例えば図8および図10に示す異常状態F1のように、油圧スイッチ44のON故障が確定していると設定して、一連の処理を終了する。
一方、この判定結果が「YES」の場合、つまり内燃機関12の出力トルクの変動が車体挙動の変動として発生する場合には、ステップS66に進み、このステップS66においては、例えば図8および図10に示す異常状態F2のように、油圧スイッチ44以外の異常状態であって、油圧装置16の弁の故障等により、クラッチ14に実際に作動油が供給されてしまい、内燃機関12や発電機13の出力トルクの一部がクラッチ14を介して駆動輪W,Wに伝達されている状態であると判断し、油圧スイッチ作動圧通過フラグF_P1のフラグ値に「1」を設定して、一連の処理を終了する。
以下に、上述したステップS61における油圧スイッチOFF故障判定の処理について説明する。
先ず、例えば図16に示すステップS67においては、クラッチ差回転DNRPM(今回値)の絶対値が、正の値であるか否かを判定する。
この判定結果が「NO」の場合、つまりクラッチ差回転DNRPM=0であり、クラッチ油圧によってクラッチ14が接続状態となっている場合には、ステップS68に進み、このステップS68においては、例えば図8および図10に示す異常状態F3−1のように、油圧装置16は正常に動作していると判断すると共に、油圧スイッチ44のOFF故障または油圧装置16の第3開閉弁43がバルブ作動状態側に固定される異常状態であると判断し、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップS69に進み、このステップS69においては、例えば図8および図10に示す異常状態F3−2のように、油圧スイッチ44および油圧装置16の第3開閉弁43以外の機器の故障によって、クラッチ油圧が不足して誤作動(つまり、油圧スイッチ44がON信号を出力しない誤作動)が発生したと判断し、一連の処理を終了する。
以下に、上述したステップS53およびステップS62における切替終了制御の処理について説明する。
先ず、例えば図17に示すステップS71においては、フェーズ変数SFTMONの値に「00」を設定する。
次に、ステップS72においては、トルク特性変更禁止フラグF_MOTINHのフラグ値に「0」を設定する。
そして、ステップS73においては、位相制御装置25による位相変更動作の実行許可を指示する許可信号を出力する。
そして、ステップS74においては、目標TQMOTにゼロを設定する。
そして、ステップS75においては、エンジン走行要求トルクTQENGLCを算出し、内燃機関12のトルク指令TQENGとして設定し、一連の処理を終了する。
以下に、上述したステップS13でのイナーシャ吸収制御について説明する。
先ず、図18に示すステップS81においては、クラッチ差回転DNRPMが、例えば図7に示す第1所定値#DNRPMA1(>0)よりも大きいか否かを判定する。
この判定結果が「YES」の場合には、ステップS82に進み、このステップS82においては、例えば図7に示すように、変速開始時エンジントルクTQENGSに第1所定値#TQENG1(<0)を加算して得た値を、今回の制御処理周期で内燃機関12から出力するトルクに対するトルク指令TQENGとして設定する(持替1状態)と共に、フェーズ変数SFTMONの値にイナーシャ吸収制御の処理における第1フェーズに対応する値としての「11」を設定する。
一方、この判定結果が「NO」の場合には、ステップS83に進み、このステップS83においては、クラッチ差回転DNRPMが、例えば図7に示す第1所定値#DNRPMA1よりも小さい第2所定値#DNRPMA2(>0)よりも大きいか否かを判定する。
ステップS83の判定結果が「YES」の場合には、ステップS84に進み、このステップS84においては、例えば図7に示すように、変速開始時エンジントルクTQENGSに第1所定値#TQENG1よりも大きい第2所定値#TQENG2(<0)を加算して得た値を、今回の制御処理周期で内燃機関12から出力するトルクに対するトルク指令TQENGとして設定する(持替2状態)と共に、フェーズ変数SFTMONの値にイナーシャ吸収制御の処理における第2フェーズに対応する値としての「12」を設定する。
一方、ステップS83の判定結果が「NO」の場合には、ステップS85に進み、このステップS85においては、例えば図7に示すように、変速開始時エンジントルクTQENGSに第2所定値#TQENG2よりも大きい第3所定値#TQENG3(<0)を加算して得た値を、今回の制御処理周期で内燃機関12から出力するトルクに対するトルク指令TQENGとして設定する(持替3状態)と共に、フェーズ変数SFTMONの値にイナーシャ吸収制御の処理における第3フェーズに対応する値としての「13」を設定する。
そして、ステップS86においては、クラッチ差回転DNRPMが、例えば図7に示す第2所定値#DNRPMA2よりも小さく、ゼロ近傍の第3所定値#DNRPMA3(>0)よりも小さいか否かを判定する。
この判定結果が「NO」の場合には、一連の処理を終了する。
一方、この判定結果が「YES」の場合、つまりクラッチ14の入力側回転速度NMと出力側回転速度NRPMHUBとがほぼ同等の値となる場合には、ステップS87に進み、このステップS87においては、フェーズ変数SFTMONの値に「31」を設定し、モード切替制御処理のフェーズをフェーズAからフェーズBに移行させ、一連の処理を終了する。
このイナーシャ吸収制御によれば、トルク指令値TQENGは、クラッチ差回転DNRPMの絶対値が大きいほど、変速開始時エンジントルクTQENGSからの下降量が大きくなるようにして、クラッチ差回転DNRPMに応じて段階的に切り替えられることとなる。
以下に、上述したステップS14での回転同期制御について説明する。
先ず、図19に示すステップS91においては、クラッチ差回転DNRPMが、例えば図9に示す第1所定値#DNRPMA1(<0)よりも小さいか否かを判定する。
この判定結果が「YES」の場合には、ステップS92に進み、このステップS92においては、例えば図9に示すように、変速開始時エンジントルクTQENGSに第1所定値#TQENG1(>0)を加算して得た値を、今回の制御処理周期で内燃機関12から出力するトルクに対するトルク指令TQENGとして設定する(持替1状態)と共に、フェーズ変数SFTMONの値に回転同期制御の処理における第1フェーズに対応する値としての「21」を設定する。
一方、この判定結果が「NO」の場合には、ステップS93に進み、このステップS93においては、クラッチ差回転DNRPMが、例えば図9に示す第1所定値#DNRPMA1よりも大きい第2所定値#DNRPMA2(<0)よりも小さいか否かを判定する。
ステップS93の判定結果が「YES」の場合には、ステップS94に進み、このステップS94においては、例えば図9に示すように、変速開始時エンジントルクTQENGSに第1所定値#TQENG1よりも小さい第2所定値#TQENG2(>0)を加算して得た値を、今回の制御処理周期で内燃機関12から出力するトルクに対するトルク指令TQENGとして設定する(持替2状態)と共に、フェーズ変数SFTMONの値に回転同期制御の処理における第2フェーズに対応する値としての「22」を設定する。
一方、ステップS93の判定結果が「NO」の場合には、ステップS95に進み、このステップS95においては、例えば図9に示すように、変速開始時エンジントルクTQENGSに第2所定値#TQENG2よりも小さい第3所定値#TQENG3(>0)を加算して得た値を、今回の制御処理周期で内燃機関12から出力するトルクに対するトルク指令TQENGとして設定する(持替3状態)と共に、フェーズ変数SFTMONの値に回転同期制御の処理における第3フェーズに対応する値としての「23」を設定する。
そして、ステップS96においては、クラッチ差回転DNRPMが、例えば図9に示す第2所定値#DNRPMA2よりも大きく、ゼロ近傍の第3所定値#DNRPMA3(<0)よりも小さいか否かを判定する。
この判定結果が「NO」の場合には、一連の処理を終了する。
一方、この判定結果が「YES」の場合、つまりクラッチ14の入力側回転速度NMと出力側回転速度NRPMHUBとがほぼ同等の値となる場合には、ステップS97に進み、このステップS97においては、フェーズ変数SFTMONの値に「31」を設定し、モード切替制御処理のフェーズをフェーズAからフェーズBに移行させ、一連の処理を終了する。
この回転同期制御によれば、トルク指令値TQENGは、クラッチ差回転DNRPMの絶対値が大きいほど、変速開始時エンジントルクTQENGSからの上昇量が大きくなるようにして、クラッチ差回転DNRPMに応じて段階的に切り替えられることとなる。
以下に、上述したステップS16での油圧切替制御について説明する。
先ず、図20に示すステップS100においては、クラッチ14への作動油の供給を開始するように(つまり、クラッチ14を切断状態から接続状態に切り替えるように)クラッチ油圧の油圧指令値QONとして、所定の最大値MAXを設定し、一連の処理を終了する。なお、最大値MAXは、例えばクラッチ14を切断状態から接続状態に移行させ、かつ接続状態を維持するのに必要十分な油圧指令値であり、油圧装置16の第2開閉弁42のソレノイドに最大電流を通電することになる。
フェーズBでは(フェーズ変数SFTMON=「31」である場合)、クラッチ14への作動油の供給が開始される。この場合、実際のクラッチ油圧は、油圧指令値QONに対して遅れを生じる。例えば、図7および図9に示すように、実際のクラッチ油圧は最終的には油圧指令値QONの値に達するものの、油圧指令値QONの立ち上がりの直後においては、油圧指令値QONに対して応答遅れを生じる。そして、クラッチ14は、実際のクラッチ油圧が所定の油圧スイッチ作動圧まで上昇するまでは、実質的に切断状態に維持される。
以下に、上述したステップS17での油圧ON制御について説明する。
先ず、図21に示すステップS101においては、油圧ON制御の開始時(つまり、フェーズ変数SFTMONの値が「41」となるフェーズCの開始時)であるか否かを判定する。
この判定結果が「YES」の場合、つまり前回の制御処理周期でのフェーズ変数SFTMONの値が「31」であった場合には、ステップS102に進み、このステップS102においては、クラッチ14の出力側回転速度NRPMHUB(現在値)を、F/B制御開始時回転速度NRPMFBとして設定する。
一方、この判定結果が「NO」の場合には、ステップS103に進む。
そして、ステップS103においては、後述するモータトルクのF/B制御を実行する。
そして、ステップS104においては、モード切替制御処理の終了直後のエンジン直結走行モードでの内燃機関12の出力トルクの要求値である目標TQENGを算出する。この目標TQENGは、車両のアクセル操作量(現在値)と車速(現在値)とに応じた車両目標駆動力を、内燃機関12から駆動輪W,Wに伝達するために要求される内燃機関12の出力トルクである。すなわち、この目標TQENGは、クラッチ14の切断状態から接続状態への移行が完了したときに、内燃機関12の出力トルクにより車両の走行(現状と同等の走行)を行なうために要求される内燃機関12の出力トルクの要求値である。
この目標TQENGは、例えば車両目標駆動力と発電機13のトルク指令TQGEN(回生トルク)とに応じて設定される。例えば、目標TQENGに発電機13のトルク指令TQGEN(<0)を加算して得たトルクによって、トランスミッションT/Mを介して駆動輪W,Wに伝達される駆動力が車両目標駆動力になるように目標TQENGが設定される。なお、車両目標駆動力は、例えば定常的なエンジン直結走行モードでの車両の走行時と同様に設定される。
そして、ステップS105においては、エンジン走行時要求トルクTQENGLCに目標TQENGを設定する。
そして、ステップS106においては、後述するエンジントルクのF/B制御を実行し、一連の処理を終了する。
以下に、上述したステップS103でのモータトルクのF/B制御について説明する。
先ず、図22に示すステップS111においては、下記数式(1)に示すように、可変特性モータ11のトルク指令TQMOT(つまり、現在値であって、前回の制御処理周期で最終的に設定された値)と、制御処理周期毎の(つまり、単位時間当たりの)トルク指令TQMOTの減少量であるトルク減少量#DTQMOT(<0)と、F/B制御開始時回転速度NRPMFBとクラッチ14の出力側回転速度NRPMHUB(現在値)との偏差(NRPMFB−NRPMHUB)に応じたF/B補正量(フィードバック補正量)とを加算して得た値を、目標TQMOTとして設定する。
目標TQMOT=TQMOT+#DTQMOT+F/B補正量 …(1)
なお、トルク減少量#DTQMOT(<0)は、予め設定された所定値である。また、F/B補正量は、例えば偏差(NRPMFB−NRPMHUB)にフィードバックゲインKMOTを乗算して得た値である。このフィードバックゲインKMOTは、例えばクラッチ14に供給される作動油の油温と、F/B制御開始時回転速度NRPMFBとから、予め設定されたマップ等に基づいて可変的に設定される。このマップは、例えばクラッチ14の出力側回転速度NRPMHUBが、F/B制御開始時回転速度NRPMFBに対して過剰のオーバーシュートもしくはアンダーシュートを生じるのを抑制し、偏差(NRPMFB−NRPMHUB)の絶対値が所定値以下に収まるように設定される。
これにより、目標TQMOTは、クラッチ14の出力側回転速度NRPMHUBをF/B制御開始時回転速度NRPMFBに維持するようにしつつ、つまり車速をフェーズCの開始時の車速に維持するようにしつつ、可変特性モータ11の回転速度を徐々に減少させるように設定されることになる。
そして、ステップS112においては、トルク指令TQMOTに目標TQMOTを設定して、一連の処理を終了する。
以下に、上述したステップS106でのエンジントルクのF/B制御について説明する。
先ず、図23に示すステップS121においては、下記数式(2)に示すように、内燃機関12のトルク指令TQENG(つまり、現在値であって、前回の制御処理周期で最終的に設定された値)と、制御処理周期毎の(つまり、単位時間当たりの)トルク指令TQMOTの減少量であるトルク減少量#DTQMOT(<0)と、F/B制御開始時回転速度NRPMFBとクラッチ14の出力側回転速度NRPMHUB(現在値)との偏差(NRPMFB−NRPMHUB)に応じたF/B補正量(フィードバック補正量)とを加算して得た値を、目標TQMOTとして設定する。
目標TQENG=TQENG+#DTQENG+F/B補正量 …(2)
なお、トルク減少量#DTQENG(>0)は、予め設定された所定値である。また、F/B補正量は、例えばクラッチ差回転DNRPMにフィードバックゲインKENGを乗算して得た値である。このフィードバックゲインKENGは、例えばクラッチ14に供給される作動油の油温と、クラッチ14の入力側回転速度NMとから、予め設定されたマップ等に基づいて可変的に設定される。このマップは、例えばクラッチ差回転DNRPMの絶対値が所定値以下に収まるように設定される。
これにより、目標TQENGは、クラッチ差回転DNRPMを0近傍に維持するようにしつつ、内燃機関12の回転速度NEを徐々に上昇させていくように設定されることになる。
そして、ステップS122においては、トルク指令TQENGに目標TQENGを設定して、一連の処理を終了する。
フェーズCでは(SFTMON=「41」である場合)、車速をフェーズCの開始時の車速に維持するように、例えば図7および図9に示すように、可変特性モータ11のトルク指令TQMOTが徐々に減少させられる(減算F/B状態)と共に、クラッチ差回転DNRPMを0近傍に維持するように、内燃機関12のトルク指令TQENGが徐々に増加させられる(加算F/B状態)。これにより、駆動輪W,Wに駆動力を伝達する動力源が、可変特性モータ11から内燃機関12に徐々に切り替えられる。そして、このとき、クラッチ14の接続動作は、車速の変動が生じず、かつ、接続動作時のショックが生じないように行なわれる。
このフェーズCの処理、さらには、モード切替制御処理は、可変特性モータ11の目標TQMOTが十分に0に近い値まで低下し、または、内燃機関12の目標TQENGがエンジン走行時要求トルクTQENGLCに十分に近い値まで増加するまで(例えば、図7および図9の時刻t7まで)継続される。そして、この後は、フェーズ変数SFTMONの値が「00」となるので、モード切替制御処理が終了する。
上述したように、本実施の形態によるハイブリッド車両の制御装置50によれば、例えば図14に示すステップS55〜ステップS57のように、クラッチ油圧が所定の油圧スイッチ作動圧以上となって、クラッチ14の動作状態が実質的に切断状態から接続状態に移行し、車両の駆動輪W,Wに動力伝達を行なう動力源を可変特性モータ11側から内燃機関12側に徐々に移行させる切替動作中においては、位相制御装置25による可変特性モータ11の位相変更(つまりトルク特性変更)動作の実行を禁止することから、モータ特性係数が変更されてしまうことに伴って内燃機関12および可変特性モータ11の各出力トルクに対する協調制御が不安定となってしまうことを防止することができる。
さらに、例えば図12に示すステップS21〜ステップS25のように、油圧スイッチ44の異常状態においては、図7および図9の時刻t4以降のように油圧指令値QONが増大を開始した時点以降において、より早いタイミングで可変特性モータ11の位相変更(つまりトルク特性変更)動作の実行を禁止することから、内燃機関12および可変特性モータ11の各出力トルクに対する協調制御が不安定となってしまうことを適切に防止することができる。
本発明の一実施形態に係るハイブリッド車両の動力系を概略的に示す図である。 本発明の一実施形態に係る可変特性モータの断面図である。 本発明の一実施形態に係るハイブリッド車両に具備される油圧装置の構成を示す油圧回路図である。 図4(a)は本発明の一実施形態に係る油圧装置の第3開閉弁の構成を示す図であり、図4(b)は本発明の一実施形態に係る油圧装置の第3開閉弁のバルブ非作動時(セット側)の状態を示す図であり、図4(c)は本発明の一実施形態に係る油圧装置の第3開閉弁のバルブ作動時(作動側)の状態を示す図である。 本発明の一実施形態に係るハイブリッド車両のシステム構成を示すブロック図である。 本発明の一実施形態に係るハイブリッド車両の制御装置の構成図である。 本発明の一実施形態に係るモード切替制御処理におけるイナーシャ吸収制御での各トルク指令等の経時変化の一例を示すタイミングチャート図である。 本発明の一実施形態に係るモード切替制御処理におけるイナーシャ吸収制御での油圧スイッチおよび油圧スイッチ作動圧通過フラグF_P1等の経時変化の一例を示すタイミングチャート図である。 本発明の一実施形態に係るモード切替制御処理における回転同期制御での各トルク指令等の経時変化の一例を示すタイミングチャート図である。 本発明の一実施形態に係るモード切替制御処理における回転同期制御での油圧スイッチおよび油圧スイッチ作動圧通過フラグF_P1等の経時変化の一例を示すタイミングチャート図である。 本発明の一実施形態に係るモード切替制御処理のメインルーチン処理を示すフローチャートである。 本発明の一実施形態に係るMOTトルク特性係数変更処理を示すフローチャートである。 本発明の一実施形態に係るクラッチ差回転算出処理を示すフローチャートである。 本発明の一実施形態に係る油圧スイッチ動作判定処理を示すフローチャートである。 本発明の一実施形態に係る油圧スイッチON故障判定処理を示すフローチャートである。 本発明の一実施形態に係る油圧スイッチOFF故障判定処理を示すフローチャートである。 本発明の一実施形態に係る切替終了制御処理を示すフローチャートである。 本発明の一実施形態に係るイナーシャ吸収制御処理を示すフローチャートである。 本発明の一実施形態に係る回転同期制御処理を示すフローチャートである。 本発明の一実施形態に係る油圧切替制御処理を示すフローチャートである。 本発明の一実施形態に係る油圧ON制御処理を示すフローチャートである。 本発明の一実施形態に係るモータトルクのF/B制御処理を示すフローチャートである。 本発明の一実施形態に係るエンジントルクのF/B制御処理を示すフローチャートである。
符号の説明
11 可変特性モータ(モータ)
12 内燃機関
14 クラッチ(断接手段)
16 油圧装置(油圧回路)
21 内周側回転子(ロータ)
22 外周側回転子(ロータ)
25 位相制御装置(位相変更手段)
44 油圧スイッチ(圧力検出手段)
67 トルク協調指令値算出部(許可手段)
ステップS25、ステップS57 禁止手段

Claims (4)

  1. 内燃機関およびモータを駆動源として備え、前記内燃機関および前記モータの駆動力を駆動輪に伝達する伝達手段と、少なくとも前記内燃機関と前記伝達手段との間の接続および遮断を行う断接手段とを備え、少なくとも前記内燃機関または前記モータの駆動力により走行可能なハイブリッド車両の制御装置であって、
    前記モータは、各磁石片を具備すると共に互いの相対的な位相を位相変更手段により変更可能な複数のロータを備え、
    前記断接手段による接続および遮断の切替動作中での前記位相変更手段による位相変更動作の実行を禁止する禁止手段を備えることを特徴とするハイブリッド車両の制御装置。
  2. 前記位相変更手段による位相変更動作の実行中に、前記断接手段による接続および遮断の切替動作に対する所定の実行条件が満たされた場合、前記位相変更動作の実行を禁止した後に、前記切替動作の実行を許可する許可手段を備えることを特徴とする請求項1に記載のハイブリッド車両の制御装置。
  3. 前記断接手段は、前記切替動作を油圧により行う油圧回路と、該油圧回路に設けられた圧力検出手段とを備え、
    前記禁止手段は、前記圧力検出手段による検出値に基づき前記位相変更動作の実行を禁止することを特徴とする請求項1または請求項2に記載のハイブリッド車両の制御装置。
  4. 前記禁止手段は、前記断接手段の入力側と出力側との回転数の差である差回転が所定範囲内の値である場合に前記位相変更動作の実行禁止を開始し、前記断接手段による接続が完了した時に前記位相変更動作の実行禁止を解除することを特徴とする請求項1から請求項3の何れかひとつに記載のハイブリッド車両の制御装置。

JP2006236601A 2006-08-31 2006-08-31 ハイブリッド車両の制御装置 Expired - Fee Related JP4372778B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006236601A JP4372778B2 (ja) 2006-08-31 2006-08-31 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006236601A JP4372778B2 (ja) 2006-08-31 2006-08-31 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2008056141A true JP2008056141A (ja) 2008-03-13
JP4372778B2 JP4372778B2 (ja) 2009-11-25

Family

ID=39239378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006236601A Expired - Fee Related JP4372778B2 (ja) 2006-08-31 2006-08-31 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP4372778B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133456A (ja) * 2013-01-09 2014-07-24 Mitsubishi Motors Corp ハイブリッド車両の制御装置
JP2021049862A (ja) * 2019-09-25 2021-04-01 株式会社Subaru 車両
CN112896142A (zh) * 2020-12-30 2021-06-04 东风小康汽车有限公司重庆分公司 一种车辆的控制方法、装置、存储介质和整车控制器
CN112951669A (zh) * 2020-12-25 2021-06-11 默飓电气有限公司 一种用于断路器的同期座

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314068A (ja) * 2000-05-01 2001-11-09 Denso Corp 2ロータ型同期機
JP2002262534A (ja) * 2001-02-28 2002-09-13 Hitachi Ltd 回転電機及びそれを搭載した車両
JP2003299281A (ja) * 2002-04-01 2003-10-17 Nissan Motor Co Ltd 回転電機及びその回転電機を用いたハイブリッド車両
JP2004064942A (ja) * 2002-07-31 2004-02-26 Hitachi Ltd 回転電機及びそれを搭載した自動車
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314068A (ja) * 2000-05-01 2001-11-09 Denso Corp 2ロータ型同期機
JP2002262534A (ja) * 2001-02-28 2002-09-13 Hitachi Ltd 回転電機及びそれを搭載した車両
JP2003299281A (ja) * 2002-04-01 2003-10-17 Nissan Motor Co Ltd 回転電機及びその回転電機を用いたハイブリッド車両
JP2004064942A (ja) * 2002-07-31 2004-02-26 Hitachi Ltd 回転電機及びそれを搭載した自動車
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133456A (ja) * 2013-01-09 2014-07-24 Mitsubishi Motors Corp ハイブリッド車両の制御装置
JP2021049862A (ja) * 2019-09-25 2021-04-01 株式会社Subaru 車両
JP7453766B2 (ja) 2019-09-25 2024-03-21 株式会社Subaru 車両
CN112951669A (zh) * 2020-12-25 2021-06-11 默飓电气有限公司 一种用于断路器的同期座
CN112896142A (zh) * 2020-12-30 2021-06-04 东风小康汽车有限公司重庆分公司 一种车辆的控制方法、装置、存储介质和整车控制器

Also Published As

Publication number Publication date
JP4372778B2 (ja) 2009-11-25

Similar Documents

Publication Publication Date Title
EP1928084B1 (en) Motor control method and motor control apparatus
JP4350676B2 (ja) ハイブリッド車両の制御装置
JP4515439B2 (ja) ハイブリッド車両の制御装置
US8989936B2 (en) Hybrid vehicle control system
JP5598252B2 (ja) 電動車両の制御装置
JP2007236049A (ja) モータを備える車両
JP4372778B2 (ja) ハイブリッド車両の制御装置
JP4971039B2 (ja) モータ制御装置
JP2013001185A (ja) 回転機の減磁検出装置
JP2004208368A (ja) ハイブリッド車両
JP4455563B2 (ja) ハイブリッド車両の制御装置
JP2008062688A (ja) モータの制御装置
JP2012182912A (ja) 電動車両およびその制御方法
JP5259936B2 (ja) 電動車両のモータ診断装置
JP6052034B2 (ja) ハイブリッド車両の駆動制御装置
JP2012091599A (ja) ハイブリッド車両の制御装置
JP4358149B2 (ja) ハイブリッド車両の動力伝達装置
JP5598244B2 (ja) 回転機の制御装置
EP2869460A1 (en) Motor control device
JP4732273B2 (ja) 車両用モータの制御装置
JP4869825B2 (ja) モータの制御装置
JP4971040B2 (ja) モータ制御装置
JP2016199058A (ja) ハイブリッド車両の制御装置
JP2009050124A (ja) モータ制御装置
JP2008067499A (ja) 回転電機を具備する車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees