JP2008054378A - Dc−dcコンバータ - Google Patents

Dc−dcコンバータ Download PDF

Info

Publication number
JP2008054378A
JP2008054378A JP2006225676A JP2006225676A JP2008054378A JP 2008054378 A JP2008054378 A JP 2008054378A JP 2006225676 A JP2006225676 A JP 2006225676A JP 2006225676 A JP2006225676 A JP 2006225676A JP 2008054378 A JP2008054378 A JP 2008054378A
Authority
JP
Japan
Prior art keywords
inductor
transformer
switching
primary winding
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006225676A
Other languages
English (en)
Inventor
Fujio Nomura
富二夫 野村
Yoshiro Aoki
善郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006225676A priority Critical patent/JP2008054378A/ja
Publication of JP2008054378A publication Critical patent/JP2008054378A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】高効率でありノイズの少ないDC−DCコンバータを提供する。
【解決手段】直流電圧が供給される第1,第2のスイッチング素子を有し、デッドタイム期間以外はいずれか一方のスイッチング素子がオンして他方のスイッチング素子がオフとなるように周期的な動作をするスイッチング回路と、コンデンサ及びインダクタ及びトランスで構成され、コンデンサ及びインダクタ及びトランスの1次巻線を直列に接続して、このインダクタとこのトランスとを一つのコアに疎結合に設け、スイッチング回路の出力点と基準電位点間(または入力電圧点間)に接続した直列回路と、インダクタ及びトランスの2次巻線に誘起された電圧をそれぞれ整流する整流素子を含み直流出力電圧を得る出力回路と、を備える。
【選択図】図1

Description

本発明は、降圧比の大きいDC−DCコンバータに関し、例えば商用電源電圧を直流化して低電圧に変換するDC−DCコンバータに関する。
従来、商用電源電圧を降圧して直流電圧を得るため、DC−DCコンバータ(直流・直流変換回路)が使用されている。DC−DCコンバータとしては降圧型、昇圧型、昇降圧型が知られており、例えばトランスとスイッチング素子を用いたものがある。この場合、スイッチング素子をオン・オフすることでトランスの1次巻線に励磁電流を流し、2次巻線に生じる電圧を整流して直流出力電圧を得るようにしている。
ところで、トランス入り降圧型コンバータの場合、スイッチング素子のオン・オフ期間を制御することにより出力電圧を制御可能であるが、基本的には、入力電圧をVin、出力電圧をVout、スイッチング素子の時比率をD、トランスの1次巻線の巻数N1と2次巻線の巻数N2の比(N1/N2)をnとしたとき、出力電圧Voutは、
Vout=D×Vin/n・・・(1)
で表される。尚、時比率Dは、スイッチング素子のスイッチング周期をTs、そのオン期間をTonとしたとき、D=Ton/Tsで示される。
したがって降圧比の大きなDC−DCコンバータは、トランスの巻数比nを高くする必要があり、巻数が多いと漏れインダクタンスが増加し高周波化した際には周波数特性の劣化を招いていた。また巻数比nが高くなるため、小型化が困難であるという不都合があった。このため、商用電源電圧を降圧してもせいぜい5ボルト程度までにしか降圧することができず、さらに低い電圧(例えば2〜3ボルト)を得る場合には、一旦中間電圧に降圧し再度降圧する方式が採用されていた。この場合には、DC−DCコンバータが2段挿入されることとなり、効率の低下、部品点数増加等の問題があった。
特許文献1には、降圧型のDC−DCコンバータの一例が記載されているが、出力電圧は上記(1)式で規定されるため、降圧するにも限度があった。
このように、従来のDC−DCコンバータは、商用電源から低電圧に変換した出力電圧を得ようとするとトランスの巻数比を高くする必要があり、周波数特性の劣化を招き、小型化が困難であるという不都合があり、降圧するにも限度があるという問題点があった。
この問題点を解決するため、出願人らは特願2005−259689(以下、先願と呼ぶ。)に記載する回路を発明した。
米国特許6,728,118 B1
この発明により、上記の問題点は解決されるに至ったが、更に改良の余地が存在した。すなわち、先願に記載の回路においては、損失に比例する電圧時間積(ET積)と部分共振期間(デッドタイム期間)が重なっている期間が存在し、この期間において無駄に電力を損失させており、変圧効率に改善の余地があった。また、インダクタ及びトランスに直流電流が流れるため、大きな渦電流損失が発生し、変圧効率を改善するためには大きなギャップを入れる必要があった。この場合、漏れ磁束が大きいためにノイズが大きくなるという問題があった。
本発明は上記のような問題点に鑑みてなされたものであり、高効率でありノイズの少ないDC−DCコンバータを提供することを目的とする。
この目的を達成するために、請求項1のDC−DCコンバータは、直流電圧が供給される入力電圧点と基準電位点間に直列に接続された第1,第2のスイッチング素子を有し、一方のスイッチング素子が導通して他方のスイッチング素子が非導通となる期間、両方のスイッチング素子がオフとなる期間、及び他方のスイッチング素子が導通して一方のスイッチング素子が非導通となる期間を周期的に繰り返すスイッチング回路と;コンデンサ及びインダクタ及びトランスを含んでなり、インダクタ及びトランスは1次巻線と2次巻線を有し、コンデンサ及びインダクタの1次巻線及びトランスの1次巻線を直列に接続し、スイッチング回路の出力点と基準電位点間またはスイッチング回路の出力点と入力電圧点間に接続した直列回路と;インダクタ及びトランスの2次巻線に誘起された電圧をそれぞれ整流する整流素子を含み、直流出力電圧を得る出力回路と;を備え、インダクタの1次巻線と2次巻き線をコアの第1の脚に設け、トランスの1次巻線と2次巻き線をコアの第2の脚に設け、インダクタとトランスを一つのコアに疎結合に配したことを特徴とする。
また、請求項8のDC−DCコンバータは、直流電圧が供給される入力電圧点と基準電位点間に直列に接続された第1,第2のスイッチング素子を有し、一方のスイッチング素子が導通して他方のスイッチング素子が非導通となる期間、両方のスイッチング素子がオフとなる期間、及び他方のスイッチング素子が導通して一方のスイッチング素子が非導通となる期間を周期的に繰り返すスイッチング回路と;コンデンサ及びインダクタ及びトランスを含んでなり、インダクタは1次巻線と2次巻線を有し、コンデンサ及びインダクタの1次巻線とトランスの1次巻線とを直列に接続し、スイッチング回路の出力点と基準電位点間またはスイッチング回路の出力点と入力電圧点間に接続した直列回路と;を備え、インダクタの1次巻線と2次巻き線をコアの第1の脚に設け、インダクタとトランスを一つのコアに疎結合に配したことを特徴とする。
本発明によれば、インダクタとトランスを一つのコアに疎結合に設けたため、デッドタイム期間の電力の損失をなくし、直流重畳電流が流れず、渦電流損失が低減され、高効率でありノイズの少ないDC−DCコンバータを提供することが可能となる。
以下、本発明の実施形態について図面を用いて説明する。
<実施形態1>
図1は本発明のDC−DCコンバータの一実施形態を示す回路図である。
図1のDC−DCコンバータ100は、直流電源10から入力電圧Vinが供給され、直流電源10は、商用交流電源電圧を整流・平滑する回路で成り例えば100Vの直流電源である。この直流電源10の正極には、スイッチング素子11とスイッチング素子12の直列回路の一端が接続され、この直列回路の他端は直流電源10の負極(基準電位点)に接続されており、スイッチング素子11とスイッチング素子12はスイッチング回路を形成している。
スイッチング素子11,12は、例えばFET(電界効果トランジスタ)で構成される。以下、スイッチング素子としてFETを用いた例を説明するが、他のトランジスタで構成することもできる。
FET11と12の接続点は、コンデンサ13、インダクタンス素子14の1次巻線141、インダクタンス素子15の1次巻線151で構成する直列回路を介して直流電源10の負極に接続されている。尚、インダクタンス素子14、15は、インダクタ又はトランスで構成されるが、図1の実施形態ではインダクタンス素子14はインダクタであり、インダクタンス素子15はトランスである場合について説明する。
本実施形態においては、図2に示すようにインダクタ14はコア31の第1の脚35に、トランス15はコア31の第2の脚36に疎結合に設けられている。また、インダクタ14の1次巻線と2次巻線はコア31の第1の脚35に、トランス15の1次巻線と2次巻線はコア31の第2の脚36に巻かれている。このように、一つのコアにインダクタとトランスを設けた素子を以下インダクタ−トランスと呼び、各図においてインダクタ−トランス300として表す。また、以下インダクタ部分及びトランス部分と記載した場合にはこのインダクタ−トランス300に含まれるインダクタとトランスをそれぞれ表すものとする。
ここでインダクタ14とトランス15とを一つのコアに疎結合に設けるとは、インダクタ14とトランス15の間において磁束の漏れが生じるように一つのコアに配置することを意味する。本実施形態においてはインダクタ14とトランス15の結合度は0.98以下であることが望ましい。
インダクタ14の2次巻線142の一端には整流素子、例えばダイオード16のカソードが接続され、インダクタ14の2次巻線142の他端はトランス15の2次巻線152の一端に接続され、トランス15の2次巻線152の他端には整流用ダイオード17のカソードが接続されている。
インダクタ14の2次巻線142の他端とトランス15の2次巻線152の一端は出力電圧端子201に接続され、ダイオード16,17のアノードは共に出力電圧端子202に接続され、出力電圧端子201,202間には平滑コンデンサ18が接続されている。本例では、インダクタ14の1次巻線141と2次巻線142の巻数比はn:1であり、トランス15の1次巻線151と2次巻線152の巻数比もn:1に設定されている。なお、インダクタ14の上記巻数比とトランス15の上記巻数比が異なる場合もある。
また、前記FET11,12は制御IC19からのドライブ信号DrvA、DrvBによって、オン・オフ状態が制御され、一方がオンのときには他方がオフするように制御され、FET11,12の両者が同時に導通するのを防止するため、及びゼロ電圧スイッチングを実現するために、両FET11,12が共にオフするデッドタイム期間以外はいずれかのFET11,12が必ずオンするように制御する。尚、ゼロ電圧スイッチングのため、FET11,12の少なくとも一方に並列にコンデンサを接続しても良い。また、この並列コンデンサの代わりにFET11,12の浮遊容量を利用することもできる。
また、出力電圧端子201にはフィードバック回路20が接続されている。このフィードバック回路20は、出力電圧を安定化するため出力電圧端子201の電圧を検出して基準電圧と比較し、その比較結果によってFET11,12のオンオフデューティを可変するように前記制御IC19をコントロールする。
図2は本実施形態のインダクタ−トランス300を横方向から見た図である。図2(a)はコアにE型コア31とI型コア30を用いた例である。E型コアの第1の脚35にインダクタの巻線32を設け、第2の脚36にトランスの巻線33を疎結合に設ける。図2(b)はコアにC型コア34とI型コア30を用いた例である。C型コアの第1の脚35にインダクタの巻線32を設け、第2の脚36にトランスの巻線33を疎結合に設ける。C型コアを用いることにより、中足からの電力ロスをなくすことができる。C型コア34に代えてU型コアなど、他の形状のコアを用いても本発明の効果を得ることができる。
図3はコア40への巻線方法の例を示した図である。図3(a)は1次巻線41と、2次巻線のインダクタ部分42とトランス部分43をそれぞれ1回巻きにした例である。1次巻線のトランス部分と2次巻線のインダクタ部分42は任意の回数を巻くことができる。
コア40の一方の脚に1次巻線及び2次巻線のインダクタ部分を巻き、他の脚に1次巻線及び2次巻線のトランス部分を巻く。インダクタ部分とトランス部分はそれぞれ別の足に巻かれる。
図3(b)は1次巻線41と、2次巻線のインダクタ部分42とトランス部分43をそれぞれ任意の回数巻く場合の巻き方を示した例である。巻線をいずれも下から上に巻いてゆく場合、1次巻線のインダクタ部分が時計回りに巻いたとすると、1次巻線のトランス部分は反時計回りに巻き、2次巻線のインダクタ部分は時計回りに巻き、2次巻線のトランス部分は反時計回りに巻く。巻き方はこれらに限られるものではない。
次に、本発明のDC−DCコンバータ100の動作を図4、図5、図6を参照して説明する。図4は動作原理を説明するための図1の各部の波形図を示し、上から順に、DrvA、DrvBはFET11,12のドライブ信号、Vl1はインダクタ−トランス300のインダクタ14の1次巻線141に印加される電圧、Vt1はインダクタ−トランス300のトランス15の1次巻線151に印加される電圧を示している。Vtはインダクタ−トランス300に印加される電圧を示している。
FET11とFET12は交互にオン(導通)とオフ(非導通)を繰り返し、FET11がオンの期間(FET12がオフの期間)は、図5に示すように直流電源VinからFET11、コンデンサ13、インダクタ14及びトランス15の各1次巻線141,151を介して電流が流れる。このとき、インダクタ14及びトランス15の2次巻線142,152に誘起される電圧は、整流素子17に対しては順方向となり、電流Irec1が流れ、整流素子16に対しては逆電圧となるため非導通となる。
一方、FET12がオンの期間(FET11がオフの期間)は、図6に示すようにFET12のルートを通って、コンデンサ13、インダクタ14及びトランス15の各1次巻線141,151に電流が流れる。このとき、インダクタ14及びトランス15の2次巻線142,152に誘起される電圧は、整流素子16に対しては順方向となり、電流Irec2が流れ、整流素子17に対しては逆電圧となるため非導通となる。
これにより、出力電圧端子201には、図4のトランス15の1次巻線151に印加される電圧Vt1と、インダクタの1次巻線141に印加される電圧Vl1を整流し、平滑コンデンサ18で平滑された直流電圧Voutが得られる。また、デッドタイム期間であるtd1及びtd2においてはVtが0Vとなる。
以上の動作をより詳細に説明する。尚、説明のため、FET11,12、インダクタ14、トランス15の電圧降下、及びインダクタ14、トランス15の漏れインダクタンス、デッドタイムは無視する。
入力電圧をVin、出力電圧をVout、コンデンサ13に印加される電圧をVc、インダクタ14の1次巻線141に印加される電圧をVl1、トランス15の1次巻線151に印加される電圧をVt1とし、コンデンサ13、インダクタの1次巻線141、トランスの1次巻線151に流れる電流をI1とし、スイッチ素子11がオンする期間をtonとし、スイッチ素子12がオンする期間toffとし、スイッチ素子11がオフからオンする期間のデッドタイムをtd1とし、スイッチ素子11がオンからオフする期間のデッドタイムをtd2とし、スイッチング周期をTsとしたとき下式が成立する。
Ts=Ton+Toff ・・・(2)
このとき、FET11のオン期間の比率(時比率)をDとし、次式で定義する。
D=Ton/Ts ・・・(3)
又、インダクタ14の1次側巻線141の巻数をNl1とし、2次側巻線142の巻数をNl2としたとき、巻数比nl1を次式のように定義する。
nl1=Nl1/Nl2 ・・・(4)
同様に、トランス15の1次側巻線151の巻数をNt1とし、2次側巻線152の巻数をNt2としたとき、巻数比nt1を下式のように定義する。
nt1=Nt1/Nt2 ・・・(5)
出力電圧のリップル電圧を最小にするには、nl1とnt1を等しくすればよく、次式のように定義する。
n=nl1=nt1 ・・・(6)
このとき、コンデンサ13に印加される電圧Vcは次式で表される。
Vc=DVin ・・・(7)
図5において、コンデンサ13の電圧はDVinであり、インダクタ14の1次巻線141とトランス15の1次巻線151の接続点には出力電圧Voutのn倍の電圧n・Voutが発生するから、インダクタ14の1次巻線141の両端の電圧は、(Vin−DVin−nVout)となる。
これにより、インダクタ14の1次巻線141のインダクタンスをL、Tonの期間に1次巻線141に流れる電流の変化分をΔIlon、Toffの期間にインダクタ14の1次巻線141に流れる電流の変化分をΔI1offとしたとき、以下の(8)(9)式が成立する。
ΔI1on=(Vin−DVin−nVout)×Ton/L・・・ (8)
ΔI1off=nVout×Toff/L ・・・(9)
図7で示すように、電流ΔI1onは、インダクタ14を励磁する電流であり、所定の傾きをもって立ち上がる。I1offはインダクタ14の励磁エネルギーを放出する電流であり、所定の傾きをもって立ち下がる。このような電流が連続するモードでは、次式(10)が成立する。
ΔI1off=ΔI1on・・・(10)
ここで、このような電流連続モードにおける出力電圧Voutを(3)式及び、(8)式〜(10)式より求めると、式(11)のようになる。
Vout=D×(1−D)×Vin/n ・・・(11)
(11)式は従来の降圧形コンバータにおける(1)式に対して、(1−D)が乗算された形となるため、降圧比が従来に比べてさらに高いことがわかる。また、(11)式では、VoutはD=0.5のときが最大で、Dを0.5より大きくしても、小さくしてもVoutは小さくなることがわかる。
(11)式をDについて解くと、値は2値得られ、0<D<0.5のときは、
Figure 2008054378
で表すことができ、0.5<D<1のときは、
Figure 2008054378
となる。
よって、出力電圧をフィードバック回路20を介して制御IC19に帰還し、安定化電源を構成する場合は、図8で示すように、0<D<0.5の範囲W1、又は0.5<D<1の範囲W2のいずれか一方の範囲で動作するよう、時比率に制限をかけるよう制御IC19をコントロールする必要がある。
さらに、期間tonにおいて、Vl1、Vt1、Vtは下式であらわされる。
Vl1=Vin−D×Vin−n×Vout・・・(12)
Vt1=n×Vout・・・(13)
Vt=Vl1+Vt1=Vin(1−D)・・・(14)
期間toffにおいて、Vl1、Vt1、Vtは下式であらわされる。
Vl1=−(n×Vout)・・・(15)
Vt1=−{n×Vout×(1−D)/D}・・・(16)
Vt=Vl1+Vt1=−{n×Vout/D}・・・(17)
期間td1において、Vl1、Vt1、Vtは下式であらわされる。
Vl1=−(n×Vout)・・・(18)
Vt1=n×Vout・・・(19)
Vt=Vl1+Vt1=0・・・(20)
期間td2において、Vl1、Vt1、Vtは下式であらわされる。
Vl1=n×Vout・・・(21)
Vt1=−(n×Vout)・・・(22)
Vt=Vl1+Vt1=0・・・(23)
ここで、期間td1、期間td2において、インダクタ部分とトランス部分のコアを別々に構成した場合、インダクタ部分とトランス部分それぞれ電圧が印加される。コアの損失は電圧×時間積に比例するため損失を発生させてしまう。
これに対し、インダクタ部分とトランス部分を一つのコアに疎結合に構成した場合には、デッドタイム期間であるtd1、td2において、コアインダクタ部分とトランス部分の電圧が相殺されてゼロになり、損失を発生させない。これは、インダクタとトランスを別のコアに構成して直列に接続した場合、デッドタイム期間においてインダクタとトランスそれぞれに逆の電流が発生するが、一つのコアに疎結合にインダクタとトランスを構成した場合にはこの逆の電流が互いに対向して打ち消しあうために電流が発生しないことによる。
また、一つのコアにインダクタ部分とトランス部分を設けた場合は、コアの一方の脚に1次巻線及び2次巻線のインダクタ部分を巻き、他の脚に1次巻線及び2次巻線のトランス部分を巻くため、1次側の磁束と2次側の磁束が打ち消し合ってゼロになり、直流電流が重畳されない。
以上に述べたように、本実施形態のDC−DCコンバータによれば、インダクタ部分とトランス部分を一つのコアに構成し、コアの一方の脚に1次巻線及び2次巻線のインダクタ部分を巻き、他の脚に1次巻線及び2次巻線のトランス部分を巻くため、部分共振期間(デッドタイム期間)はインダクタ部分の磁束とトランス部分の磁束が逆向きとなって互いに打ち消しあい、電圧が発生せずに損失はゼロとなる。また、インダクタ部分とトランス部分の1次巻線によって発生する磁束は2次巻線側に励起する磁束により打ち消され、直流磁束はゼロとなり、大きなギャップを用いずに渦電流の低減、ノイズの低減が可能となる。
<その他の実施形態>
図9は本発明のDC−DCコンバータの第2の実施形態を示すものである。本発明では、コンデンサ13と、インダクタの1次巻線141と、トランスの1次巻線151は直列に接続されれば良く、本実施形態はコンデンサ13の挿入位置を図1とは異なる位置、例えばトランス15の他端側に配置したものである。この構成によっても実施形態1と同様の効果が得られる。
図10は本発明のDC−DCコンバータの第3の実施形態を示すもので、FET11,12のスイッチング損失改善のために、インダクタ21とコンデンサ22を追加したものである。インダクタ21は、FET11,12の接続点とコンデンサ13間に直列に接続され、コンデンサ22はFET12と並列に接続され、これらインダクタ21とコンデンサ22は共振回路を構成し、ゼロボルトスイッチZVSを構成する。尚、コンデンサ22はFET11と並列に接続しても良い。これによりスイッチング素子11,12のターンオフ時の電力損失を改善が改善される。
図11は本発明のDC−DCコンバータの第4の実施形態を示すもので、トランス15を非絶縁化するため、1巻線のトランス23で構成したものである。非絶縁形にするためには、前記トランス23を1巻線のインダクタに変更しても良い。これにより、1次側と2次側のグランドを共通化することができる。
図12は、本発明のDC−DCコンバータの第5の実施形態を示すもので、インダクタ14又はトランス15の少なくとも一方の2次巻線を複数巻線の構成にしたものである。図12では、インダクタ14及びトランス15の両方の2次巻線を2巻線とした例を示しており、インダクタ14の1次巻線141に電磁結合したインダクタ142aと、トランス15の1次巻線に電磁結合したトランス巻線152aを追加し、同様に整流素子16a,17a、平滑コンデンサ18aを追加接続した。このように構成することにより、一つの入力電源から複数の出力を得ることができる。
また、図13は、本発明のDC−DCコンバータの第6の実施形態を示すもので、トランス15の1次巻線151の他端側を入力電圧Vinの正側に接続したものである。このように構成しても実施形態1と同様の効果が得られる。
さらに、図示はしないが、インダクタ14とトランス15の位置を入れ替えても良いし、整流素子16,17は極性を逆にすることで、出力電圧の極性を変えることができる。
このように、本発明によれば、出力電圧Voutが、Vout=D×(1−D)×Vin/nとなるDC−DCコンバータにおいて、インダクタとトランスが疎結合に一つのコアに構成したため、デッドタイム期間のコアの損失がゼロとなり、直流重畳電流が流れず、渦電流損失が低減され、高効率でありノイズの少ない電源を提供できる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明のDC−DCコンバータの一実施形態を示す回路図。 同実施形態におけるインダクタ−トランスを横から見た図。 同実施形態におけるインダクタ−トランスの巻き方の例を示した図。 同実施形態における各部の信号波形を示す波形図。 同実施形態における動作を説明するための回路図。 同実施形態における動作を説明するための回路図。 同実施形態における動作を説明するための電流波形図。 同実施形態における動作を説明するための出力電圧の特性図。 本発明のDC−DCコンバータの第2の実施形態を示す回路図。 本発明のDC−DCコンバータの第3の実施形態を示す回路図。 本発明のDC−DCコンバータの第4の実施形態を示す回路図。 本発明のDC−DCコンバータの第5の実施形態を示す回路図。 本発明のDC−DCコンバータの第6の実施形態を示す回路図。
符号の説明
10…直流電源
11,12…スイッチング素子
13…コンデンサ
14…インダクタ
15,23…トランス
16,17…整流素子
18…平滑コンデンサ
19…制御IC
20…フィードバック回路
21…インダクタ
22…コンデンサ
23…トランス
300…インダクタ−トランス

Claims (8)

  1. 直流電圧が供給される入力電圧点と基準電位点間に直列に接続された第1,第2のスイッチング素子を有し、一方のスイッチング素子が導通して他方のスイッチング素子が非導通となる期間、両方のスイッチング素子がオフとなる期間、及び他方のスイッチング素子が導通して一方のスイッチング素子が非導通となる期間を周期的に繰り返すスイッチング回路と、
    コンデンサ及びインダクタ及びトランスを含んでなり、前記インダクタ及び前記トランスは1次巻線と2次巻線を有し、前記コンデンサ及び前記インダクタの1次巻線及び前記トランスの1次巻線を直列に接続し、前記スイッチング回路の出力点と前記基準電位点間または前記スイッチング回路の出力点と前記入力電圧点間に接続した直列回路と、
    前記インダクタ及び前記トランスの2次巻線に誘起された電圧をそれぞれ整流する整流素子を含み、直流出力電圧を得る出力回路と、を備え、
    前記インダクタの1次巻線と2次巻き線をコアの第1の脚に設け、前記トランスの1次巻線と2次巻き線を前記コアの第2の脚に設け、前記インダクタと前記トランスを一つのコアに疎結合に配したことを特徴とするDC−DCコンバータ。
  2. 一つのコアに設けられた前記インダクタと前記トランスの前記疎結合の結合度が0.98以下であることを特徴とする請求項1に記載のDC−DCコンバータ。
  3. 前記直流電源からの入力電圧をVin、前記一方のスイッチング素子のスイッチング周期に対する導通期間の比率をD、トランスの1次巻数をトランスの2次巻数によって除した値をnとしたとき、前記直流出力電圧Voutが以下の式を満たすことを特徴とする請求項1又は請求項2に記載のDC−DCコンバータ。
    Vout=D×(1−D)×Vin/n
  4. 前記第1,第2のスイッチング素子はデッドタイム期間以外どちらか一方のスイッチがオンして動作することを特徴とする請求項1乃至3いずれか一項に記載のDC−DCコンバータ。
  5. 前記第1,第2のスイッチング素子は制御回路によって導通・非導通の制御が行われ、前記直流出力電圧の変化に応じて第1のスイッチング素子の導通期間と第2のスイッチング素子の導通期間の比が制御されることを特徴とする請求項1乃至4いずれか1項に記載のDC−DCコンバータ。
  6. 前記スイッチング回路の出力点と前記直列回路との間にインダクタを接続し、前記第1,第2のスイッチング素子の少なくとも一方に並列に第2のコンデンサを接続したことを特徴とする請求項1乃至5いずれか一項に記載のDC−DCコンバータ。
  7. 前記インダクタ及び前記トランスの少なくとも一方は、複数の2次巻線を有し、それぞれの2次巻線に誘起された電圧を整流する整流素子を含み、直流出力電圧を複数出力することを特徴とする請求項1乃至6いずれか一項に記載のDC−DCコンバータ。
  8. 直流電圧が供給される入力電圧点と基準電位点間に直列に接続された第1,第2のスイッチング素子を有し、一方のスイッチング素子が導通して他方のスイッチング素子が非導通となる期間、両方のスイッチング素子がオフとなる期間、及び他方のスイッチング素子が導通して一方のスイッチング素子が非導通となる期間を周期的に繰り返すスイッチング回路と、
    コンデンサ及びインダクタ及びトランスを含んでなり、前記インダクタは1次巻線と2次巻線を有し、前記コンデンサ及び前記インダクタの1次巻線と前記トランスの1次巻線とを直列に接続し、前記スイッチング回路の出力点と前記基準電位点間または前記スイッチング回路の出力点と前記入力電圧点間に接続した直列回路と、を備え、
    前記インダクタの1次巻線と2次巻き線をコアの第1の脚に設け、前記インダクタと前記トランスを一つのコアに疎結合に配したことを特徴とするDC−DCコンバータ。
JP2006225676A 2006-08-22 2006-08-22 Dc−dcコンバータ Abandoned JP2008054378A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225676A JP2008054378A (ja) 2006-08-22 2006-08-22 Dc−dcコンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225676A JP2008054378A (ja) 2006-08-22 2006-08-22 Dc−dcコンバータ

Publications (1)

Publication Number Publication Date
JP2008054378A true JP2008054378A (ja) 2008-03-06

Family

ID=39237897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225676A Abandoned JP2008054378A (ja) 2006-08-22 2006-08-22 Dc−dcコンバータ

Country Status (1)

Country Link
JP (1) JP2008054378A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225527A (ja) * 2008-03-14 2009-10-01 Toshiba Corp 漏洩変成器
KR100978921B1 (ko) * 2008-03-26 2010-08-31 청주대학교 산학협력단 전원장치
JP2011004465A (ja) * 2009-06-16 2011-01-06 Toshiba Corp スイッチング電源装置
WO2019181082A1 (ja) * 2018-03-20 2019-09-26 アルプスアルパイン株式会社 直流電圧変換回路および電源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162360A (ja) * 1984-09-03 1986-03-31 Hitachi Ltd 多出力スイツチング電源回路
JPH0866025A (ja) * 1994-08-10 1996-03-08 Sanken Electric Co Ltd 共振型スイッチング電源装置
JPH08228486A (ja) * 1995-02-22 1996-09-03 Takasago Seisakusho:Kk Dc−acインバータの制御方法
JP2006204036A (ja) * 2005-01-21 2006-08-03 Mitsubishi Electric Corp 車両用電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162360A (ja) * 1984-09-03 1986-03-31 Hitachi Ltd 多出力スイツチング電源回路
JPH0866025A (ja) * 1994-08-10 1996-03-08 Sanken Electric Co Ltd 共振型スイッチング電源装置
JPH08228486A (ja) * 1995-02-22 1996-09-03 Takasago Seisakusho:Kk Dc−acインバータの制御方法
JP2006204036A (ja) * 2005-01-21 2006-08-03 Mitsubishi Electric Corp 車両用電力変換装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225527A (ja) * 2008-03-14 2009-10-01 Toshiba Corp 漏洩変成器
KR100978921B1 (ko) * 2008-03-26 2010-08-31 청주대학교 산학협력단 전원장치
JP2011004465A (ja) * 2009-06-16 2011-01-06 Toshiba Corp スイッチング電源装置
WO2019181082A1 (ja) * 2018-03-20 2019-09-26 アルプスアルパイン株式会社 直流電圧変換回路および電源装置
JPWO2019181082A1 (ja) * 2018-03-20 2020-10-22 アルプスアルパイン株式会社 直流電圧変換回路および電源装置
CN111869076A (zh) * 2018-03-20 2020-10-30 阿尔卑斯阿尔派株式会社 直流电压变换电路以及电源装置
TWI717666B (zh) * 2018-03-20 2021-02-01 日商阿爾卑斯阿爾派股份有限公司 直流電壓轉換電路及電源裝置
US11381174B2 (en) 2018-03-20 2022-07-05 Alps Alpine Co., Ltd. DC voltage conversion circuit and power supply device
US11581818B2 (en) 2018-03-20 2023-02-14 Alps Alpine Co., Ltd. DC voltage conversion circuit and power supply device
CN111869076B (zh) * 2018-03-20 2023-10-03 阿尔卑斯阿尔派株式会社 直流电压变换电路以及电源装置

Similar Documents

Publication Publication Date Title
JP4649299B2 (ja) Dc−dcコンバータ
US8072785B2 (en) Switching power supply unit
JP5088386B2 (ja) スイッチング電源装置
US7209024B2 (en) Filter circuit and power supply unit
US7405955B2 (en) Switching power supply unit and voltage converting method
JP4935499B2 (ja) 直流変換装置
US8223520B2 (en) DC conversion apparatus
US8385089B2 (en) Multiple-output switching power supply unit
JP2005160217A (ja) スイッチング電源装置
JPWO2007040227A1 (ja) 多出力スイッチング電源装置
JP5063285B2 (ja) 2トランス型dc−dcコンバータ
CN111492568B (zh) 交错式llc谐振变换器
US7532488B2 (en) DC converter
JP2008131793A (ja) 直流変換装置
CN112039343A (zh) 电源装置
JP2008054378A (ja) Dc−dcコンバータ
JP4577030B2 (ja) スイッチング電源装置
JP5639006B2 (ja) スイッチング電源装置
JP2019080390A (ja) スイッチング電源装置
JP3700844B2 (ja) スイッチングコンバータ
JP2006211878A (ja) スイッチング電源装置
JP2009171829A (ja) 絶縁型スイッチング電源装置
JP2010068701A (ja) Dc−dcコンバータ
JP2005192367A (ja) スイッチング電源装置
JP2003092876A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110207